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Abstract
Spatio-temporal (S-T) analysis is not typical in structural monitoring applications of buildings and infrastructure. However, 
monitoring always includes the temporal component, and observations are often captured in specific locations. In other 
words, a monitoring dataset could also be considered a spatio-temporal archive, notwithstanding that not all monitoring 
applications can benefit from S-T processing methods. The paper discusses spatio-temporal analysis using the structural 
monitoring dataset of the Cathedral of Milan, which has an archive of vertical settlements collected from more than 50 years 
of measurements. The proposed methods can be adapted and extended for other structural monitoring applications, including 
single buildings, infrastructure, and the environmental level. The cases of pure temporal (T) and spatial (S) analyses are also 
discussed, comparing the different approaches, illustrating the pros and cons, and describing the opportunities of the S-T 
combined workflow. The paper specifically focuses on different typologies of S-T processing: data visualization and explo-
ration techniques, clustering, change detection, prediction, and forecasting. The proposed algorithms were all implemented 
within the R open-source programming language. They can be replicated (and adapted) for other structural monitoring 
datasets featuring spatio-temporal correlation.
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1 Introduction

Structural monitoring implicitly includes the temporal 
domain. An example is the acquisition of observations at 
specific time intervals and their comparison [1]. Nowadays, 
observations can be acquired with several methods and 
sensors, and the commercial market offers different solu-
tions depending on the phenomenon under investigation. 
However, data collection is just an aspect of monitoring 
applications. According to [2], data processing and fea-
ture extraction are necessary to convert raw data into dam-
age information, because sensors do not directly measure 
damage.

Historical heritage plays a fundamental role in various 
structural monitoring applications for the specific charac-
teristics of the structures [3]. A multidisciplinary approach 

involving different specialists is essential to face the different 
aspects and preserve heritage buildings and sites. A review 
of relevant monitoring examples is illustrated and discussed 
in [4].

According to [5], in-depth knowledge is always essential 
for conserving a monument. The word “knowledge” covers 
different topics, such as the history of the monument and its 
complex geometry, the different stratifications and transfor-
mations that occurred over time, materials and construction 
technologies, decay patterns, structural problems, previous 
restoration activities, and many other aspects. This means 
that information is not necessarily limited to numerical 
observations acquired with sensors or other specific measur-
ing tools. Information indicates heterogeneous data and the 
interpretative work of specialized staff must relate various 
sources, among which quantitative numeric data and other 
materials in different formats. Then, monitoring supported 
by historical research and experimental data is fundamen-
tal for the conservation of a monument and for developing 
intervention strategies [6, 7].

In this respect, the availability of time-series, the use of 
processing algorithms to generate new information from raw 
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data, and the graphic representations of the results can be 
used by the specialists involved in the monitoring project.

The manuscript focuses on those monitoring applications 
that include the (geo)spatial dimension. The case of periodic 
monitoring using geomatics methods provides input datasets 
for data processing. Generally speaking, the observed phe-
nomena always have a spatial dimension. They occur in spe-
cific points, directions, areas, and structural elements. Moni-
toring observations can be captured with sensors installed 
in specific positions, obtaining time-series at given spatial 
locations. The approach proposed here is based on spatio-
temporal (S-T) analysis, assuming that the behavior at spatial 
locations at time t will almost certainly affect the behavior 
at nearby spatial locations at time t + 1 [8].

Some applications can benefit from processing meth-
ods capable of combining the time domain and the spatial 
domain using geostatistical tools, especially those based on 
long-term monitoring datasets, in which the temporal and 
(geospatial) domains can be simultaneously combined to 
generate additional information with automated or semi-
automated processing algorithms. According to the author, 
the combined use of S-T observations could offer novel 
alternative solutions for data processing and visualization 
in various applications characterized by spatial and temporal 
correlation.

The proposed methods can be applied to data captured 
at the level of a single building (like in the case study used 
in the manuscript) or extended toward infrastructures and 
environmental applications. The transition to a wider area 
probably makes the methods more intuitive than acquiring 
specific data at the building level. Examples of monitor-
ing applications at the environmental level are those based 
on synthetic-aperture radar (SAR) [9–13], global naviga-
tion satellite system (GNSS) [14–17], or other monitoring 
data acquired with geomatics instruments [18–20], such as 
drones, total stations, and levels. Examples with datasets 
acquired at a more local scale are described in [21–26] and 
focus not only on historical buildings but also bridges, dams, 
archeological sites, etc.

GIS software could appear as an ideal processing and 
visualization environment. Tobler’s first law of geography 
states: “everything is related to everything else, but near 
things are more related than distant things” [27]. However, 
most tools implemented in GIS software do not fully exploit 
S-T information. Observations acquired at different times 
are often analyzed independently, reducing the S-T dataset 
to a sequence of independent spatial processes. In this case, 
data processing is based on spatial analysis methods, i.e., 
neglecting temporal correlations [28].

Another approach could consider the different time-series 
as spatially independent, i.e., ignoring spatial correlation. 
In this case, processing techniques based on univariate or 
multivariate time-series analysis can be exploited. [29, 30].

A complete spatio-temporal analysis, on the other hand, 
must consider correlation in space and time without split-
ting the dataset into “snapshots” at a specific time [13, 31]. 
In other words, S-T analysis extends the previous concepts 
considering proximity in both space and time.

This work aims to analyze monitoring observations 
acquired at specific periods (static and quasi-static monitor-
ing), producing graphic representations, and supporting the 
interpretation using S-T techniques. Methods for spatial (S), 
temporal (T), or combined S-T analysis will be compared to 
understand the pros and cons of a complete S-T approach.

Data processing was carried out with the R open-source 
programming language, which has advanced tools for geo-
statistics [32] and allows the implementation and validation 
of S-T processing methods here extended to structural moni-
toring datasets. R runs on different UNIX platforms, Win-
dows and MacOS, and it can be downloaded from https:// 
www.r- proje ct. org/. R was used together with the RStudio 
integrated development environment (IDE) https:// posit. co/ 
produ cts/ open- source/ rstud io/.

The paper is structured as follows: Sect. 2 provides a 
methodological overview of the proposed methods and 
describes the case study used in the manuscript to illustrate 
the implemented S-T algorithms with numerical examples. 
Section 3 shortly describes the creation of the digital archive 
for the Cathedral of Milan (the case study presented in the 
paper), including the origin of the monitoring system and the 
acquisition of new observations. Section 4 illustrates visuali-
zation methods for S-T data. Section 5 describes time-series 
clustering methods, showing that columns can be grouped 
depending on their relative displacements. Section 6 extends 
the temporal domain and introduces techniques for detecting 
anomalous values in new monitoring campaigns. Finally, 
Sect. 7 considers spatio-temporal prediction and advanced 
methods for visualization in space and time.

2  Overview of the proposed method

The manuscript describes spatio-temporal (S-T) analysis and 
its application to georeferenced time-series for structural 
monitoring. The temporal (T) and (S) spatial analysis cases 
are also considered and discussed. Results are compared to 
clarify when and how an S-T can provide more benefits than 
other traditional analysis methods.

The structural monitoring application illustrated and 
discussed in this manuscript closely relates to spatio-tem-
poral data processing, information extraction, and visuali-
zation. The paper discusses the static monitoring system 
that tracks vertical displacements due to subsidence in the 
Cathedral of Milan (Duomo di Milano). The author does 
not intend to provide a complete and detailed description of 
the events that led to the restoration project of the columns 

https://www.r-project.org/
https://www.r-project.org/
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https://posit.co/products/open-source/rstudio/
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of the Cathedral, for which the reader is referred to specific 
textbooks [33]. The manuscript aims to show the pros and 
cons of S-T analysis applied to a vertical settlement dataset, 
including the creation and validation of the dataset and the 
extraction of additional information.

A description of the different S-T processing algorithms 
applied to a specific case study can better clarify the out-
comes of the different sections, which mainly describe S-T 
analysis and more traditional temporal and spatial methods. 
Thus, a (brief) overview of the historical events is useful to 
present the implemented processing methods with numeri-
cal examples from a real case study, providing insight not 
limited to theoretical aspects.

2.1  Methodological workflow

The structure of the paper follows the workflow shown in 
Fig. 1, which also corresponds to the different sections of the 
manuscript. The input is the spatio-temporal dataset of ver-
tical settlements measured in spatial locations 

{

s1s2, ..., sC

}

 
at (regular) time intervals 

{

t1, t2, ..., tT
}

 . The algorithms can 
be adapted and extended to other datasets of spatially (geo)
referenced time-series. The workflow has an internal loop 
in which the input dataset can be integrated and updated. 
Indeed, the data collected can be affected by specific prob-
lems, such as anomalous values (outliers) or missing data 
in specific locations at specific epochs. In the case of the 
example illustrated in this work (Sect. 3), some disconti-
nuities were also found for the change of instruments and 
reference points. One of the aims of the proposed work is 
the identification of anomalous values and the recovery of 
missing information. Regenerating an incomplete archive is 
not a trivial operation, and future users must be aware of the 
technical operations carried out on the dataset.

Another important topic is related to the visualization of 
spatio-temporal data (Sect. 4). Simultaneous visualization 
and exploitation could be challenging in the case of multiple 
(geo)spatially referenced time-series containing monitoring 
measurements. Video animations (i.e., short clips) are very 
effective but require additional devices such as computers 
and monitors. Similar considerations apply to interactive 
graphic representations, in which the user can dynamically 
navigate a virtual scene, changing parameters, and settings.

Different techniques also exist for generating efficient 
“static” visualizations of S-T information. They were mainly 
developed for applications at the environmental level, com-
bining cartographic locations, and the variations of the 
considered variable. The paper exploits mainly 2D graphic 
representations, which can be included in technical reports 
and could activate cognitive processes facilitating the inter-
pretative work of the reader.

Effective visualization is fundamental for the preliminary 
inspection of the input dataset as well as the production of 
graphics for additional information (output) produced with 
further data processing. The implemented geostatistical 
processing methods are described in the remaining differ-
ent sections. Given a spatio-temporal process {z(s, t)} with 
data sampled in spatial locations s and time intervals t, the 
processing methods discussed in this work can be classified 
into three main categories:

• Temporal data processing (T), in which spatial corre-
lation is ignored resulting in a pure collection of time-
series z(s1, t), ..., z(sC, t) . This does not mean that multiple 
time-series cannot be simultaneously used in the analy-
sis. Both univariate and multivariate time-series process-
ing methods can be implemented. However, proximity in 
space is not considered in the analysis;

Fig. 1  Schematic workflow of 
the different algorithms used in 
the manuscript
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• Spatial data processing (S), in which proximity in space 
is taken into consideration and the dataset is split into a 
set z(s, t1), ..., z(s, tT );

• Spatio-temporal processing (S-T), which simultane-
ously considers correlations in space and time, and the 
whole dataset {z(s, t)} is used. Of course, this is also the 
most demanding type of processing.

The manuscript provides different examples in which dif-
ferent strategies (T, S, or S-T) are used to solve the same 
problem. Although S-T methods could be interpreted as 
the most general solution, the results achieved by simpli-
fied S or T approaches can be sufficient in several prac-
tical applications. Fine-tuning the parameters of a pure 
S-T approach is also more complicated for the intrinsic 
difficulty in defining the joint spatio-temporal dependence.

Another advantage is the opportunity to process the 
data with different methods, cross-validating the output. 
Uncertainty quantification cannot be neglected in the case 
of displacement monitoring. Uncertainties are associated 
with input measurements, adjusted quantities using least 
squares (elevation values), and other quantities derived 
from additional processing with the proposed methods for 
information extraction. Quantification of uncertainty in 
structural monitoring has a direct relationship with the 
characteristics of the phenomenon under investigation. 
The estimated value must have sufficiently small uncer-
tainty to highlight changes.

The processing phase described in the paper can be 
divided into two operations: (1) time-series clustering and 
(2) time-series prediction/forecasting. Clustering aims at 
creating groups of time-series based on some similarity 
measures. As the different time-series correspond to verti-
cal displacements of the different columns caused by subsid-
ence, discovering meaningful groups of columns can iden-
tify specific areas inside the Cathedral with similar behavior. 
The number of clusters is unknown and several methods are 
available to compute the similarity measures. The exam-
ples reported in the next sections will illustrate how to deal 
with relative (differential) displacements, which is often the 
case of structural monitoring datasets in which conventional 
choices are unavailable to materialize a reference system and 
to compare measurements acquired at different times.

The second main topic is time-series prediction/forecast-
ing, which is related to spatio-temporal statistical modeling 
and has three principal goals, as described in [31]: 

1. predicting a plausible value at some location in space 
within the time span of the observations and reporting 
the uncertainty of that prediction;

2. performing scientific inference about the importance of 
covariates in the presence of spatio-temporal depend-
ence; and

3. forecasting the future value at some location along with 
the uncertainty of that forecast.

Prediction is here considered as an interpolation to recover 
missing values in specific sampling locations at a specific 
time, for instance when some points cannot be accessed dur-
ing an on-site monitoring campaign. More in general, other 
possible applications are the estimation of discontinuities for 
the loss of a monitoring point, which is then replaced with 
a new one and there is a jump between the measurements. 
Time-series prediction allows the calculation of values also 
at unsampled locations in space, which is useful for creat-
ing visual representations of vertical settlements. Predic-
tion can recover missing values from incomplete and noisy 
data in space and time. Processing in the paper considered 
deterministic methods (without providing estimates of the 
prediction uncertainty) and kriging, which instead consid-
ers the covariability between any two space–time locations.

Forecasting instead focuses on future values and is mainly 
used as an anomaly detection tool in additional monitor-
ing campaigns. Only the short term is considered (e.g., 1- 
or 2-step ahead forecasting), so that new values acquired 
on-site can be compared to the forecasted values using a 
threshold that depends on the uncertainty of forecasting and 
precision of adjusted observations.

Several other possible applications can be intended as 
subtasks for the processing methods shown in the workflow, 
notwithstanding the distinction between the different lev-
els is not rigid. For instance, anomaly detection could be 
intended as a subtask of T, S, and S-T analysis. However, 
anomaly detection is a wide topic and can also be intended 
as an independent task. The author’s opinion is not to intro-
duce rigid boundaries for the definition of the different oper-
ations with spatio-temporal structural monitoring datasets. 
Other practical applications with different S-T monitoring 
datasets could require operations depending on the specific 
research problems and the data under investigation.

2.2  Description of the case study

Figure 2 shows the nave and aisles of the Duomo di Milano 
and some of the monitoring points installed on the col-
umns. Starting from the second half of the twentieth cen-
tury, groundwater extraction in Milan’s center became more 
intense. Between 1956 and 1970, the water table was low-
ered by 20 m [34], i.e., an average velocity of 1.5 m/year. 
The lowering of the groundwater level resulted in move-
ments of the ground for the entire center of Milan, breaking 
a secular equilibrium. The overall movement is not constant 
throughout the historic center and features differential move-
ments at the local level [35].

The rapid lowering of the groundwater level caused dif-
ferential movements between the columns of the Cathedral 
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and redistributed internal forces, damaging some architec-
tural elements such as the columns and vaults [36]. The 
static condition became critical in the 1960s, as confirmed 
by the rapid development of the crack pattern of the col-
umns, with also detachments of material. The differential 
settlements of the columns brought the Cathedral very close 
to collapse, making it necessary to build a jacket of rein-
forced concrete (in 1969) around the four columns of the 
tiburium, with a thickness of 0.35 m. The reinforcement 
avoided the collapse of the columns and allowed a period of 
analysis and development of the restoration strategy [37].

The columns of the Duomo are composed of heterogene-
ous materials. The external ring is made up of Candoglia 
marble and has a variable thickness between 0.2 m and 0.9 
m, with an average value of about 0.5 m. Lime mortar binds 
the internal core composed of irregular blocks of serizzo, 
granite, pieces of marble, and bricks. There is a significant 
difference between the material properties of the external 
layer and the internal core of the column.

After a period of study and analysis, the restoration was 
carried out starting from the top of the column, progres-
sively removing the jacketing, the damaged marble ashlars, 
and the heterogeneous materials. Voids were filled with new 
marble ashlars and cement mortar. New marble blocks were 
cut with millimeter-level accuracy depending on the size of 
the voids, making new ashlars available on-site after a few 
hours. The reader is referred to [33] for more details and 
a complete description of the interventions, which is here 
briefly introduced.

The four columns of the tiburium (n. 74, 75, 84, 85) were 
restored between 1981 and 1984, after restoring 21 sary col-
umns of the transept, apse, and central nave in a period of 
about 10 years. Thanks to a prefectural order of 1972, water 

withdrawal was greatly reduced with the closure of all wells 
in the Cerchia dei Navigli, the water ring enclosing (in the 
past) the medieval historic center of Milan. At the end of 
the 1980s, the level of the aquifer increased by about 10 m. 
Since the 1990s, the groundwater level has shown a continu-
ous increase mainly caused by the reduction of withdrawals 
for industrial uses [38]. In [39], an additional rise of 4–5 m 
in the central zone of Milan is described, whereas other lev-
els are reached in the northern (8–10 m) and southern areas 
(2 m) of the city, causing problems at existing underground 
structures and infrastructures, such as the metro lines.

Among the different actions to mitigate risk and under-
stand the effect of subsidence, the deterioration of the static 
conditions required the installation of a monitoring system 
to quantify differential settlements. In 1961, leveling points 
were installed on the columns of the transept, including the 
four columns of the tiburium. Subsequently, other monitor-
ing points were installed on several other columns inside 
the church. In 1969, the system assumed a configuration 
with 59 monitored columns, which is still available today. 
Monitoring measurements are still acquired twice a year, 
producing a technical report with differential displacements 
of columns as well as monitoring information acquired with 
several other methods and techniques [40].

The static monitoring of relative movements between 
columns has both spatial and temporal components. The 
monitoring period covers the years 1970–2021, notwith-
standing additional data available for a subset of columns 
even before this period. The long observation period is 
another characteristic of the Duomo dataset: more than 50 
years of observations. According to [41], this monitoring 
period could be seen as “a window over historical time 
allowing possible insight on active processes long-term 

Fig. 2  The columns of the 
nave and aisles of the Duomo 
di Milano. The image was 
acquired from the pulpit in June 
2022. The location of a few 
monitoring points is also shown
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damaging processes”. Such a period is very long compared 
to modern dynamic monitoring methods able to measure 
a huge number of digital data in a relatively short time 
[42]. On the contrary, this period appears as a fairly short 
window when compared with the beginning of the con-
struction (in 1386). More in general, monitoring plays 
an active role in the conservation of historical buildings 
[43], and the integration of different monitoring systems 
(such as static and dynamic methods [44–47]) is essen-
tial to prevent damage and plan conservation activities, as 
reported in numerous works in the technical literature (see, 
for example, [48–53]).

In the case of the Duomo di Milano, the monitoring 
system includes various sensors and data collection meth-
ods with different characteristics: optical-mechanical and 
digital sensors, static and dynamic measurements, in real 
time and with a frequency limited to seasonal and annual 
cycles. The monitoring system has undergone numerous 
changes and additions in the last 60 years following tech-
nological development. More details on the different sys-
tems installed in the Duomo are illustrated and discussed 
in [54–57]. A detailed description of the evolution of the 
monitoring systems is out of the scope of this paper, which 
focuses more on spatio-temporal methods for analyzing 
the historical archive of differential settlements. Nowa-
days, data stored in the Duomo’s spatio-temporal digital 
archive correspond to differential movements 

{

z(sc, ti)
}

 for 
the spatial locations sc = (xc, yc) with c = 1, ...,C = 59 for 
the 59 monitored columns, and ti with i = 1, ..., T = 104 in 
the considered monitoring period 1970–2021, with obser-
vations always acquired in May and November.

3  Description of the monitoring dataset 
of vertical movements

3.1  Initial and actual configurations 
of the monitoring system

The dataset analyzed in the manuscript is a collection of time 
series of differential vertical movements for the columns of 
the Cathedral of Milan. A leveling network was installed 
at the beginning of the ’60 to measure the displacements 
induced by subsidence in the city center of Milan. The initial 
configuration of the monitoring system (1961) was limited 
to some columns along the transept and a benchmark close 
to the facade. In 1969, the system was integrated to moni-
tor several columns distributed in the Duomo, obtaining a 
configuration with 59 columns (Fig. 3). Such a scheme is 
still available today, and monitoring measurements are still 
acquired twice a year, always in May and November. The red 
color in the figure shows the columns with a leveling bench-
mark. The other columns (in gray) complete the plan of the 
Cathedral. As can be seen, the monitoring configuration is 
relatively homogeneous except for the Southern part of the 
nave. The dashed lines represent the connections of leveling 
measurements. Procedures for acquisition and adjustment 
are discussed in the next section.

Recently (2020–2021), the archive of measurements 
was reconstructed and digitized to provide a continuous 
monitoring dataset in the period between 1970 and 2021. 
Some of the methods presented in this paper were also 
used to integrate and validate the regenerated time-series 
dataset. As mentioned in the previous section, the digital 
archive has a semestral frequency, notwithstanding ini-
tial measurements were collected with a high frequency 

Fig. 3  Map of the columns 
in the Duomo di Milano and 
the scheme of the measuring 
network
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(usually, four monitoring campaigns per year, in different 
seasons).

Benchmark heights Ht,c are calculated using geometric 
leveling measurements (i.e., height differences between 
consecutive benchmarks), which are adjusted via least 
squares, with t = 1 (May 1970) being the first observation, 
and t = T  (November 2021) the last. In this paper, indexes 
t and c refer to time and column number, respectively.

The creation of the digital archive required prediction 
techniques to recover some missing values, which were 
limited only to about 3% of the entire dataset and mainly 
refer to two specific epochs, May 1973 and May 2015. The 
first method used to recover missing value Ht,c at a specific 
epoch is a linear interpolation based on the previous and 
next values Ht,c =

1

2
(Ht−2,c + Ht+2,c) always acquired in the 

same season. Results were also cross-checked with geosta-
tistical prediction methods illustrated in this manuscript.

In the case of three columns (43, 52, and 85), it was 
necessary to reconnect the time-series (in November 1971 
for column 43, and November 1984 for both 52 and 85) 
that had discontinuities. In general, the Duomo di Milano 
is an active construction site, and Veneranda Fabrica is 
in charge of preservation with activities from ordinary 
maintenance to major restoration interventions. In some 
cases, temporary scaffolding prevented the acquisition of 
measurements for short periods, requiring interpolation to 
determine missing values.

Column 39 was selected as a reference at the begin-
ning of monitoring, i.e., it was chosen to calculate verti-
cal movements assuming Ht,39 = const. The convention is 
used for historical consistency. The computed elevations 
are relative values, and the calculated displacements are 
also relative values (i.e., differential movements). Starting 
from the adjusted height values at different epochs, we 
can represent the detected movements using the follow-
ing notation:

• total height variations ΔHTOT = Ht,c − H1,c;
• annual height variations ΔHA = Ht+2,c − Ht,c;
• semestral height variations ΔHS = Ht+1,c − Ht,c.

The collection of time-series considered in this paper is 
denoted as zt,c and corresponds to total height variations after 
setting the first value of all time-series to zero z1970,c = 0 . 
The entire dataset is made up of 59 time-series, and every 
time-series has 104 values. The time-series for column 39 
has only zero values zt,39 = 0 , because it is the historical 
reference for calculating differential movements. The car-
tographic location of the columns (xc, yc) was measured in 
the reference system UTM-WGS84 (zone 32, North), so 
that the collection of time-series is also georeferenced. Each 
individual column is, therefore, denoted using the notation 
(xc, yc, zt,c) , obtaining a spatio-temporal dataset.

3.2  On‑site observation collection 
and least‑squares adjustment

On-site measurements are acquired using high-precision 
geometric leveling, which allows measuring the differ-
ences in elevation ΔHt,ij = Ht,j − Ht,i between benchmarks 
installed on columns i and j. Special (mini) 5-mm lev-
eling rods are connected to the metal benchmarks using 
a magnetic head. The historical instrument is still a high-
precision optical level Zeiss Ni1 with a 5-mm range plane 
parallel plate micrometer (precision of ±0.2 mm/km—
double run) making it more precise than most modern 
digital levels today available on the commercial market. 
The combination of level and rods forms the historical 
equipment for the monitoring system of the subsidence in 
the Duomo, and it has been used for several decades. The 
continuous maintenance of the optical level, benchmarks, 
and rods allowed the preservation of the monitoring sys-
tem for more than 50 years. Nowadays, the entire system 
is still operational and one of the fundamental tasks of the 
team involved in the monitoring phase is to maintain the 
system active for future campaigns (over a span of several 
decades). It is the author’s opinion that the use of optical 
(mechanical) tools has a fundamental role in guaranteeing 
the posterity of the system. Probably, more contemporary 
digital instruments do not offer the same reliability over 
a long time span.

Nowadays, measurements are collected every 6 months. 
May and November are the historical months for collect-
ing all measurements, so that the environmental conditions 
are similar after 1 year. The temperature is also measured 
to correlate measurements and environmental conditions. 
The scheme of the geometric leveling network is shown in 
Fig. 3. The network features several closed loops with mul-
tiple intersections, allowing real-time verification of metric 
accuracy during the measurement phase, because the overall 
difference in elevation in a loop must be zero. Such value 
(called loop closure) can be calculated as the sum of con-
secutive differences in elevation.

As there is no perfect measurement, the closure of a loop 
is compared to a specific tolerance, which depends on the 
number of differences in elevation M in a closed loop with 
M benchmarks. Tolerance is computed as ±0.1

√

M mm. 
Moreover, a single difference in elevation is the average of 
multiple measurements, making the average more precise 
than single measurements. A scheme with multiple closed 
loops allows the staff involved in the measurement phase to 
evaluate metric accuracy during the measurement phase and 
to detect possible outliers in the observations.

After completing the on-site measurement phase (usu-
ally an entire working day), the differences in elevation are 
adjusted with ordinary least squares, obtaining the adjusted 
elevation values. Benchmark n. 39 is assumed as a reference 
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to remove rank deficiency following the historical conven-
tions of first measurements in the ’60s.

A system of linear equations can be written using the 
matrix notation AtHt = �t , where At is the design matrix with 
only zeros and ones, Ht = (Ht,1,Ht,3,Ht,5..., )

T the vector of 
unknowns, and �t the observation vector. Column 39 is not 
included in the unknown vector. The least-squares solution 
is calculated as Ĥt = (AT

t
At)

−1AT
t
𝛿t . The system of equations 

does not use a weight matrix, assuming that observations 
have equal weights for the relatively short and similar dis-
tances between the columns. Residuals v̂t are computed as 
v̂t = AĤt − 𝛿t , obtaining the standard deviation for the set of 
observations 𝜎0t =

√

v̂t
Tv̂t∕r with r redundant measure-

ments. The variance–covariance matrix is given by 
CĤtĤt

= �̂�2

0t
(AT

t
At)

−1 and contains the variances of elevation 
values along the diagonal, and the covariances (off-diagonal 
elements) between all pairs of elevations.

Specific in-house software was implemented in MAT-
LAB to adjust the Duomo leveling network. The software 
has a similar implementation if compared to the software 
used in the past, which was implemented in Fortran. The 
new software offers more flexibility and tools while pro-
viding the same numerical results with a small numeri-
cal discrepancy(< 0.0001 mm), which is smaller than the 
expected precision achievable with leveling measurements. 
Least-squares adjustment provides elevation values with an 
average precision of about ±0.1 mm.

After completing a measurement campaign, a complete 
report showing the computed elevation values and the 
achieved uncertainty is delivered. Total, annual, and rela-
tive variations are also computed and illustrated with graphs 
and schemes.

The network geometry shown in Fig. 3 is the reference 
scheme for any measurement campaign. However, Duomo 
di Milano is a dynamic site with continuous activities. In 
some cases, temporary scaffolding or restoration activities 
prevented the installation of the rods on a few benchmarks, 
which were impossible to include during some monitoring 
periods, resulting in a few missing data. The network scheme 
could require local variations to include as many points as 
possible, notwithstanding the presented scheme remains the 
reference configuration. Predicting the value in an unsampled 
location at a specific epoch is another task considered in this 
manuscript.

4  Visualization of monitoring data archived 
using georeferenced time‑series

4.1  Direct spatio‑temporal visualization methods

Geospatial time-series datasets can be stored using 
advanced solutions, such as space-time cubes [58] or S-T 
databases [59]. However, S-T data are essentially num-
bers in one or more tables, which can be related using 
common fields to connect temporal and spatial informa-
tion. Additional metadata are also necessary to establish 
the geospatial reference system, using geographic (lati-
tude–longitude) or cartographic (East, North) coordinates. 
After completing a monitoring campaign and adjusting 
measurements via least squares, the archive is updated 
with new data.

In the case of multiple time-series datasets, data visuali-
zation starts with multiple time plots, i.e., graphs showing 
the profiles of the time-series over time. A collection of 
time-series can be visualized on a single graph using dif-
ferent line properties (colors, thickness, type of line, etc.) 
to separate the various profiles. However, the Duomo data-
set has 59 time-series, and a single plot does not provide 
sufficient clarity.

Data visualization is a fundamental aspect of structural 
monitoring applications. Graphs, schemes, and other 
(usually) 2D products facilitate data interpretation, which 
is usually performed by expert (human) operators with 
the support of analytical tools and additional knowledge 
related to the structure. Indeed, the problem is not only 
the identification of anomalies but also the interpreta-
tion of possible causes and solutions. In this phase of the 
work, the user utilizes information from the monitoring 
dataset (existing data and new observations) and a variety 
of additional products, such as existing reports, technical 
drawings, photographs, 3D models, and various schemes, 
to name a few. Moreover, a deep understanding of the 
structure cannot be neglected [43], including the histori-
cal aspects, materials, construction technologies, damages, 
structural problems, deterioration patterns, and previous 
interventions, among the other main factors. This list is 
only indicative and not exhaustive, and multidisciplinary 
knowledge involving various specialists is required.

One of the aims of the work proposed in this paper is 
the use of both traditional and innovative processing and 
visualization methods for spatio-temporal datasets. As 
mentioned, a single graph showing the time-series is not 
sufficiently clear, and an alternative plot was created using 
trellis graphics, which is specifically designed to visualize 
multivariate data [60]. Figure 4 is a trellis plot, i.e., a rec-
tangular array of plots with different time-series. Although 
the figure does not provide any information about the 
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spatial location of the columns (the user must use the pro-
files together with the scheme of the columns reported 
in Fig. 3), a visual inspection of the graphs indicates the 
presence of differential positive and negative movements.

The time-series also shows variable patterns, includ-
ing trend, stationarity, volatility, and fluctuation. In several 
cases, the slope is greater at the beginning of the monitoring 
period (1970–1980) than in more recent years (2010–2020), 
confirming the subsidence that affected the Duomo (and the 
city center of Milan) starting from the second half of the 
twentieth century. The closure of the wells in the city center 
(in the Cerchia dei Navigli) that occurred in the ’70s was 
beneficial, resulting in a progressive reduction of the slope 
of the curves.

An alternative visualization that combines spatial and 
temporal dimensions can be obtained with a lattice repre-
sentation of the columns (as points or other filled symbols) 
and a color palette associated with the relative displacement. 
Such layers can be plotted in the R environment using pack-
ages that can handle geospatial datasets. The input dataset 
is a point shapefile with East and North coordinates for the 
columns. The relative displacements measured at different 
epochs are stored in various fields.

A subset of the field values was performed to limit visu-
alization every 5 years, starting from 1971 and completing 
the entire observation period. The final trellis representation 
is shown in Fig. 5. The author believes that such a visualiza-
tion method is still insufficient to describe the subsidence’s 
spatio-temporal evolution in 50 years. However, a progres-
sive change from the initial configuration (1970) can be vis-
ually detected, especially along the nave of the Duomo, with 
maximum variations in the North-West corner of the facade.

It is challenging to create a single picture representing 
such a complex spatio-temporal phenomenon with suf-
ficient clarity. The visualization methods proposed in this 
section can be rapidly generated with good knowledge of 
the R language. They can provide some valuable indications, 
but they must be coupled with other information, including 
alternative visualization methods using the same data and a 
variety of knowledge that cannot be directly combined with 
georeferenced time-series.

As mentioned in the introduction, this paper aims to find 
alternative processing and visualization methods, facilitating 
interpretation and considering the main events and major 
restorations in the latest 50 years. The aim is not to replace 
the methods currently used to create the semestral report but 

Fig. 4  Trellis plot with different charts for all the columns of Duomo di Milano from 1970 to 2021
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to complement the work with other solutions that can pro-
vide more information. In the following sections, particular 
attention will be paid to this aspect, introducing additional 
visualization methods that require further processing.

4.2  Trend analysis in the case of differential 
displacements with a conventionally fixed 
benchmark

In the case of differential movements measured over time, 
particular attention must be paid to interpreting the trend vis-
ible when the time-series are plotted. Trend analysis allows 
the visualization of monotonic upward or downward differ-
ential movements throughout the observation period. Most 
time-series used in this manuscript exhibit nonlinear trends, 
i.e., profiles have a non-constant positive or negative slope.

Instead of representing trends in traditional 2D charts 
(like in Fig. 4) using smoothing techniques (such as moving 
average or exponential smoothing) or decomposition meth-
ods (e.g., classical decomposition, STL, X11, etc.), the pro-
posed work aims at establishing relative trends between the 
columns as an indicator of differential movements inside 
the Cathedral. Therefore, the goal is a spatial representation 
of the trend, from which additional considerations can be 
derived using the relative positions of the columns.

Figure 6 (top-left corner) shows the result of a trend anal-
ysis conducted using the Mann–Kendall test, which assesses 
whether a time-series has a monotonic upward or downward 

trend. The test uses the difference in signs between each 
observation and all subsequent observations. The figure 
shows four columns without a trend (39, 43, 75, 88—green 
color). Blue columns have a negative trend, and rose col-
umns have a positive trend. Such results must always be 
interpreted as relative trends, in which column 39 has no 
variation over time. Therefore, the figure shows the trend 
of the different columns in the hypothesis that 39 remains 
perfectly stable over time: zt,39 = 0 . Alternatively, the figure 
can be interpreted as an indicator for columns with posi-
tive, negative, or similar trends compared to 39. Figure 6 
also indicates the spatial distribution of relative trends in the 
Duomo. Nave and choir show mainly positive trends, espe-
cially toward the facade and apse, respectively, suggesting 
large subsidence values in the transept area.

A fixed benchmark for adjusting the leveling network 
affects trend analysis. If we change the historical conven-
tion from point 39 to another column, trend analysis will 
only show the relative trend of the remaining column com-
pared to a different reference point. Changing the historical 
convention can be carried out by subtracting the values of 
the new column chosen as a reference from all the remain-
ing time-series. For example, assuming column 18 as the 
new reference, the new set of time-series can be calculated 
as z∗

t,c
= zt,c − zt,18 . The trend analysis results for the new 

set of time-series are illustrated in Fig. 6 (top-right corner) 
and show another relative trend with a new reference. If the 
reference is placed on column 74, trend analysis indicates 

Fig. 5  Trellis plot combined with a spatial representation of all the columns of Duomo di Milano
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that all columns exhibit a positive trend. Indeed, column 
74 reaches maximum negative displacements as shown in 
Fig. 6, bottom-left corner.

The last case in Fig. 6 (bottom-right) represents results 
fixing column 30, which is the point reaching the largest pos-
itive displacements compared to column 39. One may expect 
the opposite result compared to the previous analysis (fixing 
point 74), i.e., overall negative trends. However, the figure 
shows some positive trends, mainly toward the facade, and 
negative trends in other areas. Such a result can be explained 
by considering that the Mann–Kendall test considers sign 
variations, not the total displacement’s magnitude. For this 
reason, some columns with smaller displacements could 
show a positive trend and vice versa.

To summarize the previous examples, the calculation of 
relative vertical displacement is the only possible solution in 
monitoring projects without a stable reference system. As no 
stable benchmark can be installed in the Duomo di Milano 
or the surrounding area, trend analysis outcomes are affected 
by the convention established at the beginning of monitor-
ing activities. In general, several monitoring applications 
are based on initial conventions to define (and materialize) 
a reference system choosing specific points. If the aim is 
the generation of results not affected by conventions in the 
choice of the reference system, other methods more robust 

against the use of relative displacements are required. Trend 
analysis becomes more relevant for testing a specific column 
against the others instead of providing an integrated indica-
tor for all columns. Section 5 describes some alternative 
processing methods invariant against initial conventions in 
the choice of the reference system.

5  Spatio‑temporal clustering with relative 
displacement observations

The time-series dataset exhibits different behavior regard-
ing short- and long-term trends, autocorrelation, seasonality, 
stationarity, and volatility. This section aims at (1) cluster-
ing relative movements, (2) interpreting the result of cluster 
analysis together with the spatial distribution of the meas-
ured points, and (3) exploiting clustering solutions robust 
against the use of relative measurements. Similarity meas-
ures quantify the distance between different time-series and 
create clusters with variable numbers of columns.

Spatio-temporal clustering considers the spatial distribu-
tion of the clusters, introducing both spatial and temporal 
constraints. Spatial relations between the columns are encap-
sulated into a spatial weight matrix W, a 59 × 59 squared 
matrix reflecting spatial relationships between columns [61].

Fig. 6  Trend computed considering the historical conventions z
t,39 = 0 (top-left), and the case with reference benchmark moved to point 18 (top-

right), point 74 (bottom-left), and point 30 (bottom-right)
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The spatial weight matrix can be generated using different 
methods. The input is a vector point layer representing the 
spatial location columns and relative displacement stored 
in multiple fields as attributes. W was constructed with two 
different methods:

• A: Delaunay triangulation, which tends to maximize the 
angles of triangles;

• B: k-Nearest Neighbor (k-NN) using k = 8 points.

The results with both methods are shown in Fig. 7. As can 
be seen, the k-NN method provides more connections than 
the Delaunay triangulation, because it forces each column 
to reach a minimum number of connections with the others.

After constructing the weight matrices, spatio-temporal 
clustering was carried out with the approach proposed by 
[62], which is known under the name Skater: Spatial “k” lus-
ter analysis by tree edge removal. Skater includes the spatial 
weight matrix in the clustering process as additional spatial 
constraints. The temporal dissimilarity is evaluated using the 
Euclidean distance, using the values from November 1970 
to November 2021 (values in May 1970 are all zeros and 

are excluded from processing). A predefined number of four 
classes was set as input, making the comparison of results 
more direct.

Clustering results are summarized in Fig. 8. The colors 
used in the representation are indicative, and there is no 
direct correspondence between the figures. In other words, 
the reader must look only at the overall distribution achieved 
without connecting the use of a particular color in the fig-
ures. As can be seen, the different methods tend to identify 
specific parts of the Duomo, notwithstanding differences in 
the different clusters. These parts can be identified as:

• the nave and aisles (the Western part);
• the transept, which is split into the southern/central part 

(the area with maximum negative displacements) and the 
northern transept;

• the apse and the choir (East), and the central part of the 
transept.

The general advice in the case of cluster analysis with 
relative displacements consists of using different meth-
ods and interpreting results with a visual representation 

Fig. 7  Visualization of spatial weight matrices created with Delaunay triangulation (A) and 8-Nearest Neighbor (B)

Fig. 8  Comparative visualization of trend analysis results with different methods. The colors used in the different figures do not correspond to 
the same clusters (colour figure online)
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showing the different clusters on 2D maps. As explained 
in the previous section, processing methods could be very 
sensitive to the conventional choices to set a relative ref-
erence system and possible distortions in time. Different 
factors could highly affect results, leading to wrong inter-
pretations if just a single clustering algorithm is chosen. 
The intention is not to finely tune the parameters used as 
input in the analysis, which is a complicated task in cluster 
analysis.

The results show that the subdivision previously obtained 
is rather consistent. The final clusters aggregate the four col-
umns of the tiburium (n. 74, 75, 84, 85) with the southern 
parts of the transept. A visual inspection of the profiles of 
these columns shows a relatively constant negative trend, 
which assumes minimum values for column 74. This area 
is historically the zone with the most significant depres-
sion due to subsidence. A second area can be identified 
around the previous one, surrounded by a third group of 
columns, including those of the northern transept and the 
apse. Finally, a final cluster includes a large part of the nave.

6  Time‑series forecasting and its application 
to monitoring

The monitoring dataset can be considered a set of time-
series with a common temporal domain between May 
1970 ( t = 1 ) and November 2021 ( t = T) . Time-series 
forecasting allows the estimation of future values at times 
T + 1, T + 2, ..., T + F , where F is the forecast horizon. In 
the case of the Cathedral of Milan, time-series forecasting 
is used with a specific goal: the identification of anoma-
lous values during a new monitoring campaign. An auto-
matic comparison can be made by evaluating the difference 
between the forecasted value ẑT+1,c (one step ahead) and the 
measured value zT+1,c after acquiring and adjusting new on-
site observations.

Usually, such comparison is carried out using the last 
observed value, applying the so-called naive forecasting 
method ẑT+1,c = ẑT ,c . However, the method does not include 
drift and gives a horizontal straight line for multiple fore-
casted values. There exist different advanced solutions for 
univariate time-series forecasting and some methods were 
implemented and tested using a single script. The aim was 
to understand which method (or which combination of 
methods) performs better in forecasting future values. In the 
case of reliable results, a new strategy for the comparison of 
newly acquired data can be employed in future monitoring 
campaigns.

Section 6.1 briefly presents the implemented forecasting 
strategies, whereas Sect. 6.2 describes the achieved results 
and quantifies metric accuracy and uncertainty.

6.1  The proposed approach for univariate 
time‑series forecasting

Different methods for univariate time-series forecasting 
were tested. The implementation is based on the forecast 
package [63], which contains different forecasting functions. 
An overview of the methods is illustrated and discussed 
using the data 

{

zt,49
}

 of column c = 49 . Such time-series is 
addressed as zt in the rest of this section.

The graph is shown in Fig. 9. The upward trend reveals a 
positive movement for column 49 compared to the reference 
column 39. The autocorrelation function (ACF) shows very 
slow decay. The partial autocorrelation function (PACF) 
shows that only the first lag value is statistically significant.

The time-series is not stationary and the first difference 
(the change between consecutive observations in the origi-
nal series) was computed to make the time-series stationary 
using the relationship ∇zt = zt − zt−1 . However, the differ-
enced data are still not stationary, and it was necessary to 
calculate the second-order differences ∇2zt , which are the 
first differences of first differences. The KPSS test (Kwiat-
kowski–Phillips–Schmidt–Shin [64]) indicates that the time-
series of second differences ∇2zt is stationary.

Most time-series of the Duomo collection are not station-
ary and show a slowly decreasing ACF. Stationarity is a 
fundamental requirement for using ARMA (autoregressive 
moving average) models [65], whereas other forecasting 
methods do not require stationary data.

The next subsection discusses four methods for time-
series forecasting, which were integrated into a single R 
script to obtain automatic forecasts for the different time-
series of the Duomo dataset. Column 49 is still used as an 
illustrative example. Results with all columns are described 
in Sect. 6.2.

The following subsections give a very synthetic descrip-
tion of the different methods. The reader is referred to [66] 
for more technical details.

6.1.1  ARIMA models

An AutoRegressive Integrated Moving Average model—
ARIMA(p, d, q)—has the form

where p is the order of the autoregressive part, d is the order 
of differencing, and q is the order of the moving average 
part. B is the lag operator defined as Bjzt = zt−j.

The auto.arima function in the forecast package auto-
matically fits an ARIMA model to univariate time-series, 
selecting the values (p,  d,  q), and returning the best 

(1)
(1 − �1B −⋯ − �pB

p)(1 − B)dyt = c + (1 + �1B +⋯ + �qB
q)�t,
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ARIMA model using the corrected Akaike’s Information 
Criterion (AICc).

In the case of column 49, an ARIMA(1,2,1) was automat-
ically chosen. After computing the model, the bias-adjusted 
mean squared error (MLE) of the innovations variance was 
0.018 mm2 . The same function can also handle seasonal 
ARIMA models, which could occur in the Duomo dataset, 
because monitoring campaigns are carried out in May and 
November. The different environmental conditions in differ-
ent seasons could affect structural behavior.

A  s e a s o n a l  A R I M A  c a n  b e  w r i t t e n  a s 
ARIMA(p, d, q) × (P,Q,D)s . It has a similar structure to 
non-seasonal ARIMA while introducing seasonal autore-
gressive, differencing, and moving average components.

6.1.2  Neural network autoregression

Neural network autoregression for time-series forecasting 
is an extension of feed-forward networks in which p lagged 
values zt−1, zt−2, ..., zt−p are used as input for forecasting value 
zp . The nnetar function in the forecast package uses a single 
hidden layer with k neurons. It can also handle univariate 
seasonal time-series using the last values from the same sea-
son as input parameters. The notation NNAR(p,P, k)s indi-
cates a network with k neurons in the hidden layer and values 
(yt−1, yt−2,… , yt−p, yt−s, yt−2s,… , yt−Ps) as inputs.

6.1.3  ETS

ETS models form a family of forecasting methods based on 
a measurement equation that describes the observed data 

and some state equations that describe how the unobserved 
components or states (level, trend, and seasonal) change over 
time [66]. The book [67] provides a complete description of 
ETS models, also called space-state models. The ets function 
in the forecast package determines model parameters. After 
fitting a model, forecasts can be generated. The function can 
also automatically select model parameters with the AICc or 
other information criteria.

6.1.4  Natural cubic smoothing splines

The use of natural cubic smoothing splines for time-series 
forecasting is described in [68]. The method is an exten-
sion of cubic splines, often used to interpolate noisy data. 
Additional constraints are imposed with this method, so the 
spline can provide better forecasts without compromising 
the fit [66]. The function splinef of the forecast package was 
included in the script to fit a natural cubic smoothing spline 
and calculate forecasted values.

6.2  Accuracy evaluation

The proposed time-series forecasting methods were imple-
mented in a single script to process the entire Duomo dataset 
simultaneously. In other words, each column was processed 
with the four forecasting methods and the results were cross-
checked. Accuracy evaluation is essential to understand if 
the forecasted values are representative of future relative 
displacements. The analysis of uncertainties after fitting a 
model is not always a reliable solution, because good fitting 

Fig. 9  Graphs of differential displacements for column 49 (top-left) and second-order difference (bottom-left), the autocorrelation, and partial 
autocorrelation plots (right)
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statistics do not necessarily mean that the forecasts will also 
be accurate.

Accuracy evaluation was performed by splitting each 
time-series into training and test data. We indicate the 
observation period as (t1, t2, ..., T) , in which t1 corresponds 
to May 1970 and T to November 2021. The model is esti-
mated using only training data (z1, z2, ..., zp) , then forecasts 
(ẑp+1, ẑp+2, ..., ẑT ) are generated and compared with the test 
data (zp+1, zp+2, ..., zT ) . The root-mean-square error RMSEc 
for a generic column c can be estimated as

Accuracy evaluation was carried out with multiple train-
ing and test datasets by moving index p in time, start-
ing from 2011 (i.e., training dataset 1970–2011, and test 
dataset 2012–2021), covering 10 years. The procedure is 
then repeated moving p one epoch ahead (training dataset 
1970–2012, test dataset 2013–2021, 9-year period) in an 
iterative way. The last iteration covers a single year (training 
dataset 1970–2020, test dataset 2021).

The results are shown in Table 1, which illustrates only 
the data in even years. Another clarification is required to 
understand the meaning of the reported values. As the analy-
sis was carried out for all columns (except 39), 58 RMSEc 
values can be calculated for each testing period. The mean 
RMSE value and standard deviation were estimated to syn-
thesize evaluation results.

A graphic visualization for the different columns (in 
different testing periods) is shown in Fig. 10. Table 1 also 
shows two rows called Av.1 and Av.2. Such values corre-
spond to the average values estimated with the four methods 
(Av.1) and the first three methods (Av.2).

Averaging forecasts calculated from different methods 
could provide overall better results [69]. In the case of 
Av.2, results with the cubic smoothing spline method were 
removed. In fact, the analysis of separated values suggested 
that the smoothing spline method provides the worst fore-
casting results.

Slightly better results were achieved with the ETS 
method, followed by Av.1. All the methods provide similar 
accuracy for short testing periods. However, the computed 
accuracy is worse than the expected precision of the geomet-
ric leveling network, which is about ±0.1 mm. We must also 
consider that such precision is determined via least-squares 
adjustment and refers to elevation value standard deviation. 
The precision of differential variation can be assumed as 
±0.1

√

2 = ±0.14 mm.
If we suppose to use only the results of the ETS method 

and a short-term forecast (1 year, i.e., two forecasted val-
ues), the expected accuracy is 0.18 mm ± 0.09 mm, which 

(2)RMSEc =

√

√

√

√

1

T − p

T
∑

t=p+1

(

zt,c − ẑt,c
)2
.

is slightly larger than the precision of variations. A 3-year 
forecast shows an accuracy of 0.24 mm ± 0.11 mm, and the 
value remains relatively constant after increasing the testing 
period. The worst forecasting results were achieved mainly 
for those columns in the Northwestern corner of the Duomo.

As mentioned at the beginning of the section, the main 
goal of time-series forecasting is the comparison of fore-
casts with actual relative displacement detected during a new 
monitoring campaign instead of the direct use of naïve fore-
casts. The idea is to develop a strategy for anomaly detection 
based on two-step ahead forecasts, which means an addi-
tional year (May–May, November–November). In this case, 
accuracy evaluation results and the expected metric accu-
racy after adjusting leveling measurements and computing 
relative variations can be compared to find discontinuities 
exceeding a ±0.2 mm threshold.

Such a comparison could also integrate the traditional 
semestral monitoring report transmitted to Veneranda Fab-
rica del Duomo di Milano. It provides a quick numerical 
check to identify possible anomalies after adjusting the 
observations and calculating relative differences.

7  Spatio‑temporal prediction 
and area‑based visualization techniques

This section aims to explore alternative visualization meth-
ods able to describe with more clarity the effect of subsid-
ence in the Duomo di Milano during half a century of meas-
uring activities. The different types of analysis described in 
the previous sections used localized points related to col-
umns’ relative displacements. However, subsidence affects 
the whole area. Extending data processing and visualization 
to the entire surface provides alternative ways to understand 
differential movements, which are here considered a spatio-
temporal phenomenon.

Spatio-temporal processes in R can be managed with 
the spacetime and the gstat packages. The second one uses 
space-time classes to estimate the spatio-temporal variogram 
and perform spatio-temporal prediction [70]. Additional 
packages used in this section are the raster, terra, and ras-
terVis packages, which provide enhanced visualization tools 
for raster datasets.

Data processing was carried out in two ways: (1) pure 
(geo)spatial analysis, in which the different measurement 
periods are considered independent datasets (7.1), and (2) 
complete space-time analysis, in which temporal correlation 
is also exploited (7.3).
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Fig. 10  RMSE values of single columns in different testing periods. Results are in mm
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7.1  Spatial interpolation of relative subsidence 
measurements

Interpolation allows prediction of relative displacements 
zt,s in (unmeasured) locations s = (x, y) starting from zt,c 
values for the 59 columns at spatial locations sc = (xc, yc) . 
The set of unmeasured locations corresponds to the whole 
area enclosed by the external walls of the Cathedral, which 
is discretized with a 0.5 m × 0.5 m grid. The considered 
observation period is still 1970–2021, i.e., time does not 
consider additional years here, whereas space has a new 
bounded domain given by the perimeter wall. The exten-
sion of the temporal domain (2022, 2023,...) will be dis-
cussed in Sect. 7.3.

Processing is carried out by generating separated pre-
diction maps at different epochs using traditional spatial 
interpolation [28]. Spatial interpolation assumes that the 
measured relative displacement at a given time t = t∗ is 
sufficient to predict relative displacement in other nearby 
locations at the same time t∗ . The sample semi-variogram 
�̂�(d) describes the relationship between data and distance

in which the variance between two points si and si depends 
on the distance d

and N(d) is the set of all pairs of locations separated by d.
Prediction is carried out with ordinary kriging, which is 

a widely used method for data interpolation in geostatistics 
[71, 72]. Ordinary kriging predicts values at not sampled 
point locations (i.e., ẑ(s0) ) based on the observed data and 
the estimated semi-variogram, using a linear combination 
of observed values z(si) and weights �i

(3)�̂�(d) =
1

2N(d)

∑

N(d)

(z(si) − z(sj))
2,

(4)d =
√

(xi − xj)
2 + (yi − yj)

2,

(5)ẑ(s0) =

n
∑

i=1

𝜆iz(si).

Automation in prediction is achieved with the automap pack-
age, which automatically fits the semi-variogram model to 
the data and generates the interpolated map. Such operation 
was repeated with an automated script for the observation 
period t1, t2,… , tT , considering the different epochs as inde-
pendent events.

Results with the data from 1971 to 2021 are shown in 
Fig. 11, showing the interpolated displacement maps with 
kriging every 3 years. The lattice-based visualization was 
achieved with rasterVis, which can print single raster files 
or raster stacks. A stack is a collection of raster images 
with the same spatial extent and resolution organized using 
a single object. The raster stack was also cropped using the 
perimeter of the Duomo.

The sequence of interpolated maps shows the temporal 
evolution of the displacements. According to the historical 
convention (point 39 is the fixed benchmark to calculate 
relative displacements), the maximum negative displace-
ment area is the southern transept. Differential displace-
ments between the different columns of the Cathedral are 
visible, and the most significant relative values are located 
between the northwest side of the facade and the southern 
transept.

Geospatial prediction allows the creation of useful 
representations to illustrate the effect of subsidence over 
time better. Obviously, an additional work is necessary to 
show the distribution for the whole surface of the Duomo, 
especially if compared to the direct visualization of values 
stored in the archive. However, automation is possible, 
because operations become repetitive for the different 
epochs. In this case, the implemented function performed 
four steps: (1) extraction of the measured displacements 
at a specific time t∗ , (2) estimation of the sample semi-
variogram, (3) model fitting, and (4) generation of the 
interpolated map.

It is also important to mention that spatial interpola-
tion is not carried out to predict relative displacement for 
columns without a benchmark (see the scheme in Fig. 3), 
notwithstanding this is a natural consequence of data 
processing. The main goal is not recovering the values 

Table 1  Accuracy evaluation 
using variable validation 
datasets, showing mean 
value and standard deviation 
of RMSE values for all the 
columns (except 39)

Results are in mm

2012–21 2014–21 2016–21 2018–21 2020–21

ARIMA 0.40±0.37 0.29±0.16 0.33±0.36 0.26±0.13 0.17±0.11
NAR 0.27±0.37 0.34±0.16 0.27±0.36 0.25±0.13 0.20±0.11
ETS 0.25±0.13 0.23±0.08 0.25±0.15 0.24±0.11 0.18±0.09
SPLINE 0.45±0.34 0.34±0.18 0.34±0.32 0.34±0.15 0.17±0.12
Av.1 0.28±0.20 0.25±0.12 0.24±0.24 0.25±0.12 0.17±0.10
Av.2 0.24±0.15 0.24±0.14 0.27±0.21 0.23±0.11 0.18±0.09
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for columns without a measuring point, but the creation 
of visualizations that can clarify the effect of subsidence 
with enhanced visual representation. The raster stack is 
the main output of this phase, but it can also be used to 
create additional products as described in the next section.

7.2  Alternative visualization methods for relative 
displacement acquired over time

As the interpolated maps are stored using a raster stack, it is 
possible to create an animated plot, i.e., a sequential plot that 
can be exported as a video clip (for instance, an animated 
GIF). Another solution is the creation of a 3D cube with 
the cubeview package. The cube can be interactively rotated 
and translated in space, and slices through each dimension 
can be visualized to quantify displacement. Another way of 
representing digital elevation models (DEMs) is a sequence 
of 3D plots after scaling relative displacements. 3D plots 
may provide a graphic visualization of surface deformations 
starting from the initial flat surface in 1970.

All the previous methods require a computer for visuali-
zation and are useful for interactive exploration of the data, 
and they are not suitable for printing 2D representations. 
Indeed, the use of spatial and temporal information makes 
the production of 2D plots more complicated, requiring 

multiple maps structured in a grid, such as in the case of 
Fig. 11.

An interesting 2D graphic representation of spatio-tem-
poral phenomena is the Hovmöller diagram, which is very 
common for interpreting meteorological data. The Hov-
möller diagram is generated from a raster stack using the 
average values in single columns (North direction) or rows 
(East direction), storing the values on a new x axis. The y 
axis instead represents time.

The Hovmöller diagrams for the Duomo di Milano are 
shown in Fig. 12, which depicts different behaviors in the 
two directions. The Cathedral is oriented to the East (mean-
ing that the altar is on the East side of the church), longitu-
dinal (along the nave), and transversal (along the transept) 
axes are aligned to cartographic axes. The first figure shows 
the increasing differential movement between the nave and 
transept. Further movement is also visible between the tran-
sept and the apse and has a smaller magnitude.

The second Hovmöller diagram instead cuts the Duomo 
in the longitudinal direction. The red area at the bottom indi-
cates the transept’s South area, where maximum negative 
displacements are visible. The maximum is reached in the 
top-right corner, indicating the progressive movement over 
time and the presence of differential movements. A compari-
son of the two diagrams shows an overall lack of symmetric 

Fig. 11  Interpolated maps of the predicted differential displacements using spatial prediction based on kriging. The axes show UTM coordi-
nates: East and North
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behavior, with local positive or negative concentrations. The 
different magnitude of the legend must also be considered 
during the visual interpretation of the two diagrams.

Additional visualizations can be created using raster alge-
bra applied to the raster stack with relative displacements. 
A useful representation is a raster plot of the velocity field 
and its evolution over time. The average velocity in different 
periods (1970–75; 1981–85; 1991–95; 2015–21) is shown 
in Fig. 13. The same color convention was applied to all 

images, and velocity is expressed in mm/year. As can be 
seen, the velocity at the beginning of the monitoring period 
was much larger than the values in recent years. Velocity is 
also a relative value due to the relative displacements calcu-
lated using column 39 as a stable reference.

The relative velocity between 1970 and 1975 reaches 
values larger than 1.4 mm/year between the columns of 
the transept and the southwest corner of the Duomo. Rel-
ative velocity is much more uniform after a decade, as 

Fig. 12  Hovmöller diagrams for the east–west (façade-apse) and north–south (along the transept) axes of the Duomo; coordinates in UTM, east, 
and north, respectively

Fig. 13  Average velocity in different periods computed from differential movements
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demonstrated by the figure in the period 1981–1975. The 
magnitude is also significantly reduced. Such results can 
also be related to the decision to close all the wells in the 
Cerchia dei Naviglia, starting from 1972 [33], recovering 
several meters in terms of aquifer level and reducing dif-
ferential displacements.

Nowadays, the average velocity is relatively small and 
more uniform, notwithstanding differential movements are 
still present. The average is generally lower than 0.1 mm/
year for the entire area inside the Duomo, except around col-
umn 28. Historically, the column with the most significant 
positive displacement has always been column 30 (the one 
in the northwestern corner of the cathedral). However, the 
(positive) relative variations of column 28 increased in 2015.

7.3  From spatial to spatio‑temporal prediction

The previous Sect. 7.1 considered the measured relative dis-
placements zt,c at different observation periods t as independ-
ent observations, creating a set of interpolated maps without 
exploiting temporal aggregation.

Spatio-temporal interpolation uses the spatio-temporal 
semi-variogram [73, 74]

where N(d, u) is the set of all pairs of locations separated 
by d and u = ti − tj . The estimation of �̂�(d, u) requires pre-
liminary conversion of input data into an STFDF class (a 
class for spatio-temporal data based on a full space-time 
grid [75]), which can handle spatio-temporal data when 
the spatial location of points remains constant over time. 
Then, variogram modeling is carried out with the procedure 
described in [76]. Finally, spatio-temporal kriging can be run 
on a grid with space and time components.

Instead of running spatio-temporal prediction with the 
whole dataset, two particular cases were considered in this 
work: (1) an alternative spatio-temporal procedure to recover 
missing values, and (2) the calculation of future values, i.e., 
an extension of the temporal domain.

7.3.1  Case n.1: recovering missing values 
with spatio‑temporal prediction

The previous sections described the creation of the Duomo 
dataset and some of the operations used to recover miss-
ing data, which are mainly based on univariate time-series 
analysis. In other words, temporal interpolation for recov-
ering missing values did not consider spatial correlations.

Spatio-temporal interpolation is a relatively flexible 
approach in this sense. Recovering missing values can 
be carried out with spatio-temporal kriging after creating 

(6)�̂�(d, u) =
1

2N(d, u)

∑

N(d,u)

(z(si, ti) − z(sj, tj))
2,

a suitable dataset with data before and after the missing 
period.

As described in Sect. 3, all the values for the monitor-
ing campaign in May 1973 were recovered using the aver-
age of measurements in May 1972 and May 1974, which 
is a basic linear interpolation suitable when velocity is 
constant. We decided to recalculate such values using 
spatio-temporal prediction, considering the measurements 
acquired in May from 1970 to 1976, assuming the values 
in 1973 as additional unknowns. Such an approach con-
siders more epochs and can deal with variations in the 
velocity field.

After creating the STFDF class with a script, the empiri-
cal variogram was generated. Variogram modeling was a 
more complicated task requiring several trials with the dif-
ferent models available and choosing the best one with a 
visual inspection and analysis of mean square errors. Results 
achieved using the metric variogram model are discussed 
here.

The variogram has the form

where �joint is any known variogram that may include a nug-
get effect, and k is an anisotropy parameter between spatial 
and temporal units.

After fitting the theoretical model, spatio-temporal krig-
ing prediction [77] can be carried as

The prediction was initially carried on a spatial grid lim-
ited to the locations of the columns, whereas the temporal 
domain included May 1973 (Fig. 14). The implementation 
provides an exact interpolation, meaning that each interpo-
lated value is estimated minimizing the prediction error for 
that point, and the predicted values in sampled locations are 
the observed values.

Figure 15 shows a comparison between the relative vari-
ations computed with independent interpolation of the time-
series (the values used in the historical archive), and the 
alternative solution from local spatio-temporal interpolation. 
As can be seen, differences are relatively small, with an aver-
age value of − 0.05 mm and a standard deviation of ± 0.13 
mm. The difference for column 39 is 0.12 mm instead of 
zero (historical convention), and the most significant differ-
ences correspond to columns 51 and 67, with a discrepancy 
of about 0.4 mm.

The method can also be used on an extended spatial 
0.5m × 0.5m grid covering the entire surface of the Duomo, 
obtaining the results in Fig. 16. Such a representation is 
comparable with the pure spatial interpolation shown in 

(7)�m(d, u) = �joint

�
√

d2 + (ku)2
�

,

(8)ẑ(s0, t0) =

n
∑

i=1

𝜆iz(si, ti).
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the previous section, notwithstanding a different color scale 
was used to distinguish pure spatial from spatio-temporal 
prediction.

The opportunity to recover missing values can be consid-
ered an alternative to temporal interpolation based on uni-
variate time series analysis. In addition, the method provides 
the opportunity to validate metric accuracy using a set of 
measured relative displacements for some input locations 
excluded from processing.

7.3.2  Case n.2: spatio‑temporal forecasting

The temporal domain of the dataset (1970–2021) can be 
extended to estimate future values with spatio-temporal krig-
ing. We consider the relative measurements taken in May 
from 2012 to 2021 (10 years) to predict values for May 2022. 
The values can be organized into another STFDF class, 
from which another spatio-temporal empirical variogram is 
generated.

Variogram modeling was again carried out with the met-
ric model, and prediction with kriging was extended to 2022, 
forecasting future variations. Results are shown in Fig. 17 

Fig. 14  Results of spatio-temporal prediction evaluated on the different column locations. The red rectangle represents the recovered missing 
value in 1973 (colour figure online)

Fig. 15  Difference between values in May 1973 recovered by univariate time-series analysis and spatio-temporal prediction
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Fig. 16  Spatio-temporal interpolation extended to a dense grid covering the surface of the Duomo

Fig. 17  The predicted values in May 2022 using spatio-temporal kriging (red rectangle)
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together with the values in the previous years. The method 
can also be extended to predict values for the whole surface, 
notwithstanding such an aspect was not considered in this 
manuscript.

Finally, results predicted with spatio-temporal kriging can 
be compared to the forecasts using ETS. Figure 18 shows a 
comparison of the two methods using the difference in the 
computed values. The average value of such differences is 
−0.09 mm, and the standard deviation is ±0.12 mm. It is 
interesting how the largest differences are located around 
columns 26, 28, 30, 90, 92, and 94, located in the area with 
maximum (positive) relative displacements.

8  Conclusions

The paper presented different methods for spatial (S), tem-
poral (T), and spatio-temporal (S-T) analysis applied to geo-
referenced time-series for structural monitoring. Examples 
were illustrated and discussed using the Duomo di Milano 
monitoring archive, which features more than 50 years of 
differential movements induced by subsidence. However, the 
proposed methods can be used in several practical applica-
tions not limited to historic structures.

Spatio-temporal methods could be extended to other 
structural monitoring applications where S-T datasets are 
collected at regular or irregular sampling intervals. Exam-
ples could be satellite-based measurements using GNSS, 
SAR, or georeferenced monitoring information captured 
with other sensors and tools, resulting in time series for 
specific points for static and quasi-static monitoring. These 
methods are normally used in large areas beyond the scale 
of the building (for example, at the territorial level), but 
the technical literature reports numerous applications for 
structures, infrastructures, and at the environmental level 
[78–80]. Other methods able to capture S-T information at 
the scale of the building could be geodetic solutions, such 
as total stations and leveling networks. Automation is also 
feasible with robotic total stations [81] and hydrostatic lev-
eling systems [82].

After creating the archive, one of the aims of the pro-
posed work was to develop solutions for validating, extract-
ing, and visualizing S-T information. Problems, such as clus-
tering, prediction, forecasting, recovery of missing values, 
and anomaly detection, were illustrated and discussed. Data 
uncertainty and accuracy were also evaluated, considering 
the expected precision of adjusted monitoring measurements 
and the results from S, T, or S-T processing.

Although the paper considered the vertical movements 
of the columns of the Duomo di Milano, other S-T moni-
toring datasets are available for the cathedral. For instance, 
starting from the ’60, leveling measurements are also 
acquired in the square and on the main buildings (Galle-
ria Vittorio Emanuele II, the Royal Palace, the Church of 
San Gottardo, etc.) around the Cathedral, forming a large 
monitoring network covering an area of about 160,000 
m 2 . The external network is still measured once a year, 
always in May. Another example is the main spire, which 
is monitored with automatic and manual methods. Dif-
ferential vertical movements are measured (since 2008) 
around the octagonal tiburium when the scaffolding was 
built around the main spire for restoration activities.

Overall, spatio-temporal geostatistics can help solve 
specific tasks, such as the recovery of missing values 
using prediction approaches able to consider both spatial 
and temporal dimensions. Pure temporal (T) or spatial (S) 
strategies are also helpful for several tasks proposed in 
this work. Missing values were initially recovered with 
pure temporal approaches without quantifying uncertainty, 
and cross-comparison with the alternative approaches pre-
sented in the manuscript was considered a solution for 
data validation. It is the author’s opinion to combine dif-
ferent methods instead of concentrating only on a specific 
algorithmic solution. Defining optimal input parameters 
is also a challenging task. S-T analysis is also more com-
putationally expensive, especially space-time kriging with 
large datasets.

The results achieved with various methods were not the 
same, offering the opportunity to interpret the phenomenon 
under investigation from different perspectives, considering 

Fig. 18  Difference between values in May 2022 forecasted by univariate time-series analysis and spatio-temporal prediction
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the pros and cons of the applied methods and their combined 
use. The interpretative work can also benefit from additional 
solutions to graphically represent spatio-temporal changes, 
which must be related to historical events and deep knowl-
edge of the monument in any monitoring application with 
heritage buildings.

The paper also considered the use of clustering methods 
robust against the conventional choices in defining a refer-
ence system, which is common in monitoring projects and 
often provides relative (differential) displacements. Time-
series cluster analysis (including the spatial component) 
can be carried out with dissimilarity measures invariant to 
the conventional choices used to remove rank deficiency in 
least-squares adjustment, enabling the identification of time-
series groups independently of the solutions implemented to 
calculate relative displacements.

Finally, extending S-T processing to specific applica-
tions at the level of individual structural elements is possible 
when measurements are captured with techniques captur-
ing surfaces or dense sets of points. Examples could be the 
photogrammetric monitoring [83] of architectural elements 
(such as columns, arches, and vaults) starting from images 
acquired with synchronized cameras. Digital image corre-
lation (DIC) [84], image-based condition monitoring [85], 
or vision metrology [86] are other applications in which 
combined spatio-temporal geostatistics can provide valu-
able information.
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