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Abstract

In this work we discuss mathematical programming formulations for satisfying the
maximum number of distance geometry constraints with minimum error.

Keywords : protein folding, experimental error formulation, systematic error formulation.

1 Introduction

We discuss an interesting hybrid of two problems: the Maximum Feasible Subsystem
(MaxFS) [1] and the Distance Geometry Problem (DGP) [4], and its application to the
problem of determining the spatial conformation of proteins from distance data derived from
Nuclear Magnetic Resonance (NMR) experiments.

The MaxFS is as follows: given a system of constraints, generally of the form

∀i ∈ I gL
i ≤ gi(x) ≤ gU

i , (1)

with gi : Rn → R, determine a subset S ⊆ I of maximum cardinality such that the subsystem
of constraints of Eq. (1) indexed by S is feasible.

The (Euclidean) DGP is as follows: given an integer K > 0 and a simple connected edge-
weighted graph G = (V,E, d), where d : E → R+, determine whether there exists a realization
x : V → RK such that:

∀{i, j} ∈ E ‖xi − xj‖2 = dij . (2)

There are many applications of the DGP and even more variants [4]. The one we are specially
interested in is the interval DGP (iDGP), which replaces d : E → R+ with the interval weight
function d : E → IR+ such that d({i, j}) = [Lij , Uij ]. Specifically, Eq. (2) becomes

∀{i, j} ∈ E Lij ≤ ‖xi − xj‖2 ≤ Uij . (3)

From now on, we shall assume all norms are Euclidean unless stated otherwise.
We are now in the position of stating the main problem discussed in this paper.

Maximum Feasible Subsystem of Distance Geometry constraints (MaxFSDGP ).
Given an integer K > 0 and a simple connected edge-weighted graph G = (V,E, d)
with d : E → IR+, determine the maximum cardinality subset S ⊆ E inducing
a connected subgraph of G, such that there exists a realization x : V [E] → RK

satisfying
∀{i, j} ∈ S Lij ≤ ‖xi − xj‖2 ≤ Uij . (4)



The MaxFSDGP is motivated by a specific application of the DGP, namely the determina-
tion of the shape of proteins given some of their inter-atomic distances. In principle, NMR
can determine all inter-atomic distances in a given protein up to a certain length threshold
(somewhere between 5Å and 6Å). In practice, reality is fuzzier than this. First, we note that
proteins rarely crystallize (so X-ray crystallography does not help), but usually live in a solu-
tion. Secondly, proteins vibrate, but we assume that they do not (this is called the “molecular
rigidity assumption”). NMR experiments actually help determine a probability distribution
over triplets (atom label, atom label, distance value); this distribution is used to imperfectly
reconstruct the weighted graph G that is the actual input to the DGP, often using a simulated
annealing approach. According to [2], this process induces two types of errors: experimental
errors (due to the rigidity assumption), and systematic errors (due to the imperfect recon-
struction). Specifically, The experimental errors are accommodated by the interval bounds
on the iDGP. The systematic errors are described in [2] as consisting of a certain proportion
of completely wrong distances. This induces sets of constraints in (3) that are likely to be
infeasible. It is clear that this situation is well addressed by the MaxFSDGP .

2 Formulations
In this section we present and discuss several Mathematical Programming (MP) formulations
related to experimental errors, systematic errors, and trade-offs between the two. We remark
that `2 norm terms are always squared in order to remove the square root: in terms of MP
literature, working with Polynomial Programming (PP) offers more opportunities than with
general Nonlinear Programming (NLP).

2.1 Experimental errors
Experimental errors are usually addressed by minimizing the infeasibilities w.r.t. Eq. (2) or
Eq. (3). A commonly seen box-constrained formulation targeting the DGP is:

min
x∈[xL,xU ]

∑
{i,j}∈E

(‖xi − xj‖2 − d2
ij)2, (5)

where xL, xU are given lower and upper bounds for the decision variable n × K matrix x =
(x1, . . . , xn). Eq. (5) was tested computationally in e.g. [3]. An equivalent formulation for the
iDGP replaces each term ‖xi − xj‖2 − d2

ij with

max(0, L2
ij − ‖xi − xj‖2) + max(0, ‖xi − xj‖2 − U2

ij),

yielding
min

∑
{i,j}∈E

(sij + tij)

∀{i, j} ∈ E L2
ij − ‖xi − xj‖2 ≤ sij

∀{i, j} ∈ E ‖xi − xj‖2 − U2
ij ≤ tij

∀{i, j} ∈ E sij , tij ≥ 0
xL ≤ x ≤ xU .


(6)

2.2 Systematic errors
The MaxFSDGP can be formulated in a natural way, using big-M techniques [1] as follows:

max
∑

{i,j}∈E

yij

∀{i, j} ∈ E d2
ij −M(1− yij) ≤ ‖xi − xj‖2 ≤ d2

ij +M(1− yij)
y ∈ {0, 1}m.

 (7)

We point out that a valid value of M exists for any instance of MaxFSDGP .



Proposition 1 If M = R2, where R =
∑
{i,j}∈E dij, then the optimal solution of Eq. (7) solves

the MaxFSDGP .

Proof : First, we claim that any feasible DGP instance can be realized in a sphere of radius
R. A cycle graph C on V = {1, 2, . . . , n} with E = {{1, 2}, {2, 3}, . . . , {n− 1,m}, {1, n} with
d1n =

∑
{i,j}∈E dij can be realized on a straight segment of length R = d1n embedded in any

Euclidean space [5]; if this segment is centered about the origin it belongs by construction to
the sphere RSK−1. Any other biconnected graph on n vertices will have more cycles than C,
and hence will induce realizations in RK having segments shorter than R when projected on
any coordinate axis. Connected but non-biconnected graphs are the same as trees: the tree
yielding a realization with longest segment projection on any coordinate axis is the path on
n vertices realized as a segment of length R; again, by centering the segment it is easy to see
that the path can be realized in a sphere of radius R.

Lastly, we simply note that the above claim also shows that the maximum possible distance
between two vertices i, j in a realization is R. This shows that if a MaxFSDGP instance
has a solution with a certain support vector y∗ for the maximum cardinality set of feasible
constraints, then setting y = y∗ in Eq. (7) will induce a valid realization x∗ of the subgraph
consisting of the edges {i, j} for which y∗ij = 1, and vice versa. �

In practice, segment realizations are extremely rare, and therefore M can be tightened
w.r.t. Prop. 1. We remark that bounds on M can also be inferred from xL, xU , if they are
given; and, conversely, that [xL, xU ] can be set to [−M,M ] if the application field does not
explicitly provide them.

2.3 Bi-objective formulation
As explained in the introduction, the MaxFSDGP requires a the trade-off between the exper-
imental and the systematic error. Such a trade-off is modeled by the following bi-objective
formulation based on: binary variables yij equal to 1 if the constraint corresponding to the
edge {i, j} is deactivated, 0 otherwise; continuous variables sij representing the experimental
error on edge {i, j} and continuous auxiliary variables rij to model the behavior of variables
yij . In particular, the last constraint forces yij = 0 if rij > 0, while it becomes redundant if
rij = 0. This way, variables sij model the experimental error only for the distance geometry
constraints that are not deactivated.

max
∑

{i,j}∈E

yij

min
∑

{i,j}∈E

s2
ij

∀{i, j} ∈ E ‖xi − xj‖2 = d2
ijyij + rij + sij

∀{i, j} ∈ E yij ≤ 1− rij

Mij

x ∈ RnK

y ∈ {0, 1}m

r ∈ Rm
+

s ∈ Rm.



(8)

where
Mij = maxxi∈[xL

i ,xU
i ],xj∈[xL

j ,xU
j ]‖xi − xj‖2

If xL, xU are not provided, we can exploit again Proposition 1 and set Mij = R2.

2.4 Minimization of experimental error with systematic error cardinality
constraint

Solving bi-objective formulations does not yield “a solution”, in general, but a whole set of
Pareto-optimal solutions, which might in principle be infinite. A possible way to obtain them



is by ε-constraint method which consists in turning one of the objectives into a constraint
bounded by an arbitrary value, which is then changed iteratively. Since the first objective is
discrete, it is more advantageous to apply such a method to it rather than the second one.
This way, the first objective of formulation (8) is turned in a constraint ensuring that at most p
distance geometry constraints can be violated. The resulting formulation is the following one:

min
∑

{i,j}∈E

s2
ij

∀{i, j} ∈ E ‖xi − xj‖2 = d2
ijyij + rij + sij

∀{i, j} ∈ E yij ≤ 1− rij

Mij∑
{i,j}∈E

yij ≥ m− p

x ∈ RnK

y ∈ {0, 1}m

r ∈ Rm
+

s ∈ Rm.



(9)

3 Conclusion and perspectives
All the described formulations have been implemented in AMPL and solved by the state-of-
the-art solver BARON. Preliminary results show that the new formulation proposed in Section
2.4 allows to obtain a strong reduction of the experimental error compared to that obtained
with the original formulation described in Section 2.1 where the systematic error component
was not considered. Future works, concern the development of smarter solution methods (e.g.,
branch-and-bound based on a Semidefinite Programming relaxation or heuristic methods) since
the results provided by the solver strongly depend on the starting guessed value of the decision
variables, in particular of x.
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