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A B S T R A C T

This study introduces a comprehensive numerical model capable of simulating the evaporation of suspended
droplets under different gravity conditions. Unlike previous studies, this work provides a detailed description
of the multicomponent evaporation process by integrating: (i) interface-resolved evaporation; (ii) suspension
by the action of the surface tension force, and (iii) variable physical properties. The model effectively captures
complex phenomena such as thermal expansion, natural convective fluxes, and liquid internal recirculation,
which cannot be directly resolved using more widespread spherically-symmetric models. Validation against
experimental data confirms the model’s accuracy in predicting the droplet evaporation dynamics, and its utility
in resolving discrepancies between prior numerical simulations results and experimental data. The model was
implemented in the Basilisk framework; both the code and the simulations setups are freely available on the
Basilisk sandbox.
1. Introduction

The evaporation of liquid droplets is ubiquitous in nature and in
engineering applications. Understanding the dynamics of evaporating
droplets has a direct impact on diverse fields, ranging from the analysis
of wave breaking [1] to the combustion of liquid fuels [2]. Accu-
rately designing burners and other industrial equipment necessitates
knowledge of the liquid droplets’ lifetime, which varies with the initial
diameter, composition, and operating conditions.

The fundamental importance of the problem pushed the experimen-
tal investigation of droplet evaporation in different conditions. Nomura
et al. [3] studied n-heptane in microgravity at elevated pressure and
temperature. Verwey and Birouk [4] and Murakami et al. [5] studied
the evaporation of n-decane droplets suspended on a solid fiber in
normal gravity, focusing on the effect of the initial droplet diameter
on the consumption rate. Ghassemi et al. [6] analyzed pure and binary
droplets of n-heptane and n-hexadecane at different ambient tempera-
tures and pressures, while Daıf et al. [7] focused on n-heptane/n-decane
droplets in forced convection.

Despite the abundance of papers on the combustion of liquid
droplets [8–11], literature on droplet evaporation remains scarce.
This may be due to the inherent complexity of carrying out such
experiments isolating the effect of droplet evaporation from additional
physical phenomena. The typical experimental configuration consists of

∗ Corresponding author.
E-mail address: edoardo.cipriano@polimi.it (E. Cipriano).

a droplet, suspended by a solid fiber, inside a furnace that is maintained
at constant temperature. In these conditions, the evaporation process
can be strongly influenced by the radiation from the furnace walls, the
heat conduction through the solid fiber, and the residual gravity (if the
experiment aims to be in microgravity conditions). These limitations
call for detailed mathematical models, which describe the evaporation
of droplets at different operative conditions, in order to deepen our
understanding of the process by isolating and studying each physical
phenomenon separately. These models also serve as a tool to drive the
experimental investigation and to explain discrepancies between the
literature data and simplified models.

Most of the current models for droplet evaporation rely on the
spherical symmetry assumption: the droplet is assumed to be perfectly
spherical and the complex set of multidimensional equations reduces to
a 1D model [2,12,13]. This class of models is convenient for the limited
computational time requested, but it is unable to directly resolve multi-
dimensional phenomena, such as droplet deformation, buoyancy-driven
flows, and liquid internal recirculation. Furthermore, they can be used
only for simulations of single isolated droplets, and they are unable to
resolve the interactions between multiple droplets.

Due to these limitations, several models for the simulation of phase
change using multiphase CFD have been proposed during the last
20 years. These models are based on different descriptions of the
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Fig. 1. Simulation setup for suspended droplets in normal gravity conditions. Schematic representation of the droplet suspended on a solid fiber, with contact angle 𝜃, pinning
point 𝐱𝑝, and gravity 𝐠 (a); simulation setup for the axial-symmetric suspended droplet configuration, using an adaptive grid (b).
w
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multiphase systems, such as the front tracking model [14], the level set
approach [15], and the volume-of-fluid [16–18]. Most of these models
are based on the assumption of constant physical properties, which lim-
its their applicability to benchmark phase change simulations, used for
the validation of the model itself. While these simulations are essential
to test the numerical methods, descriptions of realistic droplets require
extending these models including variable physical properties and re-
laxing the hypothesis of incompressible flow. Especially in low-Mach
multicomponent systems, the thermodynamic and transport properties
are strongly affected by variations in temperature and composition.
To the author’s knowledge, the first attempt to combine a multiphase
phase change model with a variable-properties formulation was made
by Wang et al. [19], focusing on pure droplets in convective condi-
tions. Scapin et al. [20] used a variable properties formulation to study
the evaporation of droplets in turbulent conditions. More recently, Mi-
alhe et al. [21] proposed a variable-properties evaporation model,
based on the level set approach, which focuses on a variable surface
tension formulation for the simulation of Marangoni convection. During
the last year, the extension of interface-resolved phase change models
to all-Mach formulations has been proposed by Wenzel and Arienti [22]
and Bibal et al. [23].

In this work, we extend a VOF-based multicomponent phase change
model [24], including variable thermodynamic and transport prop-
erties, low-Mach compressibility effects, and droplet suspension by
the action of the surface tension force. We propose the first detailed
multidimensional model for the simulation of realistic droplets both in
microgravity and suspended at different gravity conditions, resolving
thermal expansion effects, buoyancy-driven flows, and liquid internal
recirculation. The mathematical model and its numerical discretization
is presented in Section 2, while the results obtained from the numerical
simulations are reported in Section 3.

2. Numerical model

The numerical model presented in this work is the extension of
an incompressible Volume-Of-Fluid (VOF) based phase change model
for multicomponent evaporation [24]. The previous model assumes
constant properties, and focuses on the numerical methods for solving
the transport equations that describe the system, including a proper
way to enforce the gas–liquid interface boundary conditions. Here we
expand that model to include variable thermodynamic and transport

properties, low-Mach compressibility effects, interface radiation, and
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a strategy for achieving stable suspension of the droplet on a solid
fiber, mimicking the experimental configuration sketched in Fig. 1.
The solid fiber is considered just from the geometrical point of view,
meaning that the heat transfer between the solid and the gas–liquid
system is neglected. This approximation is valid for sufficiently thin
solid fibers. Although this work focuses on the evaporation of isolated
droplets, the model formulation is general and it can be used for generic
phase change in a two-phase system. The following sections introduce
the assumptions and the governing equations of the model, with the
corresponding interface boundary conditions (Sections 2.1 and 2.2);
Sections 2.3 and 2.4 describe the details of the variable properties
formulation and the droplet suspension strategy, while the numerical
solution is summarized in Section 2.5.

2.1. Mathematical formulation

The control volume over which the system of equations is solved
comprises two immiscible phases separated by a zero-thickness inter-
face. The characteristic function 𝐻 is introduced to distinguish between
the two phases:

𝐻(𝐱, 𝑡) =
{

1 if liquid phase
0 if gas phase

(1)

here 𝐱 and 𝑡 indicate the space and time coordinates, respectively.
rew [25] demonstrated that the transport of the characteristic func-

ion by the interface velocity 𝐮𝛤 obeys the condition:
𝐷𝐻
𝐷𝑡

= 𝜕𝐻
𝜕𝑡

+ 𝐮𝛤 ⋅ ∇𝐻 = 0 (2)

The governing equations for each phase derive from a set of con-
servation laws on mass, momentum, chemical species, and enthalpy,
which can be written for each phase 𝑘 in the general form [26,27]:
𝜕𝜌𝑘
𝜕𝑡

+ ∇ ⋅
(

𝜌𝑘𝐮𝑘
)

= 0 (3)
𝜕𝜌𝑘𝐮𝑘
𝜕𝑡

+ ∇ ⋅
(

𝜌𝑘𝐮𝑘 ⊗ 𝐮𝑘
)

= −∇ ⋅ 𝝉𝐤 − ∇𝑝𝑑,𝑘 − 𝐠 ⋅ 𝐱∇𝜌𝑘 (4)
𝜕𝜌𝑘𝜔𝑖,𝑘

𝜕𝑡
+ ∇ ⋅

(

𝜌𝑘𝜔𝑖,𝑘𝐮𝑘
)

= −∇ ⋅ 𝐣𝑖,𝑘 (5)

𝜕𝜌𝑘ℎ𝑘
𝜕𝑡

+∇⋅
(

𝜌𝑘ℎ𝑘𝐮𝑘
)

= ∇⋅
(

𝜆𝑘∇𝑇𝑘
)

−∇⋅

(𝑁𝑆
∑

𝑖=1
ℎ𝑖,𝑘𝐣𝑖,𝑘

)

+
𝐷𝑝𝑘
𝐷𝑡

−𝝉𝑘 ∶ ∇𝐮𝑘 (6)

where 𝜌 is the density field, 𝐮 is the velocity field, 𝑝𝑑 = 𝑝 − 𝜌𝐠 ⋅ 𝐱 is
the pressure without the hydrostatic contribution, 𝐠 is the gravitational
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acceleration, 𝜔𝑖 is the mass fraction of each chemical species 𝑖, and ℎ is
the sensible enthalpy. The viscous stress tensor is computed neglecting
the compressible part: 𝝉 = −𝜇(∇𝐮 + (∇𝐮)𝑇 ), where 𝜇 is the dynamic
viscosity. The heat conduction term is calculated using Fourier’s law,
while the species diffusive flux 𝐣𝑖 is obtained from a modified Fick’s
law, as explained in Section 2.3.

Eqs. (3)–(6) are derived for a control volume which comprises only
the pure phase 𝑘, resulting in equations per unit of volume of the
𝑘–th phase. These equations must be combined with appropriate gas–
liquid interface boundary conditions. Integrating Eqs. (3)–(6) over the
interface we obtain a set of equations which are used to characterize the
interface temperature, mass fractions, mole fractions, and the vaporiza-
tion rate per unit of surface 𝑚̇𝑖 for each chemical species. Introducing
the jump notation for a generic quantity 𝜙: [𝜙]𝛤 = 𝜙𝑙−𝜙𝑔 , the set of gas–
liquid interface jump conditions for velocity, pressure, mass, species,
and enthalpy, is obtained [28,29]:

[𝐮]𝛤 ⋅ 𝐧𝛤 = 𝑚̇
[

1∕𝜌
]

𝛤 (7)

[𝑝]𝛤 = 𝜎𝜅 − 𝑚̇ [𝐮]𝛤 ⋅ 𝐧𝛤 +
[

𝝉 ⋅ 𝐧𝛤
]

⋅ 𝐧𝛤 (8)

̇ [𝐮]𝛤 ⋅ 𝐭𝛤 +
[

𝝉 ⋅ 𝐧𝛤
]

⋅ 𝐭𝛤 = 𝐭𝛤 ⋅ ∇𝛤 𝜎 (9)
[

𝜌
(

𝐮 − 𝐮𝛤
)

⋅ 𝐧𝛤
]

𝛤 = 0 (10)
[

𝜌𝜔𝑖
(

𝐮 − 𝐮𝛤
)

⋅ 𝐧𝛤 + 𝐣𝑖 ⋅ 𝐧𝛤
]

𝛤 = 0 (11)

[

𝜆∇𝑇 ⋅ 𝐧𝛤
]

𝛤 =
𝑁𝐿𝑆
∑

𝑖=1
𝑚̇𝑖

[

ℎ𝑖
]

𝛤 + 𝑞̇𝑟𝑎𝑑 (12)

where 𝐧𝛤 is the interface normal, pointing outward from the liquid
phase, while 𝐭𝛤 is the interface tangent vector. The velocity jump
(Eq. (7)) derives from the strong expansion due to the phase change,
which leads to the Stefan flow. The pressure jump in Eq. (8) contains
the recoil pressure term [21] and the surface tension contribution,
where 𝜅 is the interface curvature while 𝜎 is the surface tension coeffi-
cient. The tangential momentum jump (Eq. (9)) contains the Marangoni
effect, which is characterized by the operator ∇𝛤 , indicating the gra-
dient along the tangential direction of the interface [21]. Eqs. (10)
and (11) are Rankine–Hugoniot relations which express the total mass
conservation, and the mass conservation for each chemical species,
across the interface. Eq. (12) states that the thermal conduction at
the interface is balanced by heat removed by the evaporation (with
𝑁𝐿𝑆 the total number of liquid species) and by the radiation flux at
the interface 𝑞̇𝑟𝑎𝑑 . The radiation is computed as in Thijs et al. [30]:
̇𝑟𝑎𝑑 = 𝜖𝜎𝑆𝐵(𝑇 4

𝑏𝑢𝑙𝑘 − 𝑇̂ 4), where 𝜎𝑆𝐵 is the Stefan–Boltzmann constant, 𝜖
is the emissivity of the liquid fuel, while 𝑇𝑏𝑢𝑙𝑘 is the gas phase bulk
temperature. This set of jump conditions is closed by including the
thermodynamic equilibrium:
[

𝑓𝑖
]

𝛤 = 0 (13)

[𝑇 ]𝛤 = 0 (14)

which indicate the equality of the fugacity 𝑓𝑖 of each chemical species
in the two phases, and the continuity of the temperature across the
interface [31].

2.2. Assumptions and final form of the governing equations

Different approaches can be used to enforce the jump conditions
(Eqs. (7)–(14)) in the governing equations (Eqs. (3)–(6)). The choice
mainly depends on the numerical method used for the solution of
the two-phase system. The level set method employs a jump condition
formulation, using the Ghost Fluid Method [32] to impose the jump
conditions directly in the values of the fields being solved. The volume-
of-fluid method, instead, introduces the jump conditions directly into

the governing equations in the form of source terms, according to the
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whole domain formulation. The interested reader can refer to [33], and
to [34, pag. 37] for a detailed discussion about the different methods.

Using the whole domain formulation, we rewrite Eqs. (3), (5) and
(6), multiplying each equation by the respective characteristic function
𝐻𝑘, where 𝐻𝑙 = 𝐻 and 𝐻𝑔 = 1 −𝐻 , and introducing the relationship
between the interface surface density 𝛿𝛤 and the characteristic function:
∇𝐻 = −𝐧𝛤 𝛿𝛤 . Following the procedure used by Yeoh and Tu [35]
and exploiting Eqs. (10) and (11) we obtain the two-field form of the
governing equations:
𝜕𝐻
𝜕𝑡

+ 𝐮𝑙 ⋅ ∇𝐻 = − 𝑚̇
𝜌𝑙

(15)
𝜕𝐻𝑘𝜌𝑘

𝜕𝑡
+ ∇ ⋅

(

𝐻𝑘𝜌𝑘𝐮𝑘
)

= −𝑚̇𝑘𝛿𝛤 (16)

𝐻𝑘𝜌𝑘
𝐷𝜔𝑖,𝑘

𝐷𝑡
= −∇ ⋅

(

𝐻𝑘𝐣𝑖,𝑘
)

+ 𝑚̇𝑘𝜔𝑖,𝑘𝛿𝛤 − 𝑚̇𝑖,𝑘𝛿𝛤 (17)

where the total vaporization rate per unit of surface 𝑚̇ is the sum of
the vaporization rates for each chemical species 𝑚̇𝑖. Note that the signs
of the source terms depend on the side of the interface as: 𝑚̇ = 𝑚̇𝑙 =
𝑚̇𝑔 . Similarly, we re-write the enthalpy Eq. (6) assuming Newtonian

luids, negligible viscous effects and pressure work term, and low-
ach number. According to these assumptions, the enthalpy equation

s written for the temperature field as:

𝑘𝜌𝑘𝐶𝑝𝑘
𝐷𝑇𝑘
𝐷𝑡

= ∇ ⋅
(

𝐻𝑘𝜆𝑘∇𝑇𝑘
)

−𝐻𝑘

(𝑁𝑆
∑

𝑖=1
𝐶𝑝𝑖,𝑘𝐣𝑖,𝑘

)

⋅∇𝑇𝑘 + 𝑞̇𝛤 ,𝑘𝛿𝛤 (18)

where 𝐶𝑝 is the mixture heat capacity, 𝐶𝑝𝑖 is the heat capacity of a
single species, 𝜆 is the thermal conductivity, and 𝑞̇𝛤 is the interface heat
conduction term, which is calculated for each phase from the interface
gradient as: 𝑞̇𝛤 ,𝑘 = 𝜆𝑘∇𝑇𝑘 ⋅ 𝐧𝛤 . The sign depends on the side of the
interface also in this case.

Conversely from the scalar transport equations, the Navier–Stokes
equations are solved using a one-field formulation. Using this approach,
a single set equation is written for the whole control volume, with
properties and variables weighted on the characteristic function [36].
Neglecting the Marangoni convection from the jump condition (Eq. (9))
the one-field Navier–Stokes equations are written as follows.

∇ ⋅ 𝐮 = −1
𝜌
𝐷𝜌
𝐷𝑡

(19)

𝜌𝐷𝐮
𝐷𝑡

= −∇ ⋅ 𝝉 − ∇𝑝𝑑 − 𝐠 ⋅ 𝐱∇𝜌 +
(

𝜎𝜅 − 𝑚̇2 [1∕𝜌
]

𝛤
)

𝐧𝛤 𝛿𝛤 (20)

The velocity jump (Eq. (7)) is not included in the continuity equation
because it is directly imposed in the velocity field. This strategy im-
proves the numerical solution of the system (see Section 2.5 for details).
The variables appearing in the source terms of the governing Eqs. (15)–
(20) are obtained by coupling the jump conditions in a non-linear
system of equations [24]:

⎧

⎪

⎨

⎪

⎩

𝑚̇𝑖 = 𝑚̇𝜔̂𝑖,𝑙 + 𝐣𝑖,𝑙 ⋅ 𝐧𝛤 = 𝑚̇𝜔̂𝑖,𝑔 + 𝐣𝑖,𝑔 ⋅ 𝐧𝛤
∑𝑁𝐿𝑆

𝑖=1 𝑚̇𝑖𝛥ℎ𝑒𝑣,𝑖 + 𝑞̇𝑟𝑎𝑑 = 𝜆𝑙∇𝑇𝑔 ⋅ 𝐧𝛤 − 𝜆𝑔∇𝑇𝑙 ⋅ 𝐧𝛤
𝑃 𝑥̂𝑖,𝑔 = 𝑃𝑣𝑎𝑝,𝑖(𝑇̂ )𝑥̂𝑖,𝑙

(21)

where 𝜔̂𝑖 and 𝑥̂𝑖 are the interface mass fractions and mole fractions,
respectively, while 𝑇̂ is the interface temperature. The chemical equi-
librium conditions, i.e. equality of fugacity, is here simplified by as-
suming an ideal gas phase, an ideal liquid mixture, negligible Poynting
correction, and using Antoine’s law to calculate the vapor pressure 𝑃𝑣𝑎𝑝,𝑖
of each chemical species.

2.3. Challenges of the variable properties formulation

Extending the framework proposed by Cipriano et al. [24] with
variable properties involves the introduction of: (i) equations and cor-
relations which allow the thermodynamic and transport properties to
be computed; (ii) additional relevant terms in the governing equations;
(iii) corrections for the diffusive fluxes in order to enforce mass con-

servation. The properties of interest were introduced in the previous
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sections. Given a generic property, we can distinguish the one-field
property 𝜙 from the phase property 𝜙𝑘. The one-field properties are
used for the solution of the Navier–Stokes equations, and they are
computed by a simple arithmetic average, based on the characteristic
function:

𝜙 = 𝐻𝜙𝑙 + (1 −𝐻)𝜙𝑔 (22)

while the phase properties must be computed as a function of the
thermodynamic state of the mixture:

𝜙𝑘 = 𝑓 (𝑃 , 𝑇𝑘, 𝑥𝑖,𝑘) (23)

where 𝑃 is the thermodynamic pressure of the system, which can be
assumed to be constant for low-Mach flows, 𝑇𝑘 is the temperature of the
phase 𝑘, while 𝑥𝑖,𝑘 are the mole fractions of the same phase. Each phase
property is computed using the OpenSMOKE++ library [37], which
calculates the gas phase properties using data from the CHEMKIN
database [38], or following the procedures proposed by Wang and
Frenklach [39]. Unavailable thermodynamic data are estimated by
group additivity methods [40]. The liquid properties are obtained from
correlations reported in engineering handbooks such as Reid et al.
[31]. This approach for the calculation of the variable properties was
previously adopted and validated by Cuoci et al. [41] for the simulation
of laminar flames and by Cuoci et al. [12] for spherically-symmetric
droplet combustion, including the liquid phase. The only properties
which are kept constant in space and time during the simulations are
the emissivity 𝜖, used for the interface radiation, and the surface tension
coefficient 𝜎, which is considered to be constant because Marangoni
convection is neglected. The small variations in the shape of the droplet
due to a time-variable surface tension coefficient do not affect the
results of this paper appreciably.

Among the physical properties that we compute as in Eq. (23),
density and diffusivity require special care to avoid mass conservation
issues. In particular, the density changes must be counteracted by
volume changes to enforce mass conservation. This problem reduces to
using a proper strategy to compute the density Lagrangian derivative
in Eq. (19). In this work we use the same approach proposed by Pember
et al. [42] for single phase low-Mach reactive flows, which assumes that
the pressure gradients are negligible with respect to the temperature
and mass fraction gradients, filtering out acoustic waves which are as-
sumed to travel at infinite speed [43]. This is a common approximation
for low-Mach systems, and it allows to significantly simplify the system
of equations removing the two-way coupling between continuity and
energy equations discussed by Saade et al. [44]. Therefore, the density
Lagrangian derivative for each phase is computed as:

∇ ⋅ 𝐮𝑘 = − 1
𝜌
𝐷𝜌
𝐷𝑡

|

|

|

|𝑘
= 𝛽𝑘

𝐷𝑇𝑘
𝐷𝑡

+𝑀𝑤,𝑘

𝑁𝑆
∑

𝑖=1

1
𝑀𝑤,𝑖

𝐷𝜔𝑖,𝑘

𝐷𝑡
(24)

his equation is used in the one-field continuity Eq. (19) averaging
he contribution of the gas and the liquid phases using the same
rithmetic average used for any other one-field property (22). The term
in Eq. (24) is the thermal expansion coefficient, which is obtained

rom the ideal gas approximation in the gas phase, and computed
irectly from its definition in the liquid phase:

𝛽𝑔 = 1
𝑇𝑔

𝛽𝑙 = − 1
𝜌𝑙

𝑑𝜌𝑙
𝑑𝑇 (25)

hile 𝑀𝑤 and 𝑀𝑤,𝑖 are the mixture molecular weight and the molecu-
ar weight of the single chemical species, respectively. Eq. (24) is used
oth for the gas and for the liquid phase. However, in liquid phase
e assume that the density changes due to the temperature gradients
ominate over composition effects [19]. Therefore, the last term on the
HS, which is derived in Eq. (24) under the hypothesis of ideal gas,
anishes in liquid phase. This is always true for pure liquid droplets,
hile it is generally valid for multicomponent droplets as well.

The diffusive fluxes 𝐣𝑖,𝑘 in Eq. (11), (17) and (21) are computed
sing Fick’s law, which is exact only for binary mixtures (and for
 i

4 
ulticomponent systems with equal diffusivities). When Fick’s law is
pplied to multicomponent mixtures, it must be corrected in order
o ensure that the sum of the diffusive fluxes of all the species is
ull. The diffusivity of each species is computed from the binary
iffusion coefficient in each phase 𝑖𝑗,𝑘 using the Hirschfelder and

Curtiss approximation [45]:

𝑖,𝑘 =
∑

𝑗≠𝑖 𝑥𝑗,𝑘𝑀𝑤,𝑗

𝑀𝑤,𝑘
∑

𝑗≠𝑖
𝑥𝑖,𝑘
𝑖𝑗,𝑘

(26)

which results in diffusivities which are different for every chemical
species, and molar based. According to this definition, the final form
of the diffusive flux 𝐣𝑖,𝑘 is:

𝑖,𝑘 = 𝐣𝐹𝑖,𝑘 − 𝜔𝑖,𝑘𝐣𝐶𝑖,𝑘 = −𝜌𝑘𝑖,𝑘
𝑀𝑤,𝑖

𝑀𝑤,𝑘
∇𝑥𝑖,𝑘 + 𝜔𝑖,𝑘

𝑁𝑆
∑

𝑖=1
𝜌𝑘𝑖,𝑘

𝑀𝑤,𝑖

𝑀𝑤,𝑘
∇𝑥𝑖,𝑘 (27)

where 𝐣𝐹𝑖,𝑘 is the molar based diffusive flux computed using the Fick’s
law, while 𝐣𝐶𝑖,𝑘 is the diffusion correction term, which is redistributed
based on the mass fraction of each chemical species, following the same
approach proposed by Coffee and Heimerl [46]. By doing so, the sum
of the diffusive fluxes 𝐣𝑖,𝑘 is equal to zero. This form of the diffusive flux
can be directly used in Eqs. (18) and (21). Conversely, since Eq. (17) is
solved for the mass fractions, the diffusive flux in Eq. (27) is re-written
in terms of mass fractions [see 26, pag. 534 for the conversions] in
order to preserve the implicit part of the transport equation:

𝐻𝑘𝜌𝑘
𝐷𝜔𝑖,𝑘

𝐷𝑡
= ∇⋅(𝐻𝑘𝜌𝑘𝑖,𝑘∇𝜔𝑖,𝑘)+∇⋅

[

𝐻𝑘

(

𝐣𝑀𝑖,𝑘 + 𝐣𝐶𝑖,𝑘
)

𝜔𝑖,𝑘

]

+𝑚̇𝜔𝑖𝛿𝛤 −𝑚̇𝑖𝛿𝛤

(28)

The additional term on the RHS is equivalent to an additional con-
vective flux, it includes the total diffusive fluxes contribution 𝐣𝐶𝑖,𝑘, and
the correction that arises due to the conversion from mole fraction
gradients to mass fraction gradients: 𝐣𝑀𝑖,𝑗 = 𝜌𝑘𝑖,𝑘∇𝑀𝑤,𝑘∕𝑀𝑤,𝑘.

2.4. Droplet suspension strategy

From an experimental standpoint, droplets in normal gravity con-
ditions are investigated by suspending them on a solid fiber. In this
work, we propose a strategy to reproduce that configuration, combining
the droplet suspension method with the evaporation model discussed in
the previous sections. Physically, the droplet remains suspended on a
solid fiber due to the interaction between the surface tension force of
the liquid droplet and the surface of the solid fiber. In our model, the
surface tension force in Eq. (20) is computed as 𝐟𝜎 = 𝜎𝜅∇𝐻 , where 𝜎 is
the surface tension coefficient, which is constant, while the curvature 𝜅
is obtained from the height function. The combination of the resulting
curvature and a well-balanced discretization of the gradients lead to the
accurate numerical description of the surface tension [47]. The concept
of height function is closely related to the height of the fluid interface.
Therefore, knowing the height function is equivalent to knowing the
position of the interface, and vice-versa. In a droplet suspension prob-
lem we know the coordinate 𝐱𝑝 at which the interface must remain
throughout the simulation. Physically, this pinning point corresponds to
he gas–liquid–solid contact point. Therefore, we suspend the droplet
y setting a Dirichlet boundary condition on the height-function ℎ at

the contact point, and a Neumann boundary condition elsewhere:
{

ℎ = 𝐱𝑝 if 𝐱 = 𝐱𝑝
𝜕𝑛ℎ = 0 elsewhere

(29)

here 𝜕𝑛 denotes the derivative along the normal direction of the
oundary. The numerical implementation of the height functions on an
daptive computational grid was described by Popinet [47]. According
o that formalism, the height function, in each interfacial cell, gives the
istance of the closest interface from the center of the cell. Therefore,

mplementing the boundary conditions in Eq. (29) is achieved by
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Fig. 2. Schematic representation of the height function boundary conditions, where
he black line represents the solid fiber surface, the white point is the pinning point
𝑝, while 𝜃 is the contact angle.

etting the value of the height function on the layer of ghost cells in
ontact with the droplet (Fig. 2):

ℎ𝑥)𝑔ℎ𝑜𝑠𝑡 =

{

−(ℎ𝑥)𝑐 + 2(𝐱𝑝 − 𝐱)∕𝛥 if 𝐱 ≥ 𝐱𝑝
(ℎ𝑥)𝑐 elsewhere

(30)

here the suffix 𝑐 indicates a generic cell of the domain in contact with
ghost cell where we apply the boundary condition, while 𝛥 is the cell
imension.

After setting this boundary condition, the curvature is computed as
function of the first and second derivatives of the height function:

= ℎ′′

(1 + ℎ′2)3∕2
+ 1

|𝐱|
√

1 + ℎ′2
(31)

The resulting curvature is affected by the height function boundary
condition, and the contact angle is dynamically adjusted according to
the coordinate of the pinning point.

2.5. Numerical discretization details

The governing equations introduced in Section 2.2 are discretized
on an adaptive Cartesian grid using the Finite Volume Method [48]. The
characteristic function, in the context of the volume-of-fluid approach,
is discretized using the volume fraction 𝑐, defined as:

= 1
𝑉 ∫𝑉

𝐻𝑑𝑉 =
𝑉𝑙
𝑉

(32)

where 𝑉𝑙 is the total volume of liquid in a computational cell, while 𝑉
is the volume of the cell itself. Applying this definition to the interface
transport Eq. (15), we obtain:

𝜕𝑐
𝜕𝑡

+ 1
𝑉 ∮𝑆

𝐻𝐮𝑙 ⋅ 𝐧𝑑𝑆 = 1
𝑉 ∫𝑉

𝐻∇ ⋅ 𝐮𝑙𝑑𝑉 − 1
𝑉 ∫𝑉

𝑚̇
𝜌𝑙
𝛿𝛤 𝑑𝑉 (33)

The purpose of the geometric volume-of-fluid is to directly discretize
the integrals in this equation, maintaining the sharp nature of the
characteristic function 𝐻 by exploiting the explicit interface reconstruc-
tion [34]. For the sake of simplicity, in this section we substitute this
equation with the notational form:
𝜕𝑐
𝜕𝑡

+ ∇ ⋅
(

𝑐𝐮𝑙
)

= 𝑐∇ ⋅ 𝐮𝑙 −
𝑚̇
𝜌𝑙
𝛿𝛤 (34)

lthough the actual discretization does not use the volume fraction
alues directly in the divergence terms. The same logic applies to every
ther scalar transport equation, where the phase volume fraction 𝑐𝑘 is
ntroduced: 𝑐𝑙 = 𝑐, 𝑐𝑔 = 1 − 𝑐.

The governing Eqs. (15)–(20) are decoupled and solved in a sequen-
ial manner, using a time staggered scheme. Here, we briefly summarize
he integration order, using the same formalism adopted by Popinet
5 
49], which assumes that the scalar fields (liquid volume fraction,
emperature, and mass fractions) are known at the beginning of the
ime step at the time level 𝑛− 1∕2, i.e. lagging behind the velocity and
ressure fields by half time step. For brevity of notation, in the next
teps, we do not indicate the time level for the phase properties in the
ransport equations. These properties are updated and known at time
evel 𝑛 − 1∕2.

1. At the beginning of the time step, the interface jump condi-
tion (Eq. (21)) is resolved using the same procedure explained
by Cipriano et al. [24], in order to obtain the vaporization rates
𝑚̇𝑛−1∕2
𝑖 , the interface temperature 𝑇̂ 𝑛−1∕2, and the interface mass

fractions 𝜔̂𝑛−1∕2
𝑖,𝑘 . In each interfacial cell, the liquid mass fraction

is assumed to be the interfacial mass fraction 𝜔̂𝑖,𝑙. The mass frac-
tion is converted into mole fraction 𝑥̂𝑖,𝑙 and the thermodynamic
equilibrium condition is used to calculate the gas phase interface
mole fraction 𝑥̂𝑖,𝑔 = 𝑃𝑣𝑎𝑝,𝑖(𝑇̂ )∕𝑃 𝑥̂𝑖,𝑙. The conversion to 𝜔̂𝑖,𝑔 is used
for the calculation of the total vaporization rate:

𝑚̇ =
∑𝑁𝐿𝑆

𝑖=1 𝐣𝑖,𝑔 ⋅ 𝐧𝛤
1 −

∑𝑁𝐿𝑆
𝑖=1 𝜔̂𝑖,𝑔

(35)

and the vaporization rate for each chemical species is updated
as:

𝑚̇𝑖 = 𝑚̇𝜔̂𝑖,𝑔 + 𝐣𝑖,𝑔 ⋅ 𝐧𝛤 (36)

The interface temperature is computed from the vaporization
rates by zeroing the non-linear equation given by the interface
energy balance:

𝑓 (𝑇̂ ) =
𝑁𝐿𝑆
∑

𝑖=1
𝑚̇𝑖𝛥ℎ𝑒𝑣,𝑖 + 𝑞̇𝑟𝑎𝑑 − 𝜆𝑙∇𝑇𝑔 ⋅ 𝐧𝛤 + 𝜆𝑔∇𝑇𝑙 ⋅ 𝐧𝛤 = 0 (37)

Further details are explained in [24]. It is important to note that
the calculation of the vaporization rate is obtained directly from
interface gradients (computed as explained in [24,50]), and do
not rely on sub-grid-scale correlations.

2. The phase properties are updated based on the thermodynamic
pressure, and the current temperature and mass fraction fields:

𝜙𝑛−1∕2
𝑘 = 𝑓 (𝑃 , 𝑇 𝑛−1∕2

𝑘 , 𝐱𝑛−1∕2𝑘 ) (38)

3. The divergence source term is computed for each phase and the
one-field divergence is obtained from the arithmetic average.

− 1
𝜌
𝐷𝜌
𝐷𝑡

|

|

|

|

𝑛−1∕2

𝑘
=

𝛽𝑘
𝜌𝑘𝐶𝑝𝑘

[

∇ ⋅
(

𝑐𝑘𝜆∇𝑇𝑘
)

−

(𝑁𝑆
∑

𝑖=1
𝑐𝑘𝐶𝑝𝑖,𝑘𝐣𝑖,𝑘

)

⋅ ∇𝑇𝑘 + 𝑞̇𝛤 ,𝑘𝛿𝛤

]

+
𝑀𝑤,𝑘

𝜌𝑘

𝑁𝑆
∑

𝑖=1

1
𝑀𝑤,𝑖

[

∇ ⋅ (𝑐𝑘𝐣𝑖,𝑘) + 𝑚̇𝜔𝑖𝛿𝛤 − 𝑚̇𝑖𝛿𝛤
]

(39)

4. The advection of the volume fraction and of the scalar transport
equations is solved, considering the generic scalar 𝑠 = 𝜔𝑖, 𝑇 :

𝑐𝑛+1∕2 − 𝑐𝑛−1∕2

𝛥𝑡
+ ∇ ⋅

(

𝑐𝐮𝛤
)𝑛 = 𝑐∇ ⋅ 𝐮𝑛𝛤 (40)

(𝑐𝑘𝑠𝑘)∗ − (𝑐𝑘𝑠𝑘)𝑛−1∕2

𝛥𝑡
+ ∇ ⋅

(

𝑐𝑘𝑠𝑘𝐮𝑘
)𝑛 = 𝑐𝑘𝑠𝑘∇ ⋅ 𝐮𝑛𝑘 (41)

5. The mass fractions are updated including the additional term
stemming from the diffusion correction and the conversion from
mole fraction gradients to mass fraction gradients:
(𝑐𝑘𝜔𝑖,𝑘)∗∗ − (𝑐𝑘𝜔𝑖,𝑘)∗

𝛥𝑡
= ∇ ⋅

[

𝑐𝑘
(

𝐣𝑀𝑖,𝑘 + 𝐣𝐶𝑖,𝑘
)

𝜔𝑖,𝑘

]∗
(42)

6. The diffusion part of the chemical species and temperature
equations is solved in an implicit manner, including the phase
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change source terms:

𝑐𝑘𝜌𝑘
𝜔𝑛+1∕2
𝑖,𝑘 − 𝜔∗∗

𝑖,𝑘

𝛥𝑡
=∇ ⋅

(

𝑐𝑘𝜌𝑘𝑖,𝑘∇𝜔
𝑛+1∕2
𝑖,𝑘

)

+
(

𝑚̇𝛿𝛤
)𝑛−1∕2 𝜔𝑛+1∕2

𝑖,𝑘 −
(

𝑚̇𝑖𝛿𝛤
)𝑛−1∕2

(43)

𝑐𝑘𝜌𝑘𝐶𝑝𝑘
𝑇 𝑛+1∕2
𝑘 − 𝑇 ∗

𝑘
𝛥𝑡

=∇ ⋅
(

𝑐𝑘𝜆𝑘∇𝑇
𝑛+1∕2
𝑘

)

−

(𝑁𝑆
∑

𝑖=1
𝑐𝑘𝐶𝑝𝑖,𝑘𝐣𝑖,𝑘

)

⋅ ∇𝑇 𝑛−1∕2
𝑘 +

(

𝑞̇𝛤 ,𝑘𝛿𝛤
)𝑛−1∕2

(44)

7. The droplet suspension is applied by enforcing the height func-
tion boundary conditions (Eq. (30)), and then the curvature 𝜅 is
calculated (Eq. (31)).

8. The one-field properties 𝜌 and 𝜇 are updated at the time level
𝑛+1∕2 from the respective phase properties using an arithmetic
average, and the Navier–Stokes equations are solved for each
phase:

𝜌𝑛+1∕2
(𝐮∗𝑘 − 𝐮𝑛𝑘

𝛥𝑡
+ (𝐮𝑘 ⋅ ∇𝐮𝑘)𝑛+1∕2

)

= −∇ ⋅ 𝝉𝑛+1∕2𝑘 (45)

𝜌𝑛+1∕2
𝐮∗∗𝑘 − 𝐮∗𝑘

𝛥𝑡
=
(

𝜎𝜅 − 𝑚̇2 [1∕𝜌
]

𝛤
)

∇𝑐𝑛+1∕2 − 𝐠 ⋅ 𝐱∇𝜌𝑛+1∕2 (46)

∇ ⋅
(

1
𝜌𝑛+1∕2

∇𝑝𝑛+1𝑑

)

= ∇ ⋅ 𝐮∗∗
𝛥𝑡

+ 1
𝛥𝑡

(

1
𝜌
𝐷𝜌
𝐷𝑡

)𝑛−1∕2
(47)

𝐮𝑛+1𝑘 = 𝐮∗∗𝑘 − 𝛥𝑡
𝜌𝑛+1∕2

∇𝑝𝑛+1𝑑 (48)

where the velocity jump (Eq. (7)) is imposed directly to the
velocity fields 𝐮𝑙 and 𝐮𝑔 using the ghost velocity approach
proposed by Tanguy et al. [15]. As advocated by Long et al. [51],
this method can be conveniently combined with a collocated
Navier–Stokes equations solver, limiting the oscillations in the
velocity field that arise when including a localized divergence
source term directly in the Poisson equation. This approach
is based on the idea of Nguyen et al. [52] to use the Ghost
Fluid Method to populate the velocity values on each side of
the interface, obtaining two velocities 𝐮𝑙 and 𝐮𝑔 which are both
continuous across the interface and which respect the correct
jump condition (Eq. (7)):

𝐮𝑙 =
{

𝐮𝑙 if liquid phase
𝐮𝑔+𝑚̇

[

1∕𝜌
]

𝛤 𝐧𝛤 if gas phase
(49)

𝐮𝑔 =

{

𝐮𝑔 if gas phase
𝐮𝑙−𝑚̇

[

1∕𝜌
]

𝛤 𝐧𝛤 if liquid phase
(50)

with this condition enforced in the liquid and gas phase veloc-
ities after every solution step of Eqs. (45)–(48). Consequently,
the divergence in Eq. (47) reads:

∇ ⋅ 𝐮∗∗ =

{

∇ ⋅ 𝐮∗∗𝑙 if liquid phase
∇ ⋅ 𝐮∗∗𝑔 if gas phase

(51)

The resulting liquid velocity, used for the transport of the
volume fraction, is eventually corrected by additional projection
steps in order to guarantee the correct divergence, as proposed
by Tanguy et al. [15]. For constant properties simulations, the
divergence of the liquid velocity is null, while for the variable
properties formulation developed in this work, the divergence of
the liquid velocity equals the Lagrangian derivative of the den-
sity in liquid phase. If the additional projections are neglected,
the droplet evaporation problem cannot be solved accurately,
conversely from the boiling problem [53]. Note that this method
requires the vaporization rate 𝑚̇, defined on the interfacial cells,
to be extended toward the gas and the liquid phases. For this
operation, we use PDE based extrapolation techniques [54],
after converting the volume fraction field to a signed distance
function [55].
6 
3. Numerical results

The numerical model described in the previous section was imple-
mented in the open-source code Basilisk [56]. The simulations per-
formed using this model aim at the validation of the droplet suspen-
sion strategy (Section 3.1) and the low-Mach compressibility effects
(Section 3.2). The simulation of n-heptane droplet evaporation in mi-
crogravity is presented in Section 3.3, comparing the model prediction
with experimental data [3] and with the results from a well-validated
spherically-symmetric model [12]. The effect of the introduction of
gravity in the same test cases is presented in Section 3.4, focusing on
the effect of the natural convective fluxes on the droplet consump-
tion dynamics at different temperatures, pressures, and gravity values.
The natural convective fluxes are also affected by the initial droplet
diameter, as shown in Section 3.5, where our numerical model is
compared with experiments of n-decane evaporation in normal gravity
conditions [5]. The source code developed in this work, as well as the
simulation setups are freely available on the Basilisk sandbox [57].

3.1. Equilibrium of a suspended droplet

This test case aims to validate the droplet suspension strategy. The
starting point for the validation of every numerical method for surface
tension is the analysis of a static isolated droplet, to verify that the
numerical method is able to recover the equilibrium solution for a static
droplet in microgravity (Laplace equation). Analogously, in this case
we want to verify that the droplet, suspended at a specific point of
the domain, can relax to the correct equilibrium position given by the
balance between gravity and surface tension force. At the equilibrium
conditions, the momentum Eq. (20) reduces to:

∇𝑝𝑑 =
(

𝜎𝜅 − 𝑚̇2[1∕𝜌]𝛤
)

∇𝑐 − 𝐠 ⋅ 𝐱∇𝜌 (52)

Neglecting phase change, and considering a pure isothermal system, the
one-field density 𝜌 is a function of the volume fraction only. Therefore,
Eq. (52) can be rewritten as:

∇𝑝𝑑 =
(

𝜎𝜅 − [𝜌]𝛤 𝐠 ⋅ 𝐱
)

∇𝑐 (53)

which implies that, if the pressure and volume fraction gradients are
discretized in the same way, the numerical scheme is well-balanced,
and the equilibrium solution for the problem can be recovered [58].

The configuration used for this test case is depicted in Fig. 1(b),
where half the droplet is initialized along a boundary of the domain.
The initial droplet diameter is 𝐷0 = 1 mm, and the physical properties
are considered constant and equal to: 𝜌𝑙 = 1000 kg m−3, 𝜌𝑔 = 1 kg m−3,
𝜇𝑙 = 1 × 10−3 Pa s, 𝜇𝑔 = 1 × 10−5 Pa s. These properties are selected
to mimic air–water properties, in order to test the suspension method
using realistic density and viscosity ratios. The square domain has
dimensions equal to 4𝐷0, and the normal gravity value 𝐠 = 9.81 m s−2

s used. The droplet is initialized at coordinate (0, 0), and the pinning
point corresponds to the coordinate (0.5𝐷0, 0) and it remains constant
throughout the simulation. We use an adaptive grid with maximum
level of refinement 8 (28 cells along each domain dimension). The sim-
ulation is performed in 2D and axial-symmetric (AXI) configurations,
considering a fiber diameter for the AXI case equal to 𝐷𝑓 = 0.15𝐷0.
The simulation runs until the droplet reaches the equilibrium which,
from the numerical point of view, was quantified by computing the
total variation of volume fraction between two consecutive time steps.
When this variation is smaller that the tolerance 𝜖 = 1 × 10−10, the
equilibrium configuration is reached and the simulation stops.

Fig. 3 reports the stationary shapes of the suspended droplet, for
different values of surface tension 𝜎. Increasing the surface tension, the
droplet tends to a spherical shape, both in the planar (2D) and axial-
symmetric (AXI) configuration. In the latter case, the droplet tends to
always be more spherical due to the effect of the second curvature.

Fig. 4(a) shows the quantitative comparison between the contact angle
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Fig. 3. Equilibrium shape for the 2D (a) and AXI (b) suspended droplets, with gravity pointing leftward with respect to the figures.
Fig. 4. Equilibrium contact angles, where the lines are the analytic solutions, while the markers are the numerical results (a); relaxation of the maximum velocity for the 2D and
XI cases (b) (http://basilisk.fr/sandbox/ecipriano/test/pinning.c).
f the stationary droplets from the numerical simulation and the an-
lytical solution, calculated from the balance between surface tension
orce and gravity:

𝜃2𝐷 = arccos
(

𝜌𝑙𝑔𝜋(0.5𝐷0)2

2𝜎

)

𝜃𝐴𝑋𝐼 = arccos
(

4𝜌𝑙𝑔(0.5𝐷0)3

3𝜎𝐷𝑓

)

(54)

From Fig. 4(a) we can see that we obtain an excellent agreement
between the numerical and analytical contact angles, both for the
planar and AXI configurations, while Fig. 4(b) reports the relaxation
of the maximum velocity toward null values for the cases with mini-
mum surface tension coefficient, which are those that lead to stronger
oscillations. The oscillatory behavior of the velocity field is due to the
fact that, at the beginning of the simulation, the droplet tends to falls
due to the effect of gravity and it is attracted back to the pinning point
by the surface tension. The droplet keeps oscillating around the pinning
position, until eventually reaching a steady position. Fig. 4(b) is a zoom
of the oscillations region, where we observe that the AXI case takes
more time to stabilize, but in both cases the velocity eventually tends
toward a null value.
 i

7 
This test case confirms the ability of the suspension strategy to sim-
ulate droplets which relax toward an equilibrium position, respecting
the analytical contact angle value.

3.2. Thermal expansion of a liquid droplet

In this test case we simulate the thermal expansion of an initially
cold n-heptane droplet in a hot isothermal environment, neglecting
the phase change. This test case is useful to assess the convergence
of the model proposed in this work, with respect to the introduction
of the density material derivative in Eq. (24), which is responsible
for the droplet expansion. The droplet is initialized at the corner
of a square domain, considering axial-symmetry and neglecting the
gravitational term. The properties of this simulations are variable,
therefore we do not initialize the material properties. Instead, we
exploit the OpenSMOKE++ [37] library to initialize and update the
properties according to the thermodynamic pressure, the temperature,
and the mass fraction fields, as explained in Section 2.3. The droplet is
considered to be pure n-heptane, while the gas phase is pure nitrogen.
The initial droplet diameter is 𝐷0 = 1 mm, while the domain length
s equal to 1.5𝐷 . Symmetry boundary conditions are used for the
0
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Fig. 5. Maps of the temperature (a) and velocity divergence (b) inside the liquid droplet, for the thermal expansion test case at time 0.1 s. The divergence field embeds the AXI
metrics.
Fig. 6. Evolution of the normalized square diameter for the droplet expansion problem at different 𝛥𝑇 between the droplet and the environment (a); convergence rate for the
droplet expansion problem (b) (http://basilisk.fr/sandbox/ecipriano/run/expansion.c).
two boundaries in contact with the droplet, while outflow boundary
conditions for velocity and pressure are used for the other boundaries.
The temperature of the liquid droplet is initialized at the value of 300
K, the thermodynamic pressure is considered constant and equal to
1.0 MPa. The simulation runs at three different ambient temperature:
350 K, 375 K, and 400 K, respectively. Each simulation runs for 3 s, a
time which is sufficiently large to reach steady state conditions, and at
four different levels of refinement (5, 6, 7, and 8).

At the beginning of the simulation, the droplet is heated by the
isothermal environment, establishing a spherically-symmetric temper-
ature profile inside the liquid droplet (Fig. 5(a)). The temperature
gradients inside the liquid phase make the divergence source term
(Eq. (24)) non-null (Fig. 5(b)), leading to the droplet expansion which
compensates for density changes. In this simulation, not only the den-
sity changes, but also all the other properties involved. Therefore, the
solution of the temperature field is performed using variable transport
properties. Changing the properties affects the dynamic of the droplet
expansion, but the droplet diameter at steady state 𝐷𝑠 can easily be
obtained by imposing that the mass of the liquid droplet must remain
constant throughout the expansion process:

𝐷𝑠 = 𝐷0

(

𝜌𝑙(𝑇𝑙)
𝜌𝑙(𝑇𝑔)

)1∕3
(55)

In this simulation, the density depends solely on temperature because
the liquid is pure and the thermodynamic pressure is constant. Fig. 6(a)
shows the trend of the droplet diameter in time obtained from the
numerical simulation, and the steady state diameter for each initial
𝛥𝑇 between the droplet and the environment. We can see that, for
each resolution, the temperature tends toward the steady-state value, as
confirmed by Fig. 6(b), which reports the relative errors on the droplet
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diameter at the four different levels of refinement. The error between
the simulation and the stationary value increases with the initial tem-
perature jump, but all three simulations converge with the same rate,
which is extrapolated from the data and is approximately 1st order for
each case under investigation. This test case confirms the convergence
of the numerical schemes used to discretize the divergence source term,
which allows the expansion of the droplet to be predicted correctly.
This phenomenon is fundamental when studying the evaporation of
liquid droplets in hot environments as shown in the next sections.

3.3. Evaporation of a n-heptane droplet in microgravity

Droplets in microgravity conditions have been studied in several
experimental works, to isolate the evaporation phenomena from the
influence of buoyancy-driven flows. This configuration is studied using
drop towers, parabolic flights, or performing the experiment in orbiting
spacecrafts [59]. In this section, we simulate the microgravity evapo-
ration of isolated n-heptane droplets in nitrogen, and we compare the
numerical results with experimental data by Nomura et al. [3], and
with the 1D spherically-symmetric model by Cuoci et al. [12]. The
experimental setup used by Nomura et al. [3] employs a drop tower
and parabolic flights to achieve the reduced gravity conditions. The
droplet is supported by an horizontal silica fiber with diameter of 150
𝜇m, and experiments are performed at different ambient temperatures
(from ≈ 450 K to ≈ 750 K), and at different pressure values ranging
from 0.1 to 5 MPa. The droplet initial diameter is comprised between
0.6 and 0.8 mm. We simulate this configuration by placing the droplet
at the corner of a square domain, considering a constant average initial
diameter of 0.7 mm, and a domain length equal to 40 times the initial
diameter, whose value is sufficiently large to avoid the influence of
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Fig. 7. Maps of temperature (top) and n-heptane mass fraction (bottom) at different ambient pressures in microgravity conditions at 𝑇 ≈ 750 K and time 0.6 s (http:
//basilisk.fr/sandbox/ecipriano/run/microgravity.c).
the boundaries on the dynamics of the droplet evaporation process.
In these simulations, the use of an adaptive grid allows the large
simulation domain to be maintained while limiting the computational
burden. All the simulations presented in this section were performed at
a maximum level of refinement equal to 11, using symmetry boundary
conditions for the boundaries in contact with the liquid droplet, and
outflow boundary conditions for the other sides of the domain. The
experimental data provided by Nomura et al. [3] are known to be
affected by radiation from the electric furnace walls to the surface of
the droplet. This effect was studied by Yang and Wong [60], and it was
included in these simulations according to Eq. (12), using an emissivity
value for the n-heptane droplet which is constant and equal to 𝜖 = 0.93,
which is the same value used by Yang and Wong [60]. The surface
tension coefficient is constant as well, and equal to 𝜎 = 0.03 N m−1,
while every other thermodynamic and transport property changes as
described in Section 2.3. Initially, the environment is considered at
rest, the liquid phase is made of pure n-heptane, while the gas phase
is pure nitrogen. Among the experiments performed by Nomura et al.
[3], we focus on the cases at 0.1 MPa, 0.5 MPa, 1 MPa, and 2 MPa,
since experiments at 5 MPa are in supercritical conditions. For each
pressure value we run 4 different simulations at 4 different ambient
temperatures, ranging from ≈ 450 K to ≈ 750 K (the exact temperature
values are reported in Fig. 8). Initially, the liquid phase temperature is
equal to 300 K for every case under investigation.

The qualitative behavior of these simulations is similar for all the
test cases: at the beginning of the simulation the hot environment
heats the droplet, increasing the temperature of the liquid phase and
causing thermal expansion. During this phase, the droplet diameter
increases, leading to (𝐷∕𝐷0)2 > 1, as shown in Fig. 8. As the interfacial
temperature increases, the vaporization mass flow rate increases as
well, until reaching a situation where the droplet consumption due to
the evaporation process overtakes the droplet expansion with conse-
quent decrease of the droplet diameter. After this transient, the squared
diameter decay proceeds almost linearly, as predicted by the d2 law,
with a slope which is called vaporization rate constant. The intersection
between the line that approximates the steady evaporation region,
and the value (𝐷∕𝐷0)2 = 1 defines a time coordinate called heat-up
period, which measures the unsteadiness of the evaporation process [3].
From the knowledge of these two parameters, correlations that correct
the classic d2 law can be obtained, which are useful for sizing of
engineering devices, or for simplified multiphase flow models.

Fig. 8 shows the comparison of the numerical model described in
this work, with the experiments by Nomura et al. [3] and with the
spherically-symmetric model by Cuoci et al. [12]. This model was
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chosen because it was extensively validated under different operative
conditions, in pure evaporation cases but also in combustion simula-
tions [12,61,62]. The simulation results show that, for each pressure
and temperature under investigation, the agreement between this work
and the 1D model is always very good. These comparisons demonstrate
the correct implementation of the variable properties extension to the
multidimensional model proposed in this work. These results also high-
light the role of temperature and pressure on the evaporation process in
microgravity. For every ambient pressure, increasing the environment
temperature increases the importance of the thermal expansion, which
is observed from the higher peak of the square diameter. At the same
time, higher temperatures reduce the heat-up period and increase the
vaporization rate constant, leading to faster droplet consumption. The
effect of the ambient pressure on the droplet consumption rate is less
predictable and it depends on the ambient temperature. At the lower
temperature (𝑇 ≈ 450 K), increasing the pressure leads to stronger
thermal expansion and an increased heat-up period, after which the
vaporization rate constant is comparable for every pressure value. The
ambient pressure increases the boiling point of the liquid droplet, which
is allowed to reach higher temperature, as shown in the maps of Fig. 7.
In these conditions, the ratio between the heat-up period and the total
evaporation time remains approximately constant with pressure. There-
fore, at lower temperature, an increase of pressure increases the droplet
consumption time. At higher temperature (𝑇 ≈ 750 K in this case),
we observe that the vaporization rate constant increases with pressure
and the final droplet consumption times are almost independent from
the ambient pressure value. In these conditions, the ratio between the
heat-up period and the total evaporation time increases with pressure.

The Schmidt number in the bulk gas phase for all these simulations
varies from 2.2 for 𝑇 ≈ 450 K and it decreases with temperature up
to 2.0 for 𝑇 ≈ 750 K, while remaining almost constant with pressure.
The Lewis number slightly decreases with temperature as well going
from 3 to 2.9 and indicating the greater importance of thermal diffusion
with respect to the mass diffusion in gas phase. The average Sherwood
number at ambient pressure increases with temperature from 3.8 to 6.4,
due to the increased vaporization rate. Higher pressures decrease the
Sh number up to 2.8 for the lowest temperature, and up to 5.7 to the
highest temperature. These dimensionless numbers are calculated from
their definitions:

𝑆𝑐 =
𝜇𝑔

𝜌𝑔𝑔
(56)

𝐿𝑒 =
𝜆𝑔 (57)
𝜌𝑔𝑔𝐶𝑝𝑔
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Fig. 8. Square diameter decay at different pressure and temperature for the microgravity evaporation of n-heptane. Comparison with experiments from Nomura et al. [3] (filled
markers), and with the spherically-symmetric 1D model by Cuoci et al. [12] (empty markers) (http://basilisk.fr/sandbox/ecipriano/run/microgravity.c).
𝑆ℎ = 𝑚̇𝐷
(𝜔̂𝐶7 ,𝑔 − 𝜔𝐶7 ,𝑔)𝜌𝑔𝑔

(58)

Although the comparison between this work and the 1D model
shows good agreement, the comparison with the experimental data
is not as good. At ambient pressure, the consumption curve of the
numerical models is comparable with the experiments. Increasing the
ambient pressure, the numerical models are systematically slower than
the experiments, for every ambient temperature, and the displacement
increases with pressure. Similar results were observed by other lit-
erature works [60,63,64]. In the next section, we propose possible
explanations to this discrepancy, exploiting the capability of this nu-
merical model to simulate the influence of buoyancy-driven flows on
the droplet evaporation phenomena.

3.4. Effect of gravity on the evaporation of n-heptane droplets

The experimental data by Nomura et al. [3] were used by several
authors for the validation of their droplet evaporation models. Some
of them use just the low pressure results. Some other authors, such
as Harstad and Bellan [63], Yang and Wong [60], and Gogos et al. [64],
analyzed the trend of the droplet consumption at different pressure
values. These authors obtained discrepancies between their models and
the experimental data, which are similar to those shown in the previous
section, and they propose possible explanations to these gaps based
on the effect of the interface radiation, the heat conduction between
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the gas–liquid system and the solid fiber [60], and the initial droplet
positioning procedure [63,64]. Using the model proposed in this work,
we can relax the hypothesis of spherical droplets and resolve the effect
of buoyancy directly, demonstrating for the first time that the effect of
residual gravity on the droplet evaporation results is non-negligible.

The simulations performed in this section combine the variable
properties evaporation model with the droplet suspension strategy.
Half the liquid droplet is initialized on the boundary of the domain
corresponding to the axis of symmetry, and simulations exploit axial
symmetry (valid for small Reynolds numbers) to limit the computa-
tional time. The simulation setup is depicted in Fig. 1(b), while the
problem dimensions and the operative conditions are those used for
the microgravity cases in Section 3.3. The only difference with respect
to the microgravity cases is that we replicate those test cases using
different gravity values: 1∕100 𝐠, 1∕10 𝐠, and 1 𝐠, where 𝐠 is the Earth’s
normal gravity. Note that the value of 1∕100 𝐠 corresponds to the max-
imum values of residual gravity measured by Nomura et al. [3] for the
parabolic flight experiments. The boundary of the domain in contact
with the liquid droplet corresponds to the solid fiber surface, where
no-slip boundary conditions are imposed, together with the height
function boundary condition for the droplet suspension (Section 2.4).
On the other sides of the domain we set zero pressure outflow boundary
conditions for the velocity and the pressure fields.

At the beginning of the simulation, the droplet is heated by the hot
environment, causing the thermal expansion of the droplet and increas-

ing the vaporization rate. The phase change process cools down the
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Fig. 9. Maps of temperature (top) and n-heptane mass fraction (bottom) at different ambient pressures in normal gravity conditions at time 0.6 s (http://basilisk.fr/sandbox/
ecipriano/run/normalgravity.c).
interface and increases the amount of (cold) n-heptane in the gas phase,
which is heavier than the hot nitrogen environment. Consequently, the
gas phase density around the droplet increases with respect to the bulk
gas density. The resulting density gradients promote buoyancy-driven
flows, which create a downward wake that transports temperature and
mass fraction fields as shown in Fig. 9. The importance of the buoyancy
driven flows can be quantified using the Grashof number, defined as:

𝐺𝑟 =
(𝜌𝑠 − 𝜌𝑏)
𝜌𝑏𝜈2𝑏

𝑔𝐷3 (59)

where 𝜌𝑠 is the density of the gas phase at the interface, 𝜌𝑏 is the
bulk density, while the bulk kinematic viscosity is defined as 𝜈 = 𝜇∕𝜌.
The Grashof number is directly proportional to 𝑃 2, it increases with
the gravity value and with the droplet diameter, and it decreases non-
linearly with increasing ambient temperature. The mixture molecular
weight of the gas phase increases the Grashof number as well, which
becomes more important for heavier liquid droplets. Increasing the
Grashof number, the acceleration of the fluid promoted by natural
convective fluxes becomes larger. Fig. 9 clearly shows this effect: the
image displays the maps of temperature and n-heptane mass fractions
at the same simulation time (0.6 s) for different pressure values. In-
creasing the pressure, the Stefan flow contribution is lower, while the
gas phase velocity transports the scalar fields downward more quickly,
the boundary layer around the droplet becomes thinner, and these
phenomena influence the droplet consumption dynamics. Fig. 10(a)
shows the squared diameter decay for the Nomura et al. [3] droplets at
different values of residual gravity. For improved readability we only
included results at two temperature values for each pressure analyzed
in the previous section. We observe that, in every simulation, the
introduction of gravity increases the droplet consumption rate, with
different magnitude depending on the operative conditions. At ambient
pressure, gravity does not significantly affect the simulation results,
especially for low residual gravity. However, at higher pressure the gap
between the microgravity results increases quickly, and even a residual
gravity of just 1∕100 𝐠 decreases the droplet lifetime considerably. We
observe from the results in Fig. 10 that this effect is more important
at high pressure and low ambient temperature, as predicted by the
functional dependency of the Grashof number. Fig. 10(b) reports the
normalized total evaporation time for every pressure and temperature
analyzed in this study, and for the three gravitational values. The total
evaporation time is extracted from the plots by reconstructing the line
describing the squared diameter decay in the steady region. Therefore,
the total evaporation time is computed as the intersection between the
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reconstructed line and the coordinate corresponding to the complete
droplet consumption ((𝐷∕𝐷0)2 = 0). The normalized total evaporation
time plotted in Fig. 10(b) is finally obtained as the ratio between the
total evaporation time with gravity and the total evaporation time
in microgravity, at the same conditions of temperature and pressure.
By doing so, the resulting figure allows the displacement between
the microgravity case and the gravity cases with increasing ambient
temperature and pressure to be easily observed.

Including gravity, the Sc and Le numbers of the bulk gas phase are
the same reported for the microgravity case at the previous section.
However, the Sh number increases due to the effect of the natural
convective fluxes. At ambient pressure in normal gravity Sh is equal
to 5.4 at low temperature and to 8.8 at high temperature. Conversely
from the microgravity case, its value increases with increasing ambient
pressure for all temperatures investigated. Considering the 2 MPa case,
it goes from 5.8 at low temperature to 9.3 at high temperature.

From the results in this section we can draw interesting conclusions
that complete the analysis began by Yang and Wong [60]. In that
work, the authors show that including radiation and the thermal effect
from the solid fiber reduces the gap between the numerical results
and the experiments. They show that the solid fiber effect is more
important at low temperature, while the effect of the radiation is
dominant for the high temperature simulations. The two effects tend to
increase the droplet consumption rate in every simulation, and while
they approximate the experimental data well at ambient pressure and
sufficiently well at 0.5 MPa, they are not sufficient to explain the
discrepancies at higher pressures. This work clearly shows that the
discrepancy at higher pressure is due to the effect of the residual
gravity, which is non-negligible for high pressures especially at the
lower temperatures. It is worth mentioning that the axial-symmetric
model proposed by Gogos et al. [64] was used by the authors to re-
simulate the experiments by Nomura et al. [3] using normal gravity
conditions, and obtaining a droplet consumption rate which is faster
than the microgravity case and closer to the experimental data. The
difference with that work is that here we tested the effect of small
residual gravity values, and that our model directly resolves the inter-
face deformation and is more generally applicable to any gas–liquid
system with phase change. Moreover, Gogos et al. [64] indicated the
procedure used to move the droplet from the droplet generator to the
testing position as a possible additional explanation to the delay of
the numerical results. The authors quantified this process stating that
it induced droplet motion with an average velocity of 0.375 m/s for
0.16 s. To try to mimic the effect of this process, we initialized the
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Fig. 10. Squared diameter decay at different pressure and temperature, and at 4 different gravitational acceleration values. The triangles are experiments from Nomura et al. [3]
(a); Normalized total evaporation times (b) (http://basilisk.fr/sandbox/ecipriano/run/normalgravity.c).
velocity field of the droplet using a Hill’s vortex considering a bulk
velocity of 0.375 m/s. However, this procedure did not change the
droplet dynamics, compared with the cases where the initial velocity
is null everywhere (which is the initial setup for the results presented
in this section).

An additional reason for the discrepancy between the numerical
results and the experiments might be the use of an average initial
diameter, which is equal for every simulation, since Nomura et al. [3]
did not provide a specific initial diameter value for every simulation.
However, when buoyancy is present, the initial diameter is an addi-
tional parameter that changes the importance of natural convective
fluxes. This effect is studied in the next section.

3.5. Effect of the initial diameter on the evaporation of n-decane droplets

In the previous section, we studied the effect of the Grashof number
on the evaporation of n-heptane droplets. We analyzed the influence of
the ambient temperature, pressure, and the gravitational acceleration
on the square diameter decay, and we compared the results with ex-
periments of droplets in reduced gravity conditions. In this section, we
study the effect of the initial diameter on the consumption of n-decane
droplets in normal gravity conditions. This configuration was studied
with experiments by Murakami et al. [5], providing the experimental
data that we use here to verify the validity of our model’s predictions.

The simulation setup is the same used in the previous section, and it
is depicted in Fig. 1(b): it consists in initializing half the liquid droplet
along the boundary corresponding to the axis of symmetry. The initial
ambient and droplet temperatures are equal to 773 K, and 328 K,
respectively. The droplet is pure n-decane, while the environment is
initially pure nitrogen. No-slip boundary conditions are imposed on the
boundary in contact with the liquid droplet, while constant pressure
outflow boundary conditions are used for the other boundaries. The
initial diameter of the droplet varies in the range between 0.4 and
0.8 mm, and simulations are performed at 4 different values of initial
diameter, each at ambient pressure and at 0.5 MPa.

The numerical simulation results are compared with the experimen-
tal data in normal gravity conditions by Murakami et al. [5], and the
comparison is shown in Fig. 11(a). The results indicate that an increase
in the droplet’s initial diameter enhances the significance of buoyancy-
driven flows, making the vaporization rate constant steeper. This effect
can be easily predicted by looking at the Grashof number (Eq. (59)).
Increasing the pressure (Fig. 11 (b)), the effect of the initial diameter
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on the vaporization rate is magnified. The numerical results obtained
using this model are in good agreement with the experimental data at
atmospheric pressure, while at 0.5 MPa the numerical results display
an increased heat-up period. In both cases, the distances between the
curves at 𝐷0 = 0.4 mm and 𝐷0 = 0.8 mm in normal gravity are
similar to the experimental data. The temperature profiles are reported
just for the case with 𝐷0 = 0.52 mm, but they are similar for every
simulation since the initial droplet diameter, in these conditions, does
not influence the droplet temperature substantially. The trends of the
droplet temperature profiles shows that, as expected, the high pressure
droplets reach higher temperatures, due to the increased boiling point.
We capture the increased gap in the consumption rates for the higher
pressure simulations, and the bigger distance between case 𝐷0 = 0.4 mm
in microgravity and the same case but in normal gravity, which shows
that the introduction of gravity has a stronger effect on the vaporization
rate constant, in these conditions, with respect to the increased initial
diameter. Understanding the larger gap between experimental data
and model at 0.5 MPa would require insights from other authors’
simulation results. The discrepancy might be due to neglecting the
thermal effects of the solid fiber or to the increased complexity of
conducting experiments at higher pressure. In any case, the model
predicts the correct trends at different pressure values.

For these simulations, the bulk Sc and Le numbers are equal to
2.5 and 3.5, respectively. In microgravity conditions, the average Sh
number is 8.1 at 0.1 MPa and 7.3 at 0.5 MPa. When gravity is included,
the Sh number at ambient pressure ranges from 8.4 to 8.9 as the initial
diameter increases. At higher pressure, the Sh number increases with
the initial diameter, ranging from 8.3 to 9.6.

This test case emphasizes the ability of the numerical model to pre-
dict the consumption rate of liquid droplets suspended in normal grav-
ity conditions with good accuracy, capturing the correct experimental
trends.

4. Concluding remarks

This work proposes and validates a numerical model that signif-
icantly advances our understanding of the evaporation dynamics of
suspended droplets in various gravitational conditions.

1. The model integrates interface-resolved evaporation, surface ten-
sion effects, and variable physical properties. This comprehen-
sive approach allows for the accurate simulation of complex phe-
nomena such as thermal expansion, natural convective fluxes,
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Fig. 11. Normalized squared diameter and temperature profile for the n-decane evaporation in normal gravity conditions (ng) and in microgravity (𝜇g). Comparison with experiments
by Murakami et al. [5] (http://basilisk.fr/sandbox/ecipriano/run/normalgravity.c).
and internal liquid recirculation, which are not addressed by
traditional spherically-symmetric models.

2. The model’s capability to simulate realistic droplet evaporation
in any gravity condition has been demonstrated. For simulations
involving gravity, a droplet suspension model was proposed that
leverages surface tension without introducing fictitious forces.
This model was validated by comparing the equilibrium contact
angle with the analytical solution. Additionally, the variable
properties evaporation model was benchmarked against experi-
mental data in both microgravity and normal gravity conditions,
as well as against a simplified spherically-symmetric model,
showing very good agreement and validating the implementa-
tion of this work.

3. Comparisons with experimental data reveal discrepancies in-
creasing with ambient pressure, consistently with findings from
other studies in the literature. This study elucidates that such
discrepancies can largely be attributed to the effects of resid-
ual gravity, in addition to thermal conduction from the solid
fiber and interface radiation, as discussed by other researchers.
The model also successfully compared with experimental data
for suspended droplets in normal gravity conditions, enhancing
predictive capabilities crucial for designing systems in aerospace
and industrial manufacturing.

4. Future research will focus on extending the model to more
complex fluids and environmental conditions, aiming to broaden
its applicability and refine our ability to predict droplet behavior
across a range of operational scenarios.
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