Towards a Continuous Model-based Engineering
Process for QoS-aware Self-adaptive Systems

Mirko D’Angelo!, Lorenzo Pagliari2, Mauro Caporuscio', Raffaecla Mirandola?,
and Catia Trubiani?

! Linnaeus University, Vixjo (Sweden)
{mirko.dangelo, mauro.caporuscio}@lnu.se
2 Gran Sasso Science Institute, L’ Aquila (Ttaly)
{lorenzo.pagliari, catia.trubiani}@gssi.it
3 Politecnico di Milano, Milano (Italy)
raffaela.mirandola@polimi.it

Abstract. Modern information systems connecting software, physical
systems, and people, are usually characterized by high dynamism. These
dynamics introduce uncertainties, which in turn may harm the quality
of service and lead to incomplete, inaccurate, and unreliable results. In
this context, self-adaptation is considered as an effective approach for
managing run-time uncertainty. However, classical approaches for qual-
ity engineering are not suitable to deal with run-time adaptation, as
they are mainly used to derive the steady-state solutions of a system at
design-time. In this paper, we envision a Continuous Model-based Engi-
neering Process that makes use of architectural analysis in conjunction
with experimentation to have a wider understanding of the system un-
der development. These two activities are performed incrementally, and
jointly used in a feedback loop to provide insights about the quality of
the system-to-be.

1 Introduction

Digitalization of industry, by many considered as the fourth industrial revolu-
tion, is changing the competitive landscape in several business domains. The
connectivity between software and physical systems opens up for new innova-
tive business or mission critical services responsible for a vast part of the value
chain. Indeed, modern information systems (e.g., intelligent transportation sys-
tems, smart power grids, network infrastructures and robotics) usually connect
software, physical systems, and people [18], who either interact with or are part
of the system itself. This means that systems should be designed and developed
to explicitly include operational processes and people (e.g., the operators).
Such modern systems are usually characterized by high dynamism, as par-
ticipating and interacting entities are heterogeneous and autonomous, and un-
expected /uncontrolled conditions may arise within the environment. These dy-
namics introduce uncertainties, which in turn may harm the quality of service
and lead to incomplete, inaccurate, and unreliable results [12]. Managing run-
time uncertainty is then crucial to operate modern and complex interacting

systems and satisfy their quality requirements. To this end, self-adaptation is
considered as an effective approach to manage dynamic interacting systems. In
fact, self-adaptive systems are able to adjust their behavior, by hence operating
autonomously, in response to their perception of the environment and of the
system itself by addressing run-time uncertainties [10].

Engineering modern complex systems exhibiting self-adaptive behavior is
challenging, as engineers are required to deal with many different aspects: (i)
does the type and scale of the system requires for centralized or decentralized
adaptation control schemes? (e.g., in terms of coordination among interacting
components), (i) does the decisions concerned with the designed behavior intro-
duce overhead? (e.g., in terms of number of exchanged messages), (iii) how to
validate the quality of different adaptation decisions before putting the system
into operation (e.g., in terms of specific quality indicators, such as the system
response time, resource utilization, service throughput, etc.)?

To this end, the main research question addressed by this position paper is:
“How to engineer QoS-aware self-adaptive systems by jointly taking into account
all the aforementioned challenges?”.

Classical engineering approaches for quality engineering are not suitable
to deal with quality-based adaptation of complex interacting systems, as they
mainly employ techniques to derive the steady state solutions of a system at
design-time [4].

Therefore, we envision an engineering approach that builds a knowledge-
based repository from the continuous and combined use of analytical and ex-
perimentation results. This knowledge is built incrementally and used in a con-
tinuous model-based engineering process with the aim of providing reasoning
support based on the relative costs and benefits for individual design choices.

In our approach the engineer: (i) executes the architectural analysis, (i%)
exploits obtained results for deriving and driving the experimentation phase
(e.g., by running only the configurations validated via the architectural analysis),
(7i1) uses the experimentation results to refine/revise the architectural analysis
outcome (e.g., some configurations validated by the architectural analysis could
be not valid in the experimentation), (iv) iterates the process by using the new
results as a baseline for the next cycle. Indeed, the overall idea is to combine the
benefits of architectural analysis techniques, which are fast but inaccurate for
predicting complex states, with experimental results, which on the other hand
are accurate but require detailed information on the solution to experiment with.

The paper is organized as follows. Section 2 overviews the overall approach
and explains the different phases, namely design, experimentation, and feedback.
Therefore, In Section 3 we discuss related work. Finally, Section 4 concludes the
paper with hints for future research.

2 The Continuous Model-based Engineering Process

The main idea of the Continuous Model-based Engineering Process is to use ar-
chitectural analysis in conjunction with experimental analysis to have a wider

(Design Phase Experimentation Phase

2 0
Architectural Modeling Experimental Design

Structural
View
Behavioural II

View

Control

View Quantifiable

Hypothesis

Objectives

4
Experimental I

Results

—_—— e
1

Architectural
Analysis

Result:
_____ Knowledge

‘
in

System Engineer

h
®

Execution

Architectural
Analysis

'.

J

Requirements

Artifacts II

Activities

Requirements

Feedback Specification

Fig. 1. Continuous Model-based Engineering Process

understanding of the system under development. Indeed, the overall objective is
to provide insights about the quality of the system-to-be: the architectural and
experimental analyses are performed incrementally and used in the continuous
system engineering development process. This supports the system engineers in
the process of making informed design decisions on the system under investiga-
tion by potentially cutting out or exploring in detail those designed solutions
that show either bad or good level of quality.

To this end, the proposed process leverages on the model-based systems en-
gineering paradigm [17], and refers to the systematic use of models as primary
artifacts for engineering self-adaptive systems. As shown in Figure 1, the Con-
tinuous Model-based Engineering Process comprises two different development
phases, namely Design Phase and Experimentation Phase. Specifically: Require-
ments Specification (1)) is devoted to eliciting and formally specifying functional
and extra-functional requirements for the system, which in turn drive the follow-
ing phases, as well as the specification and (iterative) evolution of the Knowledge.
Indeed, the Knowledge plays a key role in the envisioned development process as
it allows for (iteratively) merging the outcomes of the two phases and providing
the System Engineer with a wider view of the system’s development. In par-
ticular, the knowledge is in charge of linking requirements to design decisions,
so that the System Engineer can continuously check and evaluate the different
design alternatives with respect to the requirements to be fulfilled. To this end,
the knowledge shall be designed as an Architectural Knowledge [15] consisting
of many different aspects, including (but non limited to): requirements, assump-
tions, constraints, hypotheses, architecture design decisions, as well as other

Execution Modeling

e 4
s/
/
/
/ s 12
/ /
/ /
| /
| |
0 | |
/ /
/ /
7 /
—_—_ - /
1 /
e
-
Experimental T - Simulation

Design

Fig. 2. Knowledge-based spiral model

factors — e.g., the design as built so far, the available technology, best practices,
and past experience in the reference domain.

Once the requirements are specified, the Architectural Modeling ((2)) is in
charge of modeling the system at a high level of abstraction by means of three dif-
ferent views: (i) the Structural view defines the system’s structure and composi-
tion, (i7) the Control view defines the self-adaptive architecture (e.g., MAPE [20])
and (#it) the Behavioral view defines the behavior of the system’s entities. Archi-
tectural Analysis ((3)) performs the model-based analysis of the overall system
and checks whether the requirements are satisfied or not. The Architectural Anal-
ysis Results are then stored into the knowledge for further comparison with the
run-time measurements obtained from the experimentation. In fact, jointly con-
sidering both design and run-time system’s properties allows software engineers
to better identify discrepancies between predictions (i.e., architectural analysis
results) and measurements (i.e., experimental results) [7].

According to Model-based System Engineering, design-time models might
be used to generate (either manually or automatically) the system to be ex-
ecuted. As self-adaptive systems are hard to test in real operational settings,
experimentation should be performed in a closed and fully controlled execution
environment. To this end, Experimental Design ((4)) aims at deriving, from gen-
eral objectives, the set of assumptions, constraints, quantifiable hypothesis and
phenomenons to be observed and examined during the Erzecution ((5)) of ex-
periments [14]. Experimental Results are stored in the knowledge and merged
with Architectural Analysis Results. The System Engineer can now compare the
results and possibly solve observed discrepancies by feeding back ((6)) into the

Design Phase. This leads towards a new Design-Ezperimentation-Feedback iter-
ation over the refined /revised system’s specification.

Figure 2 shows how the four activities occur in each iteration of the spiral and
how they use the knowledge: (i) at Point 0 the knowledge includes requirements,
assumptions, constraints, hypotheses and any other general aspect related to the
system context, e.g., best practices, and design patterns; (i) at Point 1, at the
end of the first Architectural Modeling and Analysis, the knowledge also contains
the design decisions taken during the modeling activity and the result of their
evaluation against the requirements; (¢i¢) all the information contained in the
knowledge (e.g., requirements, assumptions, constraints, hypotheses, architec-
tural models, and evaluation results) is used to devise and run the experiments,
which in turn enriches the knowledge by providing new results; (iv) finally, the
knowledge obtained as result of each iteration (Points 2 and 4) is used as base-
line for the next cycle, where the system specification is further refined/revised
and evaluated.

3 Related Work

During the system engineering life-cycle it is fundamental to analyze the behavior
of the system under investigation. In particular, it is of key relevance to under-
stand how the designed software alternatives impact the QoS requirements. Two
types of analysis can be performed: one which is driven by analytical models,
and one emulating the actual system behavior through simulation. The former is
typically performed at design time and aims at quantifying as early as possible
the QoS characteristics of the systems with analytical and/or QoS-based analysis
techniques [5]. The latter is usually used when the resulting system behavior is
too complex to be captured by theoretical techniques and more detailed models
of the system are introduced to get meaningful QoS-based results.

For the majority of modern systems a satisfactory and omni-comprehensive
analysis is highly impractical or even impossible to perform at design time. In
fact, in this stage, the system engineer has to verify a complex system with
respect to a set of requirements, and there is often no need to consider the
precise structure of the system and the details of its elements [16]. When the QoS
requirements are not tied to the concrete behavior/execution of the system, high-
level QoS models can be selected to preliminarily assess the designed system.
Analytical models can be adopted in this phase depending on the specific domain
of the system under investigation and the type of QoS requirements to validate.
When analyzing QoS characteristics of software systems, many approaches have
been proposed to optimize different quality indicators [1]. The main quality
attributes that have been evaluated in literature are: performance [19], cost [6],
reliability [3], availability [13], but also trade-off analysis among multiple quality
attributes has been pursued [11].

When the system exhibits complex behaviors, experimentation-based analy-
sis is usually used to collect results that are otherwise impossible to gather.

Experimentation has been used in software engineering from the 80s [2][14][21]
and include (but is not limited to) controlled experiments as well as open-ended
exploration. The different methods require for rigorous study design and empiri-
cal data analysis to derive insightful and indisputable conclusions from obtained
results. In particular, controlled experiments relies on: (i) the manipulation of
the input parameters, (i7) the observation of the system’s state and output, and
(#91) an accurate cause-effect analysis.

Experimentation may be considered at different levels. At the system level,
experimentation may be used for selecting a specific feature out of a set of al-
ternatives (e.g., A/B testing), whereas at the technical level, experimentation
may be used to verify and then optimize a given property (e.g., either functional
or non-functional). To this extent, experimentation should be considered as a
systemic activity driving the whole development process, from requirement elici-
tation to verification and validation. This would allow for carefully analyzing the
domain hypotheses and assumptions, as well as experimenting the uncertainties.
Obtained results would then be turn into knowledge to be incorporated within
the decision-making process.

The research landscape on performing design-time and run-time analysis and
interpreting the obtained results is less broad, and this is the first factor influ-
encing our research in such a direction. In our previous work [7] we proposed a
QoS-based approach that jointly considers design-time and run-time results as
complementary aspects of systems. However, the self-adaptation was not con-
sidered at all, and there was no interaction by humans in the process. In this
position paper we present an approach that deals with these challenges and pro-
vides an actual integration of analysis and experimental results in a continuous
software engineering life-cycle.

Summarizing, differently from the aforementioned approaches for design-time
and/or run-time QoS analysis, our idea is to jointly use architectural analysis
and experimental results to provide a continuous knowledge-based engineering
process. This way, we aim to support system engineers in the development of
QoS-aware self-adaptive systems.

4 Conclusion and Future Work

Modern information systems are characterized by high dynamism, which may
introduce uncertainties leading to inaccurate and unreliable results. In this con-
text, employing self-adaptive mechanisms is considered as an effective approach
to make a system able to adjust its behavior in response to changes perceived in
the environment. However, engineering self-adaptive systems is challenging, as
many crosscutting concerns must be jointly accounted during the development
process.

In this position paper we envisioned a Continuous Model-based Engineer-
ing Process, which provides insights about the quality of the system-to-be by
incrementally building a knowledge-based repository from the continuous and
combined use of analytical and experimental results.

In order to achieve the systematic application of the envioned process, current
and future work is towards two different and complementary research directions.
On the one hand, we aim at validating and evaluating the process in real-world
industrial settings. To this end, we plan to validate the approach applicability
in different domains, by employing it in ongoing and future research projects
(e.g., Smart Power Grid [8]). We also plan to conduct a controlled experiment
with engineers and practitioners from industrial partners, which will design and
develop a real fully-featured application in the context of an ongoing research
project. Such application will be used to evaluate the efficacy of the process and
derive meaningful descriptive statistics.

Further, to fully engineer and (partially) automatize the process, we aim at
empowering model-to-code transformations to automatically derive experiments
from design artifacts. In the same line of research, we aim at formally specify-
ing the meta-model of the knowledge (e.g., as Architectural Knowledge [9]) to
facilitate its instantiation and run-time evolution.

Acknowledgment

This research has received funding from the Swedish Knowledge Foundation,
Grants No. 20150088 and No. 20170232. This work has been also partially sup-
ported by the PRIN 2017TWRCNB SEDUCE (Designing Spatially Distributed
Cyber-Physical Systems under Uncertainty).

References

1. A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software ar-
chitecture optimization methods: A systematic literature review. IEEE Trans.
Software Eng., 39(5):658-683, 2013.

2. V. R. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in software
engineering. IEEE Transactions on Software Engineering, SE-12(7):733-743, 1986.

3. A. K. Bhunia, L. Sahoo, and D. Roy. Reliability stochastic optimization for a
series system with interval component reliability via genetic algorithm. Applied
Mathematics and Computation, 216(3):929-939, 2010.

4. P. Bocciarelli and A. D’Ambrogio. A model-driven method for enacting the design-
time qos analysis of business processes. Software € Systems Modeling, 13(2), 2014.

5. R. Calinescu, L. Grunske, M. Z. Kwiatkowska, R. Mirandola, and G. Tamburrelli.
Dynamic qos management and optimization in service-based systems. IEEE Trans.
Software Eng., 37(3):387-409, 2011.

6. L. Cao, J. Cao, and M. Li. Genetic algorithm utilized in cost-reduction driven web
service selection. In Proceedings of the International Conference on Computational
and Information Science, pages 679-686, 2005.

7. M. Caporuscio, R. Mirandola, and C. Trubiani. Building design-time and run-time
knowledge for qos-based component assembly. Software: Practice and Ezrperience,
47(12):1905-1922, 2017.

8. M. D’Angelo, A. Napolitano, and M. Caporuscio. Cyphef: a model-driven engi-
neering framework for self-adaptive cyber-physical systems. In Proceedings of the
International Conference on Software Engineering, 2018.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

R. C. de Boer, R. Farenhorst, P. Lago, H. van Vliet, V. Clerc, and A. Jansen.
Architectural knowledge: Getting to the core. In Proceedings of the International
Conference on Quality of Software Architectures, pages 197-214, 2007.

R. de Lemos et al. Software Engineering for Self-Adaptive Systems: A Second
Research Roadmap. 2013.

A. Dogan and F. Ozgﬁner. Biobjective scheduling algorithms for execution time—
reliability trade-off in heterogeneous computing systems. The Computer Journal,
48(3):300-314, 2005.

D. Garlan. Software engineering in an uncertain world. In Proceedings of the
International Workshop on Future of software engineering research, 2010.

H. Guo, J. Huai, H. Li, T. Deng, Y. Li, and Z. Du. Angel: Optimal configuration for
high available service composition. In Proceedings of the International Conference
on Web Services, pages 280-287, 2007.

N. Juristo and A. M. Moreno. Basics of Software Engineering Experimentation.
Springer Publishing Company, Incorporated, 1st edition, 2010.

P. Kruchten, P. Lago, and H. van Vliet. Building up and reasoning about archi-
tectural knowledge. In Proceedings of the International Conference on Quality of
Software Architectures, pages 43-58. Springer-Verlag, 2006.

M. Marchiori. Light analysis of complex systems. In Proceedings of the ACM
Symposium on Applied Computing, pages 18-22, New York, NY, USA, 1998. ACM.
S. J. Mellor, A. N. Clark, and T. Futagami. Model-driven development. IEEE
Software, 20(5):14-18, Sep. 2003.

R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: the next
computing revolution. In Proceedings of the International Conference on Design
Automation, pages 731-736, 2010.

V. S. Sharma and P. Jalote. Deploying software components for performance. In
Proceedings of the International Symposium on Component-Based Software Engi-
neering, pages 32-47, 2008.

D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke,
J. Andersson, H. Giese, and K. M. Goschka. On Patterns for Decentralized Con-
trol in Self-Adaptive Systems, pages 76-107. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, and B. Regnell. Ezperimentation
in Software Engineering. Springer, 2012.

