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ABSTRACT Framing methods are used to break a data stream into packets in most digital communications.
The use of a reserved symbol to denote the frame boundaries is a popular practice. This end-of-frame (EOF)
marker should be removed from the packet content in a reversiblemanner.Many strategies, such as the bit and
byte stuffing processes employed by high-level data link control (HDLC) and Point-to-Point Protocol (PPP),
or the Consistent Overhead Byte Stuffing (COBS), have been devised to perform this goal. These bit and
byte stuffing algorithms remove the reserved EOF marker from the packet payload and replace it with some
extra information that can be used to undo the action later. The amount of data added is called overhead and
is a figure-of-merit of such algorithms, together with the encoding and decoding speed. Multi-COBS, a new
byte stuffing algorithm, is presented in this paper. Multi-COBS provides concurrent encoding and decoding,
resulting in a performance improvement of factor four or eight in common word-based digital architectures
while delivering an average and worst-case overhead equivalent to the state-of-the-art. On the reference
28-nanometer field programmable gate array (FPGA) (Artix-7), Multi-COBS achieves a throughput of
6.6 Gbps, instead of 1.7 Gbps of COBS. Thanks to its parallel elaboration capability, Multi-COBS is ideal
for digital systems built in programmable logic as well as modern computers.

INDEX TERMS Byte stuffing, FPGA, framing, packet, transmission.

I. INTRODUCTION
Most digital communications are nowadays performed using
packet-oriented protocols. As an example, communication
over the largest computer network, Internet, is performed
using the Internet Protocol (IP, either version 4 [1] or 6 [2])
which is packet oriented. This is also true on a smaller scale,
for example over point-to-point protocols like PCI-Express
[3] or Universal Serial Bus [4] (USB). A packet-oriented
protocol organizes the data in units called packets which are
formatted and typically composed by control information and
the actual data that should be transmitted, the payload [1].

Multiplexing multiple transmissions on the same physical
link (e.g., by inserting a tag in the control data [1]), imple-
menting an error detection mechanism (e.g., by inserting a
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checksum in the control data [5]), recovering communication
after an error (since the corruption on one packet usually does
not affect subsequent packets), implementing a flow-control
mechanism, and so on are all advantages of organizing data
in packets.

Most digital communication physical links transmit data
represented in bits, often grouped in octet (bytes) or in
multiple of 8 bits. This introduces a fundamental problem:
since both the payload and the control data are represented
using bits, and since data can be arbitrary, a packet-oriented
protocol should implement some mechanism to distinguish
between the actual payload and the control information
added [6].

A common technique, used for example by the aforemen-
tioned IPv4, is to reserve a fixed number of bytes at the
beginning and at the end of the packet, which contains the
control information. However, to implement such technique,

78848 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-9728-1942
https://orcid.org/0000-0002-8056-1283
https://orcid.org/0000-0002-9135-2639
https://orcid.org/0000-0002-4273-2774
https://orcid.org/0000-0001-7635-5308
https://orcid.org/0000-0002-6084-3953
https://orcid.org/0000-0001-9824-1950


E. Ronconi et al.: Multi-COBS: A Novel Algorithm for Byte Stuffing at High Throughput

it is necessary to provide some mechanism to separate the
packets, i.e. to mark where a packet ends and where the next
begins. Such mechanism is called framing [1].

Many of the currently used framing techniques, introduced
in the Section § II, have been developed in the last decades
and are tailored to be efficiently executed on microcontroller
and microprocessor based architectures, addressing almost
the entire use cases in that period of time. For this reason,
those algorithms can not be easily parallelized to exploit the
concurrent computing capabilities of modern programmable
logic (PL) devices.

On the other hand, nowadays an increasing amount
of applications (e.g, [7]–[9]) require the communication
between programmable logic devices and a microcontroller
or microprocessor. Common scenarios include PL devices
that send data to a workstation where they are further
elaborated [8], [9] or PL devices that can be configured
from software running on a computer [7]. For such rea-
son, a wide number of communication frameworks for PL-
microprocessor links have been recently developed [10], [11].
Such systems rely on framing techniques that should be
capable of being executed on both PL and microprocessor-
based devices.

In this paper, a novel framing algorithm calledMulti-COBS
is presented. The Multi-COBS is based on the existing Con-
sistent Overhead Byte Stuffing [12] (COBS) algorithm and
can be used to frame packets using an end of frame marker.
While COBS can only elaborate one byte every cycle, Multi-
COBS has overcome this constraint and can now elaborate
multiple bytes per cycle, resulting in a significant increase in
encoding and decoding throughput. Multi-COBS was created
to have efficient encoding and decoding implementations in
both programmable logic and software, and the reference
implementation given in Section § VI boosts throughput from
1.7 to 6.6 Gbps in a 32-bit system and 13.2 Gbps in a
64-bit system. This remarkable increment of performance is
provided at the cost of slightly higher latency and algorithm
complexity with respect to current state of art framing tech-
niques.

First, a brief description of COBS is given, then in Section
§ IV the Multi-COBS algorithm is described and analyzed
in terms of performance from a theoretical point of view.
In Section § V is described and analyzed a possible PL
implementation, then the experimental performance of such
implementation is analyzed in Section § VI.

II. STATE OF THE ART
For encoding variable-sized frames, there are a number
of well-known algorithms. Prepending the payload length
before each frame, for example, is a simple technique that
allows the decoder to simply separate the received transmis-
sion into the various frames when sent over an ideal commu-
nication channel. However, it is clear that this technique is
unsuitable for real-world applications: data can be lost, dis-
torted, or spurious one can appear during transmission [13],
and if the payload size varies or the prepended data becomes

garbled, the receiver would never be able to recover its
decoding process. Furthermore, because the payload length
must be prepended, such a solution necessitates knowing
the precise data size prior to the start of the transmission,
which necessitates buffering the entire payload and causes
unpredictable latency.

Reserving a special code termed an end-of-frame (EOF)
marker, which will be put after each frame to signal its
end, is a more resilient framing mechanism [14]. In some
situations, such as the transmission of ASCII-encoded text
over a byte-oriented channel, the EOF marker can be set to
a byte value that never appears in the data, ensuring that
the marker byte is solely used to mark the frame end. When
transmitting arbitrary data, however, it is not possible to select
a reserved value that will not appear in the payload.

To overcome this difficulty, various methods have been
developed: given a specified reserved code (the EOFmarker),
they erase all occurrences of that code from the data and
add some extra information that will subsequently be used
to rebuild the original payload. The length of such excess
information is referred to as overhead, and it is one of the
algorithms’ figures of merit.

In paragraph II-A HDLC and PPP algorithms are pre-
sented, while in II-B the COBS is briefly described and the
three algorithms are compared in II-C.

A. CURRENT BIT- AND BYTE-STUFFING ALGORITHMS
The so-called bit-stuffing and byte-stuffing methods are pro-
cedures for removing a reserved code from a data stream in
a reversible manner. They both work on the same principle:
whenever the reserved code is detected in the input data, it is
updated at the bit or byte level, and extra data is crammed
near the code to keep track of the changes [15].

For example, in the high-level data link control [14]
(HDLC) protocol, packets are delimited using the byte
0x7E = 0b01111110 and the delimiter is removed from
the payload using the following bit oriented procedure: when
five consecutive ones occurs in the data, an extra zero bit is
stuffed right after the fifth one. Since the EOF marker con-
tains six consecutive ones, but the data is modified inserting
a zero after a sequence of five ones, the EOF maker does
not appear in the encoded data. To undo this operation, the
decoder discards every zero bit that follows a sequence of five
ones, while if a sequence of six ones followed by a zero is
met, it is interpreted as frame terminator. Using this protocol,
the decoder will never receive more than six consecutive ones
except in case of errors.

Bit-stuffing algorithms are efficient in terms of overhead,
but they are difficult to implement in software on modern
processors, which often require byte (or multiple byte) reg-
isters, operations, and memory access. When single bits are
filled, padding to byte is required; additionally, detecting
a bit sequence that spans multiple bytes requires multiple
operations, whereas a simple byte comparison normally just
requires one.
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TABLE 1. Minimum, maximum, and average overheads for PPP, HDLC,
and COBS [12]. Among the algorithms shown, COBS has the lowest
worst-case and average overhead.

Instead, other protocols like Point-to-Point Protocol [16]
(PPP) use a byte oriented procedure to remove the frame
delimiter from the input data. The PPP framing algorithm
defines two special values, the EOF marker 0x7E (the same
used by HDLC) and a so-called escape byte 0x7D. In order
to remove all EOF marker occurrences from the data, two
substitutions are performed: each 0x7E byte is replaced by
the two bytes sequence 0x7D0x5E and each 0x7D byte
is replaced by the two bytes sequence 0x7D0x5D. Each
substitution will insert a two bytes sequence that starts with
the escape character. To undo this operation, the decoder
should take action every time 0x7D is received: the escape
character should be discarded, and the following byte should
be replaced according to the scheme 0x5E → 0x7E and
0x5D→ 0x7D.
The presented bit and byte stuffing algorithms adds a vari-

able overhead: they can add no overhead at all if the reserved
characters never appears in the input data, but in the worst
case the overhead can be up to 20% in case of HDLC (since
five bits are encoded using six bits) and 100% in case of PPP
(since every byte is encoded using two bytes) [12].

B. CONSISTENT OVERHEAD BYTE STUFFING
The COBS [12] is another algorithm used to remove a
reserved code from a stream. COBS main feature is the lim-
ited worst case overhead: 0.4% of payload size (for payloads
with length� 254). The algorithm is extensively described
and analyzed in [12] and the following is just a brief illustra-
tion of its encoding and decoding procedure, needed for the
description of theMulti-COBS presented in the next sections.
COBS works in bytes, thus it’s expected that the reserved
code to remove is zero (0x00) in the following. To delete
any code from the stream, the same approach can be used
with small tweaks or data pre-processing (e.g., apply a bitwise
XOR between input bytes and the desired reserved code).

1) COBS ENCODING
To begin, a 0x00 byte is prepended to the input data, and a
‘‘virtual’’ 0x00 is appended. As the last encoding process,
the appended virtual zero is dropped; it is not required, but it
simplifies the subsequent explanation. The actual implemen-
tation does not save it in memory but acts as if it is present.

After this operation, starting from the first byte (the
prepended zero) and proceeding to the end of data, each zero
byte in position i is replaced with the value v = min(k −
i, 255) where k is the position of the next zero byte. More-

FIGURE 1. Example of COBS encoding. The input sequence is 264 bytes
long and has 254 non-zero bytes from position 9 to 264 included (in
figure, nz indicates non-zero bytes). Step 1 prepends and appends zero
bytes to the original data, step 2 replaces the first three zeros, step
3 replaces the zero in position 9 with 0xFF and stuffs an extra zero byte in
position 264. Finally, the zero in position 264 is replaced, the appended
zero now in position 267 is discarded, and the encoding is complete. The
original data was 264 bytes in length, whereas the encoded data is
266 bytes long. The overhead for this payload is 2 bytes, or 0.76 percent
of the original payload size.

FIGURE 2. Optimization of a COBS specific case. The first line displays the
input data, which includes the last zero at position 5, or 254 bytes before
the payload ends. The encoding without the exception for optimizing
frames is shown in the second line, which ends with a chunk of exactly
254 non-zero bytes. The third line shows the identical payload encoded
with such optimization, which saves one byte.

over, if v = 255, an extra 0x00 byte is stuffed in position
i + 255. Such stuffed 0x00 byte will be then substituted
using the same rules. The last appended zero should not be
substituted; instead, it should be discarded as the final action.
Figure 1 depicts the encoding of an example sequence.

A small exception can be added to the described encoding
procedure to slightly decrease average and worst case over-
head: if the last 0x00 byte to be encoded is located exactly
254 bytes before the end of payload, it will be substituted with
value 255 accordingly with the previous paragraph. However,
in this scenario, an extra 0x00 byte is not required. Figure 2
depicts an example of this optimization’s functioning.

2) COBS DECODING
This three-step cyclic operation is performed until there are
no more bytes to process to decode a COBS message:

1) The first byte in the decoding queue is removed from
the queue and its value x stored in an auxiliary register;

2) x − 1 bytes are removed from the decoding queue and
put in the output queue;

3) If x < 255 then a 0x00 byte is put in the output queue.

C. COMPARISON
Table 1 shows the contrast between the given HDLC (bit-
oriented) and the byte-oriented PPP and COBS. COBS was
created to restrict the worst-case overhead and cuts it from
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100% of PPP to 0.4 percent. COBS not only lowers the worst-
case scenario, but also lowers the average overhead from
0.78 percent of PPP to 0.23 percent. COBS, on the other hand,
introduces a minor increase in latency [12].

III. MULTI-COBS STRATEGY
Multi-COBS is a novel byte stuffing technique developed to
overcome the throughput bottleneck of one byte per clock
cycle introduced by COBS in modern systems. This section
gives an overview of the problem and possible trivial solu-
tions for concurrent framing (III-A). Then, Multi-COBS
encoding and decoding procedures are described respectively
in paragraphs paragraphs III-B and paragraph III-C.

Next sections will then analyze the novel algorithm from
a theoretical point of view (Section § IV) and experimental
benchmarks are presented in paragraph paragraph VI-B.

A. PARALLEL FRAMING
Multi-COBS was created with the goal of framing data sent
across a bidirectional point-to-point communication chan-
nel between an FPGA and an x86_64 workstation. For this
application, an algorithm with fairly efficient encoding and
decoding routines that is straightforward to implement in
both software and hardware should be identified. For rea-
sons described in II-A, the algorithm should not be bit-
oriented, whereas for programmable logic implementation,
an approach that can be easily parallelized is more suited to
better use the spatial computing capabilities of such devices.
Furthermore, a minimal worst-case overhead saves resources
such as buffers, which should always be allocated to accom-
modate the worst-case scenario in hardware, even if it is
extremely unusual.

COBS has a low overhead, but it only processes sin-
gle bytes and cannot be easily parallelized, so a hardware
encoder’s throughput can’t exceed one byte per clock cycle.
On the other hand, typical in-chip communication buses such
as Advanced eXtensible Interface [17] (AXI) or Avalon [18]
are synchronous parallel buses with a data width of usually
32 or 64 bits, to allow higher data rate without increasing
the clock frequency. In such a design, a byte-oriented COBS
encoder would function as a bottleneck unless it was clocked
at a frequency at least four or eight times higher than the
parallel bus (respectively for 32 and 64 bits wide buses),
which is not always practicable.

COBS might possibly be extended to work with larger
words rather than bytes. For example, using n-bytes wide
elements, COBS can be modified to prepend and append a
n-bytes zero-word to the input sequence and then replace each
i-th zero-word with v = min(k − i, 28n − 1) obtaining an
encoding similar to COBS.

However, such solution would require buffering, in the
worst case, 28n − 2 elements which is usually not feasible
for width of 32 an 64 bit.

Moreover, if such stream is then transferred over a byte-
oriented protocol, such as USB 3 or RS 232, if a single byte
is lost and thus the words misaligned, the decoding can not

FIGURE 3. Example of fatal framing corruption when transmitting
zero-word-terminated word sequence over a non-ideal byte-oriented link.
On the left part, is shown the original sequence of seven 32-bit word, one
word per line. There are two frames composed respectively of two and
three words, both terminated with the word 0x00000000. Right column
shows the same sequence after the red byte has been lost during the
transmission. All following EOF marker (in green) are corrupted.

be recovered since all the following EOF marker will be
corrupted, as shown in Figure 3.

B. MULTI-COBS ENCODING
Multi-COBS works with streams of words, each of which is
made up of n concatenated bytes. From a theoretical stand-
point, Multi-COBS operates on bytes sequences with a length
that is an integer multiple of n, but because the encoder will
most likely be supplied via an n-bytes wide parallel bus in
practice, it is generally more easy to think of it as a word-
based method. Multi-COBS accepts an n-bytes-wide words
sequence of length l as input and produces an n-bytes-wide
words sequence of length L > l with no zero words (e.g.
0x00000000) as output. To address the byte alignment
issue outlined in III-A and Figure 3,Multi-COBS ensures that
each full byte of the output sequence is not 0x00.
The output sequence contains all the information needed to

revert this operation and re-obtain the original input sequence.
The constraint that both the input and the output sequences
have a length in bytes that is multiple of n is important,
because it allows both the input and the output to be trans-
ferred on a n-bytes wide parallel bus.

Considering n-bytes-wide input sequence I = wi of length
l, where the i-th word can be expressed as concatenation of n
bytes wi = b0i b

1
i · · · b

n−1
i , it is possible to write the sequence

as

I = (w0,w1, · · · ,wl−1) , (1)

=

(
b00, b

1
0, · · · , b

n−1
0 , b01, b

1
1, · · · , b

n−2
l−1 , b

n−1
l−1

)
. (2)

The Multi-COBS algorithm works by slicing the input
sequence into n sub-sequences of bytes S0,S1, · · · ,Sn−1
according to the scheme

Si =
(
bi0, b

i
1, · · · , b

i
l−1

)
. (3)

Take a look at Figure 4 for an example of visually depicted
slicing.

After this operation each sub-sequence Si is encoded
independently using the COBS algorithm. Ei will represent
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FIGURE 4. Multi-COBS input sequence slicing example. The input
sequence composed of 32-bits words I = (0x434F5649,

0x44003139,0xD0004DED) is visually represented by writing one word
per line. Since the input words are composed by 32 bits i.e. 4 bytes, the
input sequence is sliced in 4 sub-sequences S0, · · · , S3. The sequence
S2 = (0x56,0x31,0x4D) has been highlighted with a dashed box to make
it more clear.

the COBS-encoded sequence associated with Si. Despite
Si sequences being all l-bytes long, the COBS encoded
sequences potentially have different lengths since the COBS
encoding introduces an overhead that is dependent on its input
data. Each sub-sequence Ei is then padded – if needed – to the
same length by appending one or more 0x01 bytes at the end
of each sequence, except the longest one. Adding 0x01 at the
end of the encoded sequence maintains the COBS encoding
valid: such bytes will be interpreted by the decoder as extras
zeros. This last padding operation will guarantee that all the
Ei sequences have now the same length L, thus the total
number of bytes in such sequences is an integer multiple of
n and we can find a way to merge them into a single word
sequence.

All the bytes sub-sequences Ei =
(
Bi0,B

i
1, · · · ,B

i
L−1

)
are merged into the Multi-COBS output sequence O =

(W0,W1, · · · ,WL−1), where each word is defined as the
concatenation Wi = B0i B

1
i · · ·B

n−1
i and the Multi-COBS

encoding process is complete. Since all the sub-sequences Ei
do not contain any 0x00 byte (thanks to COBS encoding),
by construction it can be seen that output sequence do not
contain any word composed by only zero bytes (i.e. Wi 6= 0
for each 0 ≤ i < L).

C. MULTI-COBS DECODING
The Multi-COBS decoding technique begins by slicing the
input sequence in the same way as the encoding phase. The
inverse COBS method is then used to decode each sub-
sequence separately. Some sub-sequences may have been
padded during the encoding phase by appending one or
more 0x01 bytes, resulting in an extra zero at the end
of the decoded sequence. However, since the encoded sub-
sequences have been padded to match the longest one,
there is always at least one encoded sub-sequence which
have not been padded and thus will be decoded to its
original form. Extra zeros can then be discarded by trim-
ming all the decoded sub-sequences to the length of the
shortest one.

Finally, decoded and trimmed sub-sequences can be
merged into a unique sequence of words as it has been previ-
ously described for the encoding phase.

FIGURE 5. Multi-COBS encoding example. The input 32-bit word
sequence is shown on the left side, one word per line for a total of
255 words. Vertical columns represent the sub-sequences Si and 0x00
bytes in each sub-sequence are highlighted in red. In the middle part,
each sub-sequence has been encoded with COBS. Sub-sequences E0, E1
and E2 are 257 bytes long while the sequence E1 is 256 bytes long.
According to Multi-COBS encoding, the sequence E1 has been padded to
257 bytes by appending 0x01 (in bold) and the final result is shown on
the right part of the image. The output, on the right, is in fact a
32-bit-words sequence with length 257 (two words of overhead). The
decoding procedure of the same data is shown in Figure 6.

FIGURE 6. Multi-COBS decoding example. It is represented the encoded
sequence previously utilized in the Figure 5 example on the left side.
In the middle, the inverse COBS algorithm was used to decode each
encoded sub-sequence separately. Notice that, due to earlier padding
during the encoding method, an extra zero (in bold) has been inserted to
the sub-sequence in the dashed rectangle. Finally, the longest sequence
is shortened, and the decoded payload is displayed on the right side,
which is identical to the original.

D. COBS AND MULTI-COBS COMPARISON
Because each sub-sequence can be encoded or decoded
independently of the others, Multi-COBS uses n COBS
encoders/decoders that handle data concurrently. Multi-
COBS should, in theory, guarantee an n-fold increase in
throughput over COBS encoding/decoding. In practice, some
additional logic is necessary to execute the padding and trim-
ming, thus the actual throughput may be lower than antici-
pated. In VI-B, real-world benchmarks are reported.

E. FRAMING
Multi-COBS removes all the occurrences of the code 0 from a
words sequence. After this operation, the 0 word can be used
as a separator to mark the end of each words sequence when
they are sent over a serial medium.

Moreover, it is clear from the previous sections that after
Multi-COBS encoding not only zero words are not present,
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but each word does not contain any zero byte, i.e. if Wi =

B0i B
1
i · · ·B

n−1
i then

Bji 6= 0x00 for each 0 ≤ i < l and 0 ≤ j < n, (4)

where l is the length of the output word sequence. It is possi-
ble to take an advantage of this property if the framing of the
encoded sequence should be sent over a byte-oriented link.
In this case, it is not necessary to insert a whole zero word to
separate the frames, but a single zero byte is sufficient since
it is guaranteed that it will not appear in the payload. This
also addresses the byte misalignment problem previously
presented in III-A.

Multi-COBS can be also used in case a lower-level byte
framing is not available. Until now, it has been assumed that
the underlying medium is capable of transmit whole bytes
and that bit-to-byte alignment is never broken during the
transmission, but this may not be guaranteed over some serial
protocols. In this case, we can again exploit the property (4):
a Multi-COBS encoded stream does not contain more than
fourteen consecutive zeros (in case of adjacent 0x80 0x01
bytes) thus it is possible to use a one followed by fifteen zeros
i.e.,

0b1000000000000000,

to mark the end of frame without ambiguity.

IV. THEORETICAL ANALYSIS
It is interesting to evaluate the Multi-COBS algorithm in
terms of overhead (i.e. the size of the extra information added)
and to analyze how it compares with COBS and with the
aforementioned HDLC and PPP solutions. The best, worst,
and average overhead for both COBS and Multi-COBS are
examined in the following sections.

A. BEST-CASE OVERHEAD
1) COBS
When it comes to COBS, a byte is always prepended, regard-
less of the input data. The best case is represented by a
payload in which zero bytes are so frequent that no sequence
of 254 or more non-zero bytes is present. In this case, the
prepended byte is the only byte added to the sequence. Thus,
the best case overhead for COBS is one byte, regardless of
the payload size.

2) MULTI-COBS
When a sequence of l words is encoded using Multi-COBS,
if and only if each sub-sequence COBS encoding incurs in
the best-case overhead described in the previous paragraph,
each sub-sequence increases its length by exactly one byte.

In this case, all COBS encoded sub-sequences have a
length of l + 1 bytes and are merged in the output word
sequence without padding. Thus, in this case the output
sequence is exactly l + 1 words long and the overhead is one
word (n bytes).
This represents the best-case overhead of Multi-COBS:

even if a single sub-sequence grows by x > 1 bytes, then

all sub-sequences will be padded to l+x bytes and the output
word sequence will have length l + x > l + 1 words.

B. WORST-CASE OVERHEAD
1) COBS
After prepending a byte, the COBS algorithm adds an extra
overhead byte for each sequence of 254 non-zero bytes fol-
lowed by another byte. If the 254 non-zero sequence is not
followed by another byte (i.e. if it is the last payload byte)
then the overhead byte it is not inserted. The worst case is
then represented by an input sequence composed only by non
zero bytes.

If the worst case payload is shorter than 255 byte (including
no-payload frames) the overhead is exactly one byte.

If the worst case payload has a lengthmultiple of 254 bytes,
l = 254 · m, the overhead will be 1+ m− 1. The first +1 is
due to the prepended byte, while the last−1 is due to the fact
that the last 254 non-zero byte sequence will not cause the
insertion of an extra byte.

In general, for a payload that has a length l > 0 that is not
an integer multiple of 254 bytes, the overhead is 1+

⌊ l
254

⌋
=⌈ l

254

⌉
. The following is a summary of the above:

COBS overheadwc =

 1 if l = 0⌈
l

254

⌉
if l > 0

(5)

=

⌈
l

254

⌉
≈

l
254

if l�254 bytes (6)

that is a worst-case overhead of 1/254 ≈ 0.4% of the payload
size for sufficiently large frames (l � 254 bytes).

2) MULTI-COBS
Multi-COBS has the worst-case overhead if at least one
COBS-encoded sub-sequence has the worst overhead. All
sub-sequences will be padded tomatch the longest one, which
will reach overhead of (expressed in words)

Multi-COBS overheadwc =

 1 if l = 0⌈
l

254

⌉
if l > 0

(7)

≈
l

254
if l � 254words. (8)

This shows how the Multi-COBS worst-case overhead is
in fact the same of COBS: 1/254 ≈ 0.4% of the payload size
for sufficiently large frames (l � 254 words).

C. AVERAGE OVERHEAD
1) COBS
COBS average payload-relative overhead for long packets
(l � 254 bytes) has been calculated in [12]:(∑254

i=1 i · p(i)
)
+ 255 · (255/256)254(∑254

i=1 i · p(i)
)
+ 254 · (255/256)254

− 1, (9)
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where the function p(x) is defined as the probability of receiv-
ing a sequence of x − 1 non-zero bytes followed by a zero:

p(x) =
(
255
256

)x−1
·

1
256

.

The average overhead is equal to 0.2295% of the payload
size.

2) MULTI-COBS
The Multi-COBS overhead expressed in words is x =
max (e0, e1, · · · , en−1), where ei is the overhead (the extra
size) of the COBS-encoded i-th sub-sequence, expressed in
bytes. The max () operator takes into account the padding
operation that is performed by Multi-COBS encoder. While
best- and worst-case overhead are the same for COBS and
Multi-COBS, we expect higher average overhead for Multi-
COBS, because the Multi-COBS overhead is determined by
the sub-sequence that expanded the most during encoding.

The expected overhead x of Multi-COBS encoding of a
sequence with l words (each word n-bytes long) is then:

x̄ = E [max (e0, e1, · · · , en−1)] . (10)

The probability that Multi-COBS overhead is equal or less
than j is

P (x ≤ j) = [P (e ≤ j)]n , (11)

because each encoded sub-sequence must have an overhead
of less than or equal to j for this to happen. We also know that
P (x ≤ 0) = 0 since there is at least one word of overhead and
also P

(
x ≤

⌈ l
254

⌉)
= 1, since the overhead can never exceed

the worst case overhead calculated in IV-B2.
With this information it is possible to evaluate

P (x = j) = P (x ≤ j)− P [x ≤ (j− 1)] . (12)

Finally, the expected Multi-COBS overhead can be calcu-
lated by definition as

E [x] =

j=
⌈

l
254

⌉∑
j=1

j · P (x = j) . (13)

However, one crucial component is missing: in order to
calculate the average Multi-COBS overhead the probability
distribution of COBS overhead P (e ≤ j) should be known.
While the average COBS overhead for a random input
sequence has been calculated in [12] (0.2295% of the payload
size), no information about its probability density is available.

3) COBS OVERHEAD PROBABILITY DISTRIBUTION
We can model the encoder as a finite-state machine (FSM)
to calculate the probability distribution of COBS encoding
for an input sequence of l bytes. The FSM has l states
q0, q1, · · · , ql−1. Our goal is to count how many overhead
bytes are added, thus we’ll look for 254 non-zero bytes
followed by additional byte sequences. Each state does so by

keeping track of two values: the current size of overhead and
the number of consecutive non-zero bytes received.

Let’s encode such a state with pair (a, b):

(a, b) = q255(a−1)+b. (14)

Before receiving the first byte, the system starts in the state
q0 = (1, 0) since we have already accumulated an overhead
byte, but no non-zero byte have been encoded. After process-
ing the first byte, the state may have changed to q1 = (1, 1)
if a non-zero byte has been processed, or remained in q0 if
processed a zero byte.When starting from state q1, processing
another byte can cause a jump from q1 to q2 (if byte is non-
zero) or to q0 (if byte is zero). The pattern is repeated until
q254 is reached, in particular for all 0 ≤ i < 254 from the state
qi two jumps are possible: toward qi+1 with probability 255/256

or toward q0 with probability 1/256. When the FSM reaches
state q254 = (1, 254), any other encoded byte (either zero
or non-zero) will increase the overhead to two bytes. In fact,
if another byte is encoded after the state q254, a sequence
of 254 non-zero bytes followed by another byte has been
encoded. Moreover, if in state q254 a zero byte is received,
the state will change to (2, 0) = q255, otherwise the received
non-zero byte is potentially the first byte of the next non-zero
sequence, leading to a jump to state (2, 1) = q256.
It is possible to summarize as follows: for each state qi

where i 6= 254+ k · 255∀k ∈ N it is possible to jump either
to state qi+1 if non-zero byte is received, or to jump back to
state q255·bi/255c if a zero byte is received:

P
(
qn+1 = qi+1|qn = qi

)
= 255/256, (15)

P
(
qn+1 = q255·bi/255c|qn = qi

)
= 1/256. (16)

Moreover, for each state qi where i = 254 + k · 255∀k ∈
N it is possible to jump either to state qi+1 if a zero byte is
received, or to state qi+2 if a non-zero byte is received:

P
(
qn+1 = qi+1|qn = qi

)
= 1/256, (17)

P
(
qn+1 = qi+2|qn = qi

)
= 255/256. (18)

It can be noticed that the probability of the next state qn+1

depends only on the current state qn: the model satisfies the
Markov property.

It is possible to calculate the transition square-matrix T
where each element ti,j (located at i-th row and j-th column)
is defined as the probability of jumping to state qj from state
qi:

ti,j = P
(
qn+1 = qj|qn = qi

)
. (19)

It follows that the elements of T n represents the probability,
starting from i, of ending up being in state j after n jumps:

P
(
qn = qj|q0 = qi

)
=
(
T n
)
i,j . (20)

In case of the COBS encoder, the starting state is always
q0 = qi, so the only interesting part is the first row of matrix
T n which represents the probability of ending up in each state
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FIGURE 7. Modeling the encoding of up to 508 bytes with COBS encoding
using a state diagram. The pair (current overhead bytes, non-zero
counter) is reported at the bottom of each state. This diagram can model
the encoding of up to 508 bytes, for this reason the state will never
exceed q509. So, to respect the law of total probability, there is only one
(never executed) jump with probability 1 from state q509 to q509. In the
left column are represented states with only one byte of overhead, on the
right state with two bytes of overhead.

after encoding n bytes. Summing up the first 255 elements
(from q0 to q254) of such row will result in the probability
of having a single byte of overhead; summing up the first
510 elements (from q0 to q509) will result in the probability
of having an overhead less than or equal to two bytes, etc.
In general, the probability of overhead less than j bytes is:

P (e ≤ j) =
255·j−1∑
i=0

(
T n
)
0,i . (21)

During real calculations, a matrix T large enough to
include all the attainable states should be employed. It can be
verified that after encoding l bytes, the state can not exceed
q⌊ l−1

254

⌋
+l

so it is sufficient to construct the T matrix with

a size
(⌊

l−1
254

⌋
+ l + 1

)
×

(⌊
l−1
254

⌋
+ l + 1

)
. Calculation of

TABLE 2. Relative average overhead (%) for the same number of bytes
encoded with COBS or Multi-COBS, rearranged in 32 or 64 bit words. The
minimal extra overhead introduced by Multi-COBS is more than
compensated by its throughput gain.

average overhead of COBS for sequences with finite length of
l-bytes are reported in Table 2 along with calculation, using
equations (11) and (13), of Multi-COBS expected overhead.
From such table it can be seen thatMulti-COBSmaintains the
overhead (for large packets) well beyond 0.5%while offering
a remarkable throughput.

Figure 8 reports the overhead probability distributions cal-
culated for a fixed stream length for both COBS and Multi-
COBS (32 and 64 bit). As expected, the best and worst
case are equal when the same number of ‘‘elements’’ (words
or bytes) are encoded, but the average overhead is shifted
towards the worst case in Multi-COBS. Wider words are
sliced in a higher number of sub-sequences which will be
padded to the longest one, leading to higher average over-
head. In fact, the plot shows that 64 bit Multi-COBS have
higher average overhead than 32 bit Multi-COBS.

D. LATENCY
The somewhat significant latency during the encoding pro-
cess is one disadvantage that Multi-COBS inherited from
COBS. In fact, Multi-COBS should wait until the first
encoded byte is available for all n encoded sub-sequences
before producing the first encoded word. However, to pro-
duce such bytes it is necessary to analyze – in the worst case
of all non-zero sub-sequences – up to 254 words.

COBS and Multi-COBS have substantially higher latency
than HDLC, which can produce each output bit by reading
only one bit, or PPP, which can produce each output byte by
reading only one byte. A summary of all figures of merit of
PPP, HDLC, COBS and Multi-COBS is reported in Table 3.

On the other hand, Multi-COBS decoding does not require
lookahead an thus does not introduce latency.

As previously stated, the slightly higher latency is the
drawback of Multi-COBS with respect to HDLC and PPP.
However the 254 clock cycles latency translates to less than
1µs latency if the encoder is clocked at 400 MHz (maximum
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FIGURE 8. Overhead probability distribution when encoding
4096 bytesusing COBS or 4096 words using Multi-COBS (with 32 bit and
64 bit words). The vertical red line represents the average of the
distribution mean, that is the expected value of overhead.

TABLE 3. Overhead comparison. Even if Multi-COBS overhead is slightly
larger than COBS, it performs very well with respect to PPP and HDLC in
both average and worst case.

working frequency will be later discussed in VI-B). Such
small latency is often negligible with respect to the physi-
cal medium latency. Moreover, many applications where a
large quantity of data should be transmitted, benefit from an
increased throughput regardless of the introduced latency.

V. COBS AND MULTI-COBS HARDWARE
IMPLEMENTATION
COBS algorithm have been public for more than twenty
years and many hardware [19] and software [20] implemen-
tations are available. COBS or COBS-like protocols have
been used successfully in several programmable logic archi-
tectures [21], [22].

FIGURE 9. Working principle of the Multi-COBS hardware encoder.

Multi-COBS encoding and decoding is relatively easy to
implement if a COBS encoding/decoding logic is already
available.

A. MULTI-COBS ENCODING
By splitting the parallel bus into multiple 8-bit parallel buses,
the slicing operation may be accomplished easily in hard-
ware. Then, in parallel, n COBS encoders can be created,
each synchronized with the same clock as the input paral-
lel bus. The bytes should be concatenated back into words
after this stage. To produce the output word, n bytes from
each COBS encoder must be read in parallel to form the
concatenation operation. Because the COBS overhead varies
by sub-sequence, a FIFO between the COBS encoders and
the ‘‘concatenation’’ stage is required to hold the variation in
sub-sequence overhead over time.

In particular, each FIFO should be large enough to accom-
modate the difference between the sub-sequence with less
overhead and the one with most, which in the worst case is
(from Equation 7 and IV-A):

COBS overheadwc − COBS overheadbc =
⌈

l
254

⌉
− 1.

(22)

Moreover, when aCOBS encoder detects the end of stream,
a multiplexer injects the byte 0x01 to pad each encoded
sub-sequence to the same length. When all COBS encoders
signal end of stream, the Multi-COBS encoder has finished
encoding the current frame and the EOF is asserted.

B. MULTI-COBS DECODING
Multi-COBS decoding is quite similar to the encoder: n
COBS decoders are instantiated and process the encoded
stream in groups of n bytes per clock cycle. Also in this case,
the logic has to take into account the padding of each encoded
sub-sequence: when at least one COBS decoder detects the
end of frame all other bytes before the EOF are discarded
from each sub-sequence.

VI. EXPERIMENTAL RESULTS AND PERFORMANCE
To benchmark Multi-COBS performance, the presented
architecture have been successfully implemented on
Xilinx’s Artix-7 and Kintex Ultrascale FPGAs both with
speed grade -2. In the following paragraphs are reported the
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TABLE 4. COBS and Multi-COBS encoder (n = 4) resource utilization on
xc7a100tftg256 FPGA. BRAMs storage capacity is 36Kbits on the
selected architecture.

TABLE 5. COBS and Multi-COBS decoder (n = 4) resource utilization on
xc7a100tftg256 FPGA. BRAMs storage capacity is 36Kbits on the
selected architecture.

FPGA resource utilization and maximum speed in different
configurations.

A. FPGA RESOURCES UTILIZATION
The Multi-COBS encoder and decoder have been imple-
mented on Artix-7 FPGA (xc7a100tftg256-2) using
n = 4 and with various maximum payload length. The only
parameter influenced by the maximum payload length is the
depth of the FIFOs used between the COBS encoder and the
word concatenation, as described in V-A. The FPGA resource
usage for encoder is reported in Table 4.
In this table, it can be observed that for small payload

sizes, no Block RAM (BRAM) tiles are required because
the FIFOs are implemented using LUTs, however for bigger
payload sizes, the synthesizer uses two BRAM tiles to create
the requisite FIFOs. Due to the logic required to implement
the FIFO and padding logic, Multi-COBS encoders require
25% to 40% more LUTs and 97 percent to 130 percent more
registers than four COBS encoders.

However, if compared to the total resource available in the
referenceArtix-7 FPGA, the implementation is quite compact
as it uses only 1.24% of the LUTs available, 0.39% of the
Registers available and 1.48% of the Block RAM available
with maximum payload size of 1 MiB.

The FPGA resource use for the Multi-COBS and COBS
decoders is shown in Table 5.

It can be seen how theMulti-COBS decoder requires 122%
more LUTs and 179% more registers with respect to four
COBS standalone decoders. However, also for the decoder
the relative utilization (with respect to total resource available
on the reference Artix-7 FPGA) is quite low: 0.60% of the
LUTs and 0.27% of the registers.

FIGURE 10. FPGA firmware setup to benchmark the architecture
throughput.

B. MAXIMUM OPERATING FREQUENCY AND
THROUGHPUT
On the reference Xilinx’s Artix-7 -2 speed grade device, the
Multi-COBS encoder have been successfully implemented
with a clock frequency of 210 MHz, which allows a theo-
retical throughput of 6.72 · 109 bit/s when used with n = 4,
while the relative decoder can be clocked up to 220 MHz.

On a Kintex Ultrascale with speed grade -2
(xcku040ffva1156-2) both the encoder and decoder
have been successfully implemented with a clock frequency
of 400 MHz, which allows a theoretical throughput of 12.8 ·
109 bit/s when used with n = 4.

To benchmark the actual throughput of the architecture,
a Multi-COBS encoder followed by a decoder have been
implemented on the reference FPGA, using n = 4. With
this setup (Figure 10), the average throughput of the pipe
when encoding random words is 0.984 words per clock
cycles, which translates in 6.6Gbps on Artix-7 with speed
grade -2 and 12.6Gbps on Kintex Ultrascale with speed
grade -2.

Using the same setup but implementing COBS encoder
plus decoder offers a throughput of 0.992 words per
clock cycles, showing that the actual throughput gain of
Multi-COBS with n = 4 with respect to
COBS is

0.984 · 4
0.992

= 3.978,

very close to the ideal case (factor 4).
Those experimental results in terms of latency and through-

put are summarized in Table 6. As predicted theoretically
in IV-D, Multi-COBS does not worsen the latency but
increases the throughput by a factor of almost 4 (32-bit Multi-
COBS) or almost 8 (64-bit).

ConsideringMulti-COBS encoding of n-bytes wide words,
and taking as ideal case the throughput of a single COBS
encoder multiplied by n, it can be calculated that with n = 4
(32-bit) Multi-COBS reaches 99.19 % of ideal throughput
while with n = 8 (64-bit) 98.81% of ideal performance
is reached, demonstrating that the throughput scales almost
linearly with the number of COBS encoder in parallel, with
minimal penalty.

VII. REAL APPLICATIONS
Despite the fact that FPGAs are becoming more used in dig-
ital systems, connecting them with PCs is problematic due to
the lack of standard dedicated peripherals to handle common
out-of-chip communication protocols. As a result, numer-
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TABLE 6. Multi-COBS and COBS throughput and latency comparison.

ous communication architectures have been devised to carry
out this task [23], [24]. When compared to similar COBS,
Multi-COBS can be utilized to frame packets exchanged with
such systems, providing the aforementioned benefits: very
low average and worst-case overhead and high throughput.
In fact, [11] designed and documented a communication
system that leverages Multi-COBS for framing. A commu-
nication system like this was used to connect an x86_64
workstation to a high-performance FPGA-based Time-to-
digital converter (TDC) measuring device [9], [25] through
multiple physical links such UART, USB 2, and USB 3.
In this case, a high-throughput communication link should
be available to transport the collected measurement – without
loss – to the operator workstation for storage and offline
elaboration. Multi-COBS, which provides a high-throughput
framing solution, was critical but fundamental in completing
this work.

VIII. CONCLUSION
Multi-COBS extends the well-known COBS algorithm to
allow it to operate on larger words, delivering a stunning
throughput boost of almost four times when operating on
32-bit words and possibly nearly eight times when operat-
ing on 64-bit words. The reference implementation raised
throughput from 1.7 Gbps of COBS to 6.6 Gbps of Multi-
COBS in a 32-bit system and to 13.2 Gbps in a 64-bit system
in real-world terms. The additional logic required to expand
COBS toMulti-COBS is simple to comprehend and describe,
and it can be implemented with minimum FPGA resources
(less than 2% on medium-sized FPGAs). When compared
to alternative framing techniques employed by HDLC and
PPP, which have worst case overheads of 20 percent and
100 percent, Multi-COBS inherits the key feature of COBS:
it strictly limits the worst case overhead (0.4% percent for
big payloads). Multi-COBS’ average overhead is comparable
to that of COBS, albeit slightly higher. For these reasons,
Multi-COBS is a fascinating approach that is well suited to
most FPGA-based applications that demand a low average
and worst-case overhead framing algorithm.
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