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Abstract
We systematically validate the static local mesh refinement capabilities of
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a recently proposed implicit-explicit discontinuous Galerkin scheme imple-
mented in the framework of the deal.Il library. Non-conforming meshes are

\Dipartimento di Matematica, Politecnico employed in atmospheric flow simulations to increase the resolution around

di Milano, Milan, Italy complex orography. The proposed approach is fully mass and energy conserva-

tive and allows local mesh refinement in the vertical and horizontal direction
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without relaxation at the internal coarse/fine mesh boundaries. A number of
numerical experiments based on classical benchmarks with idealized as well as
more realistic orography profiles demonstrate that simulations with the locally

refined mesh are stable for long lead times and that no spurious effects arise at
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the interfaces of mesh regions with different resolutions. Moreover, correct val-
ues of the momentum flux are retrieved and the correct large-scale orographic
response is reproduced. Hence, large-scale orography-driven flow features can
be simulated without loss of accuracy using a much lower total amount of
degrees of freedom.
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1 | INTRODUCTION

classical work of McFarlane (1987) and the more recent
review by Sandu et al. (2019), and references therein. This

Atmospheric flows display phenomena on a very wide
range of spatial scales that interact with each other. Many
strongly localized features, such as complex orography
or hurricanes, can only be modelled correctly if a very
high spatial resolution is employed, especially in the
lower troposphere, whereas larger scale features such as
high-/low-pressure systems and stratospheric flows can be
adequately resolved on much coarser meshes. The impact
of orography on the atmospheric circulation has been the
focus of a large number of studies; for example, see the

impact is significant both on the short and long time-scales
and even affects the oceanic circulation (Maffre
et al. 2018). The minimal resolution requirements for
an accurate description of the atmospheric phenom-
ena relevant for numerical weather prediction (NWP)
and climate models have been subject to strong debate;
for example, see the classical paper by Lindzen and
Fox-Rabinovitz (1989) and the more recent contribution
by Skamarock et al. (2019), and the references therein.
Furthermore, for numerical reasons, orography data
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used by NWP and climate models are often filtered, thus
limiting the scales at which orography can effectively be
represented in numerical models. For example, the anal-
ysis in Davies and Brown (2001) showed that orographic
features must be resolved by a sufficiently large number of
mesh points (from six to ten) in finite-difference models
to avoid spurious numerical features.

The insufficient resolution of orographic features is
compensated in NWP and climate models by subgrid-scale
orographic drag parametrizations (Miller et al. 1989;
Palmer et al. 1986), which are essential for an accu-
rate description of atmospheric flows with models
using feasible resolutions; see again the discussion in
Sandu et al. (2019). The interplay between resolved and
parametrized orographic effects is critical, since many
operational models currently employ resolutions in the
so-called “grey zone”, for which some orographic effects
are well resolved whereas others still require parametriza-
tion. Global simulations with the European Centre of
Medium-range Weather Forecasts’ Integrated Forecasting
System NWP model without drag parametrization showed
that the increase in forecast skill for increasing atmo-
spheric resolution was chiefly due to the improved
representation of the orography (Kanehama et al. 2019).
When parametrizing the drag, the positive impact of
the parametrization decreased as long as the model
resolution increased. Finally, sharper orography rep-
resentations also proved beneficial for simulations of
mountain-wave-driven middle-atmosphere processes
(Fritts et al. 2022).

Because of the multiscale nature of the underly-
ing processes, NWP is an apparently ideal application
area for adaptive numerical approaches. However, mesh
adaptation strategies have only slowly found their way
into the NWP literature, due to limitations of earlier
numerical methods, concerns about the accuracy of
variable-resolution meshes for the correct representation
of typical atmospheric wave phenomena, and the greater
complexity of an efficient parallel implementation for
non-uniform or adaptive meshes. The first approaches to
variable local mesh refinement were based on the nesting
concept e.g. Harrison and Elsberry (1972); Phillips and
Shukla (1973); Zhang et al. (1986). Early attempts to intro-
duce adaptive meshes in NWP were then presented in the
seminal papers of Skamarock et al. (1989); Skamarock and
Klemp (1993), and a review of earlier variable-resolution
approaches is presented in Coté (1997). The impact of
variable-resolution meshes on classical finite-difference
methods was analysed in Long and Thuburn (2011);
Vichnevetsky (1987). More recently, methods allowing
mesh deformation strategies were proposed in Prusa
and Smolarkiewicz (2003), and techniques to estimate
the required resolution were presented in Weller (2009),
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whereas applications of block structured meshes were
discussed in Jablonowski et al. (2009). In all those arti-
cles, finite-difference or finite-volume methods were
employed for the numerical approximation. High-order
finite-element methods have also been exploited as an
ingredient of accurate adaptive methods. More specif-
ically, hybrid continuous-discontinuous finite-element
techniques were employed in Li et al. (2021). Discontinu-
ous Galerkin (DG) finite-element h-adaptive approaches
were proposed in Kopera and Giraldo (2014); Miiller
et al. (2013); Yelash et al. (2014), and p-adaptive DG meth-
ods for NWP were introduced in Tumolo and Bonaven-
tura (2015). An hp-adaptive DG method for mesoscale
atmospheric modelling was recently proposed in Dole-
jsi (2024), and a fully unstructured three-dimensional
(3D) approach was presented in Tissaoui et al. (2023).
Finally, Diiben and Korn (2014) investigated the impact of
mesh refinement on large-scale geostrophic equilibrium
and turbulent cascades influenced by the Earth’s rotation.

Operational or semi-operational NWP models exist
that have local mesh refinement (Skamarock et al. 2012)
or nesting (Skamarock et al. 2021) capabilities. Almost all
the published results, however, either require some relax-
ation at the boundaries between coarse and fine regions
(McTaggart-Cowan et al. 2011; Tang et al. 2013) or perform
vertical mesh refinement over the whole vertical span of
the computational domain (Daniels et al. 2016; Mahalov
and Moustaoui 2009; Mirocha and Lundquist 2017). A full
3D nesting approach without boundary relaxation is pre-
sented in Hellsten et al. (2021), which is only tested on
cases either without orography or without stratification,
with additional restrictions on the lateral boundary con-
ditions that can be applied in the case of purely vertical
nesting.

In this work, we test a recently proposed adaptive
IMEX-DG method (Orlando 2023; Orlando et al. 2022,
2023) on a number of benchmarks for atmospheric flow
over idealized and real orography. The proposed approach
is fully mass and energy conservative and allows local
mesh refinement in the vertical and horizontal direc-
tion without the need to apply relaxation at the internal
coarse/fine mesh boundaries. Through a quantitative
assessment of non-conforming h-adaptation, we aim to
show that simulations with adaptive meshes around orog-
raphy can increase the accuracy of the local flow descrip-
tion without affecting the larger scales, thereby signifi-
cantly reducing the overall number of degrees of freedom
compared with uniform mesh simulations. The numerical
approach employed combines accurate and flexible DG
space discretization with an implicit-explicit (IMEX) time
discretization, whose properties and theoretical justifica-
tions are discussed in detail by Orlando and co-workers
(Orlando, 2023), (Orlando et al. 2022, 2023). The adaptive
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discretization is implemented in the framework of the
open-source numerical library deal.Il (Arndt et al. 2023;
Bangerth et al. 2007), which provides the non-conforming
h-refinement capabilities exploited in the numerical simu-
lation of flows over orography. The numerical results show
that simulations with the refined meshes provide stable
solutions with greater or comparable accuracy to those
obtained with the uniform mesh. Importantly, no spurious
reflections arise at internal boundaries separating mesh
regions with different resolution, and correct values for the
vertical flux of horizontal momentum are retrieved. Both
on idealized benchmarks and on test cases over realistic
orographic profiles, simulations using non-conforming
local mesh refinement correctly reproduce the larger
scale, far-field orographic response, with meshes that are
relatively coarse over most of the domain. This supports
the idea that locally refined, non-conforming meshes can
be an effective tool to reduce the dependence of NWP and
climate models on parametrizations of orographic effects
(Kanehama et al. 2019; Sandu et al. 2019).

This article is structured as follows. The model
equations and a short introduction to non-conforming
meshes are presented in Section 2. The quantitative
numerical assessment of non-conforming mesh refine-
ment over orography in a number of idealized and real
benchmarks is reported in Section 3. Some conclusions
and considerations about open issues and future work are
presented in Section 4.

2 | THE MODEL EQUATIONS

The fully compressible Euler equations of gas dynamics
represent the most comprehensive mathematical model
for atmosphere dynamics e.g. Davies et al. (2003); Giraldo
and Restelli (2008); Steppeler et al. (2003). Let Q ¢ R¢,2 <
d < 3 be a simulation domain and denote by x the spatial
coordinates and by t the temporal coordinate. We con-
sider the unsteady compressible Euler equations, written
in conservation form as

0
LV - (pu)=0,

ot
%+V-(pu®u)+Vp=pg,
J0(pE
(aLt)+V-[(pE+p>u]=pg-u, )

for x € Q, t € (0, Tt], supplied with suitable initial and
boundary conditions. Here, Tt is the final time, p is the
density, u is the fluid velocity, p is the pressure, and
® denotes the tensor product. Moreover, g = —gk repre-
sents the acceleration of gravity, with g = 9.81m-s~? and k
denoting the upward-pointing unit vector in the standard

Cartesian frame of reference. The total energy pE can be
rewritten as pE = pe + pk, where e is the internal energy
and k = % |lal|? is the kinetic energy. We also introduce the
specific enthalpy h = e + (p/p) and we notice that one can
rewrite the energy flux as

(pE + p)u = <e+k+§>pu= (h + k)pu.

Notice that the choice of the total energy density E as
prognostic variable has been shown, at least empirically,
to yield model formulations that do not require special
well-balancing techniques for flows under the action of
gravity (Baldauf and Pril (2023)). The aforementioned
equations are complemented by the equation of state for
ideal gases, given by p = pRT, with R being the specific gas
constant. For later reference, we define the Exner pressure

ITas Po r=1/y
M- <—) , @
p

with py = 10° Pa being a reference a pressure and y denot-
ing the isentropic exponent. We consider y = 1.4 and the
gas constant R = 287 J-kg=! -K~! for all the test cases.

2.1 | Non-conforming meshes
We solve the system in Equation (1) numerically using
the IMEX-DG solver proposed in Orlando (2023); Orlando
et al. (2022) and validated in Orlando et al. (2023) for
atmospheric applications; also see Orlando et al. (2024).
Although, on the one hand, no special well-balancing
property with respect to hydrostatic equilibrium has been
proven for the proposed discretization—for example, see
the proposal in Blaise et al. (2016)—no evidence of numer-
ical problems related to the representation of hydrostatic
equilibrium was found in the many numerical tests per-
formed in the previously mentioned articles. This could
be related to the choice of the energy density as prognos-
tic variable, as argued in Baldauf and Pril (2023), based on
numerical results obtained with a similar formulation.
Atmospheric flows such as those considered in this
work are characterized by low Mach numbers, as motions
of interest have characteristic speeds much lower than
that of sound. In the low Mach limit, terms related to
pressure gradients yield stiff components in the system of
ordinary differential equations resulting from the spatial
discretization of the system in Equation (1). Therefore, an
implicit coupling between the momentum balance and
the energy balance is adequate, whereas the density can
be treated in a fully explicit fashion; for example, see the
discussion in Casulli and Greenspan (1984); Dumbser
and Casulli (2016). The time discretization is based on a
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variant of the IMEX method proposed in Giraldo
et al. (2013), whereas the space discretization adopts the
DG scheme implemented in the deal.Il library (Arndt
et al. 2023) for a complete analysis and discussion of
the numerical methodology, and to Giraldo (2020) for a
comprehensive introduction to the DG method.

The nodal DG method, as the one employed in deal.Il
(Arndt et al. 2023), is characterized by integrals over faces
belonging to two elements. Moreover, a weak imposi-
tion of boundary conditions is typically adopted (Arnold
et al. 2002). Hence, the method provides a natural frame-
work for formulations on multiblock meshes. Consider a
generic nonlinear conservation law

M v Fw) =o. 3)
ot
We multiply the previous relation by a test function A
and, after integration by parts, we obtain the following
local formulation on each element K of the mesh with

boundary 0K:

/@Adg—/F(w)-V/\dQ
x Ot K

+ / FPH, ¥HA dZ =0, 4)
dK

where dQ is the volume element and dX is the surface
element. In the surface integral, we replace the term F(¥)
with a numerical flux F(¥*, ¥™), which depends on the
solution on both sides ¥* and W~ of an interior face.

A non-conforming mesh is characterized by cells with
different refinement levels, so that the resolution between
two neighbouring cells can be different (Figure 1). For
faces between cells of different refinement level, the inte-
gration is performed from the refined side and a suitable
interpolation is performed on the coarse side, so as to
guarantee the conservation property; see the discussion
in Bangerth et al. (2007). Hence, no hanging nodes appear
in the implementation of the discrete weak form of the
equations.

DG methods with non-conforming meshes have been
developed for different applications; for example, see
Fahs (2015); Heinz et al. (2023). The main constraint
posed by the deal.II library for the use of non-conforming
meshes is the requirement of not having neighbouring
cells with refinement levels differing by more than one.
Thus, for each non-conforming face, flux contributions
have to be considered at most from two refined faces
in two dimensions and from four faces in three dimen-
sions (Figure 1). The out-of-the-box availability in deal.Il
provides an ideal test bed for evaluating the potential com-
putational savings using non-conforming meshes instead
of uniform meshes in atmospheric flow simulations.

Royal Meteorological Society
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FIGURE 1
conforming mesh. The two right nodes from cell J, the two left
nodes from cell K, and the two left nodes from cell L are involved in
the computation of the flux in the boundary integral of Equation (4)
for face e.

3 | NUMERICAL RESULTS

We consider a number of benchmarks of atmospheric
flows over orography for the validation of NWP codes;
for example, see the seminal papers of Klemp and Dur-
ran (1983); Klemp and Lilly (1978) and the results and
discussions in Bonaventura (2000); Melvin et al. (2019);
Pinty et al. (1995); Tumolo and Bonaventura (2015). The
objective of these tests is twofold. First, we evaluate the sta-
bility and accuracy of numerical solutions obtained using
non-conforming meshes compared with those obtained
using uniform meshes. Second, we assess the computa-
tional cost carried by both set-ups and potential advan-
tages at a given accuracy level.

Discrete parameter choices for the numerical simula-
tions are associated with two Courant numbers; namely,
the acoustic Courant number C, based on the speed of
sound c, and the advective Courant number C,, based on
the magnitude of the local flow velocity u:

u=Tru—. ©)

Here, r is the polynomial degree used for the DG spa-
tial discretization, { is the minimum cell diameter of the
computational mesh, and At is the time step adopted for
the time discretization. We consider polynomial degree
r =4, unless stated differently. Wall boundary condi-
tions are employed for the bottom boundary, whereas
non-reflecting boundary conditions are required by the top
boundary and the lateral boundaries. For this purpose, we
introduce the following Rayleigh damping profile (Melvin
et al. 2019; Orlando et al. 2023):
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2\ z2-2r

where zg denotes the height at which the damping starts
and zr is the top height of the domain considered. Analo-
gous definitions apply for the two lateral boundaries. The
classical Gal-Chen height-based terrain-following coordi-
nate (Gal-Chen and Somerville 1975) is used to obtain a
terrain-following mesh in Cartesian coordinates.

A relevant diagnostic quantity to check that a cor-
rect orographic response is achieved is represented by the
vertical flux of horizontal momentum (henceforth “mo-
mentum flux”), defined as (Smith 1979)

m) = / pu’ (x, 2w (x, 2) dx. (7)

[s)

Here, u’ and w’ denote the deviation from the background
state of the horizontal and vertical velocity respectively.
Table 1 reports the parameters employed for the different
test cases.

3.1 | Linear hydrostatic flow over a hill

First, we consider a linear hydrostatic configuration e.g.

Giraldo and Restelli (2008); Orlando et al. (2023). The
bottom boundary is described by the function

hoo = — e ®)

1+ (ﬂ)

ac

TABLE 1
Test case At (s) Tt (hr) Domain (km x km)
LHMW 2.5 15 240 % 30
NLNHMW 1 5 40 X 20
BWS 0.75 3 220 X 25
T-REX 0.75 4 400 X 26

the so-called “versiera of Agnesi”, with h, being the height
of the hill and a. being its half-width. We take h. = 1m,
X, = 120km, and a, = 10 km. The initial state of the atmo-
sphere consists of a constant horizontal flow with u =
20m-s! and of an isothermal background profile with
temperature T = 250K and Exner pressure

= exp(—%z) )
P

with ¢, = Ry/(y — 1) denoting the specific heat at con-
stant pressure. In an isothermal configuration the
Brunt-Viisild frequency is given by N =g/(c,T)"/%
Hence, one can easily verify that

Na,.

u

> 1, (10)

meaning that we are in a hydrostatic regime (Giraldo and
Restelli 2008; Pinty et al. 1995). The computational mesh
is composed by N = 1,116 elements with four different
refinement levels (Figure 2). The finest level corresponds
to a resolution of 300m along x and of 62.5m along z,
whereas the coarsest level corresponds to a resolution of
2,400 m along x and of 500 m along z. From the linear the-
ory, the analytical momentum flux is given by Smith (1979)

mH = —%EsﬁsNhﬁ, (11)

with p, and us denoting the surface background density
and velocity respectively. The computed momentum flux

Model parameters for the two-dimensional test cases in Section 3; see main text for details.

Damping layer

x z 2At c Cu
(0, 80), (160,240) (15, 30) 0.3 3.66 0.23
(0, 10), (30, 40) (9,20) 0.15 2.16 0.13
(0, 30), (190,220) (20,25) 0.15 0.79 0.23
(0, 50), (350,400) (20, 26) 0.15 1.34 0.29

Note: The intervals where the damping layers are applied are in units of kilometres.
Abbreviations: BWS, Boulder windstorm (inviscid configuration); LHMW, linear hydrostatic mountain wave; NLNHMW, nonlinear non-hydrostatic mountain

wave; T-REX, Terrain-Induced Rotor Experiment, Sierra profile.

20-

FIGURE 2
hydrostatic flow over a hill;

Linear

non-conforming mesh.
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FIGURE 3 Linear 12
hydrostatic flow over a hill;

evolution of normalized 10
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FIGURE 4 Linear
hydrostatic flow over a hill at

t = Tt = 15 hr; numerical
solutions using a non-conforming
mesh (solid lines) and the finest
uniform mesh (dashed dotted
lines). Top: horizontal velocity
deviation; contours in
[-2.5,2.5] x 10~? m-s~! with a
5% 1073 m-s~! contour interval.
Bottom: vertical velocity;
contours in [—4,4] X 1072 m-s!

z (km)

with a 5x 10~ m-s~! contour

interval.
80 90 100 110 120 130 140 150 160
z
=
N
normalized by m!! approaches 1 as the simulation reaches A reference solution is computed using a uniform
the steady state (Figure 3). The momentum is correctly = mesh with the maximum resolution of the non-
transferred in the vertical direction, and no spurious oscil-  conforming mesh, namely a mesh composed by 200 ele-
lations arise at the interface between different mesh levels.  ments along the horizontal direction and 120 elements
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TABLE 2
flux, and wall-clock times (WT) for the uniform meshes and the non-conforming meshes.

Linear hydrostatic flow over a hill: horizontal resolution Ax, vertical resolution Az, 2 relative errors on the momentum

Uniform Non-conforming
N Ax (m) Az (m) m(z) error WT (s) AXpmin (M) AZmin (M) m(z) error WT (s) Speed-up
402 895.52 1250 6.10 x 1072 3050 1200 250 4.34%x1073 4210
504 952.38 937.5 1.96 X 1072 3180 600 125 2.34 %1073 6510
1,116 967.74 416.67 3.94 %1073 4470 300 62.5 2.53%x 1073 14800 8.9
24,000 300 62.5 — 131600 — — — —

Note: The speed-up is computed considering the same maximum spatial resolution; that is, comparing the WT of the finest uniform mesh and the WT of

the coarsest non-conforming mesh (bold WT; also see main text for further details).

Abbreviation: N, number of elements.

along the vertical one. A comparison of contour plots
for the horizontal velocity deviation and for the vertical
velocity shows an excellent agreement in the lee waves
simulation between the finest uniform mesh and the
non-conforming mesh (Figure 4).

In order to further emphasize the results obtained
with the use of the non-conforming mesh, we consider
a uniform mesh with the same number of elements
(62 x 18 = 1,116) of the non-conforming mesh. From a
quantitative point of view, we compute relative errors
with respect to the reference solution in the portion
of the domain Q = [80,160] km x [0,12] km (Table 2).
Moreover, we consider different configurations with
non-conforming meshes and we compare them with con-
figurations employing a uniform mesh using the same
number of elements. Non-conforming mesh simulations
significantly outperform uniform mesh simulations in
terms of accuracy at a given number of degrees of freedom.
At the finest 300 m horizontal resolution and 62.5 m verti-
cal resolution, the use of the non-conforming mesh leads
to a computational time saving of around 90% over the
corresponding uniform mesh (bold numbers in Table 2).
However, the present non-conforming mesh implementa-
tion is instead less competitive considering the wall-clock
time at a given number of elements. This is due to the fact
that, on non-conforming meshes, the condition number
of the linear systems resulting from the IMEX discretiza-
tion increases substantially, leading to a higher number
of iterations for the generalized minimal residual solver
(Du et al. 2009; Kamenski et al. 2014; Orlando et al. 2022).
Although some effective geometric multigrid precondi-
tioners are available for non-symmetric systems arising
from elliptic equations (Bramble et al. 1994; Esmaily
et al. 2018), their extension to hyperbolic problems and
their implementation in the context of the matrix-free
approach of the deal.II library is not straightforward and
will be the subject of future work.

3.2 | Nonlinear non-hydrostatic flow
over a hill

Next, we consider a non-hydrostatic regime for which

N
LONEY (12)
u

More specifically, we focus on a nonlinear non-hydrostatic
case (Orlando et al. 2023; Restelli 2007; Tumolo and
Bonaventura 2015). The bottom boundary is described
again by Equation (8), with h. = 450 m, x, = 20 km, and
a. = 1km. The initial state of the atmosphere is described
by a constant horizontal flow with u = 13.28 m-s~! and by
the following potential temperature and Exner pressure:

— 2

0 = Opef eXp<N?z>, (13)

fiete o lon(-52) 1)

D=1+ exp| ——z ) - 1], (14)
Cperefl\]z P g

with 6 = 273K and N =0.02s7!. The mesh is com-

posed by N =282 elements with three different res-
olution levels (Figure 5). The finest level corresponds
to a resolution of 208.33m along x and of 104.17m
along z, whereas the coarsest level corresponds to a
resolution of around 833.33m along x and of 416.67 m
along z.

A reference solution is computed using a uniform
mesh with 48 x 48 = 2,304 elements, which corresponds
to the finest resolution of the non-conforming mesh. A
comparison of contour plots for the horizontal veloc-
ity deviation and for the vertical velocity shows good
agreement between the finest uniform mesh and the
non-conforming mesh in the development of lee waves
(Figure 6). The use of the non-conforming mesh yields a
computational time saving of around 60% (bold numbers
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FIGURE 5 Nonlinear 20

non-hydrostatic flow over a 184

hill; non-conforming mesh.
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FIGURE 6 Nonlinear 15 T T
non-hydrostatic flow over a hill at
t = T; = 5 hr, computed on the
finest uniform mesh (solid lines)
and on a non-conforming mesh
(dashed -dotted lines). Top:
horizontal velocity deviation;
contours in the interval
[-7.2,9.0lm-s~ ! witha 1.16 m-s~!
interval. Bottom: vertical velocity;

z (km)

contours in the interval
[-4.2,4.0]m-s~! with a
0.586 m-s~! interval.

z (km)

in Table 3). In addition, we consider a mesh with uni-
form resolution and with the same number of elements
47 x 6 = 282 of the non-conforming mesh. We compare

the computed normalized momentum flux at ¢t = T¢ in
the reference configuration, in the non-conforming mesh
configuration, and in the configuration with a uniform
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T FIGURE 7 Nonlinear

non-hydrostatic flow over a
hill; comparison of normalized
momentum fluxatt = Ty = 5hr
obtained using a uniform mesh
at fine resolution (solid line), a
uniform mesh with the same
number of elements of the
non-conforming mesh (dashed
line), and the non-conforming
mesh (dots).

15 -
---Uniform 47 x6 elements
—Uniform 48 x48 elements
° Non-conforming
10
€
=
N
5 - -
0
-0.2 0 0.2 0.4 0.8 1
Momentum flux
TABLE 3

Nonlinear non-hydrostatic flow over a hill: horizontal resolution Ax, vertical resolution Az, I? relative errors on the

momentum flux, and wall-clock times (WT) for the uniform meshes and the non-conforming mesh.

Ny Ax (m) Az (m)
282 (uniform) 212.77 833.33
282 (non-conforming) 208.33 104.17
2304 (uniform) 208.33 104.17

m(z) error WT (s) Speed-up
2.31x 107! 4520

1.92 x 1072 9680 2.3

— 22500

Note: The speed-up is computed comparing the WT of the finest uniform mesh and the WT of the non-conforming mesh, which have the same resolution (bold

WT; also see main text for further details).
Abbreviation: N, number of elements.

mesh with the same number of elements of the
non-conforming mesh (Figure 7). In terms of relative error
with respect to the reference solution, the locally refined
non-conforming mesh outperforms the uniform mesh by
about an order of magnitude using the same number of
elements (Table 3). Analogous considerations to those
reported in Section 3.1 are valid for the computational
time.

3.3 | January 11,1972, Boulder
windstorm

Next, we consider the more realistic condition of the Jan-
uary 11, 1972, Boulder (Colorado) windstorm benchmark
(Doyle et al. 2000). This test case is particularly challeng-
ing because a complex wave-breaking response is estab-
lished aloft in the lee of the mountain. The initial condi-
tions are horizontally homogeneous and based upon the
upstream measurements at 1200 UTC, January 11, 1972,
Grand Junction, Colorado, as shown in Doyle et al. (2000).
The initial conditions contain a critical level near z =
21 km (Figure 8), which more realistically simulates the

stratospheric gravity-wave breaking (Doyle et al. 2000).
The pressure is computed from the hydrostatic balance;
namely:

p() = po em(—%/o % dS>, (15)

with py = 10 Pa. Linear interpolation is employed to eval-
uate both temperature and horizontal velocity.

The bottom boundary is described by Equation (8),
with h, = 2km, x, = 100 km, and a, = 10 km. We consider
two different computational meshes: a uniform mesh com-
posed of 120 x 60 = 7,200 elements (i.e., a resolution of
458.33m along the horizontal direction and of 104.17 m
along the vertical one), and a non-conforming mesh with
three different levels, composed of Ng = 1,524, with the
finest level corresponding to the resolution of the uniform
mesh.

The horizontal velocity and the potential temperature
computed at t = Tr by the IMEX-DG method using a uni-
form mesh are in reasonable agreement with the reference
results (Doyle et al. 2000), in particular for what concerns
the potential temperature (Figure 9). Numerous regions
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conditions. Top: horizontal
velocity. Bottom: temperature
(solid line) and pressure
(dashed line)
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of small-scale motion and larger high-frequency spatial
structures arise with respect to the other tests using the
uniform mesh, because of the lack of a subgrid eddy vis-
cosity. The qualitative behaviour of the simulation with the
uniform mesh and the one with the non-conforming mesh
isin good agreement, even though visible differences arise
in the deep regions of wave breaking in the stratosphere
(Figure 9). In terms of wall-clock time, the configuration
with the non-conforming mesh is about 65% computation-
ally cheaper than the configuration with the uniform mesh
(3.75 x 10* s vs. 1.37 x 10*s).

Following Doyle et al. (2011), we then compute the
momentum flux, Equation (7), using the mean value
of u and w to compute v’ and w'. A comparison at
final time of the vertical flux of horizontal momentum,
Equation (7), normalized by its values at the surface
obtained with the uniform mesh displays a reasonable
agreement between the two simulations, especially for z
above 12km (Figure 10). The discrepancy in the verti-
cal region between z = 7km and z = 12km is probably
due to the development of small-scale features and to the

230 240 250 260 270 280 290 300
T (K)

lack of subgrid eddy viscosity parametrization, as already
discussed for the contour plots.

Next, we repeat the simulations for this test case
including a simplified model for turbulent vertical
diffusion for NWP applications, originally pro-
posed in Louis (1979) and also discussed in Benard
et al. (2000); Bonaventura and Ferretti (2014); Girard and
Delage (1990). As commonly done in numerical models
for atmospheric physics, we resort to an operator splitting
approach. The diffusion model is treated with the implicit
part of the IMEX method, which corresponds to the
TR-BDF2 scheme (Hosea and Shampine 1996; Orlando
et al. 2022). The nonlinear diffusivity « has the form

% ()_u,% =12
0z 02

Here, [ is a mixing length and Ri is the Richardson number
given by

ou

- [F®D. (16)

. g 00/oz

=2 = 17
' %0 Jou/oz)? a7
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80 FIGURE 9 Boulder
70 windstorm test case numerical
60 results at t = Ty = 3 hr. Top:
uniform mesh. Bottom:
% non-conforming mesh.
40 Horizontal velocity (colours),
30 contours in the range
50 [—40,80] m-s~! witha 8 m-s~!
interval. Potential temperature
10 (dashed lines), contours in the
0 range [273,650] K with an 8K
—10 interval.
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25 3 T FIGURE 10 Boulder
—Uniform mesh windstorm test case;
° Non-conforming mesh comparison of normalized
20 7 momentum flux at t = Tf = 3hr
computed using the uniform
mesh (solid line) and the
_15F 7 non-conforming mesh (dots).
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with 6y denoting a reference temperature. Finally, the where
function F(Ri) is defined as p=-2,b=5 if Ri > 0, (19)
_1 _ . .
F(Ri) = (1 + bIRi])", (18) f=3b=20 ifRi<0.
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FIGURE 11 Boulder
windstorm test case with
turbulent vertical diffusion.
Top: uniform mesh. Middle:
coarse non-conforming mesh.
Bottom: fine non-conforming
mesh. Horizontal velocity
(colours), contours in the range
[—40, 80] m-s~! with an 8 m-s~!
interval. Potential temperature
(dashed lines), contours in the
range [273,650] K with an 8K
interval.
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We consider the uniform mesh with 120 x 60 = 7,200
elements and a coarse non-conforming mesh with
N = 1,524 elements already employed for the inviscid
case. In addition, we consider a fine non-conforming mesh
with three different refinement levels and N = 6,324

80 100 120 140 160 180 200 220
x (km)

elements. The fine resolution around the orography is of
229.17m along the horizontal direction and of 52.08 m
along the vertical one. We use a time step At = 0.375s,
corresponding to a maximum acoustic Courant number
C~0.79 and a maximum advective Courant number
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C, ~ 0.23. Finally, we take [ =100m and 6, = 273K in
Equation (16).

At t = Ty, numerical solutions computed using the
uniform mesh and the non-conforming mesh are in
good agreement for both the horizontal velocity and
the potential temperature, in particular for the finest
non-conforming mesh (Figure 11). In terms of wall-clock
time, a computational time saving of around 50% is
achieved with the coarse non-conforming mesh (bold
numbers in Table 4), whereas performance is less optimal
for the fine non-conforming mesh (see the discussion in
Section 3.1). Finally, a comparison at ¢t = T of the com-
puted momentum flux, Equation (7), normalized by its
values at the surface obtained with the uniform mesh sug-
gests that the results of the uniform mesh are approached
as long as the resolution of the non-conforming mesh
increases (Figure 12).

3.4 | Terrain-Induced Rotor Experiment
mountain wave

Next, we consider simulations of a flow over a steep
real orography (Doyle et al. 2011; Kiihnlein et al. 2013),

TABLE 4

as shown in Figure 13. The initial state is horizontally
homogeneous and it is based on conditions during Inten-
sive Observation Period 6 of the Terrain-Induced Rotor
Experiment (Doyle et al. 2011), as reported in Figure 14.
We consider a DG spatial discretization using degree
r =2 polynomials and three computational meshes:
a uniform mesh composed of 400 x 60 = 24,000 ele-
ments, corresponding to a resolution of 500m along
the horizontal direction and of 216.66 m along the ver-
tical direction, and two non-conforming meshes. The
coarsest non-conforming mesh consists of three dif-
ferent levels and Ng = 5,298 elements, whereas the
finest non-conforming mesh is obtained with a global
refinement of the coarsest non-conforming mesh, with
Nei = 21,792 elements (Figure 15). The finest level of the
coarsest non-conforming mesh corresponds to the reso-
lution of the uniform mesh. Hence, the fine resolution
around the orography for the finest non-conforming mesh
is 250 m along the horizontal direction and 108.33 m along
the vertical direction. We take [ = 100m and 6, = 273K
in Equation (16). The vertical turbulent diffusion model is
necessary to obtain a stable numerical solution.

Both in the horizontal velocity and in the potential
temperature variables, the IMEX-DG numerical solutions

Boulder windstorm test case with turbulent vertical diffusion: horizontal resolution Ax, vertical resolution Az, and

wall-clock times (WT) for the uniform mesh and the non-conforming meshes.

N Ax (m)
7200 (uniform) 458.33
1524 (non-conforming) 458.33
6324 (non-conforming) 229.17

Az (m) WT (s) Speed-up
104.17 119,000

104.17 51,900 2.3

52.08 160,000

Note: The speed-up is computed considering the same maximum spatial resolution; that is, comparing the WT of the finest uniform mesh and the WT of the

non-conforming mesh (bold WT; also see main text for further details).
Abbreviation: N, number of elements.

25 g : ,
: — Uniform mesh (7,200 elements)
° Non-conforming mesh (1,524 elements)
20 | - -'Non-conforming mesh (6,324 elements) =
15
E
~
10
FIGURE 12 Boulder
windstorm test case;

5 comparison of normalized
momentum fluxatt = Ty = 3hr
between the uniform mesh

0 | | (solid line), the fine (dashed

-0.2 0 0.2 0.4 0.8 1 line), and the coarse (dots)

Momentum flux

non-conforming meshes.
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FIGURE 13 4 '
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Experiment mountain-wave 25| i
test case, initial conditions.
Top: horizontal velocity.
Bottom: density (solid line) and 20 7
pressure (solid line). -
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at t = Tr display reasonable agreement between results  based on non-conforming meshes also in the case of a real-
obtained using the uniform mesh and the non-conforming istic, steep orography (Figure 16). Some differences arise
meshes, showing the robustness of the proposed approach  in the structures of the horizontal velocity, but, unlike the
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FIGURE 15 Terrain-Induced Rotor Experiment mountain wave, non-conforming mesh.

previous test case, in this benchmark (Doyle et al. 2011)
there is low predictability of key characteristics such as
the strength of downslope winds or the stratospheric
wave breaking. Moreover, the change in the resolution
of the topography has been shown to modify the rep-
resentation of mountain-wave-driven middle-atmosphere
processes (Kanehama et al. 2019). The contour plots show
overall a reasonable agreement with those reported in
Doyle et al. (2011). Although we have employed the same
range values adopted in Doyle et al. (2011), one can eas-
ily notice that a lower minimum value of the velocity
around x =~ 220 km and z ~ 11 km is achieved for the finest
non-conforming mesh. This is likely due to the use of a
high-order method with low numerical dissipation and to
the increased resolution. For the sake of completeness, we
have also run a simulation up to t = 5hr and no numerical
instability arises.

A far-field comparison of the momentum flux,
Equation (7), confirms the low predictability of large-scale
orographic features for this test case (Figure 17). On the
other hand, one can easily notice that the momentum flux
profiles shown in Figure 17 yield values of the same order
of magnitude as those obtained with the models compared
in Doyle et al. (2011). More specifically, the BLASIUS
model employed in Doyle et al. (2011) predicts the lowest
values, whereas the ASAM model predicts the highest
ones. The values obtained in our framework, especially
those established with the finest non-conforming mesh,
are close to the mean values of all the models compared in
Doyle et al. (2011). Similar to Section 3.3, a computational
time saving of around 25% is achieved with the coarse
non-conforming mesh (bold numbers in Table 5), whereas
performance is less optimal for the fine non-conforming
mesh.

3.5 | A 3D medium-steep bell-shaped hill

Finally, we consider a 3D configuration focusing on the
flow over a bell-shaped hill discussed, for example, in
Melvin et al. (2019); Orlando et al. (2023), which we
briefly recall here for the convenience of the reader. The
computational domain is Q = (0, 60) X (0, 40) X (0, 16) km.

The mountain profile is a 3D extension of the “versiera of
Agnesi” and can be defined as

e (52) (322

with h, = 400m, a, = 1km, x, = 30 km, and y, = 20 km.
The buoyancy frequency is N = 0.01 s7!, whereas the back-
ground velocity is u = 10m-s~'. Hence, since Na./u =
1, we are in a non-hydrostatic regime. The background
potential temperature and Exner pressure profiles are
those reported in Section 3.2 with 6. = 293.15K. The
final time is Tt = 10 hr. The damping layer is applied in
the topmost 6 km of the domain and in the first and last
20 km along the lateral boundaries with 2At = 1.2. We take
polynomial degree r = 4 and we consider three different
computational meshes: a coarse uniform mesh composed
by 30 x 20 x 8 = 4,800 elements (i.e., a resolution of 500 m
along all the directions), a fine uniform mesh composed
by 60 X 40 X 16 elements (i.e. a resolution of 250 m), and
a non-conforming mesh with three different levels, com-
posed of N = 1,958, with the finest level corresponding
to the resolution of the finest uniform mesh (Figure 18).
The time step is At =2s, yielding a maximum acous-
tic Courant number C = 2.75 and a maximum advective
Courant number C, ~ 0.13 for the finest uniform mesh.
The contour plots of the vertical velocity on an x-y slice
placed atz = 800 m and on an x—z slice placed aty = 20 km
show once more the accuracy and the robustness of simu-
lations employing non-conforming meshes (Figure 19). No
spurious wave reflections arise at the internal boundaries
that separate regions with different resolutions. Moreover,
one can easily notice that the change of resolution affects
the development of lee waves. However, it is sufficient
to employ a higher resolution only around the orogra-
phy, whereas larger scales along all the directions can
be resolved at a much coarser resolution. The use of a
non-conforming mesh yields a computational time saving
of around 15% with respect to the coarse uniform mesh
and of around 93% with respect to the fine uniform mesh
(Table 6).

hx,y) = (20)

3/2°
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FIGURE 16 50

Terrain-Induced Rotor 40

Experiment mountain-wave

test case at T; = 4 hr. Top: 30

uniform mesh. Middle: 20
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4 |

We have presented a

CONCLUSIONS

systematic assessment

of

non-conforming meshes for the simulation of flows over
orography using an IMEX-DG numerical model for the

compressible Euler equations. For this purpose, we have
exploited the adaptation framework provided by the
open-source numerical library deal.IT (Arndt et al. 2023;
Bangerth et al. 2007). The proposed approach allows
local mesh refinement both in the horizontal and vertical
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30 FIGURE 17
—Uniform mesh (24,000 elements) Terrain-Induced Rotor
25 |- ='Non-conforming mesh (5,298 elements) i | Experiment mountain-wave

o Non-conforming mesh (21,792 elements) test case, comparison of

@ BLASIUS (Doyle et al., 2011)
201 —-ASAM (Doyle et al., 2011)
--—Mean Doyle et al., (2011)

momentum flux at
7] t = Tt = 4 hr between the
uniform mesh (solid line), the

finest non-conforming mesh
(dashed line), and the coarsest
non-conforming mesh (dots).
Results obtained in Doyle et
al. (2011) are also reported.
- BLASIUS model (squares),
ASAM model (crossed line),
mean of all the models (dashed
6 -5 4 -3 ) -1 0 1 dotted line).

Momentum flux %108

TABLE 5 Terrain-Induced Rotor Experiment mountain-wave test case: horizontal resolution Ax, vertical resolution Az, and wall-clock
times (WT) for the uniform mesh and the non-conforming meshes.

Ny Ax (m) Az (m) WT (s) Speed-up
24,000 (uniform) 500 216.66 10,900

5298 (non-conforming) 500 216.66 8390 1.3

21,792 (non-conforming) 250 108.33 16,500

Note: The speed-up is computed considering the same maximum spatial resolution; that is, comparing the WT of the uniform mesh and the WT of the coarsest
non-conforming mesh (bold WT; also see main text for further details).
Abbreviation: Nj, number of elements.

directions without the need to apply relaxation procedures

45 50, along the interfaces between the coarse and fine meshes.
28 At a given accuracy level, the use of non-conforming
26 meshes enables a significant reduction in the number
24 of computational degrees of freedom with respect to

uniform resolution meshes. The numerical results show
that stable simulations are produced with no spuri-
o ous reflections at internal boundaries separating mesh
14 regions with different resolutions. In addition, accurate
12 values for the momentum flux are retrieved in robust
p 5 non-conforming simulations for increasingly realistic
orography profiles.
% (km) Numerical simulations with non-conforming meshes
1o 2 % % 2 ° %0 can use substantially higher resolution only near the oro-
8 8 graphic features, correctly reproducing the larger scale,
far-field orographic response, while using meshes that
4 are relatively coarse over most of the domain. In a con-
2 text of spatial resolutions approaching the hectometric
o %5 > Fy ) y o0 scale in NWP models, these results support the use of
x (km) locally refined, non-conforming meshes as a reliable and
effective tool to greatly reduce the dependence of atmo-
spheric models on orographic wave drag parametrizations.
Indeed, the results obtained in our framework envis-
age the use of locally refined, non-conforming meshes

6
z (km)

FIGURE 18 Three-dimensional medium-steep bell-shaped
hill test case, non-conforming mesh. Left: x-y slice at z = 800 m.
Right: x-z slice at y = 20 km.
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FIGURE 19 Three-dimensional medium-steep bell-shaped hill test case at Ty = 10 hr; vertical velocity contours. (a, ¢c) Comparison

between the fine uniform mesh (solid lines) and the coarse uniform mesh (dashed dotted lines) for x—y slice at z = 800 m in the range

[-1.5,1.3] m-s~! with a 0.1 m-s~! interval. (¢, d) Comparison between the fine uniform mesh (solid lines) and the non-conforming mesh

(dashed dotted lines) for x—z slice at y = 20 km in the range [—2.25,2] m-s~! with a 0.2 m-s~! interval.

TABLE 6
test case: resolution A and wall-clock times (WT) for the uniform

Three-dimensional medium-steep bell-shaped hill

meshes and the non-conforming mesh.

Ny A (m) WT (s) Speed-up
4800 (uniform) 500.0 3020

38,400 (uniform) 250.0 36500

1958 (non-conforming) 250.0 2560 14

Note: The speed-up is computed considering the same maximum spatial
resolution; that is, comparing the WT of the finest uniform mesh and the WT
of the non-conforming mesh (bold WT; also see main text for further details).
Abbreviation: N, number of elements.

as a reliable, effective tool to push NWP and climate
models out of the “grey zone” with respect to the res-
olution of orographic effects (Kanehama et al. 2019;
Sandu et al. 2019).

In future developments, we will implement specific
multilevel preconditioners in the matrix-free approach of
the deal.Il library in order to get the full benefit from
the significant reduction in number of degrees of free-
dom allowed by the use of non-conforming meshes for
more realistic configurations. We also plan to consider
the inclusion of more complex physical phenomena, such
as more sophisticated turbulence models, water vapour

transport, and adiabatic heating, as well as exploring
physics—-dynamics coupling, in order to demonstrate that
all the typical features of a high-resolution NWP model
can be included in the proposed adaptive framework with-
out loss of accuracy. Moreover, the proper thermodynamic
description of atmosphere dynamics is becoming a matter
of deep investigation (Staniforth 2022). The assumption of
an ideal gas for dry air and water vapour (Staniforth and
White 2019) is not always a proper one, especially if phase
changes occur. Recent work by two of the authors (Orlando
et al. 2022) can handle more general equations of state for
real gases, thus paving the way to the inclusion of effects
due to water vapour and moist species in a more realistic
framework.

AUTHOR CONTRIBUTIONS

Giuseppe Orlando: conceptualization; investigation;
methodology; resources; software; validation; visual-
ization; writing — original draft; writing — review and
editing. Tommaso Benacchio: conceptualization; inves-
tigation; supervision; visualization; writing - review and
editing. Luca Bonaventura: conceptualization; fund-
ing acquisition; investigation; methodology; supervision;
visualization; writing - review and editing.

85U8017 SUOWILLIOD BA11E81D) 3|qeot[dde auy) Aq peueob ke S9o1e YO ‘8sn JO s3I 10} ARIqiT8UIIUQ AB|IM UO (SUOTHIPUOD-PUB-SWISH W00 A8 | 1M Ake.q)1|Bu 1 [UO//:SANY) SUORIPUOD pUe SWie | 81 8eS " [F20z/2T/c0] Uo ARigiTauliuo A(Im el uelyood Aq 6£8t b/z00T 0T/10p/wod A8 | Afe.d 1 pul U0 SIewL//Sdny W0} pepeojumod ‘S9/ ‘vZ0Z ‘X0L8LL7T



4768 Quarterly Journal of the ERMets

ORLANDO ET AL.

Royal Meteorological Society

ACKNOWLEDGEMENTS

We thank the reviewers for their very useful and con-
structive comments, which have greatly helped in
improving the quality of the presentation of our results.
The simulations have been partly run at CINECA
thanks to the computational resources made available
through the ISCRA-C projects FEMTUF — HP10CTQ8X7
and FEM-GPU - HP10CQYKJ1 and through the
EuroHPC JU Benchmark And Development project
EHPC-BEN-2024B03-045. This work has been partly sup-
ported by the ESCAPE-2, European Union EXCELLENT
SCIENCE - Future and Emerging Technologies (FET)
programme (grant agreement no. 800897). We would also
like to thank Dr Christian Kiihnlein, Dr James Doyle,
and Dr SaSa GaberSek for providing the data for the
Terrain-Induced Rotor Experiment mountain wave.

DATA AVAILABILITY STATEMENT
Data will be made available upon reasonable request.

ORCID
Giuseppe Orlando

-4231

Tommaso Benacchio
-7167

Luca Bonaventura
-0217

https://orcid.org/0000-0002-7119
https://orcid.org/0000-0002-0732

https://orcid.org/0000-0002-1994

REFERENCES

Arndt, D., Bangerth, W., Bergbauer, M., Feder, M., Fehling, M.,
Heinz, J. et al. (2023) The deal.II library, Version 9.5. Journal of
Numerical Mathematics, 31, 231-246.

Arnold, D., Brezzi, F., Cockburn, B. & Marini, L. (2002) Unified
analysis of discontinuous Galerkin methods for elliptic problems.
SIAM journal on numerical analysis, 39, 1749-1779.

Baldauf, M. & Pril, F. (2023) Further developments in the Discontin-
uous Galerkin based dynamical core for ICON (BRIDGE). 45th
EWGLAM/30th SRNWP meeting.

Bangerth, W., Hartmann, R. & Kanschat, G. (2007) deal II: A
general-purpose object-oriented finite element library. ACM
Transactions on Mathematical Software, 33, 24-51.

Benard, P., Marki, A., Neytchev, P. & Prtenjak, M. (2000) Stabilization
of nonlinear vertical diffusion schemes in the context of NWP
models. Monthly Weather Review, 128, 1937-1948.

Blaise, S., Lambrechts, J. & Deleersnijder, E. (2016) A sta-
bilization for three-dimensional discontinuous Galerkin dis-
cretizations applied to nonhydrostatic atmospheric simulations.
International Journal for Numerical Methods in Fluids, 81,
558-585.

Bonaventura, L. (2000) A semi-implicit, semi-Lagrangian scheme
using the height coordinate for a nonhydrostatic and fully elas-
tic model of atmospheric flows. Journal of Computational Physics,
158, 186-213.

Bonaventura, L. & Ferretti, R. (2014) Semi-Lagrangian methods for
parabolic problems in divergence form. SIAM Journal of Scientific
Computing, 36, A2458-A2477.

Bramble, J., Kwak, D. & Pasciak, J. (1994) Uniform conver-
gence of multigrid v-cycle iterations for indefinite and non-
symmetric problems. SIAM journal on numerical analysis, 31,
1746-1763.

Casulli, V. & Greenspan, D. (1984) Pressure method for the numer-
ical solution of transient, compressible fluid flows. International
Journal for Numerical Methods in Fluids, 4, 1001-1012.

Coté, J. (1997) Variable resolution techniques for weather prediction.
Meteorology and Atmospheric Physics, 63, 31-38.

Daniels, M., Lundquist, K., Mirocha, J., Wiersema, D. & Chow, F.X.
(2016) A new vertical grid nesting capability in the Weather
Research and Forecasting (wrf) Model. Monthly Weather Review,
144, 3725-3747.

Davies, L. & Brown, A. (2001) Assessment of which scales of orog-
raphy can be credibly resolved in a numerical model. Quarterly
Journal of the Royal Meteorological Society, 127, 1225-1237.

Davies, T., Staniforth, A., Wood, N. & Thuburn, J. (2003) Validity of
anelastic and other equation sets as inferred from normal-mode
analysis. Quarterly Journal of the Royal Meteorological Society,
129, 2761-2775.

Dolejsi, V. (2024) Non-hydrostatic mesoscale atmospheric model-
ing by the anisotropic mesh adaptive discontinuous Galerkin
method. Tech. Rep., arXiv:2401.10662.

Doyle, J., Durran, D., Chen, C., Colle, B., Georgelin, M., Grubisic, V.
et al. (2000) An intercomparison of model-predicted wave break-
ing for the 11 January 1972 Boulder windstorm. Monthly Weather
Review, 128, 901-914.

Doyle, J.D., Gabersek, S., Jiang, Q., Bernardet, L., Brown, J.,
Dornbrack, A. et al. (2011) An intercomparison of T-REX
mountain-wave simulations and implications for mesoscale pre-
dictability. Monthly Weather Review, 139, 2811-2831.

Du, Q., Wang, D. & Zhu, L. (2009) On mesh geometry and stiff-
ness matrix conditioning for general finite element spaces. SIAM
Jjournal on numerical analysis, 47, 1421-1444.

Diiben, P. & Korn, P. (2014) Atmosphere and ocean modeling on grids
of variable resolution—a 2D case study. Monthly Weather Review,
142, 1997-2017.

Dumbser, M. & Casulli, V. (2016) A conservative, weakly nonlin-
ear semi-implicit finite volume scheme for the compressible
Navier-Stokes equations with general equation of state. Applied
Mathematics and Computation, 272, 479-497.

Esmaily, M., Jofre, L., Mani, A. & Iaccarino, G. (2018) A scalable geo-
metric multigrid solver for nonsymmetric elliptic systems with
application to variable-density flows. Journal of Computational
Physics, 357, 142-158.

Fahs, H. (2015) High-order discontinuous Galerkin method for
time-domain electromagnetics on non-conforming hybrid
meshes. Mathematics and Computers in Simulation, 107,
134-156.

Fritts, D., Lund, A., Lund, T. & Yudin, V. (2022) Impacts of
limited model resolution on the representation of mountain
wave and secondary gravity wave dynamics in local and global
models. 1: Mountain waves in the stratosphere and meso-
sphere. Journal of Geophysical Research: Atmospheres, 127,
€2021JD035990.

Gal-Chen, T. & Somerville, R. (1975) On the use of a coordinate trans-
formation for the solution of the Navier-Stokes equations. Journal
of Computational Physics, 17, 209-228.

Giraldo, F. (2020) An Introduction to Element-Based Galerkin Meth-
ods on Tensor-Product Bases. Cham: Springer Nature Switzerland.

85U8017 SUOWILLIOD BA11E81D) 3|qeot[dde auy) Aq peueob ke S9o1e YO ‘8sn JO s3I 10} ARIqiT8UIIUQ AB|IM UO (SUOTHIPUOD-PUB-SWISH W00 A8 | 1M Ake.q)1|Bu 1 [UO//:SANY) SUORIPUOD pUe SWie | 81 8eS " [F20z/2T/c0] Uo ARigiTauliuo A(Im el uelyood Aq 6£8t b/z00T 0T/10p/wod A8 | Afe.d 1 pul U0 SIewL//Sdny W0} pepeojumod ‘S9/ ‘vZ0Z ‘X0L8LL7T


https://orcid.org/0000-0002-7119-4231
https://orcid.org/0000-0002-7119-4231
https://orcid.org/0000-0002-7119-4231
https://orcid.org/0000-0002-0732-7167
https://orcid.org/0000-0002-0732-7167
https://orcid.org/0000-0002-0732-7167
https://orcid.org/0000-0002-1994-0217
https://orcid.org/0000-0002-1994-0217
https://orcid.org/0000-0002-1994-0217

ORLANDO ET AL.

Quarterly Journal of the EIRMets 4769

Giraldo, F., Kelly, J. & Constantinescu, E. (2013) Implicit-explicit for-
mulations of a three-dimensional nonhydrostatic unified model
of the atmosphere (NUMA). SIAM Journal of Scientific Comput-
ing, 35,1162-1194.

Giraldo, F. & Restelli, M. (2008) A study of spectral element and dis-
continuous Galerkin methods for the Navier-Stokes equations in
nonhydrostatic mesoscale atmospheric modeling: Equation sets
and test cases. Journal of Computational Physics, 227, 3849-3877.

Girard, C. & Delage, Y. (1990) Stable schemes for nonlinear verti-
cal diffusion in atmospheric circulation models. Monthly Weather
Review, 118, 737-745.

Harrison, E. & Elsberry, R. (1972) A method for incorporating nested
finite grids in the solution of systems of geophysical equations.
Journal of the Atmospheric Sciences, 29, 1235-1245.

Heinz, J., Munch, P. & Kaltenbacher, M. (2023) High-order
non-conforming discontinuous Galerkin methods for the acous-
tic conservation equations. International Journal for Numerical
Methods in Engineering, 124, 2034-2049.

Hellsten, A., Ketelsen, K., Sithring, M., Auvinen, M., Maronga, B.,
Knigge, C. et al. (2021) A nested multi-scale system implemented
in the large-eddy simulation model PALM model system 6.0.
Geoscientific Model Development, 14, 3185-3214.

Hosea, M. & Shampine, L. (1996) Analysis and implementation of
TR-BDF2. Applied Numerical Mathematics, 20, 21-37.

Jablonowski, C., Oehmke, R. & Stout, Q. (2009) Block-structured
adaptive meshes and reduced grids for atmospheric general circu-
lation models. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 367,4497-4522.

Kamenski, L., Huang, W. & Xu, H. (2014) Conditioning of finite ele-
ment equations with arbitrary anisotropic meshes. Mathematics
of computation, 83, 2187-2211.

Kanehama, T., Sandu, I., Beljaars, A., van Niekerk, A. & Lott, F.
(2019) Which orographic scales matter most for medium-range
forecast skill in the Northern Hemisphere winter? Journal of
Advances in Modeling Earth Systems, 11, 3893-3910.

Klemp, J. & Durran, D. (1983) An upper boundary condition per-
mitting internal gravity wave radiation in numerical mesoscale
models. Monthly Weather Review, 111, 430-444.

Klemp, J. & Lilly, D. (1978) Numerical simulation of hydrostatic
mountain waves. Journal of the Atmospheric Sciences, 35, 78-107.

Kopera, M. & Giraldo, F. (2014) Analysis of adaptive mesh refinement
for IMEX Discontinuous Galerkin solutions of the compress-
ible Euler equations with application to atmospheric simulations.
Journal of Computational Physics, 275, 92-117.

Kiihnlein, C., Dornbrack, A. & Weissmann, M. (2013)
High-resolution Doppler LIDAR observations of transient
downslope flows and rotors. Monthly weather review, 141,
3257-3272.

Li, J., Fang, F., Steppeler, J., Zhu, J., Cheng, Y. & Wu, X. (2021)
Demonstration of a three-dimensional dynamically adaptive
atmospheric dynamic framework for the simulation of mountain
waves. Meteorology and Atmospheric Physics, 133, 1627-1645.

Lindzen, R. & Fox-Rabinovitz, M. (1989) Consistent vertical and
horizontal resolution. Monthly Weather Review, 117, 2575-2583.

Long, D. & Thuburn, J. (2011) Numerical wave propagation on
non-uniform one-dimensional staggered grids. Journal of Com-
putational Physics, 230, 2643-2659.

Louis, J. (1979) A parametric model of vertical eddy fluxes in the
atmosphere. Boundary Layer Meteorology, 17, 197-202.

Royal Meteorological Society

Maffre, P., Ladant, J., Donnadieu, Y., Sepulchre, P. & Goddéris, Y.
(2018) The influence of orography on modern ocean circulation.
Climate Dynamics, 50, 1277-1289.

Mahalov, A. & Moustaoui, M. (2009) Vertically nested nonhydro-
static model for multiscale resolution of flows in the upper tropo-
sphere and lower stratosphere. Journal of Computational Physics,
228,1294-1311.

McFarlane, N. (1987) The effect of orographically excited grav-
ity wave drag on the general circulation of the lower strato-
sphere and troposphere. Journal of the Atmospheric Sciences, 44,
1775-1800.

McTaggart-Cowan, R., Girard, C., Plante, A. & Desgagné, M. (2011)
The utility of upper-boundary nesting in NWP. Monthly Weather
Review, 139, 2117-2144.

Melvin, T., Benacchio, T., Shipway, B., Wood, N., Thuburn, J.
& Cotter, C. (2019) A mixed finite-element, finite-volume,
semi-implicit discretization for atmospheric dynamics: Cartesian
geometry. Quarterly Journal of the Royal Meteorological Society,
145, 2835-2853.

Miller, M., Palmer, T. & Swinbank, R. (1989) Parametrization and
influence of subgridscale orography in general circulation and
numerical weather prediction models. Meteorology and Atmo-
spheric Physics, 40, 84-109.

Mirocha, J. & Lundquist, K. (2017) Assessment of vertical mesh
refinement in concurrently nested large-eddy simulations using
the Weather Research and Forecasting Model. Monthly Weather
Review, 145, 3025-3048.

Miiller, A., Behrens, J., Giraldo, F. & Wirth, V. (2013) Comparison
between adaptive and uniform Discontinuous Galerkin simula-
tions in dry 2D bubble experiments. Journal of Computational
Physics, 235, 371-393.

Orlando, G. (2023) Modelling and Simulations of Two-Phase Flows
Including Geometric Variables. Ph.D. thesis, Milano: Politecnico
di Milano. Available from: http://hdl.handle.net/10589/198599

Orlando, G., Barbante, P. & Bonaventura, L. (2022) An efficient
IMEX-DG solver for the compressible Navier-Stokes equations
for non-ideal gases. Journal of Computational Physics, 471,
111653.

Orlando, G., Benacchio, T. & Bonaventura, L. (2023) An IMEX-DG
solver for atmospheric dynamics simulations with adaptive mesh
refinement. Journal of Computational and Applied Mathematics,
427,115124.

Orlando, G., Benacchio, T. & Bonaventura, L. (2024) Impact of
Curved Elements for Flows Over orography with a Discontinuous
Galerkin Scheme. https://arxiv.org/abs/2404.09319

Palmer, T., Shutts, G. & Swinbank, R. (1986) Alleviation of a system-
atic westerly bias in general circulation and numerical weather
prediction models through an orographic gravity wave drag
parametrization. Quarterly Journal of the Royal Meteorological
Society, 112, 1001-1039.

Phillips, N. & Shukla, J. (1973) On the strategy of combining coarse
and fine grid meshes in numerical weather prediction. Journal of
Applied Meteorology and Climatology, 12, 763-770.

Pinty, J., Benoit, R., Richard, E. & Laprise, R. (1995) Simple tests
of a semi-implicit semi-Lagrangian model on 2D mountain wave
problems. Monthly Weather Review, 123, 3042-3058.

Prusa, J. & Smolarkiewicz, P. (2003) An all-scale anelastic model for
geophysical flows: Dynamic grid deformation. Journal of Compu-
tational Physics, 190, 601-622.

85U8017 SUOWILLIOD BA11E81D) 3|qeot[dde auy) Aq peueob ke S9o1e YO ‘8sn JO s3I 10} ARIqiT8UIIUQ AB|IM UO (SUOTHIPUOD-PUB-SWISH W00 A8 | 1M Ake.q)1|Bu 1 [UO//:SANY) SUORIPUOD pUe SWie | 81 8eS " [F20z/2T/c0] Uo ARigiTauliuo A(Im el uelyood Aq 6£8t b/z00T 0T/10p/wod A8 | Afe.d 1 pul U0 SIewL//Sdny W0} pepeojumod ‘S9/ ‘vZ0Z ‘X0L8LL7T


http://hdl.handle.net/10589/198599
http://hdl.handle.net/10589/198599
https://arxiv.org/abs/2404.09319
https://arxiv.org/abs/2404.09319

4770 Quarterly Journal of the ERMets

ORLANDO ET AL.

Royal Meteorological Society

Restelli, M. (2007) Semi-Lagrangian and Semi-Implicit Discontinuous
Galerkin Methods for Atmospheric Modeling Applications. Ph.D.
thesis, Milano: Politecnico di Milano.

Sandu, I, van Niekerk, A., Shepherd, T., Vosper, S., Zadra, A.,
Bacmeister, J. et al. (2019) Impacts of orography on large-scale
atmospheric circulation. Nature Climate and Atmospheric Sci-
ence, 2, 10.

Skamarock, W. & Klemp, J. (1993) Adaptive grid refinement for
two-dimensional and three-dimensional nonhydrostatic atmo-
spheric flow. Monthly Weather Review, 121, 788-804.

Skamarock, W., Klemp, J., Duda, M., Fowler, L., Park,
S.-H. & Ringler, T. (2012) A multiscale nonhydrostatic
atmospheric model wusing centroidal Voronoi tessela-
tions and C-grid staggering. Monthly Weather Review,
140, 3090-3105.

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Liu, Z., Berner, J.
et al. (2021) A description of the advanced research WRF model
version 4.3. Tech. rep., NCAR, NCAR/TN-556+ STR.

Skamarock, W., Oliger, J. & Street, R. (1989) Adaptive grid refine-
ment for numerical weather prediction. Journal of Computa-
tional Physics, 80, 27-60.

Skamarock, W., Snyder, C., Klemp, J. & Park, S. (2019) Vertical reso-
lution requirements in atmospheric simulation. Monthly Weather
Review, 147, 2641-2656.

Smith, R. (1979) The influence of mountains on the atmosphere.
Advances in Geophysics, 21, 87-230.

Staniforth, A. (2022) Global Atmospheric and Oceanic Modelling:
Fundamental Equations. Cambridge, UK: Cambridge University
Press.

Staniforth, A. & White, A. (2019) Forms of the thermodynamic
energy equation for moist air. Quarterly Journal of the Royal
Meteorological Society, 145, 386-393.

Steppeler, J., Hess, R., Doms, G., Schittler, U. & Bonaventura, L.
(2003) Review of numerical methods for nonhydrostatic weather
prediction models. Meteorology and Atmospheric Physics, 82,
287-301.

Tang, Y., Lean, H. & Bornemann, J. (2013) The benefits of the Met
Office variable resolution NWP model for forecasting convection.
Meteorological Applications, 20, 417-426.

Tissaoui, Y., Marras, S., Quaini, A., de Brangaca Alves, F. & Giraldo,
F. (2023) A non-column based, fully unstructured implementa-
tion of Kessler’s microphysics with warm rain using continuous
and discontinuous spectral elements. Journal of Advances in Mod-
eling Earth Systems, 15, €2022MS003283.

Tumolo, G. & Bonaventura, L. (2015) A semi-implicit, semi-
Lagrangian discontinuous Galerkin framework for adaptive
numerical weather prediction. Quarterly Journal of the Royal
Meteorological Society, 141, 2582-2601.

Vichnevetsky, R. (1987) Wave propagation and reflection in irregular
grids for hyperbolic equations. Applied Numerical Mathematics,
3,133-166.

Weller, H. (2009) Predicting mesh density for adaptive modelling of
the global atmosphere. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 367,
4523-4542.

Yelash, L., Miiller, A., Lukacova-Medvid'ova, M., Giraldo, F. & Wirth,
V. (2014) Adaptive discontinuous evolution Galerkin method for
dry atmospheric flow. Journal of Computational Physics, 268,
106-133.

Zhang, D., Chang, H., Seaman, N., Warner, T. & Fritsch, J. (1986)
A two-way interactive nesting procedure with variable terrain
resolution. Monthly Weather Review, 114, 1330-1339.

How to cite this article: Orlando, G., Benacchio,
T. & Bonaventura, L. (2024) Robust and accurate
simulations of flows over orography using
non-conforming meshes. Quarterly Journal of the
Royal Meteorological Society, 150(765), 4750-4770.
Available from: https://doi.org/10.1002/qj.4839

85U8017 SUOWILLIOD BA11E81D) 3|qeot[dde auy) Aq peueob ke S9o1e YO ‘8sn JO s3I 10} ARIqiT8UIIUQ AB|IM UO (SUOTHIPUOD-PUB-SWISH W00 A8 | 1M Ake.q)1|Bu 1 [UO//:SANY) SUORIPUOD pUe SWie | 81 8eS " [F20z/2T/c0] Uo ARigiTauliuo A(Im el uelyood Aq 6£8t b/z00T 0T/10p/wod A8 | Afe.d 1 pul U0 SIewL//Sdny W0} pepeojumod ‘S9/ ‘vZ0Z ‘X0L8LL7T



	Robust and accurate simulations of flows over orography using non-conforming meshes 
	1 INTRODUCTION
	2 THE MODEL EQUATIONS
	2.1 Non-conforming meshes

	3 NUMERICAL RESULTS
	3.1 Linear hydrostatic flow over a hill
	3.2 Nonlinear non-hydrostatic flow over a hill
	3.3 January 11, 1972, Boulder windstorm
	3.4 Terrain-Induced Rotor Experiment mountain wave
	3.5 A 3D medium-steep bell-shaped hill

	4 CONCLUSIONS

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

