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Abstract

Meteor showers, originating as a result of the activity of comets or the disruption of large objects, provide a unique window into the
composition and dynamics of our Solar System. While modern meteor detection networks have amassed extensive data, distinguishing
sporadic meteors from those belonging to specific meteor showers remains challenging. In this study, we statistically evaluate and com-
pare four orbital similarity criteria within five-dimensional parameter space (DSH ;DD;DH , and .2) to study dynamical associations using
the already classified meteors (manually by a human) in CAMS database as a benchmark. In addition, we assess various distance metrics
typically used in Machine Learning with two different vectors: ORBIT, grounded in heliocentric orbital elements, and GEO, predicated
on geocentric observational parameters. To estimate their degree of correlation and efficacy, the Kendall rank correlation coefficient and
the Top-k accuracy are employed. The statistical equivalence of the Top-1 results is examined using the Kolmogorov–Smirnov test and
the percentage of Top-1 agreement is calculated on an event-by-event basis. Additionally, we compute the optimal cut-offs for all meth-
ods for distinguishing sporadic background events. Our findings demonstrate the superior performance of the sEuclidean metric in con-
junction with the GEO vector. Within the scope of D-criteria, DSH emerged as the preeminent metric, closely followed by .2. The Bray-
Curtis metric displayed an advantage compared to the other distance metrics when paired with the ORBIT vector for Top-k accuracy,
however, the Cityblock metric is more effective when considering the sporadic background. .2 stands out as the most equivalence to the
distance metrics when utilizing the GEO vector and the most compatible with GEO and ORBIT simultaneously, whereas DD aligns more
closely when using the ORBIT vector. The stark contrast in DD’s behavior compared to other D-criteria highlights potential inequiva-
lence. Our results suggest that geocentric features provide a more robust basis than orbital elements for meteor dynamical association.
Most distance metrics associated with the GEO vector surpass the D-criteria when differentiating the meteoroid background. Accuracy
displayed a dependence on solar longitude with a pronounced decrease around 180� matching an apparent increase in the meteoroid
background activity, tentatively associated with the transition from the Perseids to the Orionids. Considering lately identified meteor
showers, �27% of meteors in CAMS would have different associations. This work unveils that Machine Learning distance metrics
can rival or even exceed the performance of tailored orbital similarity criteria for meteor dynamical association.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Within the expanse of our planetary system, remnants
from its formation provide glimpses into the early stages
of our cosmic neighborhood (Bottke et al., 2002; Walker
and Cameron, 2006). Among these remnants, comets
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emerge as witnesses to the dramatic events that shaped our
nearby environment. These celestial bodies can undergo
processes of disruption due to various factors such as vola-
tile sublimation when approaching the Sun, tidal forces, or
impacts with other bodies. According to the theory of for-
mation and evolution of small bodies of the Solar System
(Whipple, 1951; Bredikhin, 1954; Plavec, 1954; Hughes,
1986; Babadzhanov and Obrubov, 1992), meteoroid
streams are formed mainly as a result of the activity of
comets or the ejection of meteoroids from cometary nuclei
with various initial velocities (Chapman, 2010; Tóth et al.,
2011; Gritsevich et al., 2012). Meteoroids exhibit a diverse
composition, including rock, metal, or a combination of
both, and span a wide range of sizes, from micrometer-
scale grains to larger objects up to one meter in diameter
(Trigo-Rodrı́guez and Llorca, 2006; Trigo-Rodrı́guez and
Llorca, 2007; Koschny and Borovicka, 2017). Despite their
heterogeneous characteristics, these meteoroids share a
common origin, derived from a parent body, which imparts
certain similarities among them.

Additionally, though less common, asteroids can also
generate meteoroid streams as a result of catastrophic
impact events. Some associations have been found, such
as the case of the potentially hazardous asteroid (3200)
Phaethon (1983 TB), whose origin could be the nucleus
of an extinct comet (Zhong-Yi et al., 2020), and the Gem-
inids meteor shower. Multiple studies have confirmed the
high probability that the Geminids are dynamically associ-
ated with such asteroid (Whipple, 1983; Gustafson, 1989;
Williams and Wu, 1993). However, as they traverse the
space, the influence of planetary perturbations and non-
gravitational forces gradually renders them indistinguish-
able from the background population (Olsson-Steel,
1986; Bottke et al., 2000; Pauls and Gladman, 2005;
Brož, 2006; Koschny et al., 2019).

Eventually, the journey of meteoroids brings them into
intersecting paths with the Earth’s orbit, leading to capti-
vating interactions with our planet (Brown et al., 2002;
Murad and Williams, 2002; Gritsevich, 2009; Trigo-
Rodrı́guez, 2022). As these meteoroids penetrate the
Earth’s atmosphere, they experience a dramatic transfor-
mation fueled by the intense heat generated through air
molecule friction. The high-speed entry produces enormous
amounts of heat, causing the outer layers of the meteoroids
to rapidly vaporize (Popova et al., 2019). This process,
known as ablation, leads to the formation of a glowing
plasma sheath surrounding the meteoroid (Ceplecha
et al., 1998; Silber et al., 2018). The energy released during
atmospheric aerobraking causes the visible phenomenon
known as a meteor, which is called a fireball or bolide if
its magnitude surpasses that of the planet Venus. When a
meteoroid stream intersects the Earth’s path periodically,
it gives rise to the phenomenon of meteor showers
(Jenniskens, 1994; Jenniskens, 1998; Jenniskens, 2006;
Vaubaillon et al., 2019; Jenniskens, 2023). The meteors
within them share common features, including their time
of occurrence, apparent origin in the sky, known as the
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radiant, and their geocentric impact velocity, as well as
their orbital elements in an equivalent manner.

Thanks to the existence of meteor detection networks
(Jacchia and Whipple, 1956; Ceplecha, 1957; Bland, 2004;
Trigo-Rodriguez et al., 2005; Weryk et al., 2007;
Jenniskens et al., 2011; Kornoš et al., 2014; Gritsevich
et al., 2014; Colas et al., 2015; SonotaCo, 2016; Gardiol
et al., 2016; Devillepoix et al., 2020; Colas et al., 2020;
Boaca et al., 2022; Borovička et al., 2022), researchers
now have access to an abundance of videos and images that
play a key role in improving our understanding of the dis-
tribution and characteristics of meteoroid streams. The
availability of this extensive dataset has revolutionized
our capacity to investigate and analyze incoming extrater-
restrial material. Through processing these videos and
extracting relevant information, we can determine essential
parameters such as trajectory, velocity, brightness, and
other physical properties of meteors (Ceplecha, 1987;
Borovicka, 1990; Vida et al., 2020; Peña-Asensio et al.,
2021; Peña-Asensio et al., 2024). This valuable information
significantly contributes to our knowledge about meteor
showers, assisting in the identification and tracking of
potentially hazardous complexes that may pose a threat
to Earth in the near term (Voloshchuk and Kashcheev,
1996; Halliday, 1987; Borovička et al., 2015; Trigo-
Rodrı́guez et al., 2017; Trigo-Rodrı́guez and Blum, 2022).

In this regard, accurate classification of sporadic mete-
ors from those belonging to the same stream is of utmost
importance, as the latter provides valuable insights into
the population density of future impactors (Wiegert and
Brown, 2004; Porubčan et al., 2004; Jopek and Williams,
2013; Dumitru et al., 2017; Jenniskens, 2017; Vaubaillon
et al., 2019; Peña-Asensio et al., 2022; Peña-Asensio
et al., 2023). Determining the point at which a meteor
shower transitions from a cohesive entity to a collection
of unrelated meteoroids (sporadic background), or estab-
lishing the criteria to accurately associate meteors with a
specific shower, poses a significant challenge. To tackle
the issue of orbital dynamical association, multiple endeav-
ors have been undertaken to define similarity criteria or D-
criteria. These criteria aim to effectively differentiate
between events that are associated with a specific mete-
oroid stream and those that are unrelated to other objects
or swarms. Ultimately, analyzing the impact features can
aid in associating meteorites with their parent bodies
(Carbognani and Fenucci, 2023).

In this study, we assess the rank correlation, efficacy,
and equivalence of four five-dimensional similarity criteria
designed for quantifying dynamical associations between
meteor orbits, as well as various distance metrics with
two different vectors (one shared with the D-criteria). The
evaluation is conducted using a comprehensive meteor
database and extends to exploring alternative metrics for
orbit association, as well as computing the optimal thresh-
olds for each method. The objective is to elucidate the sta-
tistical strengths, limitations, and similarities of each
approach, thereby providing a robust framework for future
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research in meteor associations with parent bodies or mete-
oroid streams.

In Section 2, we detail the database utilized and the
methodology applied. Section 3 presents our findings,
and Section 4 provides a summary of the key outcomes
of our study.
2. Data and procedures

The methodology presented herein is designed to ana-
lyze multiple meteor dynamical association approaches
by comparing five-dimensional orbital similarity criteria
and various vector-based distance metrics typically used
in Machine Learning. For the latter, we use as a vector
(1) the same parameters utilized by the similarity criteria
defined by some heliocentric orbital elements, which we ter-
med as ORBIT, and (2) the four-dimensional vector pro-
posed by Sugar et al. (2017) and named here as GEO. It
should be noted that while the term ‘‘metrics” may be
appropriate to describe the D-criteria to a certain extent,
in this work, we use the term ‘‘metrics” exclusively to refer
to vector-based distance metrics, which are further
explained.

This section is subdivided into different subsections.
SubSection 2.1 elaborates on the data sources utilized.
SubSection 2.2 presents D-criteria for comparing the orbi-
tal elements of two orbits. In SubSection 2.3, we introduce
the two vectors that will be used along with the distance
metrics. In SubSection 2.4 we explain the theoretical back-
ground used for calculating the rank correlations, compar-
ing the performances with the Top-k accuracy method, and
estimating the equivalence with the Kolmogorov–Smirnov
test and Top-1 event-by-event agreement. Finally, in
SubSection 2.5, we detail our strategy to determine the
optimal thresholds for distinguishing between sporadic
background and meteor showers. All implementations of
the statistical analyses were conducted utilizing the SciPy

library (Virtanen et al., 2020).
2.1. Databases

CAMS, short for the Cameras for All-Sky Meteor
Surveillance project (Jenniskens et al., 2011), is an interna-
tional initiative sponsored by NASA and managed by the
Carl Sagan Center within the SETI Institute, located in
California, USA. Its primary objective is to monitor and
map meteor activity through nighttime optical video
surveillance, employing triangulation techniques. It annu-
ally records an average of half a million meteor orbits,
although the publication of this data stopped in 2016.
The last release was the Meteoroid Orbit Database v3.0,
which includes 471,582 events registered since 2010.

While there are other automated meteor detection net-
works, CAMS stands out as the primary and most widely
recognized repository of meteor data. Nevertheless, it was
noted that its performance in accurately detecting fast
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meteors falls short in comparison to its detection of slower
meteors (Koseki, 2017; Koseki, 2022). To address this
issue, we implement a filtering mechanism to exclude
lower-quality detections and to reduce spurious data,
requiring a minimum convergence angle of 15 degrees
between cameras, ensuring an estimated velocity error of
no more than 10% of the nominal value, not allowing
hyperbolic orbits, and selecting perihelion distance com-
patible with impacts on the Earth.

Certainly, we rely on the classification provided by
CAMS as a ground truth, which may not be infallible.
However, the classification within this database did not uti-
lize any formal dissimilarity criteria. Instead, it depended
on human visual clustering within sun-centered ecliptic
longitude-latitude representations, with clusters manually
delineated using specific coordinates and geocentric veloc-
ity limits (Jenniskens et al., 2018). Our analyses proceeds
under the presumption that the CAMS classification is
accurate, a premise that, regardless, serves our primary
objective of assessing the equivalence between metrics
and D-criteria.

For identifying meteoroid streams responsible for
meteor showers, we use the V.2 list of all known showers
from the IAU Meteor Data Center, updated in January
2024 (Jopek and Jenniskens, 2011; Jopek and
Kanuchová, 2013; Jopek and Kaňuchová, 2017;
Jenniskens et al., 2020). To facilitate the association of
these meteor showers with entries in the CAMS database,
we employ the IAU numeral code. This list includes 1484
entries, 956 corresponding to unique meteor showers. To
ensure a direct comparison of association performances,
we filter both CAMS and IAU meteor shower datasets to
include only identical, unique meteor showers.

2.2. Orbital similarity criteria

Orbital elements such as inclination i, eccentricity e, lon-
gitude of the ascending node X, perihelion distance q, and
argument of the perihelion x allow us to determine the
path of any moving object following a Keplerian trajectory
in our Solar System. Likewise, it is possible to look for the
connection between a meteor shower and its parent body
(or any two objects) through the similarities of their orbits.

This search approach is not recent. The first attempts
focused on measuring the degree of similarity between
orbits were designed in the second half of the last century,
they were so-called D-criteria. The first D-criteria was
introduced by Southworth and Hawkins (1963):

D2
SH ¼ eB � eAð Þ2 þ qB � qAð Þ2 þ 2 sin

IAB
2

� �2

þ eB þ eA
2

� �2

2 sin
pBA

2

� �2

; ð1Þ

where other concepts of geometry come into play such as
the angles between their respective perihelion points (pBA)
and between the inclinations of the orbits (IAB).
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Drummond (1981) not only defined the angle between
the perihelion points on each orbit (hBA) by adding both
the ecliptic longitude (k) and the perihelion latitude (b),
but also weighted the terms e and q to provide a metric
in which each term contributed equally to the overall
sum. In this way, a new variant of the DSH criterion, named
DD in honor of its creator, was developed:

D2
D ¼ eB � eA

eB þ eA

� �2

þ qB � qA
qB þ qA

� �2

þ IAB
p

� �2

þ eB þ eA
2

� �2 hBA
p

� �2

; ð2Þ

A decade later, Jopek (1993) carried out a random pertur-
bation model of several orbits, ignoring i;X, and x, to ana-
lyze the DSH and DD criteria. He found dependency
relationships of q and e values for the reference orbit; q
in the case of DSH and e for the criterion DD. To reduce
these dependency relationships between orbital parameters,
Jopek proposed a new similarity criterion, DH , defined by:

D2
H ¼ eB � eAð Þ2 þ qB � qA

qB þ qA

� �2

þ 2 sin
IAB
2

� �2

þ eB þ eA
2

� �2

2 sin
pBA

2

� �2

: ð3Þ

Note that these D-criteria cannot be categorized mathe-
matically as metrics due to their violation of the triangle
inequality (Kholshevnikov et al., 2016). Instead, they are
more appropriately defined as quasimetrics, as they adhere
to a relaxed form of the triangle inequality (Milanov et al.,
2019). Contemporary functions, such as .2, enable the pre-
cise quantification of orbital similarity through consistent
mathematical formulations:

.22 ¼ 1þ e21
� �

p1 þ 1þ e22
� �

p2 � 2

� ffiffiffiffiffiffiffiffiffi
p1p2

p
cos I þ e1e2 cos Pð Þ ð4Þ

with

p¼a 1�e2
� �

; ð5Þ
cosI¼ cos i1 cosi2þsini1 sini2 cos X1�X2ð Þ; ð6Þ
cosP ¼ sin i1 sin i2 sinx1 sinx2þcosx1 cosx2 cos X1�X2ð Þ

þcosi1 cos i2 sinx1 sinx2 cos X1�X2ð Þ
þ cos i2 cosx1 sinx2�cos i1 sinx1 cosx2ð Þsin X1�X2ð Þ:

ð7Þ

The limit values of such D-criteria, also called thresholds,
cut-off levels, or upper limits, determine whether two
objects may be associated. Being, for example, A and B a
meteor and meteor shower respectively, if the distance
DðA;BÞ between A and B is greater than this limit value,
the association must be discarded. The smaller this distance
is, the greater the possibility that there is a dynamical sim-
ilarity between two objects, and, therefore, the meteoroid
belongs to the meteoroid stream.

Some studies on the suitability of these criteria have
already been carried out. For example, Galligan (2001)
explored the performance of four similarity functions in
the near-ecliptic region–DSH ;DD;DH , and DN (Valsecchi
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et al., 1999)–, resulting in DN criterion being the most stable
in the case of the lack of a priori information on orbital
inclination regimes, while DSH , which is based on meteor
shower dispersion theoretical models, is more suitable with
very different cut-off levels. However, DN has not been
adopted in our approach due to its less straightforward
application from the standard parameters provided in
meteor databases. Likewise, Moorhead (2015) analyzed
such cut-off values to determine a chosen acceptable
false-positive rate and distinguish which showers are signif-
icant within a set of sporadic meteors. Jenniskens (2008)
and Rudawska et al. (2015) introduced the four-
dimensional metrics DB and DX , respectively. However, to
maintain consistency within the parameter space domain
analyzed in this study, we opt not to include these criteria.

Through these values, it has been possible to associate
meteor showers with parent bodies such as the 109P
(1862) III Swift–Tuttle comet and the Perseid meteor
shower, whose first connection data from the late 19th cen-
tury when Schiaparelli calculated the orbits of the Perseids
and discovered their strong similarity to that of this comet.
Involved on this connection, (Sokolova et al., 2014) calcu-
lated the cut-off level of DSH resulting in DSH6 0:2. Litera-
ture provides more classical examples such as the April
Lyrids, whose extremely small value of the DD criterion
(DD = 0.009) suggests that such meteors showers have
indeed come from comet Thatcher (Arter and Williams,
1997). Other recent examples are the case of a fireball
detected in the night sky over Kyoto whose likely parent,
with DSH = 0.0079, could be the binary near-Earth asteroid
(164121) 2003 YT1 (Kasuga et al., 2020); the binary aster-
oid 2000 UG11 associated with Andromedids (DSH = 0.183
and DH = 0.176) and the asteroid (4179) Toutatis, with val-
ues of DSH = 0.180 and DH = 0.175, that postulate it asso-
ciated with October Capricornids (Dumitru et al., 2017);
the meteor shower June epsilon Ophiuchids, whose values
in three D-criteria (DSH = 0.05, DD = 0.03 and DH =
0.06) confirm that is likely to originate from comet 300P/
Catalina (Matlovic et al., 2020); or the recently observed
fall and recovery of the Traspena meteorite is posited to
be linked with the potentially hazardous asteroid 1989
QF (Minos), exhibiting .2 ¼ 0:1059 (Andrade et al.,
2023). We note the absence of a cut-off estimate works
for .2, unlike the traditional D-criteria.

Although the cases mentioned above demonstrate the
usefulness of the similarity criteria, some limitations con-
firm the need to investigate these metrics. For example,
Galligan (2001) found that, for the case of the DSH crite-
rion, it is necessary to use different upper limits depending
on the orbital inclination angle of the stream. In fact,
Sokolova et al. (2014), intending to improve the reliability
of identification of the observed objects, recommends ana-
lyzing the DSH threshold values independently for each
meteoroid complex. Following that approach, the study
of comparison of four similarity criteria carried out by
Rudawska et al. (2012) confirmed the difficulty in obtaining
one specific value of threshold that would fit all cases,
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reaching the conclusion that the ideal threshold depends on
the cluster analysis method, the meteors shower, and the
sample; this latter statement is also seconded by Jopek
and Bronikowska (2017). Ye (2018) also pointed out that
the traditional D-criteria may not necessarily reflect a
shared origin of two objects due to the orbital evolution
influenced by planetary perturbations.

In short, these studies are clear examples of the need to
analyze the effectiveness and equivalence of the different
approaches to establish dynamical associations of meteors.

2.3. Meteor vectors and distance metrics

In the preceding section, we discussed five-dimensional
D-criteria for associating meteors with meteor showers.
While these approaches are widely used, they are not with-
out limitations. It is an active research topic for which there
is no consensus on either criteria or thresholds. To search
for alternatives and compare their performance, we intro-
duce two meteor vectors –ORBIT and GEO– to evaluate
multiple Machine Learning distance metrics in meteor-
shower association.

The ORBIT vector focuses simply on the same five
heliocentric orbital elements that are used by the above-
mentioned orbital similarity criteria, which allows for a
more direct comparison of the effectiveness:

ORBIT ¼

q

e

i=p
sinðxÞþ1

4

cosðxÞþ1
4

sinðXÞþ1
4

cosðXÞþ1
4

2
6666666666664

3
7777777777775

: ð8Þ

Note that the database has been filtered to minimize spuri-
ous events, ensuring the inclusion of only non–hyperbolic
orbits (0 < e 6 1) that intersect Earth’s orbit, specifically
with 0 < q 6 1 au. The inclination, when normalized by
180�, spans the range [0, 1]. For the circular components,
x and X, which range from [-1, 1], we normalize them to
[0, 1] and assign half the weight to each circular compo-
nent. Utilizing sine and cosine functions for the circular
angle x and X, we effectively account for the shortest circu-
lar distance between angles, ensuring that 358�is recognized
as 4�away from 2�, rather than 356�. Consequently, all five
independent parameters are normalized and weighted
equally, constructing a five-dimensional space vector.

The GEO vector is based mainly on geocentric observ-
able parameters and was proposed by Sugar et al. (2017).
This six-component vector (but in four-dimensional space
as it has only four independent parameters) inherently
addresses the issue of longitude wrapping. It normalizes
the six components to ensure that each variable contributes
equally. The vector’s initial two components represent the
meteor’s position, as the meteoroid intersects the Earth’s
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orbit. The subsequent three components define the unit
vector opposite to the meteor’s velocity direction. The final
component represents the magnitude of the geocentric
velocity, normalized by the maximum velocity allowed
for the study population:

GEO ¼

cos k�ð Þ
sin k�ð Þ

sin kg � k�
� �

cos bg

� �
cos kg � k�

� �
cos bg

� �
sin bg

� �
vg=72

2
6666666664

3
7777777775
: ð9Þ

In this vector, vg represents the geocentric velocity in kilo-
meters per second, k� is the solar longitude, bg is the geo-

centric ecliptic latitude of the radiant, and kg � k� being
the Sun-centered ecliptic longitude of the radiant. All com-
ponents span the range [-1, 1], except for the element
related to velocity, which varies between [0, 1]. Given that
velocity measurements are subject to the greatest degree of
error, the authors allowed a reduced weight for the
velocity.

Although the D-criteria are theoretically five-
dimensional, the orbits of the meteors are constrained by
having impacted the Earth, virtually reducing the dimen-
sionality by one. Consequently, this dimensionality reduc-
tion enables a comparison between the performances of
the GEO and ORBIT vectors.

In the quest to develop a robust methodology for asso-
ciating meteors with their parent meteor showers, we
explore various distance metrics typically used in Machine
Learning that can quantify the similarity between the pre-
viously defined vectors. In Table 1, we introduce the dis-
tance metrics that are employed in this study.

2.4. Statistical analysis

2.4.1. Rank correlations

We select the Kendall rank correlation coefficient (s) to
measure the ordinal association between the distance met-
rics and D-criteria. Mathematically, it is defined as:

s ¼ 2

nðn� 1Þ
X
i<j

sgn xi � xj
� �

sgn yi � yj
� �

; ð10Þ

where ðx1; y1Þ; . . . ; ðxn; ynÞ are a set of samples of the
variables.

s is notable for its ability to measure the strength and
direction of the relationship between two variables without
requiring them to be on the same scale. Unlike parametric
correlations like Pearson’s, which assume linear relation-
ships and normal distribution of data, Kendall’s approach
is based on the ranking of data points, assessing concor-
dance and discordance in their relative ordering across
two datasets. It focuses on rank rather than absolute values
obviates the need for identical scales between datasets.
Consequently, we can employ it to compare the results of



Table 1
Summary of distance metrics.

Metric Name Formula Brief Explanation

Euclidean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðui � viÞ2
q

Square root of sum of squared differences

sEuclidean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðui�viÞ2

V 2
i

r
Normalized Euclidean by variance V i

Cityblock (Manhattan)
P

i ui � vij j Sum of absolute differences
Cosine Similarity 1� u�v

kuk�kvk Angle between vectors

Canberra
P

i
ui�vij j
uij jþ vij j Weighted Cityblock distance

Bray-Curtis

P
i
ui�vij jP

i
uiþvij j Normalized weighted Cityblock

Chebyshev maxi ui � vij j Maximum absolute difference
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the D-criteria and the distance metric without applying any
normalization. We use the asymptotic method to compute
Kendall’s tau, which provides an efficient and scalable
approximation suitable for large datasets and handles ties
effectively.

The process is as follows. For each meteor in the data-
set, we first compute its similarity/closeness to every meteor
shower based on predefined D-criteria and distance metrics
(both for GEO and ORBIT vectors). These calculations
yield two separate sets of rankings for every meteor: one
set derived from the D-criteria and another from the dis-
tance metrics. Each set sorts all meteor showers from the
most to the least similar to the meteor in question. Once
we obtain these rankings, the s is computed for each
meteor, comparing the two sets of rankings to ascertain
the degree of ordinal classification. For more information
into the Kendall rank correlation coefficient applied here
refer to Kendall (1938); Fenwick (1994); Hollander et al.
(2013).
2.4.2. Top-k accuracy
The heart of the present study centers on the evaluation

of the classification accuracy of various D-criteria and dis-
tance metrics. To address this challenge, a unified method-
ology is imperative for the consistent application of
statistical tests across all approaches under consideration.
Despite the diversity in metrics and D-criteria, they con-
verge on a singular objective: to quantify the association
between a meteor and its corresponding meteor shower.
As such, the Top-k accuracy is employed as a standardizing
criterion to compare the overall accuracy among the vari-
ous methods (Xia et al., 2009).

It quantifies the frequency with which the correct label
class is included among the first k predicted labels. In the
specific context, these labels denote the meteor showers
associated with individual meteoroid impacts as classified
by CAMS. For each meteor in the dataset, the similarities
and distances are calculated in relation to all reference
meteor showers. These values are subsequently sorted in
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ascending order to generate a ranked list. A successful clas-
sification in the Top-1 category occurs when the meteor
shower with the minimum similarity or distance aligns with
the meteor shower associated with the meteor in the CAM
dataset. Similarly, a Top-5 success is recorded if the associ-
ated meteor shower is among the top five labels in the
ranked list, and this extends analogously for other values
of k.

In the present study, multiple tests encompassing Top-1,
Top-5, and Top-10 accuracy are performed to evaluate the
efficacy of D-criteria and distance metrics in associating a
meteor with its originating meteor shower. This multi-
tiered approach enables both a precise assessment of the
top prediction (Top-1) and an evaluation of the model’s
capacity to identify a broader set of correct associations
(Top-5 and Top-10). While one might assume that the
Top-1 accuracy is paramount for meteor association, it is
important to consider the significance of conducting Top-
5 and Top-10 analyses. These extended evaluations yield
insights into the efficacy of various ranking methodologies,
going beyond mere concurrence with CAMS classifica-
tions. These analyses aid in contrasting the variability in
rankings produced by different metrics. It is distinct when
two metrics diverge at the Top-1 level yet converge within
the Top-5, compared to a scenario where they diverge up to
the Top-10.
2.4.3. Kolmogorov–Smirnov Test
The Kolmogorov–Smirnov test (K-S test) serves as a

robust, non-parametric statistical method designed to
assess the goodness-of-fit and equivalence of continuous,
one-dimensional probability distributions. The test is par-
ticularly advantageous due to its distribution-free nature,
making it applicable to datasets without the assumption
of any specific distribution. The K-S test is employed in
two primary contexts: the one-sample K-S test and the
two-sample K-S test. The two-sample K-S aims to compare
two empirical distributions and to determine if the two
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samples come from the same distribution. The K-S statistic
D is:

D ¼ sup
x
jF 1;nðxÞ � F 2;mðxÞj ð11Þ

where F 1;nðxÞ and F 2;mðxÞ are the empirical distribution
functions of the two samples of sizes n and m, respectively.
Here we follow the treatment explained in Hodges (1958).

When applying the K-S test to Top-1 test results, inter-
preting the results sheds light on the comparative distribu-
tions of accuracy between classification methods. Failing to
reject the null hypothesis H 0 indicates no statistically signif-
icant difference in accuracy distributions, but it does not
affirm equivalence in method performance. Conversely,
rejecting H 0 suggests a statistically significant difference,
supporting the alternative hypothesis H 1 that the samples
originate from distinct distributions. This outcome implies
that H 0 does not adequately explain the observed data,
with the decision to reject based on the significance level
a, set here at 0.05 for 95% confidence.
2.4.4. Top-1 Agreement

Consider two classifiers tested on a dataset consisting of
two equally sized classes. The first classifier might excel in
identifying Class A but fail to recognize Class B, whereas
the second classifier achieves the opposite, accurately iden-
tifying Class B while mistaking instances of Class A.
Despite both classifiers reporting an overall accuracy of
50%, their distinct performance on the individual classes
reveals a divergent understanding and representation of
the underlying patterns in the data. This example under-
scores the necessity of applying another test, as (1) Ken-
dall’s correlation assesses whether the order of rankings
is similar between two sets of observations and (2) K-S is
specifically focused on the shape of accuracy distributions
rather than precise values.

For this reason, we calculate as well the percentage of
Top-1 coincidence between distance metrics and D-
vectors on an event-by-event basis, which provides a direct
measure of agreement on the most preferred classification
outcome, capturing the extent to which different
approaches concur on the single best classification. This
straightforward metric offers an immediate sense of the
hit-and-miss between approaches. A heatmap is an optimal
visualization tool for showcasing the pairwise agreement
between classification metrics, using a rectangular matrix
to highlight the magnitude of their coincidences.
2.5. Differentiating the sporadic background

The last part of our work deals with the effective dis-
crimination of the sporadic background from meteor
events that are associated with specific showers. We calcu-
late the Top-1 accuracy values across the entire (non-
filtered) database and construct the Receiver Operating
Characteristic (ROC) curves for each D-criteria and dis-
tance metric, utilizing both the GEO and ORBIT vectors,
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using binary labels from CAMS (0: sporadic; 1: associ-
ated). The ROC curve represents the diagnostic ability of
a binary classifier system as its discrimination threshold is
varied. Using the ROC curve output, it is possible to quan-
tify the optimal threshold that maximizes the classifier’s
performance with Youden’s J statistic (Youden, 1950;
Schisterman et al., 2005):

J ¼ TP
TP þ FN

þ TN
TN þ FP

� 1; ð12Þ

where TP represents the true positives, FN the false posi-
tives, TN the true negatives, and FP the false positives.

To synthesize the overall performance of each classifica-
tion method in differentiating the sporadic background, we
utilize the Matthews Correlation Coefficient, usually
denoted by MCC or / (Matthews, 1975). The / offers a
measure of the quality of binary classifications, encapsulat-
ing sensitivity, specificity, and the balance between them. It
ranges from �1 (total disagreement between prediction and
observation) to 1 (perfect prediction), with 0 denoting ran-
dom guessing. The / is defined as:

/ ¼ ðTP � TNÞ � ðFP � FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FP Þ � ðTP þ FNÞ � ðTN þ FP Þ � ðTN þ FNÞp :

ð13Þ
3. Results

Similar to Section 2, where we detailed the database and
methodology in distinct subsections, the results section is
also organized into subsections for clarity and depth.
SubSection 3.1 examines the dataset, SubSection 3.2 pre-
sents the rank correlation estimations, SubSection 3.3
reports on the accuracy results, SubSection 3.4 explores
the equivalence between distance metrics and D-criteria,
SubSection 3.5 offers the level of coincidence between
approaches for the Top-1 tests, and finally SubSection 3.6
provides optimal cut-offs and false positive rates.
3.1. Population analysis

Within the extensive CAMS database, 24.6% of its
entries can be directly linked to a distinct meteor shower.
In contrast, 75.4% of the data points are categorized as
sporadic events, implying they are part of the broader
meteoroid background rather than specific meteor showers.
After applying the filters mentioned in Section 2, the data-
base reduces its number to account for 102,680 orbits.

The number of unique meteor shower classifications is
somewhat constrained, amounting to 376 distinct cate-
gories. A total of 80% of these classified meteor showers
have been observed more than 10 times. A quarter of them,
or 25%, boasts over 100 individual recorded meteor events.
An even smaller fraction, 5%, can claim over 1000 meteor
instances. Four of the meteor showers stand out due to
their frequent documentation: the Perseids, Orionids,
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Geminids, and Southern Taurids (enumerated in descend-
ing order based on their observation frequency). Meteors
belonging to these showers have been observed more than
10,000 times.

Regarding the IAU meteor shower database, after filter-
ing it reduces its number to 724, having 355 unique IDs
shared with the CAMS database. Note that �30% are
duplicate entries, corresponding to distinct values for the
same meteor shower estimated in different studies.

A key aspect of our analysis of associations is the
parameter of solar longitude, that correlates meteor activ-
ity with Earth’s specific orbital locations. Such a correla-
tion is instrumental in discerning patterns and
understanding recurring meteoritic phenomena. To visu-
ally represent this correlation, Fig. 1 offers a histogram that
plots impacting meteoroid classifications (sporadic or asso-
ciated) based on solar longitude. The most active meteor
showers are annotated. It can be observed an apparent
concentration of the meteoroid background activity
toward 180� of solar longitude.

3.2. Degree of rank correlation

For each of the showers listed in the IAU database, we
compute the similarity/closeness between the shower and
each meteor in the CAMS database using the D-criteria
and all distance metric combinations. We then calculate
the Kendall rank correlation between each D-criterion
and each vector-metric combination.

Fig. 2 displays the Kendall rank correlation between the
evaluated D-criteria and distance metrics. Each column
corresponds to a particular distance metric, and the plots
are color-coded by D-vectors. The box plots encapsulate
the quartile distribution of the samples, where each sample
denotes the rank correlation between the D-criteria and
distance metrics for a meteor with all meteor showers.
The calculation is performed for each meteor against all
meteor showers, a process executed separately for both
Fig. 1. Histogram of CAMS database as a function of the sola
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the GEO and ORBIT vectors. Points lying outside the
whiskers of the box plots are classified as outliers, posi-
tioned more than 1.5 times the interquartile range away
from the median (Q2, depicted by the box’s central line).
A homogeneous dataset would result in a compact
interquartile range, with the median equidistant from the
box’s extremes (Q1 and Q3), indicating symmetry. The
span from the plot to each whisker indicates the data’s
variability or spread, suggesting a more concentrated dis-
tribution if the span is shorter and greater dispersion if it
is extended.

The different figures reveal particular features in the
Kendall rank correlation between D-criteria and distance
metrics, as delineated by the employment of GEO and
ORBIT vectors. The sEuclidean metric paired with the
GEO vector consistently demonstrates the highest median
correlation across all D-criteria, indicating a robust ordinal
association. In contrast, the ORBIT vector presents a dis-
tinctive landscape. DD criterion, when evaluated with
ORBIT vectors, achieves the highest correlation values.
.2 criterion exhibits considerable variability in correlation,
as evidenced by notably wide box plots for some distance
metrics when using the ORBIT vectors. This behavior
starkly contrasts with the other D-criteria, pointing to .2
unique response to the parameters captured by ORBIT
vectors. While the GEO vector is characterized by a greater
number of lower outliers, indicating instances of signifi-
cantly divergent rankings, ORBIT vectors show fewer
upper outliers. The results show a general tendency for
the median correlation values to either be randomly cen-
tered or skewed across both vectors and all metrics. This
variability suggests that no singular pattern of correlation
prevails universally. Additionally, the maximum whisker
extension observed with the Cosine distance metric, specif-
ically when paired with the GEO vector and DD criterion,
signals instances of high variability or dispersion in the
degree of correlation.
r longitude. Sporadic and associated meteors are depicted.



Fig. 2. Kendall rank correlation between D-criteria and metric distances for associated meteors in CAMS database. Each column corresponds to a unique
vector (ORBIT or GEO). Each sample symbolizes the rank correlation between the similarity criteria and the distance metrics of each of the meteors from
the CAMS database concerning the distinct meteor showers. Outlier values surpass 1.5 times the interquartile range of the median.

Table 2
Top-k accuracies of D-criteria for associated meteors in CAMS database.

Top-k DSH (%) DD (%) DH (%) .2 (%)

1 86.23 80.07 85.83 85.56
5 94.90 93.60 94.99 95.67

10 97.50 96.63 97.60 97.93

Table 4
Mean accuracies and standard deviations for Top-k tests across the D-
criteria and distance metrics with GEO and ORBIT vectors.

Test All (%) D-criteria (%) GEO (%) ORBIT (%)

Top-1 83:7� 2:5 84:2� 2:5 85:1� 1:1 81:8� 2:5
Top-5 93:6� 1:3 94:8� 0:7 93:4� 1:2 93:2� 1:1
Top-10 96:2� 1:0 97:4� 0:5 95:9� 0:9 95:9� 0:8

E. Peña-Asensio, J.M. Sánchez-Lozano Advances in Space Research 74 (2024) 1073–1089
3.3. Accuracy of best choices

Using both the D-criteria and the employed meteor vec-
tors and distance metrics, each meteor is juxtaposed with
all showers, as detailed in Tables 2,3. This approach facil-
itates representing, in percentages, instances where the
associated shower from the CAMS database in terms of
distance and similarity aligns (Top-1) ranks among the five
showers with the most minimal similarity and standardized
Euclidean distance values (Top-5) or falls within the top
ten showers (Top-10).

The optimal D-criterion for achieving Top-1 accuracy is
DSH (86.23%), whereas .2 excels in both Top-5 (95.67%)
and Top-10 (97.93%) categories and have a good accuracy
in Top-1 (85.56%). Conversely, DD ranks as the least effec-
Table 3
Top-1, Top-5, and Top-10 accuracies of distance metrics for associated meteo

Euclidean sEuclidean Cityblock

GEO 84.68 87.06 84.79
ORBIT 83.67 77.53 83.92

GEO 92.99 95.03 93.72
ORBIT 94.17 92.68 94.05

GEO 95.56 97.06 96.16
ORBIT 96.37 96.25 96.57
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tive across all evaluations, markedly lagging behind the
others, which exhibit comparable performances. The sEu-
clidean when combined with the GEO vector demonstrates
superior performance (87.06%) over the other D-criteria in
achieving Top-1 accuracy and overly the rest of the dis-
tance metrics in all Top-k tests. When paired with the
ORBIT vector, the Bray-Curtis metric delivers the highest
overall accuracy (including the DD criterion in all tests),
except for Top-5 accuracy, where the Euclidean metric
slightly outperforms it. Across the distance metrics evalu-
ated, the GEO vector is found to yield better outcomes
than the ORBIT vector. The Chebyshev metric exhibits
the worst results with the GEO vector, while the sEuclidean
rs in CAMS database.

Cosine Canberra Bray-Curtis Chebyshev

Top-1 (%)
84.63 85.89 84.96 83.41
83.83 79.64 83.96 80.11

Top-5 (%)
92.95 94.35 93.89 90.94
93.88 91.06 94.10 92.29

Top-10 (%)
95.52 96.66 96.23 94.05
96.19 95.08 96.61 94.45



Fig. 3. Top-k accuracies along solar longitude of the D-criteria for associated meteors in CAMS database.

Fig. 4. Top-k accuracies along solar longitude of different distance metrics for associated meteors in CAMS database.
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and Canberra present the lower performances for the
ORBIT vector. Table 4 shows the mean accuracies. The
distance metrics combined with the GEO vectors offer the
best overall accuracy for Top-1, while the D-criteria out-
strip in Top-5 and Top-10.
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Fig. 3 illustrates the variation in Top-k test accuracy as
a function of solar longitude across different D-criteria.
Similarly, Fig. 4 displays the Top-k results for the sEucli-
dean, Canberra, Bray-Curtis, and Chebyshev distance met-
rics. Across all evaluations, the results are of the same
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order of magnitude. A distinct pattern emerges: for Top-1,
the accuracy variation is irregular, whereas, for Top-10, it
tends towards uniformity, except for a notable decrease
(up to 50%) around 180� of solar longitude. Visually, the
lower performance of DD is prominent, and DSH and .2
excel, especially at solar longitudes between 170� and
220�, as well as around 70� in Top-5 and Top-10, and
350� in Top-1 (with a sudden increase of the accuracy of
DH ). Conversely, the performances of the distance metrics
generally follow the same trend, albeit less uniformly in
the Top-10 distribution. Besides the common peak at
180�, it is observed that they struggle to associate meteors
at around 310�, where Chebyshev (with GEO vector) and
Canberra (with ORBIT vector) exhibit remarkably lower
performances.

The trend of minimum accuracy in meteor association is
pinpointed at 180� solar longitude, aligning with an appar-
ent increase in the meteoroid background activity, as
depicted in Fig. 1. This time frame also bridges the Perseids
and Orionids, meteor showers renowned for their high
activity and velocities above 60 km/s, expecting, in conse-
quence, a diffuseness of their parameters. Instrumental con-
straints correlate meteoroid velocity with measurement
inaccuracies (Hajduková and Kornoš, 2020). As a result,
high-velocity meteoroids are more challenging to accu-
rately characterize. This is depicted in Fig. 5, showcasing
a concentration of high apparent velocities within this
specific solar longitude range. It is conceivable that these
meteoroids were once part of such swarms but have lost
their orbital affinity due to temporal decoherence, making
Fig. 5. 2D-histogram of sporadic meteor apparent velocities and solar longitud
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many of them challenging to distinguish. Furthermore,
the increased activity during these periods, characterized
by similar velocities, may have influenced the association
process conducted by CAMS.
3.4. Statistical qquivalence

Fig. 6 displays classification outcomes labeled as H 0 or
H 1, corresponding to the hypothesis tested for each data
comparison for the Top-1 accuracy results from the metric
distance and the D-criteria. Labels are determined based
on p-values: instances where the p-value is less than 0.05
are marked as H 1, indicating the rejection of the null
hypothesis (H 0) in favor of the alternative (H 1), suggesting
a statistically significant difference between the compared
distributions. Conversely, instances with a p-value greater
than or equal to 0.05 retain the H 0 label, indicating insuf-
ficient evidence to reject the null hypothesis, thus suggest-
ing no statistically significant difference between
distributions under examination.

The figure reveals a distinct pattern in the distribution of
hypothesis testing results, particularly when evaluating the
DD criterion with the GEO vector. Contrary to the other D-
criteria, which generally do not reject the null hypothesis
H 0 when paired with the GEO vector, DD stands out by
predominantly rejecting H 0 (indicated by H 1), suggesting
differences in distributions. This trend is reversed for the
ORBIT vector, where DD results in non-rejection of H 0,
except for one the Canberra metric. This behavior is mark-
edly different from the other criteria tested with the ORBIT
es at impact in the CAMS database. Darker colors denote higher density.



Fig. 6. K-S test comparing Top-1 accuracies of distance metrics and D-criteria with a 95% level of confidence for associated meteors in CAMS database.
H 0 indicates no statistically significant difference between distributions, while H 1 indicates a significant difference between the compared distributions.
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vector, which rejects H 0 for the same three metrics (sEucli-
dean, Canberra, and Chebyshev). .2 appears the most
likely compatible with both vectors at the same time.

The consistent failure to reject H 0 with GEO vector for
all distance metrics under the .2 criterion does not confirm
the distributions being identical but rather indicates the test
lacked sufficient evidence to demonstrate statistical differ-
ences. This outcome positions .2 as the D-criterion that
is most plausibly comparable to the distance metrics in
terms of meteor association when using the GEO vector.
Also, the .2 metric exhibits the highest probability of being
compatible with both vectors simultaneously.
3.5. Event-by-event agreement

The heatmap on Fig. 7 visualizes the agreement level
between various D-vectors and distance metrics, showcas-
ing their comparative analysis for the Top-1 results across
the two meteor vectors. Each cell represents the percentage
of Top-1 coincidence between pairs, with GEO-related
comparisons highlighted in shades of blue for intuitive
analysis, and ORBIT-related comparisons in shades of
red, enabling a clear distinction between the two meteor
vectors used. The diagonal, intentionally left blank, sepa-
rates GEO and ORBIT results for a dual analysis within
a single visual representation. The cross-accuracies of D-
criteria, independent of GEO or ORBIT vectors, are out-
lined with a black frame in the figure’s top left corner.

Analyzing the heatmap reveals that the D-vector DSH

has a strong event-by-event alignment with DH for Top-1
(97.43%), indicating these criteria frequently concur on
their top classifications. This is closely followed by .2 and
DH (94.69%). Within the GEO vector, Euclidean and
Cosine (99.66%), along with Cityblock and Bray-Curtis
(99.15%), show the highest levels of coincidence in Top-1.
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The sEuclidean metric generally shows good agreement
for the GEO vector across various metrics and D-criteria
(�88%), except when paired with DD (83.37%). For the
ORBIT vector, Cityblock and Bray-Curtis (98.99%), as
well as Euclidean and Cosine (95.62%), exhibit the highest
values. There is better alignment between DD and the
ORBIT vector (reaching �86% with various distance met-
rics) than seen with the GEO vector.

The consistency observed in the heatmap resonates with
the findings from Kendall’s correlation and the K-S test.
These statistical measures support the identified patterns
of agreement and discrepancy among the classifiers, pro-
viding robustness to the analysis and confirming the relia-
bility of these patterns.

3.6. Thresholds and confusion matrices

Table 5 presents the evaluation of D-criteria and dis-
tance metrics within the CAMS database, considering both
sporadic and associated meteor events, where optimal
thresholds and the effectiveness of different methods are
encapsulated. The standout performer among D-criteria
is DSH , distinctly outshining others with a / of 0.6400. Con-
versely, DD emerges as the least effective.

When using the GEO vector, the sEuclidean metric
takes precedence, exhibiting the highest overall accuracy
and a / value of 0.6464, closely followed by Cityblock
and Bray-Curtis metrics. The scenario shifts when transi-
tioning to the ORBIT vector, where Cityblock edges out
as the frontrunner, albeit with Bray-Curtis and Euclidean
not far behind, suggesting a competitive field with closely
matched performances. The sEuclidean metric with
ORBIT vector does not mirror its GEO vector success,
hinting at vector-specific behavior that influences metric
efficacy.



Fig. 7. Heatmap of cross-coincidence between D-vectors and distance metrics using GEO (lower triangle, blue colormap) and ORBIT (upper triangle, red
colormap) vectors of Top-1 accuracies for associated meteors in CAMS database. D-vector’s own cross-coincidences are highlighted within a black
rectangle in the top left corner.
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Cityblock, while not outperforming other distance met-
rics in replicating CAMS’ associated Top-1 classifications,
excelled in more effectively distinguishing the sporadic
background on average. Except for DSH , all distance met-
rics applied to the GEO vector–aside from Cosine–surpass
the rest of the D-criteria in terms of the /. Interestingly,
despite generally lower performance with the ORBIT vec-
tor, several distance metrics still exceed some D-criteria
performances. Cityblock, in particular, scores relatively
close to achieving the superior results of DSH and
sEuclidean.

Additionally, the observed thresholds for traditional D-
criteria (DSH ;DD, and DH ) align perfectly with values docu-
mented in the scientific literature, reinforcing the validity of
our findings.
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As an additional note to our findings, it is noteworthy
that upon incorporating the complete list of meteor show-
ers—not limited to those used within the CAMS data-
base—an average of 27% of the meteor classified (Top-1)
by all D-criteria and distance metrics would align better
with newly recognized meteor showers. In future efforts,
we aim to do a comparative analysis by testing other data-
bases such as GMN (Vida et al., 2021) and EDMOND
(Kornoš et al., 2014).

4. Conclusions

This study undertook a statistical evaluation of four
orbital similarity criteria (or D-criteria) within a five-
dimensional parameter space to probe the dynamical asso-



Table 5
Threshold, accuracies, and Matthews correlation coefficients for different D-criteria and distance metrics in the CAMS database taking into account the
sporadic and associated events.

Method Cut-off TP (%) FN (%) FP (%) TN (%) Acc. (%) /

D-criteria
DSH 0.170 59.51 8.62 7.21 24.66 84.17 0.6400

DD 0.083 58.34 9.78 8.35 23.52 81.87 0.5877
DH 0.176 58.81 9.32 7.76 24.12 82.92 0.6122
.2 0.174 59.56 8.56 7.97 23.91 83.47 0.6213

Distance metric with the GEO vector
Euclidean 0.138 58.75 9.37 7.13 24.75 83.50 0.6279
sEuclidean 0.370 59.25 8.88 6.78 25.10 84.34 0.6464

Cityblock 0.252 59.45 8.67 7.20 24.67 84.13 0.6393
Cosine 0.004 57.85 10.27 6.97 24.91 82.76 0.6154
Canberra 0.380 59.98 8.15 8.22 23.65 83.63 0.6228
Bray-Curtis 0.037 59.80 8.33 7.48 24.40 84.19 0.6387
Chebyshev 0.089 61.01 7.11 8.83 23.05 84.06 0.6282

Distance metric with the ORBIT vector
Euclidean 0.086 60.23 7.89 8.01 23.86 84.10 0.6335
sEuclidean 0.542 59.80 8.32 9.71 22.17 81.97 0.5803
Cityblock 0.173 59.63 8.50 7.46 24.42 84.04 0.6359

Cosine 0.002 57.47 10.65 6.94 24.94 82.41 0.6093
Canberra 0.431 55.69 12.43 8.13 23.74 79.44 0.5454
Bray-Curtis 0.031 59.31 8.81 7.29 24.58 83.90 0.6343
Chebyshev 0.061 59.55 8.57 8.54 23.34 82.89 0.6062
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ciations within meteor data. Utilizing the extensive data
compiled by the CAMS network, we have not only relied
on D-criteria (DSH ;DD;DH , and .2) but also ventured into
distance metrics commonly applied in Machine Learning
(Euclidean, sEuclidean, Cityblock, Cosine, Canberra,
Bray-Curtis, and Chebyshev), investigated across two dis-
tinctive meteor vectors. One vector termed ORBIT, based
on heliocentric orbital elements, is essentially shared with
the D-criteria, and the other one, GEO, based on geocen-
tric observational parameters, was proposed by Sugar
et al. (2017). Our methodology hinged on the Kendall rank
correlation coefficient and Top-k accuracy tests to assess
the correlation and performance of these criteria and met-
rics. We also applied the Kolmogorov–Smirnov test and
computed the level of coincidence of individual Top-1
results for discerning the statistical equivalence of the dif-
ferent approaches. Finally, we calculated the optimal
thresholds and evaluated their performances in distinguish-
ing the sporadic background from the meteor showers.

Our key findings can be summarized as follows:

	 The sEuclidean metric paired with the GEO vector
demonstrates superior performances than the D-
criteria and the other distance metrics in achieving
Top-1 accuracy (87.06%).

	 Regarding the D-criteria, the DSH criterion holds the
upper hand in achieving Top-1 accuracy (86.23%), while
.2 maintains dominance in both the Top-5 (95.67%) and
Top-10 (97.93%) categories (surpassed by DSH in Top-1
accuracy by 0.67%).

	 The Bray-Curtis metric, allied with the ORBIT vector,
demonstrated a consistent edge over other distance met-
rics, outperforming the DD criterion across all Top-k
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tests (83.96%, 94.10%, and 96.61%, in increasing order
of k) and only slightly beaten by the Euclidean metric
in Top-5 accuracy by a negligible difference (0.07%).

	 DD exhibits an opposite trend to the other D-criteria
when evaluating its equivalence against distance metrics
with the GEO vector.

	 Among the D-criteria, .2 appears as the most likely sim-
ilar to the distance metrics with the GEO vector, being
also the most compatible with both GEO and ORBIT
vectors at the same time.

	 In general terms, the D-criteria and the metric distances
provide similar accuracies in Top-k tests (83.7�2.5%,
93.6�1.3%, 96.2�1.0%, in ascending order of k), with
the DD and the metric Chebyshev performing worse.

	 The mean highest accuracies are achieved with the GEO
(85.1�1.1%, 93.4�1.2%, and 95.9�0.9%) rather than
the ORBIT vector (81.8�2.5%, 93.2�1.1%, and
95.9�0.8%) within the Top-1, Top-5, and Top-10 tests,
and surpassing also the D-criteria in Top-1
(84.4�2.5%, 94.8�0.7%, and 97.4�0.5%). This suggests
that geocentric parameters provide a more robust basis
than orbital elements for meteor dynamical association.

	 We observed moderate solar longitude-dependent devia-
tions and a common significant decrease in accuracy
around 180� of solar longitude. We tentatively linked
these features to heightened meteoroid background
activity and the interface with two of the most active,
high-velocity meteor showers: the Perseids and the
Orionids.

	 The sEuclidean metric achieves the highest overall accu-
racy (84.34%) and / of 0.6464 for GEO vector applica-
tions, excelling in distinguishing the sporadic
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background. It is closely followed by Cityblock
(/ = 0.6393 and 84.13% accuracy) and Bray-Curtis met-
rics (/ = 0.6387 and 84.19% accuracy).

	 Among D-criteria, DSH distinguishes itself with a / of
0.6400, translating to an 84.17% accuracy rate in sepa-
rating the background, while DD emerges as the least
effective, with a / of 0.5877 and an accuracy of 81.87%.

	 In the ORBIT vector context, Cityblock takes the lead
(/ = 0.6359 and 84.04% accuracy), closely challenged
by Bray-Curtis (/ = 0.6343 and 83.90% accuracy) and
Euclidean (/ = 0.6335 and 84.10% accuracy).

	 Excluding Cosine, all distance metrics associated with
the GEO vector surpass the D-criteria in / when differ-
entiating the meteoroid background.

	 Despite the ORBIT vector’s generally lower perfor-
mance, various distance metrics still exceed certain D-
criteria in effectiveness.

	 Optimal cut-offs for all D-criteria and distance metrics
are provided, founded on the CAMS database
classification.

	 Based on these approaches, �27% of associated meteors
in CAMS would align with showers identified after the
database’s release.

	 Future research will concentrate on studying effective-
ness, equivalences, and thresholds for a synthetic
impacting population, exploring the performance and
specific attributes of the methods for each individual
meteor shower.

The work culminates in the significant revelation that
Machine Learning distance metrics can rival or even out-
perform the specifically tailored orbital similarity criteria
for meteor dynamical association. This opens up new path-
ways for the use of computational techniques in the field of
meteor science, offering an opportunity to refine our
approaches to classifying meteor showers and sporadic
meteors alike.
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