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Abstract – In this paper a complete analytical model of an 
electric drive in/around torsional resonance is presented. The 
model includes the electrical equations of a permanent magnet 
synchronous machine (PMSM), the mechanical characteristics 
represented by a two-degree-of-freedom (2DOF) system and the 
equations describing the control system. The objective is to 
obtain formulae on hand to predict both the electromagnetic 
and the shaft torque harmonics around resonance. Accounting 
for the various aspects, this model reveals the interconnections 
between electromagnetic, mechanical and control phenomena. 
The overall system solution is obtained by applying the small 
variations method and transfer functions formalism. The results 
are confirmed by simulations in Matlab/Simulink environment.  
 

Index Terms—torsional vibrations, PI-control, torque 
harmonic amplitude. 

I.   NOMENCLATURE 

R, L PMSM phase resistance and inductance [Ω], [H] 
ΨPM permanent magnet flux [Wb] 
Jm, JL motor and load inertia [kgm2] 
θm, θL motor and load mech. angular position [rad] 
𝜃 ,𝜃  motor and load mechanical speed [rad/s] 
𝜃 motor electrical speed [rad/s] 
ψd, ψq flux linkage along the dq-axes [Wb] 
p time derivative [s-1] 
np number of pole pairs 
B coupling damping [Nms/rad] 
K coupling stiffness [Nm/rad] 
Tsw, fsw switching period and frequency [s], [Hz] 
kpI proportional coeff. of the current regulator [V/A] 
kiI integral coeff. of the current regulator [Vrad/As] 
kpΩ proportional coeff. of the speed reg. [Nms/rad] 
kiΩ integral coeff. of the speed regulator [Nm] 
𝜃  reference motor mechanical speed [rad/s] 
𝑖 , 𝑖  reference and actual dq-currents [A] 
eidq error between ref. and measured dq-currents [A] 
eΩ error between ref. and measured speed [rad/s] 
Vh amplitude of phase voltage harmonic, rms [V] 
hv, h voltage and torque harmonic order 
fc,I current loop cutoff frequency [Hz] 
mf frequency modulation index 
ωh harmonic angular frequency [rad/s] 
fN,mech natural frequency of the mechanical system [Hz] 
fN natural frequency of the overall system [Hz] 
�̅�  fundamental voltage in αβ-frame [V] 
�̅�  voltage harmonic in αβ-frame [V] 
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𝚤̅  motor currents in αβ-frame [A] 
𝜓  PMSM flux in αβ-frame [Wb] 
Tem TL Tsh electromagnetic, load and shaft torque [Nm] 
𝑇  reference electromagnetic torque [Nm] 

II.   INTRODUCTION 

HE control system is an essential part of any modern 
electric drive since it provides a desired way of machine 

operation. Its role is particularly important in transient 
conditions when mechanical oscillations are reflected 
significantly on the electrical side. Numerous publications 
have treated the electro-mechanical interactions in an electric 
drive, and others the effect of the control system on the 
electrical quantities. To the authors’ best knowledge, there is 
no research that deals with all these aspects in/around 
resonance condition and combines them in a unique all-
inclusive mathematical model which highlights the 
interconnections among relevant quantities.  
 In [1], the traditional mechanical lumped-inertia model is 
extended by a torsional spring and a damper between the 
motor and the ground to account for the electromagnetic 
phenomena in the air gap. The results show a shift in the 
torsional frequencies due to the electrical aspect of the 
system. The model is verified by multi-physics simulation 
software, but not experimentally. In [2], the propagation of 
harmonics resulting from mechanical dynamics to the motor 
air gap on the electrical side is analysed in detail. The paper 
provides a very solid basis for further research. In [3], an in-
depth analysis of the mechanical system characteristics and 
torsional vibrations excited by electromagnetic torque 
harmonic is presented. However, the previous articles do not 
examine the effect of the control system on the torque 
harmonics amplitude. In [4], a dynamic model of an 
integrated electrical drive system is presented, and the 
electromechanical coupling characteristics are studied. The 
control system, instead, is analysed separately and the PI 
speed controller parameters are chosen through multiple 
simulations. Another paper investigates the effect of the 
motor flux harmonics due to the slots, current measurement 
errors and dead time of the inverter. However, it does not 
consider the detailed mechanical model [5]. 

In [6], an extensive survey regarding the effect of 
parameters uncertainties on the torsional frequencies is 
presented. However, the paper considers mechanical 
characteristics only, not the electrical ones. In [7], the 
response of the control system on torsional vibrations is 
discussed, highlighting the effect of the oscillations present 
in the measured signals, delays caused by sampling times 
and calculations inside the control loops. However, this work 
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does not provide a full mathematical model integrating the 
control system with the electro-mechanical interactions.  

In the industry, a PI speed regulator is typically used for 
controlling an elastically coupled load. The main issue with 
this control method is the limited possibility for pole 
placement and therefore, a limited speed control dynamics. 
[8]. As suggested in [9], the conventional PI speed loop 
bandwidth can be reduced to suppress any excitation at the 
resonant frequency. The problem with this solution is the 
slow dynamic performance. It should be noted that in many 
papers dealing with torsional vibrations the inner current 
loop is assumed to be much faster than the outer speed loop, 
thus it is represented as a first order lag or a unity gain [10]. 
This approach loses the dynamics of the inverter and the 
electrical motor parameters; therefore, it cannot provide a 
complete picture of the overall system behaviour and the 
mutual interactions.       

In Section III of this paper, the electrical equations of a 
PMSM in the dq-frame are extended to account for a voltage 
harmonic generated by the inverter operation. It causes 
harmonic currents, which, in turn, generate harmonic torques 
and consequently, mechanical oscillations. When the 
frequency of a torque harmonic matches the system natural 
frequency, a torsional resonance is excited. Moreover, in this 
section the mechanical characteristics of the motor and its 
load are given by differential equations for a 2DOF system. 
The control system is also described by appropriate 
equations. A general all-inclusive model is created in the 
Laplace domain. The system is solved by applying the small 
variations method and the resulting transfer functions are 
combined in the frequency domain to obtain simple formulae 
for computing the amplitude of the electromagnetic and the 
shaft torque harmonic in/around resonance. In Section IV, 
the analytical results are verified by extensive 
Matlab/Simulink simulations in various operating conditions. 
Conclusions are presented in Section V. 

III.   ANALYTICAL MODEL OF THE PMSM DRIVE 

A general representation of the system under study is 
shown in Fig. 1. What is important to be highlighted is the 
formally injected harmonic �̅�  which in practice appears 
due to the modulator. In this section each of the blocks in 
Fig. 1 is modelled separately and then the overall system 
model is established and solved.  

 

 
 

Fig. 1.  Basic block-diagram of the system under analysis. Important 
variables are highlighted in red. Subscripts 0 and h or hv indicate steady-state 
value and harmonic variation, respectively. 

A.   Physical System 

The physical part of the system consists of the inverter, 
the PMSM and its load. Let us start from the equations of the 
machine in the stationary αβ-frame, emphasizing the voltage 
harmonic �̅� : 

                       �̅� �̅� 𝑅𝚤̅ 𝑝𝜓   (1) 

In the rotating dq-frame instead, (1) gives rise to the 
following components along the axes: 

                  
𝑣 𝑣 𝑅𝑖 𝑝𝜓 𝜃𝜓

𝑣 𝑣 𝑅𝑖 𝑝𝜓 𝜃𝜓
 (2) 

where h = hv ± 1, according to the harmonic sequence and the 
fluxes ψdq are defined as: 

                                    
𝛹 𝐿𝑖 𝛹
𝛹 𝐿𝑖  (3) 

Applying the small variations method, the system in (2) 
can be linearised and decomposed to a steady-state value in 
(4) and an oscillation given in (5): 

                         
𝑣 𝑅𝑖 𝜃 𝜓

𝑣 𝑅𝑖 𝜃 𝜓
 (4) 

          

⎩
⎪
⎨

⎪
⎧
Δ𝑣 Δ𝑣 𝑣

              𝑅Δ𝑖 𝑝Δ𝜓 𝜃 Δ𝜓 𝜓 Δ𝜃
Δ𝑣 Δ𝑣 𝑣

              𝑅Δ𝑖 𝑝Δ𝜓 𝜃 Δ𝜓 𝜓 Δ𝜃

 (5) 

The time derivative of the flux variations along the dq-
axes are expressed from (5): 

⎩
⎪
⎨

⎪
⎧
𝑝Δ𝜓

             Δ𝜓 𝜃 Δ𝜓 𝜓 Δ𝜃 Δ𝑣 𝑣

𝑝Δ𝜓

            𝜃 Δ𝜓 Δ𝜓 𝜓 Δ𝜃 Δ𝑣 𝑣

 (6) 

On the other hand, the mechanically related variables, like 
angular position and speed, are presented in Fig. 2. They are 
found from the Newton’s equations of motion as in (7) [11], 
which account for the inertias and the coupling parameters. A 
2DOF mechanical system whose data are given in Appendix 
I is characterised by a torsional frequency fN,mech = 112Hz. 

         
𝐽 𝑠 𝜃 𝑇 𝐾 𝜃 𝜃 𝐵 𝜃 𝜃

𝐽 𝑠 𝜃 𝐾 𝜃 𝜃 𝐵 𝜃 𝜃 𝑇
 (7) 

 

Fig. 2.  Mechanical aspects of a 2DOF system consisting of a PMSM, its 
load and their coupling. 



 

To investigate the effect of Tem harmonics on the motor 
speed, we can consider a constant load torque TL without any 
variations and neglect it in the further small signal analysis. 
The transfer function from the electromagnetic torque Tem to 
the motor electrical speed 𝜃 can be obtained from (7) as: 

𝜃
𝑇

𝑛 𝐽 𝑠 𝐵𝑠 𝐾
𝐽 𝐽 𝑠 𝐵 𝐽 𝐽 𝑠 𝐽 𝐽 𝐾𝑠

𝑛 𝑁 𝑠
𝐷 𝑠

  

 (8) 

 From an electrical point of view, Tem is proportional to 
the flux ψq, as given in (9). By introducing it in (8) and 
applying the small variations method, the time derivative of 
the electrical speed variation is found as in (10): 

𝑇 𝑛 𝛹 𝜓 /𝐿                           (9) 

𝑠Δ𝜃
𝜓
𝐿

𝑛
𝐽 𝑠 𝐵𝑠 𝐾

𝐽 𝐽 𝑠 𝐵 𝐽 𝐽 𝑠 𝐾 𝐽 𝐽
Δ𝜓  

 (10) 

The inverter is commonly represented as a unity gain, or 
more precisely as: 

                             ∆�̅� ∆�̅�  (11)  

B.   Control system 

Although the block scheme of the control system can be 
easily found in literature, here it is shown in Fig. 3 since it 
will be used for defining several relevant equations. The 
oscillations of the speed and the angular position are put in 
evidence.  

The scheme consists of inner current loop and outer speed 
loop, both employing PI regulators. Each regulator gives rise 
to two equations: a differential as in (12) and an algebraic 
one as in (13): 

                           

𝑝𝜀 𝑖 𝑖

𝑝𝜀 𝑖 𝑖

𝑝𝜀 𝜃 𝜃

 (12) 

 

𝑣 𝑘 𝑖 𝑖 𝑘 𝜀 𝑛 𝜃 𝐿𝑖

𝑣 𝑘 𝑖 𝑖 𝑘 𝜀 𝑛 𝜃 𝜓 𝐿𝑖

𝑇 𝑘 𝜃 𝜃 𝑘 𝜀

 (13) 

 

 
 
Fig. 3.  Block diagram of the control system. Harmonics due to the 
mechanical oscillations are highlighted in red. 

 
All the compensation terms are included in (13). Another 

equation can be written from the block-diagram in Fig. 3: 

          𝑇 𝑛 𝜓 𝑖  →  𝑖 𝑇  (14) 

The small variations method is applied to (12)-(14), 
having in mind that ΔxΔy is negligibly small, Δid

ref = 0 

(assuming MTPA operation) and 𝜃 0. Substituting the 
variations of (13) and (14) in (11), we obtain Δvd(1) and Δvq(1) 
to be inserted in (6): 

         Δ𝑣 𝑘 Δ𝑖 Δ𝑖 𝑘 Δ𝜀     

                                      𝑛 𝐿𝜃𝑚0𝛥𝑖 𝑛 𝐿𝑖 𝛥𝜃𝑚  (15.1) 
 
         Δ𝑣 𝑘 Δ𝑖 Δ𝑖 𝑘 Δ𝜀     

                    𝑛 𝜓 𝛥𝜃𝑚 𝑛 𝐿𝜃𝑚0𝛥𝑖 𝑛 𝐿𝑖 𝛥𝜃𝑚  (15.2) 

The overall system consists of (6), (10), and the variations 
of (12). It can be written in matrix form in the Laplace 
domain, formally replacing the time derivative p by the 
complex variable s: 

                 𝑠

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Δ𝜓
Δ𝜓

Δ𝜃
Δ𝜀
Δ𝜀
Δ𝜀 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝐴

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Δ𝜓
Δ𝜓

Δ𝜃
Δ𝜀
Δ𝜀
Δ𝜀 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
1 0
0 1
0 0
0 0
0 0
0 0⎦

⎥
⎥
⎥
⎥
⎤
𝑣
𝑣  (16) 

where the system matrix Asys is given in (17). 
The system (16) is solved and all the relevant transfer 

functions relating the inputs vd(h) and vq(h) and the state 
variables are found. In this analysis, the transfer functions in 
(18) are particularly important because they define the 

                        

                           𝐴

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜃 𝜓 0 0

𝜃 𝑎 𝑠 0

0 𝑎 𝑠 0 0 0 0
1/𝐿 0 0 0 0 0

0 1/𝐿 0 0

0 0 1/𝑛 0 0 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (17) 

 

𝑎 𝑠 𝑛   and  𝑎 𝑠 𝜓 𝜓  

 



 

contributions of the harmonic voltages in the dq-frame to the 
torque harmonic. Their analytical expressions are given in 
Appendix II.  

𝐺 , 𝑇 , 𝑠 𝑉 𝑠⁄ ;  𝐺 , 𝑇 , 𝑠 𝑉 𝑠⁄      (18) 

Furthermore, the transfer function between the 
electromagnetic and the shaft torque, obtained from (7), is: 

,

,
𝐺               (19) 

 Therefore, the transfer functions between the voltage 
harmonics in the dq-frame and the shaft torque harmonic are: 

                           𝐺 ,
, 𝐺 , 𝐺 ;              (20.1) 

                           𝐺 ,
, 𝐺 , 𝐺 ;              (20.2) 

 As an example, let us plot the transfer functions Gem,dq 
and Gsh,dq for a system whose data are given in Appendix I. 
The fundamental frequency is f1 = 5Hz and iq0 = 0.2In. Two 
different cases are considered: the first one is characterized 
by switching frequency fsw=75Hz and current loop bandwidth 
fc,I=1.8Hz much lower than fN,mech, while in the second case 
these values are much higher than fN,mech: fsw=5kHz and 
fc,I=300Hz. The speed loop bandwidth is considerably low to 
avoid instability. The results are given in Fig. 4, where the 
complex frequency s is treated as a continuous variable, i.e. it 
is the frequency of the harmonic input vdq(h).  

Several conclusions can be made from Fig. 4: 
  Regardless of the current loop bandwidth, as the forcing 
harmonic frequency approaches the mechanical resonant 
frequency fN,mech, the amplitude Tem,h decreases significantly, 
almost becoming null.  
 In case of fc,I << fN,mech, there is an evident peak in both 
Tem,h and Tsh,h at a frequency slightly higher than fN,mech: this 
point defines a new overall resonant frequency fN. Its value is 
a root of the denominator polynomial in (18) and for our 
system fN = 117Hz. This is not the case with fc,I >> fN,mech 
because, as expected, the current loop damps the oscillations.   
 In both cases, the contribution of vd(h) to the torque 
magnitudes is less significant with respect to vq(h).  

C.   Torque harmonic magnitude estimation due to phase 
voltage harmonic 

It is more significant to evaluate the effect of a phase 
voltage harmonic �̅�  on the torque harmonic Tem,h and 
consequently Tsh,h. It can be done in the frequency domain   
by superposing the effects of vd(h) and vq(h) on the torque 
amplitudes. 

Let us assume a voltage harmonic of positive sequence at 
frequency ωh=hvω1. Applying the Park transform, the same 
harmonic in the dq-frame is:  

 

 

 
Fig. 4. Bode mag. response to a voltage harmonic. Transfer functions from 
vd(h) , vq(h) to Tem,h , Tsh,h: a) fc,I = 1.8Hz, fsw = 75Hz b) fc,I = 300Hz, fsw = 5kHz 

               
𝑣 √3𝑉 𝑠𝑖𝑛 ℎ𝜔 𝑡

𝑣 √3𝑉 𝑐𝑜𝑠 ℎ𝜔 𝑡
  ℎ ℎ 1    (21) 

By evaluating the amplitudes and the phases of the 
transfer functions Gem,d and Gem,q given in (18) at the forcing 
frequency ωh and combining them in the frequency domain, 
the amplitude Tem,h can be estimated as [11]: 

𝑇 , √3𝑉 𝑘 𝑘                       (22) 

where the gains k1 and k2 are given in (23). In a similar way, 
the formula can be obtained for the shaft torque harmonic 
Tsh,h, using the transfer functions in (20). The same approach 
is valid for a negative sequence voltage harmonic as well. 
 As an example, let us consider hv=13, which results in a 
torque harmonic h=12. Keeping the harmonic order fixed and 
iq0 = 0.2In, the fundamental frequency is varied and the 
magnitudes Tem,h and Tsh,h are evaluated in two cases, with 
current loop bandwidth lower and higher than fN,mech, 
respectively. The switching frequency is fsw=mff1, where 
mf=15 and mf=1002, respectively.  The results are shown in 
Fig. 5: the system at each point operates at steady state. 
 In both cases, Tem,h becomes almost zero when the 
modulation results in a harmonic at a frequency fN,mech.   
 At the same time, Tsh,h starts increasing. 

𝑘 𝐺 , 𝑗𝜔 𝑐𝑜𝑠 𝑎𝑟𝑔 𝐺 , 𝑗𝜔 𝐺 , 𝑗𝜔 𝑠𝑖𝑛 𝑎𝑟𝑔 𝐺 , 𝑗𝜔                            (23.1) 

𝑘 𝐺 , 𝑗𝜔 𝑠𝑖𝑛 𝑎𝑟𝑔 𝐺 , 𝑗𝜔  𝐺 , 𝑗𝜔 𝑐𝑜𝑠 𝑎𝑟𝑔 𝐺 , 𝑗𝜔                           (23.2)   



 

 
 

 
 
Fig. 5. Amplitude of the electromagnetic Tem,h and shaft torque Tsh,h 
harmonics due to a phase voltage harmonic. a) fc,I = 1.8Hz, mf=15 b) fc,I = 
300Hz, mf=1002.   
 

 With fc,I << fN,mech, both Tem,h and Tsh,h have a peak value 
when fh=fN. 
 With fc,I >> fN,mech only Tsh,h reaches a peak value at fh=fN 
and its value is much lower than in the case with low current 
loop bandwidth. 

IV.   VALIDATION BY SIMULATION 

As a first step, the transfer functions Gem,dq and Gsh,dq 
obtained in (18) and (20) were verified in Matlab/Simulink. 
All the PMSM drive parameters are given in Appendix II. At 
fixed fundamental f1=5Hz, sinusoidal perturbations vd(h) and 
vq(h) with variable harmonic h were injected. Two cases were 
considered, both with iq0 = 0.2In: current loop bandwidth 
lower and higher than the mechanical torsional frequency, 
respectively. The results are shown in Fig. 6. 

It can be noticed that in case of current loop bandwidth 
lower than fN,mech the analytical results match perfectly the 
simulation values. In case of current bandwidth higher than 
fN,mech instead, there is an apparent discrepancy between the 
computed and simulated results related to the d-axis transfer 
functions. This outcome can be explained by the numerically 
low values of about -70dB in Fig. 6b). Therefore, it is not 
necessary to insist on lowering the mismatch. 

As explained in Section IV, predicting correctly the 
amplitude of the electromagnetic and the shaft torque 
harmonic due to a harmonic voltage is more important than 
the individual transfer functions. Let us consider a voltage 
harmonic hv=13 which excites the h=12th torque harmonic. 
Varying the fundamental frequency f1, i.e. varying the drive 
operating speed, torque amplitudes were estimated both 
analytically and in Simulink. The results in case of 
significantly different values for the current loop bandwidth  

 
 

 
 
Fig. 6. Transfer functions between inputs vd(h) and vq(h) and outputs Tem,h and 
Tsh,h for fixed f1 and variable harmonic frequency. Comparison between 
analytical (full lines) and simulated results (points) for two different cases: 
a) fc,I = 1.8Hz, mf =15 b) fc,I = 300Hz, mf =1002. 
 

are shown in Fig. 7 and Fig. 8.    
In both cases, the analytical results are aligned with the 

simulation ones. It means the analytical model predicts 
accurately the torque amplitudes. Even though there was a 
little discrepancy between the analytical d-axis transfer 
function values and the simulation outcome, both Tem and Tsh 
harmonics are predicted correctly since the q-axis quantities 
have a much more significant effect on the torque responses, 
due to the PMSM principle of operation. Having enhanced 
our understanding of how the overall system responds 
in/around resonance, these findings will help to prevent from 
system damage due to torsional vibrations.    

V.   CONCLUSION 

A mathematical model of an electric drive containing a 
PMSM and operating in/around torsional resonance was 
presented in this paper. The model accounted for electrical, 
mechanical, and control aspects through suitable differential 
equations. On-hand formulae for predicting analytically the 
amplitude of the electromagnetic and the shaft torque 
harmonic were obtained. The resulting analytical solution 
gave an insight of the interconnections between various drive 
aspects. The results were verified through extensive 
simulations.   



 

 

 
 
Fig. 7. Amplitude of the electromagnetic Tem,h and the shaft torque Tsh,h 
harmonic in case of current loop bandwidth fc,I = 1.8Hz << fN,mech. 
Comparison between analytical and simulation results. 
 

 

 
 
Fig. 8. Amplitude of the electromagnetic Tem,h and the shaft torque Tsh,h 
harmonic in case of current loop bandwidth fc,I = 300Hz >> fN,mech. 
Comparison between analytical and simulation results. 
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VIII.   APPENDIX I 
TABLE I 

PMSM, LOAD, COUPLING AND CONTROL SYSTEM DATA 
 

Rated power Pn [kW] 6.91 
Rated torque Tem,n [Nm]  22 
Number of pole pairs np 3 
Rated frequency fn [Hz] 150 
Permanent magnet flux ΨPM [Wb] 0.165 
Phase resistance R [Ω] 0.393 
Synchronous inductance Ld=Lq=L [H] 4.8ꞏ10-3 
Motor side inertia Jm [kgꞏm2] 3ꞏ10-3 

Load side inertia JL [kgꞏm2] 123ꞏ10-3 
Coupling stiffness K [Nm/rad] 1458.5 
Coupling damping B [Nms/rad] 0.0567 
Proportional coeff. of the current regulator kpI [V/A]  0.045 / 9.473 
Integral coeff. of the current regulator kiI [Vrad/As] 0.475 / 3740 
Proportional coeff. of the speed reg. kpΩ [Nms/rad] 0.134 / 0.776 
Integral coeff. of the speed regulator kiΩ [Nm] 0.145 / 0.857 
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