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Abstract: This paper introduces a Reusable Launch Vehicle (RLV) descent dynamics simulator cou-
pled with closed-loop guidance and control (G&C) integration. The studied vehicle’s first-stage
booster, evolving in the terrestrial atmosphere, is steered by a Thrust Vector Control (TVC) system
and planar fins through gain-scheduled Proportional–Integral–Derivative controllers, correcting the
trajectory deviations until precise landing from the reference profile computed in real time by a
successive convex optimisation algorithm. Environmental and aerodynamic models that reproduce
realistic atmospheric conditions are integrated into the simulator for enhanced assessment. Compara-
tive performance results were achieved in terms of control configuration (TVC-only, fins-only, and
both) for nominal conditions as well as with external disturbances such as wind gusts or multiple
uncertainties through a Monte Carlo analysis to assess the G&C system. These studies demonstrated
that the configuration combining TVC and steerable planar fins has sufficient control authority to
provide stable flight and adequate uncertainties and disturbance rejection. The developed simulator
provides a preliminary assessment of G&C techniques for the RLV descent and landing phase, along
with examining the interactions that occur. In particular, it paves the way towards the development
and assessment of more advanced and robust algorithms.

Keywords: RLV; G&C; aerodynamic and powered descent; precise landing; re-entry dynamics;
successive convex optimisation; gain-scheduled PID controllers; TVC; aerodynamic steering

1. Introduction

Over the last decade, launcher reusability has become the new paradigm for reducing
the cost of access to space and enabling future manned missions, such as a return to the
Moon or, even more ambitiously, the first steps on Mars. This technology was already
developed in the Space Shuttle era; however, unanticipated costs and risks led to the can-
cellation of the programme in 2011. Nevertheless, some years ago, private companies, such
as SpaceX and Blue Origin, completely disrupted the space sector and demonstrated the
cost effectiveness and technical feasibility of reusable rockets. More specifically, SpaceX’s
Falcon 9 became in 2017 the first Vertical Take-Off Vertical Landing (VTVL) vehicle, hav-
ing its first stage recovered after launch and reused for another mission, and then be-
came in 2020 the first private rocket to take astronauts to the International Space Station
thanks to its spacecraft Dragon [1]. Today, SpaceX has flown reusable boosters more than
100 times, with some single boosters reused more than 10 times, proving the feasibility and
economic sustainability of such a technology. This leading company is now successfully
testing its Super Heavy rocket equipped with the Starship spacecraft with the objective of
carrying both crew and cargo on long-duration interplanetary flights, achieving humanity’s
return to the Moon, and travelling to Mars and beyond. Meanwhile, Blue Origin is also
developing advanced reusable launchers such as New Shepard, a suborbital launch vehicle
designed for space tourism, and New Glenn, a heavy-lift reusable rocket that should be able
to carry heavy payloads to Earth’s orbit and beyond [2]. Consequently, national agencies
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and intergovernmental institutions are following the same path, increasing research and
development related to launcher reusability.

The descent and precision soft-landing of Reusable Launch Vehicles (RLVs) on Earth
are very challenging, mainly due to the presence of the atmosphere. Indeed, during
this phase, the vehicle is subjected to fast system dynamics changes induced by external
loads such as lift and drag, unpredictable wind gusts, and control-induced actuation
commands to comply with the landing requirements, allowing so-called pinpoint landing
while preserving the vehicle’s integrity. All of these factors involve uncertainties and
nonlinearities, which lead to vehicle instability and therefore justify the implementation of
a high-performance guidance, navigation, and control (GNC) system. A solution to this
demanding problem became feasible in the past decade with the development of convex
optimisation: a particular class of methods that allow one to compute, in real time and
based on the current flight conditions, optimal trajectories to be followed satisfying the
desired constraints (which must be convex). This technology was demonstrated by the
Masten Space Systems’ VTVL demonstrator Xombie, which used a vision-based system
and a fuel-optimal convex guidance algorithm for precision landing [3].

Research on convex optimisation for the entry, descent, and soft pinpoint landing of
VTVL reusable launchers has actively been carried out in recent years with the development
of advanced techniques such as successive convex optimisation [4] and pseudospectral
convex optimisation [5,6]. In Ref. [7], Liu extended this first method by combining aerody-
namic forces and propulsion as control inputs to gain optimality with the consideration
of vehicle aerodynamics, which had previously been ignored. Then, in Ref. [8], Sagliano
et al. combined both methods and proposed separating the aerodynamic descent and
powered landing into two different optimal control problems, using aerodynamic forces
as the control input for the first phase and a combination of aerodynamic and propulsive
control for the second phase. Finally, in Ref. [9], Simplício et al. solved a simplified optimal
control problem in a first step and passed the solution to a second step involving successive
convex optimisation to include aerodynamic effects.

The coupled flight mechanics involved in the reusable launcher descent and landing
(D&L) phase are in fact usually not considered in the design of optimal guidance algorithms.
The disturbances and uncertainties acting on the vehicle and arising from the nonlinear
dynamics; external events (e.g., wind and aerodynamics); the actuation system; and the
environment are counteracted by a properly designed robust control system. Classic
techniques involve the use of linear control theory based on linearising the equations of
motion and feedback of defined control parameters with gain scheduling [10]. However,
these techniques require an extensive verification and validation campaign with Monte
Carlo analyses, which render the process very time-consuming and costly. Lately, advanced
robust control methods have been studied in both academia and industry, such as the
Linear Parameter-Varying (LPV) approach [11] and the H∞ family of methods, specifically
the structured H∞ technique [12].

The steering of a VTVL reusable rocket during the D&L phase is generally achieved
by a Thrust Vector Control (TVC) system, which actuates by deflecting the engine nozzle
along the two body axes perpendicular to the vehicle’s longitudinal axis through specific
gimbal angles computed using the guidance and control (G&C) algorithms. To increase the
control authority of the RLV, especially at low thrust during aerodynamic descent, steerable
fins are crucial. They are typically placed above the vehicle’s centre of pressure, with one
pair usually applied for controlling the pitch motion and another pair for controlling the
yaw motion. Finally, a Reaction Control System (RCS) based on cold gas thrusters is often
added for use at a high altitude in low-dynamic-pressure conditions or to provide roll
control capabilities.

To understand the interactions between G&C and D&L flight mechanics, an RLV
controlled dynamics simulator is proposed herein. This could serve as a baseline for
the design and analysis of more advanced G&C methods for the D&L phase of reusable
launchers. It covers the descent and soft pinpoint landing of a VTVL vehicle first-stage
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booster with closed-loop guidance and control integration. It includes the six-degrees-of-
freedom (6-DoF) descent dynamics of a rigid-body model with a varying mass, evolving
in the terrestrial atmosphere with varying environmental parameters, uncertainties, and
disturbances (atmospheric density, ambient pressure, and wind) and subjected to external
forces (gravity and aerodynamics). The steering of the spacecraft is carried out by a TVC
system and planar fins, correcting the trajectory deviations with respect to the reference
profile. The G&C system consists of a successive convex optimisation guidance algorithm
updated several times during the flight and a control system composed of gain-scheduled
Proportional–Integral–Derivative (PID) controllers. The main contributions of the proposed
work can be summarised as follows:

• The development of a 6-DoF RLV controlled dynamics simulator with closed-loop
guidance and control integration for the descent and precise landing phase. This tool
allows one to assess G&C methods for realistic scenarios, more specifically with respect
to environmental models (aerodynamics, wind, and atmospheric parameters) and the
actuation system (TVC and steerable planar fins). Moreover, it has a modular archi-
tecture and therefore can be easily modified to integrate more complex models (e.g.,
propulsion and aerodynamics). To the best of the authors’ knowledge, such a simula-
tor is not publicly available and therefore provides the opportunity to understand the
challenges involved in designing G&C algorithms for reusable launcher descent and
precise landing and perform preliminary assessments of multiple recovery strategies.

• The implementation and assessment of a successive convex optimisation guidance
algorithm that solves the 6-DoF equations of motion for the powered descent and
pinpoint landing problem.

• The generation of corrections using classical linear feedback control through gain-
scheduled PID controllers. Then, commands are allocated between the TVC system
and the steerable planar fins according to the level of thrust. This feature also allows a
certain modularity for studying different actuation configurations according to the
mission requirements (e.g., propellant consumption) and the flight phase: TVC-only,
planar fins-only, or both.

The paper is organised as follows. Section 2 introduces the reusable launcher controlled
dynamics simulator with a description of all the building blocks: from the reference
frames, environmental and aerodynamic models, and vehicle dynamics to the definition
of the different actuation systems. Then, the successive convex optimisation guidance
algorithm is introduced in Section 3. In addition, Section 4 presents the preliminary control
method using classic linear control theory with gain-scheduled PID controllers and explains
how the command is then allocated to the TVC system and/or the steerable planar fins.
Subsequently, several simulations are performed in Section 5 with different actuation
configurations. A sensitivity analysis is also carried out, adding wind and dispersion to
several parameters in order to study their impact on the D&L performance and better
address them for future developments in advanced G&C methods. Finally, conclusions are
provided in Section 6.

2. Reusable Launcher Controlled Dynamics Modelling

The RLV controlled dynamics simulator developed in this paper relies on the nonlinear
6-DoF dynamics of a VTVL vehicle first-stage booster modelled as a rigid body with
a varying mass subjected to external forces induced by the terrestrial atmosphere and
controlled through embedded closed-loop guidance and control strategies. Therefore,
it is made up of several building blocks with interconnections. A description of the
developed architecture is provided in Figure 1. The elements were implemented through
MATLAB/Simulink R2021b and will be briefly presented in the following subsections.
A performance analysis of the simulator described below with a simplified aerodynamic
model and TVC actuation only was carried out in Ref. [13].
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Figure 1. 6-DoF RLV re-entry controlled dynamics simulator description.

The reference frames and environmental models adopted for gravity, atmospheric
parameters, and wind are explained in Section 2.1. Then, the equations of motion and the
centre of gravity (CG) and inertia estimations are described in Section 2.2. The developed
aerodynamic model is presented in Section 2.3. The vehicle is steered via TVC and planar
fins depending on their level of control authority. These actuators are introduced in
Sections 2.4 and 2.5, respectively.

Finally, the G&C algorithms are organised into two subsystems. First, “D&L Guidance”
is responsible for the real-time generation of the reference control values, here in terms of
thrust magnitude and attitude angles. Note that this feature is executed at frequency fgui,
which differs from the simulator time step. A dedicated passage on the development of the
guidance algorithm is provided in Section 3. Then, the “Control” subsystem, responsible
for the computation of the commands allocated among the aforementioned actuators, is
defined in Section 4.

2.1. Reference Frames and Environmental Models

This subsection describes the reference frames and environmental models that are
adopted in the RLV controlled dynamics simulator. They are essential to simulating the
re-entry of a reusable rocket into the terrestrial atmosphere.

Two reference frames are considered and are shown in Figure 2. The first is the landing-
site-centred reference frame. Its origin is at the landing site and it is an up–east–north
reference frame, such that the xI-axis points up, the yI-axis east, and the zI-axis north. This
reference frame is considered inertial, and the equations of motion refer to it. Simulations
start from an initial position in this reference frame rI(0), with an initial velocity vI(0).
The second reference frame is the vehicle’s body-fixed reference frame. This is fixed to
the vehicle’s CG, and the basis vectors can be defined as follows: the xB-axis lies along
the vehicle’s longitudinal axis, the yB-axis is defined so as to remain perpendicular to
the pitch plane, and the zB-axis completes the right-handed system (and thus remains
perpendicular to the yaw plane). Following these definitions, the roll, pitch, and yaw angles
(φ(t), θ(t), and ψ(t), respectively) represent the orientation of the body-fixed reference
frame with respect to the landing-site-centred inertial reference frame. These angles are
useful for controlling the vehicle trajectory. However, in the formulation of the equations
of motion, the rotation quaternion qI

B(t) is used to translate the attitude of the vehicle.
Therefore, RI

B(t) represents the rotation matrix from the inertial reference frame to the
vehicle’s body-fixed reference frame. The angular velocity is defined in the body-fixed
reference frame with an initial value ωB(0).

The atmosphere model adopted in this study, available in the MATLAB Aerospace
Toolbox [14], implements the mathematical representation of the 1976 Committee on
Extension to the Standard Atmosphere (COESA) [15], which provides, as a function of
altitude h(t), the atmospheric density ρ(h(t)), the speed of sound a(h(t)), and the ambient
atmospheric pressure Pamb(h(t)). Then, the gravitational field is defined in the inertial
frame by gI(h(t)) =

[
g(h(t)) 0 0

]T , where g(h(t)) is obtained as a function of the
altitude and expressed by
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g(h(t)) = g0

(
RE

RE + h(t)

)2
(1)

Here, g0 ≈ 9.81 m/s2 is the standard gravity of Earth, and RE = 6378 km is the radius
of the Earth. For conciseness, these values will now be written as a function of time t.

Figure 2. Reference frames.

Finally, the constant wind is computed with the US Naval Research Laboratory model
Horizontal Wind Model 14, also available in Ref. [14], which generates the meridional
wmer(t) and zonal wzon(t) components of the wind for a set of geophysical data. Wind
gusts are modelled as a cosine-shaped function, so the user can define the amplitude of the
gust and the altitude at which it occurs. The function is expressed as follows:

Vgust(h(t)) =
(

Agust

2

)(
1− cos

(
π(h(t)− h1)

0.5∆h

))
(2)

where Agust ∈ R3 specifies the amplitude of the gust in three directions, h(t) is the current
altitude of the spacecraft, h1 specifies the altitude at which the gust starts, and ∆h is the
altitude range in which the gust is applied. Therefore, the maximum intensity of the gust is
reached in the middle of the specified altitude region. Consequently, the wind vector is
written in the inertial reference frame as follows:

wI(t) =
[
0 wmer(t) wzon(t)

]T
+ Vgust(h(t)). (3)

Note that the wind model is not considered in the descent dynamics of the guidance
algorithm described in Section 3.

2.2. Equations of Motion and CG/Inertia Estimations

The equations of motion are written using the reference frames previously defined in
Section 2.1. They are based on xI(0) =

[
m(0) rT

I (0) vT
I (0) qI

B(0)
T ωT

B(0)
]
, the initial

state vector, and the assumption that the vehicle is a rigid body with no effects induced by
the varying mass (e.g., propellant sloshing) and structural flexibility.

The mass depletion dynamics are modelled by an affine function of the thrust magni-
tude as follows:

ṁ(t) = −||FTVC,I(t)||2
Ispg0

− AnozzlePamb(t)
Ispg0

(4)

where Isp = 282 s is the vacuum specific impulse of the engine, which is assumed to
be constant for simplicity, and Anozzle = 3.1416 m2 is the nozzle exit area of the engine.
FTVC,I(t) ∈ R3 is the thrust vector coming from the TVC system, introduced in Section 2.4.
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The second term is related to the reduction in the specific impulse due to the atmospheric
back pressure [4].

The translational states, position, and velocity of the vehicle in the inertial reference
frame, rI(t) ∈ R3 and vI(t) ∈ R3, are governed by the following dynamics:

ṙI(t) = vI(t)

v̇I(t) =
1

m(t)

[
FTVC,I(t) + Faero,I(t) + F f ins,I(t)

]
+ gI(t)

(5)

where Faero,I(t) ∈ R3 describes the aerodynamic force acting on the vehicle in the inertial
reference frame (Section 2.3), and F f ins,I(t) ∈ R3 represents the control force generated by
the planar fins (Section 2.5).

Then, the attitude states are governed by the following rotational dynamics, using the
quaternion-based kinematics equation:

q̇I
B(t) =

1
2


q4(t) −q3(t) q2(t)
q3(t) q4(t) −q1(t)
−q2(t) q1(t) q4(t)
−q1(t) −q2(t) −q3(t)

ωB(t)

ω̇B(t) = J−1(t)
[
MTVC,B(t) + Maero,B(t) + M f ins,B(t)−ωB(t)× JωB

] (6)

where J(t) is the inertia matrix of the vehicle, introduced below. Maero,B(t) ∈ R3, MTVC,B(t) ∈ R3,
and M f ins,B(t) ∈ R3 (Sections 2.3–2.5) represent the aerodynamic and control torques acting
on the vehicle. In Equation (6), the coupling between angular velocity and inertia along the
three axes and the effect of centroid movement on the inertia caused by mass consumption
are ignored.

Finally, because of the propellant mass and the level variations throughout the flight,
the total vehicle CG and the moments of inertia also vary. The CG is considered to lie along
the vehicle body’s longitudinal axis, i.e., xCG(t) =

[
xCG(t) 0 0

]T , while the inertia tensor
is assumed to be diagonal, i.e., J(t) = diag

([
JA(t) JN(t) JN(t)

])
. Following the model

and data available in Ref. [16], the vehicle’s mass is broken down into structural mass
and time-dependent propellant mass, which is updated via Equation (4) during engine
burn. Therefore, the reader is referred to Ref. [16] for details of the parameters defining the
inertial and CG properties and their numerical values.

2.3. Aerodynamic Model

The aerodynamic forces and moments generated by the vehicle depend on its structure,
as well as the instantaneous dynamic pressure. This atmospheric parameter is usually
given by

Q(t) =
1
2

ρ(t)V2(t) (7)

where V(t) = ||vair,I(t)||2 and vair,I(t) = vI(t)−wI(t) are the air-relative velocity vectors
written in the inertial reference frame that account for the wind wI(t).

For the computation of aerodynamic loads, it is common to define a velocity reference
frame that is fixed to the vehicle’s CG but directed along the air-relative velocity written in
the body-fixed reference frame vair,B(t). This reference frame enables the definition of the
two aerodynamic angles, the angle of attack α(t) and the sideslip angle β(t), in order to
illustrate the rotation from the body-fixed to the velocity reference frame RB

V(t), as follows:

RB
V(t) =

 cos α(t) cos β(t) sin β(t) sin α(t) cos β(t)
− cos α(t) sin β(t) cos β(t) − sin α(t) sin β(t)

sin α(t) 0 cos α(t)

 (8)
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where the aerodynamic angles are given by

α(t) = atan2(vair,B,z(t), vair,B,x(t))

β(t) = arcsin
(vair,B,y(t)

V(t)

)
.

(9)

With these definitions and assuming that the vehicle has an axisymmetric shape, the
aerodynamic forces and moments generated by the vehicle are expressed in the body-fixed
reference frame as

Faero,B(t) = −Q(t)Sre f RV
B (t)

CD(αe f f (t), M(t))
0

CL(αe f f (t), M(t))


Maero,B(t) = [xCP(t)− xCG(t)]× Faero,B(t)

(10)

where Sre f = 7.14 m2 is the vehicle reference area; xCP(t) =
[
xCP(t) 0 0

]T is the vehicle’s
center of pressure (CP); and {CD, CL} are the drag and lift coefficients, respectively. These
parameters are estimated as functions of the effective angle of attack
αe f f (t) =

√
α2(t) + β2(t) and the Mach number M(t) = V(t)/a(t), where a(t) is the

speed of sound, also obtained from COESA as a function of altitude.
Aerodynamic parameters are obtained using the Supersonic/Hypersonic Arbitrary-

Body Program (S/HABP) for a cylindrical-shape first-stage rocket, with an angle of attack
from 0 to 180 deg and a Mach number from 0.8 to 5. This programme, which was devel-
oped in 1973 by the United States Air Force Flight Dynamics Laboratory [17] and used
by the National Aeronautics and Space Administration, has been adapted to obtain an
aerodynamic database composed of the aerodynamic coefficients and the CP as function
of the Mach number and the aerodynamic angles. More details on the development of
the aerodynamic database and its validation are given in Ref. [18]. These coefficients are
then linearly interpolated in the simulator according to the current flight conditions. The
variation of CD, CL and xCP with respect to αe f f (t) and M(t) is illustrated in Figure 3.
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Figure 3. Aerodynamic coefficient database. Note that the values of xCP are found to be independent
of the Mach number M.

Note that this aerodynamic database has some limitations. In fact, S/HABP was
designed to operate from about Mach 2 to the hypersonic range [19]. However, for the RLV
descent phase, and particularly for this study, the Mach number range starts around Mach
5 and then drops below Mach 1 until reaching zero velocity at landing. In addition, the
aerodynamic coefficients are assumed to be independent of the thrust level. This approxi-
mation is very rough for retro-propulsive flight, where there are significant interactions
between the exhaust plume of the engine and the oncoming flow that substantially impact
the drag coefficient and the heat loads [20]. Therefore, the approximations obtained for the
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aerodynamic coefficients might diverge from the true values [18]. However, the goal of this
simulator is not to gather high-fidelity models but to study the interactions and challenges
that exist in the design of an RLV controlled dynamics simulator and assess the advanced
and robust G&C methods that must be developed accordingly.

2.4. TVC System

The trajectory of the vehicle during descent is controlled by adjusting the magnitude
and direction of the thrust vector generated by the main engine. This is achieved by
the TVC actuator deflecting the engine nozzle by βTVC,y(t) and βTVC,z(t), respectively,
along the yB-axis and zB-axis. The required thrust magnitude Tre f (t) and deflection angles
{βTVC,y(t), βTVC,z(t)} are obtained from the guidance algorithm (Section 3) and the control
method (Section 4), respectively. Decoupling between translational and rotational dynamics
is common for TVC control due to the fact that the attitude of the vehicle can change faster
than its trajectory [16]. Thus, the TVC-generated force and moment can be expressed in the
body-fixed frame by

FTVC,B(t) = Tre f (t)

cos (βTVC,y(t)) cos (βTVC,z(t))
cos (βTVC,y(t)) sin (βTVC,z(t))

− sin (βTVC,y(t))


MTVC,B(t) = [xPVP − xCG(t)]× FTVC,B(t)

(11)

where xPVP =
[
xPVP 0 0

]T is the TVC pivot position (xPVP = 0.96 m).

2.5. Steerable Planar Fins Model

The implementation of planar fins for a G&C strategy has already been studied in
the literature. Usually, two pairs of fins are placed above the vehicle’s CG: one pair,
with deflections {β f in,1(t), β f in,2(t)}, controlls the motion in the pitch plane, while the
other, with {β f in,3(t), β f in,4(t)}, controlls the motion in the yaw plane. Therefore, it is
considered that there is no roll perturbation, meaning that the two pairs always remain
in the trajectory yaw and pitch planes, respectively. In Ref. [8], Sagliano et al. used
aerodynamic coefficient lookup tables that directly considered the state of the vehicle
(angle of attack α(t), sideslip angle β(t), and Mach number M(t)) and fin deflections
{β f in,1(t), β f in,2(t), β f in,3(t), β f in,4(t)}. In Ref. [21], the authors developed a fin model with
a corresponding lookup table for the axial coefficient and the derivative of the normal
coefficient, depending on only the Mach number. Therefore, the lookup tables were the
same for the four fins, and the generated force was determined by the fin’s local angle
of attack, defined as a function of the fin deflection and the vehicle’s angle of attack or
sideslip angle. Finally, in Ref. [16], Simplício et al. also developed a fin model, but it only
considered the normal force, which was calculated as a function of the fin’s local angle of
attack. The same approach is used in this paper, and the obtained planar fins model was
validated in Ref. [22].

Table 1 defines the fin positions with the corresponding deflections.

Table 1. Position of the fins’ CP with respect to the base of the RLV and corresponding deflections.

Fin CP Position x f in,i Fin Deflection β f in,i(t)

Fin 1
[
x f in yz f in 0

]T β f in,1(t)
Fin 2

[
x f in −yz f in 0

]T β f in,2(t)
Fin 3

[
x f in 0 yz f in

]T β f in,3(t)
Fin 4

[
x f in 0 −yz f in

]T β f in,4(t)
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Furthermore, due to the reduced fin area compared to the RLV body, only the normal
force contribution is considered [16]. Then, the value of the normal coefficient of the fin is
estimated using lifting-line theory [23]. In fact, for a symmetric airfoil, the lift coefficient
can be approximated by cl(α(t)) = 2πα(t). (12)

To obtain the lift coefficient CL of the corresponding wing, it is necessary to define the
aspect ratio, denoted by AR and defined as

AR =
b2

S
=

b
c

(13)

where b is the wing span, S is the wing reference area, and c is the wing chord. Therefore,
the following approximation is obtained [24]:

CL(α(t)) =
(

AR
AR + 2

)
cl(α(t)). (14)

This theory is then adapted for the fins of the RLV. Because flow separation is neglected
and the angle of attack of the rocket is around π during descent, the normal fin coefficient
has a sinusoidal dependence on the fin angle of attack γ f in,i(t) and can be approximated by

CN, f in,i(γ f in,i(t)) = 2π

(
AR f in

AR f in + 2

)
sin (γ f in,i(t)), i = {1, 2, 3, 4}. (15)

It remains to define the ith fin’s angle of attack and its associated force F f in,i(t) and
moment M f in,i(t) in the vehicle’s body-fixed reference frame. Figure 4 shows the motion
of the vehicle in the pitch plane; from this figure and Ref. [16], it is possible to state
the following:

γ f in,i(t) = β f in,i(t)− α(t)

F f in,i(t) =
1
2

ρ(t)||vair,I(t)||22S f inCN, f in,i(γ f in,i(t))
[
− sin (β f in,i(t)) 0 cos (β f in,i(t))

]T

M f in,i(t) = [x f in,i − xCG]× F f in,i(t)

, i = {1, 2} (16)

where α(t) is the vehicle’s angle of attack, and S f in is the fin reference area. Similarly, the
following formula is obtained in the yaw plane:

γ f in,i(t) = −β f in,i(t)− β(t)

F f in,i(t) =
1
2

ρ(t)||vair,I(t)||22S f inCN, f in,i(γ f in,i(t))
[
sin (β f in,i(t)) cos (β f in,i(t)) 0

]T

M f in,i(t) = [x f in,i − xCG]× F f in,i(t)

, i = {3, 4} (17)

where β(t) is the vehicle’s sideslip angle.
Finally, the total force generated by the fixed planar fins in the inertial reference frame

and the total moment generated in the vehicle’s body-fixed reference frame are given by

F f ins,I(t) = RB
I (t)

4

∑
i=1

F f in,i(t) (18)

M f ins,B(t) =
4

∑
i=1

M f in,i(t) (19)
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Figure 4. Fin model.

Table 2 specifies the parameters of the planar fins that are implemented in the simulator.

Table 2. Planar fins’ model parameters.

Parameter Value Unit

x f in 11.1 m
yz f in 2.5 m
b f in 1.2 m
c f in 0.8 m
S f in 0.96 m2

AR f in 1.5 -

3. Guidance Strategy

For the RLV D&L simulator introduced in the previous section, the guidance algorithm
is responsible for the real-time generation of a reference trajectory to be followed by the
vehicle with thrust and attitude commands. Here, a direct method is used within the
convex optimisation framework. This consists in transforming the fuel-optimal trajectory
problem into a convex one—more precisely, into a Second-Order Cone Programming
(SOCP) problem, which can be solved with efficient solvers in polynomial time. These
challenging tasks rely on converting nonconvex state and control constraints into the convex
form, requiring high computational power. Recently, the so-called lossless convexification
method [25] and advances in computational development have enabled these issues to be
overcome and therefore allow real-time trajectory generation in a closed-loop fashion.

Moreover, a particular class of convex optimisation, successive convex optimisation,
can be applied to approximate the remaining nonlinearities in the optimal landing problem,
such as the aerodynamic effects, which have previously been ignored. This consists in
iteratively solving convex optimisation SOCP subproblems in which the nonconvex dy-
namics and constraints are repeatedly linearised using information originating from the
previous iteration’s solution. This algorithm was first developed by Szmuk et al. in Ref.
[4] and then adapted in different ways in Refs. [7,9]. In this paper, the successive convex
optimisation algorithm relies on the work achieved by Guadagnini et al. in Ref. [26], where
the strategy defined in Ref. [4] was improved to be applicable in a closed-loop fashion for a
6-DoF controlled dynamics simulator.

In this study, the successive convex optimisation guidance algorithm is implemented
in MATLAB using the CVX library [27] to formulate the convex problem and the ECOS
routine [28] to solve it. At each simulation instance defined by the simulation rate fsim,
the reference thrust profile TB,re f (t) and the reference attitude angles {θre f (t), ψre f (t)} are
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calculated from the most recent guidance solution by linear interpolation. In fact, this
solution is stored as an online lookup table, which is updated at each guidance step, with
the guidance update frequency fgui = 0.1 Hz, that is, every 10 s. The guidance algorithm
inside the “D&L Guidance” building block of the simulator (recall Figure 1) is schematised
in Figure 5.

Figure 5. “D&L Guidance” block description.

Before describing the algorithm, a description of the adopted notation is provided. In
the following paragraphs and subsections, the discrete time instant is specified with the
parameter k. Consequently, a variable a at the time instant k is represented as a[k]. Then,
since we are handling an iterative process, the considered iterative solution is specified
with the superscript i. Therefore, the solution a obtained at iteration i is specified as ai.
Thus, a variable a at a time instant k, relative to iteration i, is denoted ai[k].

First, it is necessary to initialise the process with a dynamically inconsistent guess
solution. The simplest approach for the state vector is to create a linear interpolation of
the discrete state variables under the initial and final conditions. Regarding the control
vector, a good guess for the 6-DoF D&L problem is to match the gravitational force at each
time step. In this study, the time of flight, which is the final time t f , is also an optimisation
variable and therefore must be initialised. The initial guess for the state and control vector
solutions at each time instant, starting at time tc and for the time of flight t f , are defined by

x0[k] =
K− k
K− 1

x(tc) +
k− 1
K− 1

x(t f ), k ∈ [1, K]

u0[k] = m0[k] ·
[
g0 0 0

]T , k ∈ [1, K− 1]

t0
f = 120 s.

(20)

The algorithm is not specifically sensitive to initial guesses, but poor guesses can lead
to an increased convergence time [4].

Once the initial guess is defined, we enter the successive convex optimisation loop,
which consists of solving the SOCP problem several times until reaching the user-defined
maximum iteration number imax or the tolerance relative to the trust region radius ∆tol ,
defined in the next subsection. Note that several exit conditions can be defined, such as a
tolerance with respect to the norm of the virtual controls or the norm of the difference in
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the cost function between two iterations. Those defined here lead to satisfactory results
and enable the coupling of the guidance algorithm with the other building blocks of the
6-DoF RLV controlled dynamics simulator, which is the main focus of this paper.

Then, to enable the formulation of the SOCP subproblems, the optimal control problem
must be converted into a finite-dimensional parameter optimisation problem. Therefore,
the trajectory and optimisation variables are discretised into K uniformly spaced points,
ranging from the current instant of time tc to the final time t f . At each guidance step, the
time vector is divided in the following way:

t[k] =
k− 1
K− 1

t f , k ∈ [1, K] (21)

Additionally, because the estimated time of flight t f → 0 as t → ToF, where ToF
is the actual time of flight achieved by the simulation, the accuracy of the discretisation
becomes more precise towards the end. More specifically, the sampling time is given by
Ts = t f /(K − 1). The linearisation and discretisation methods are explained in the next
subsection, together with the definition of the SOCP problem.

When the optimisation algorithm converges to an optimal solution, this reference
trajectory is saved to be used for the next iteration, or, if the exit criterion of the successive
convex optimisation routine is met, it is transferred to the online look-up table from which
the actual reference parameters corresponding to the simulation instance can be generated.
In this study, this involves the reference thrust magnitude profile Tre f (t) and the reference
pitch and yaw angle profiles θre f (t) and ψre f (t), respectively.

3.1. Nonconvex Optimal Control Problem

The guidance law relies on solving an optimal control problem with dynamic con-
straints. These involve the descent dynamics, but it is also possible to add several state
and control constraints. The following paragraphs describe the optimisation problem
implemented in the successive convex optimisation loop. Note that the superscript i that
defines the current iteration loop is omitted from the following description for the sake of
clarity. Figure 6 shows the nonconvex optimisation problem defined for this study.

It can be observed that the 6-DoF nonlinear descent dynamics displayed in
Equations (4)–(6) are re-adapted to the 6-DoF descent of a powered-only first-stage booster,
meaning that only the thrust vector of the main engine, denoted hereafter as Tre f ,B(t), is
considered as the control input u(t). In fact, the steerable planar fins are not included in
the optimisation problem for the rocket D&L in order to avoid adding complexity due to
the nonlinearities generated by the addition of these aerodynamic loads. This is common
practice for launcher re-entry, since the thrust vector (magnitude and direction) is a good in-
dicator for reference trajectory generation. The allocation between the actuators, TVC, and
steerable planar fins is achieved afterwards by the control subsystem using the reference
values obtained in terms of thrust magnitude and attitude angles.

In addition, the aerodynamics are modelled through a so-called spherical aerodynamic
model. This model, introduced by Szmuk et al. in Ref. [4], approximates the relationship
between the aerodynamic force and the velocity vector and has the advantage of being
easily implementable with the successive convex optimisation guidance method. More
specifically, the aerodynamic force AB(t) is considered to be always anti-parallel with
respect to the velocity vB(t) as if the vehicle were subjected to a pure drag force. Assuming
that the rocket is axisymmetric, the aerodynamic forces and moments in the vehicle’s
body-fixed reference frame are expressed by

AB(t) = −
1
2

ρ(t)||vI(t)||2Sre f Caero(t)RI
B(t)vI(t)

MA,B(t) = [xCP − xCG(t)]×AB(t)
(22)
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Here, Caero(t) = diag
([

ca,x(t) ca,x(t) ca,x(t)
])

is the aerodynamic coefficient matrix,
where ca,x(t) is a positive scalar defined as follows

ca,x(t) = CD(α = π, M(t)) (23)

Here, CD(α(t), M(t)) is the drag coefficient, which is estimated from the available
lookup tables defined in Section 2.3.

min
t,u(t)

J = −m(t f ), subject to:

Boundary conditions

m(tc) = mc, rI(tc) = rI,c, vI(tc) = vI,c, ωB(tc) = ωB,c,
qI

B(tc) = qI
B,c, if tc 6= 0

rI(t f ) = rI,d, vI(t f ) = vI,d, qI
B(t f ) = qI

B,d, ωB(t f ) = ωB,d

Dynamics equations

ṁ(t) = −
||TB,re f (t)||2

Ispg0
− AnozzlePamb(t)

Ispg0
ṙI(t) = vI(t)

v̇I(t) =
1

m(t)
RB

I (t)
[
TB,re f (t) + AB(t)

]
+ gI(t)

q̇I
B(t) =

1
2

Ω(qI
B(t))ωB(t)

ω̇B(t) = J−1(t)[MT,B(t) + MA,B(t)−ωB(t)× JωB]

State constraints

m(t) ≥ mdry, e1 · rI(t) ≥ tan(γgs)
∣∣∣∣∣∣[e2 e3

]TrI(t)
∣∣∣∣∣∣

2
cos (θmax) ≤ eT

I,1 RB
I (t) eB,1, ||ωB(t)||2 ≤ ωmax, ||qI

B(t)||2 = 1

Control constraints

cos (δmax)||TB,re f (t)||2 ≤ e1 · TB,re f (t)
0 < Tmin ≤ ||TB,re f (t)||2 ≤ Tmax

State-triggered constraints

hα(rI(t), vI(t), qI
B(t)) ≤ 0

Figure 6. Nonconvex optimisation problem.

Regarding the state constraints, the first is a lower bound of the mass: for any time
t ∈ [tc, t f ], the mass cannot be lower than the dry mass of the vehicle. This constraint is
expressed as follows:

m(t) ≥ mdry. (24)

The second constraint is the so-called glide-slop constraint: it restricts the inertial
position to lie within a glide-slope cone with half-angle γgs ∈ [0, 90 deg) and a vertex at
the landing site. This constraint is enforced by

e1 · rI(t) ≥ tan (γgs)
∣∣∣∣∣∣[e2 e3

]TrI(t)
∣∣∣∣∣∣

2
(25)

where ei, i ∈ [1, 3] are the versors. The third constraint then concerns the tilt angle, that is,
the angle between the x-axes of the two reference frames, which is limited to a maximum
of θmax ∈ (0, 90 deg]. It is defined by

cos (θmax) ≤ eT
I,1 RB

I (t) eB,1. (26)



Aerospace 2023, 10, 993 14 of 29

Then, the fourth constraint limits the angular rate of the vehicle and is enforced by

||ωB(t)||2 ≤ ωmax. (27)

Finally, an additional constraint preserves the unit norm of the quaternion as follows:

||qI
B(t)||2 = 1. (28)

Moreover, a so-called State-Triggered Constraint (STC) [4] is added. In the present case,
it consists in imposing an angle of attack α constraint, αmax, when the dynamic pressure
Q(t) is larger than a prescribed value Qmax. This constraint is written in a continuous
formulation with a trigger function gα and a constraint function cα as follows:

hα(rI(t), vI(t), qI
B(t)) = −min(gα(vI(t), rI(t)), 0) · cα ≤ 0

cα(vI(t), qI
B(t)) = e1 · RI

B(t)vI(t) + cos (αmax)||vI(t)||2

gα(rI(t), vI(t)) = Qmax −
1
2

ρ(t)||vI(t)||22.

(29)

Two control constraints are considered to bound the direction and magnitude of the
thrust force. The direction is bounded by limiting the TVC up to a maximum gimbal angle
δmax. It is enforced by

cos (δmax)||TB,re f (t)||2 ≤ e1 · TB,re f (t). (30)

Then, the thrust magnitude is bounded between minimum and maximum values, i.e.,

0 < Tmin ≤ ||TB,re f (t)||2 ≤ Tmax (31)

where Tmin and Tmax are the lower and upper bounds, respectively.
The objective of the optimal control problem defined herein is to find the optimal

trajectory subject to the defined re-entry dynamics and state and control constraints while
minimising the vehicle’s fuel consumption, which corresponds to maximising the vehicle’s
final mass. Therefore, the cost function can be written as follows at each ith SOCP iteration:

J = −m(t f ). (32)

3.2. SOCP Problem

However, the optimisation problem subject to the described dynamics and state
and control constraints is not convex and must therefore be convexified. In order to
achieve this, the first step is to convert the free-final-time nonlinear continuous-time opti-
mal control problem into an equivalent fixed-final-time nonlinear continuous-time prob-
lem. This is achieved by normalising the time of flight from t ∈ [tc, t f ] to τ ∈ [0, 1],
where τ is the normalised time of flight. The nonlinear dynamics are summarised as
ẋ(t) = f (x(t), u(t)) with x(t) =

[
m(t) rT

I (t) vT
I (t) qI

B(t)
T ωT

B(t)
]T as the state vec-

tor and u(t) = TB,re f (t) as the control vector, which can be rewritten as follows:

ẋ(t) =
dτ

dt
d

dτ
x(t). (33)

Therefore, with σ = (dτ/dt)−1, the normalised nonlinear dynamics are expressed by

d
dτ

x(τ) = σ · f (x(τ), u(τ)) (34)

where σ = t f , since τ ∈ [0, 1].
Then, the nonlinear descent dynamics equations, defined above, are linearised and dis-

cretised about the solution of the previous iteration through a first-order Taylor approxima-
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tion and using a zero-order-hold interpolation scheme. First, the original continuous-time
problem is transformed into a Linear Time-Varying (LTV) problem defined by

d
dτ

x(τ) = A(τ)x(τ) + B(τ)u(τ) + Σ(τ)σ + z(τ) (35)

where the parameters are evaluated about a reference trajectory corresponding to the
previous (i− 1)th SOCP solution:

A(τ) := σi−1 · ∂ f
∂x

∣∣∣∣
xi−1(τ),ui−1(τ)

B(τ) := σi−1 · ∂ f
∂u

∣∣∣∣
xi−1(τ),ui−1(τ)

Σ(τ) := f (xi−1(τ), ui−1(τ))

z(τ) := −A(τ)xi−1(τ)− B(τ)ui−1(τ).

(36)

Second, the discretised LTV system is given for each k ∈ [1, K− 1] by

x[k + 1] = Ā[k]x[k] + B̄[k]u[k] + Σ̄[k]σ + z̄[k],

Ā[k] := Inx×nx + TsA[k],

B̄[k] := TsB[k],

Σ̄[k] := TsΣ[k],

z̄[k] := Tsz[k].

(37)

Once the descent dynamics are linearised and discretised, the next step is the convex-
ification of the nonconvex constraints. This concerns two state constraints, the norm
of the quaternion (Equation (28)) and the STC (Equation (29)), and one control con-
straint, the lower bound of the thrust magnitude (Equation (31)). The convexification of
Equation (28) is obtained through a first-order Taylor expansion approximation evaluated
about the previous (i− 1)th SOCP iteration:

||qI,i−1
B [k]||2 +

qI,i−1
B [k]T

||qI,i−1
B [k]||2

(qI,i
B [k]− qI,i−1

B [k]) = 1. (38)

The same method is used for the STC (Equation (29)). However, due to the min (·)
function, the constraint is approximated as follows:

hα(ξ
i−1[k]) +

∂hα

∂ξ

∣∣∣∣
ξi−1[k]

(ξi[k]− ξi−1[k]) ≤ 0, if gα(ξ
i−1[k]) < 0

0, otherwise
(39)

where ξi[k] =
[
vi

I [k]
T qI,i

B [k]T
]T

, ∀k ∈ [1, K] are the reference trajectory parameters
obtained from the ith SOCP iteration. Lastly, it is applied to the lower bound of the thrust
magnitude, obtaining the following expression for k ∈ [1, K− 1]:

hT(u[k]) = Tmin − ||TB,re f [k]||2

hT(ui−1[k]) +
∂hT
∂u

∣∣∣∣
ui−1[k]

(ui[k]− ui−1[k]) ≤ 0.
(40)

The successive convex optimisation strategy involves the use of trust regions and
virtual controls to prevent unboundedness and artificial infeasibility, respectively. In
fact, these issues are due to the linearisation process. They could be avoided using the
nonlinearity preservation and linearisation approach instead of the direct linearisation
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approach adopted in this guidance law to reduce complexity [29,30]. The implementation
of trust regions allows one to limit the deviation between two consecutive iterations
responsible for artificial unboundedness. They consist of quadratic inequality constraints.
The aim is to define a region near the previous iteration so that the deviation is mitigated.
As a consequence, this involves the radius being penalised in the cost function. In this
optimisation problem, the trust regions are defined first for the state and control vectors
and then for the time of flight as follows:

||xi[k]− xi−1[k]||2 + ||ui[k]− ui−1[k]||2 ≤ ∆i
x,u[k]

||σi − σi−1||2 ≤ ∆i
σ.

(41)

∆i
x,u =

[
∆i

x,u[1], · · · , ∆i
x,u[K]

]T ∈ RK is then defined as the state and control trust
region vector. To convert this trust region vector into the SOCP formulation, it is necessary
to define a joint state and control vector at each time instant, ξi[k] =

[
(xi[k])T (ui[k])T]T,

k ∈ [1, K− 1] so that Equation (41) can be rewritten as

∣∣∣∣∣∣∣∣(1− 2(ξi−1[k])Tξi[k]+((ξi−1[k])Tξi−1[k]− ∆i
x,u[k]))/2

Inξ×nξ
ξi[k]

∣∣∣∣∣∣∣∣
2
≤ (1 + 2(ξi−1[k])Tξi[k]− ((ξi−1[k])Tξi−1[k]− ∆i

x,u[k]))/2. (42)

Finally, the size of the trust regions must be bounded; therefore, the norms ∆i
x,u and

∆i
σ must be inserted into the cost function. Regarding the state and control trust region

vector, a slack variable Si
∆x,u

must be introduced in order to avoid a quadratic term in the
cost function. This implies the addition of the following inequality constraint [26]:

||∆i
x,u||2 ≤ Si

∆x,u
. (43)

Virtual controls are additional control inputs νi ∈ Rnx that allow one to reach each
point of the solution domain through dynamics relaxation and therefore avoid artificial
infeasibility. They are commonly met during the first iterations of the algorithm due to
the dynamically inconsistent initial guess, but they also compensate for the high-order
terms neglected by the discretisation process. Therefore, the linear discrete dynamics of
Equation (37) become

xi[k + 1] = Ā[k]xi[k] + B̄[k]ui[k] + Σ̄[k]σ + z̄i[k] + νi[k]. (44)

We can then define a concatenated vector ν̄i :=
[
(νi[1])T, · · · , (νi[K− 1])T]T ∈

Rnx×(K−1). Similarly to the trust regions, all these terms must be penalised in the cost function,
and to avoid a quadratic term, a slack variable Si

ν must be again be defined in conjunction
with the following inequality constraint:

||ν̄i||2 ≤ Si
ν. (45)

Finally, the cost function of Equation (32) is augmented with the previously defined
features and becomes:

J = −mi[K] + wνSi
ν + w∆x,u Si

∆x,u
+ w∆σ

∆i
σ (46)

where wν, w∆x,u , and w∆σ
are penalisation weights.

The obtained SOCP optimisation problem, which is solved iteratively in the successive
convex optimisation algorithm, is summarised in Figure 7. Table 3 provides the SOCP
problem parameters.
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Table 3. SOCP optimisation problem parameters.

Parameter Value Units Parameter Value Units

ω∆ 1 - Tmax 600 kN
ων 1000 - Tmin 0 kN
ωσ 0.75 - ωmax 28.6 deg/s

imax 10 - θmax 75 deg
∆tol 0.001 - γgs 10 deg
K 100 - δmax 10 deg
t0

f 120 s αmax 5 deg
mdry 2750 kg Qmax 4× 104 Pa

min
σi ,ui [k]

J = −mi[K] + wνSi
ν + w∆x,u Si

∆x,u
+ w∆σ

∆i
σ, subject to:

Boundary conditions

mi[1] = mc, ri
I [1] = rI,c, vi

I [1] = vI,c, ωi
B[1] = ωB,c,

qi,I
B [1] = qI

B,c, if not the first run

ri
I [K] = rI,d, vi

I [K] = vI,d, qi,I
B [K] = qI

B,d, ωi
B[K] = ωB,d

Dynamics equations ∀k ∈ [1, K− 1]

xi[k + 1] = Ā[k]xi[k] + B̄[k]ui[k] + σΣ̄[k] + z̄i[k] + νi[k]

State constraints ∀k ∈ [1, K]

mi[k] ≥ mdry, e1 · ri
I [k] ≥ tan(γgs)

∣∣∣∣∣∣[e2 e3
]Tri

I [k]
∣∣∣∣∣∣

2
cos (θmax) ≤ eT

I,1 Ri,B
I [k] eB,1, ||ωi

B[k]||2 ≤ ωmax

||qI,i−1
B [k]||2 +

qI,i−1
B [k]T

||qI,i−1
B [k]||2

(qI,i
B [k]− qI,i−1

B [k]) = 1

Control constraints ∀k ∈ [1, K− 1]

cos (δmax)||Ti
B,re f [k]||2 ≤ e1 · Ti

B,re f [k]

hT(ui−1[k]) +
∂hT
∂u

∣∣∣∣
ui−1[k]

(ui[k]− ui−1[k]) ≤ 0

||Ti
B,re f [k]||2 ≤ Tmax

State-triggered constraints ∀k ∈ [1, K− 1]
hα(ξ

i−1[k]) +
∂hα

∂ξ

∣∣∣∣
ξi−1[k]

(ξi[k]− ξi−1[k]) ≤ 0, if gα(ξ
i−1[k]) < 0

0, otherwise

Trust regions ∀k ∈ [1, K− 1]

||xi[k]− xi−1[k]||2 + ||ui[k]− ui−1[k]||2 ≤ ∆i
x,u[k]

||∆i
x,u||2 ≤ Si

∆x,u

||σi − σi−1||2 ≤ ∆i
σ

Virtual controls ∀k ∈ [1, K− 1]

||ν̄i||2 ≤ Si
ν

Figure 7. SOCP problem.

4. Control Approach

From the reference trajectory computed by the previously defined guidance algo-
rithm and the current states of the vehicle, the control algorithm must be able to generate
the necessary commands in terms of the thrust magnitude Tre f (t); TVC deflection angles
{βTVC,y(t), βTVC,z(t)}; and fin deflections {β f in,1(t), β f in,2(t), β f in,3(t), β f in,4(t)} to be ap-
plied by the actuators in order to correct the trajectory of the vehicle. For this study, we
assume β f in,1(t) = β f in,2(t) = β f in,y(t) and β f in,3(t) = β f in,4(t) = β f in,z(t). The method
adopted here considers the use of two gain-scheduled PID controllers to compute the
respective deflection angles. In fact, the thrust magnitude command is taken directly
from the guidance algorithm Tre f (t) = ||TB,re f (t)||2. This approximation is penalised by a
low-pass filter, which simulates the intrinsic physics of the device, and the delay induced
is compensated for by a PI controller. In fact, the descent control system is more com-
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plex than the ascent phase due to the throttleability of the thrust force generated by the
rocket’s main engine. If this were considered as a control input, the pitch and yaw motion
could not be decoupled, as is usually carried out for rocket preliminary attitude control
design. We followed this approach herein since the objective was primarily to study the
interactions between all the subsystems, rather than the development of a highly accurate,
high-performance control system.

Usually, the 6-DoF problem is separated into two 3-DoF problems. One is characterised
by the motion in the xBzB plane with the controller on the pitch angle θ(t) through the
deflection angles βTVC,y(t) and β f in,y(t). The second problem is characterised by the motion
in the xByB plane with the controller on the yaw angle ψ(t) through the deflection angles
βTVC,z(t) and β f in,z(t). An assumption is made that the roll angle φ(t) is small so that no
coupling effects can arise in the dynamics. Therefore, two linear systems are built using
a reference trajectory precomputed offline. This reference trajectory corresponds to the
solution of the successive convex optimisation algorithm in its first run, meaning that the
initial conditions of the studied problem are used. These can be rewritten in terms of the
perturbed variables x̃(t) = x(t)− x̄(t) and ũ(t) = u(t)− ū(t), where x̄(t) and ū(t) are the
reference state and control vectors, respectively, to finally obtain

˙̃x(t) = A(t)x̃(t) + B(t)ũ(t)

y(t) = C(t)x̃(t)
(47)

where A(t) ∈ R10×10 and B(t) ∈ R10×4 are the Jacobian matrices of the nonlinear equations
with respect to the state and control variables respectively, computed with the function
jacobian in MATLAB, and C(t) ∈ R2×10 enables the extraction of the pitch angle error
θ̃(t) and the yaw angle error ψ̃(t). Therefore, the decoupling into two 3-DoF is achieved,
and the following linear systems are obtained:

xpitch(t) =
[
m(t) vx(t) vz(t) ωy(t) θ(t)

]T ∈ R5,

upitch(t) =
[
βTVC,y(t) β f in,y(t)

]T ∈ R2, ypitch(t) = θ(t) ∈ R

xyaw(t) =
[
m(t) vx(t) vy(t) ωz(t) ψ(t)

]T ∈ R5,

uyaw(t) =
[
βTVC,y(t) β f in,y(t)

]T ∈ R2, yyaw(t) = ψ(t) ∈ R

(48)

where vx(t), vy(t), and vz(t) are the x, y, and z components of vB(t), respectively, and ωy(t)
and ωz(t) are the y and z components of ωB(t). The corresponding Jacobian matrices are
computed similarly to the linear system defined in Equation (47). This decoupling of the
dynamics was validated in [26].

With these definitions and because two control inputs are considered in each linear sys-
tem (TVC and fin deflections), the latter is considered as a Multiple-Input Multiple-Output
(MIMO) control system for which it is complex to apply classical linear control theory
since every channel must be iteratively addressed in a single-loop fashion. The solution to
overcome this drawback would be the use of advanced robust control methods such as the
H∞ family of methods or the LPV approach. A preliminary study of structured H∞ control
synthesis within this simulator is available in Ref. [31]. In this study, to develop a baseline
simulator and stay in line with the current state of the art in control design for launchers
[10,32], the linear systems are adapted to Single-Input Single-Output (SISO) control sys-
tems, for which it is possible to use gain-scheduled PID controllers. Two configurations are
chosen and are explained in the next subsections. The first is the TVC-only configuration,
for which the fins are considered fixed and the only input is therefore the TVC deflection.
The second configuration lies in the definition of a control moment, introduced in Ref. [16],
which gathers TVC and fin control authorities and then allocates the necessary command
to each actuator according to the level of thrust.
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4.1. TVC-Only SISO Configuration

In this case, the only control inputs are βTVC,y(t) for the pitch plane and βTVC,z(t) for
the yaw plane. Therefore, the two linear systems consider the following parameters:

xpitch(t) =
[
m(t) vx(t) vz(t) ωy(t) θ(t)

]T ∈ R5,

upitch(t) = βTVC,y(t), ypitch(t) = θ(t)

xyaw(t) =
[
m(t) vx(t) vy(t) ωz(t) ψ(t)

]T ∈ R5,

uyaw(t) = βTVC,z(t), yyaw(t) = ψ(t)

(49)

where vx(t), vy(t), and vz(t) are the x, y, and z components of vB(t), respectively, and ωy(t)
and ωz(t) are the y and z components of ωB(t). The corresponding Jacobian matrices are
computed similarly to the linear system defined in Equation (47).

Due to the time-varying nature of the problem, a single PID controller might be unable
to stabilise the system for the whole trajectory. Therefore, the reference altitude profile is
discretised into 25 slots where linearisation is performed. This was chosen as the scheduling
parameter since it evolves monotonically with respect to time and has been well validated
in the literature [33,34]. Moreover, it allows one to capture the variations in terms of
thrust magnitude. In this way, the problem is divided into regions wherein it is possible
to analyse if the controller is able to stabilise the system. Thanks to this, the controllers
can be considered gain-scheduled PID controllers, as the gains can be changed to achieve
the desired levels of performance in all the regions. For each system, the gains are tuned
with the following performance requirements: an overshoot inferior to 10%, a settling time
strictly inferior to 1 s, a gain margin superior to 6 dB, and a phase margin superior to
60 deg. The tuning is performed with the MATLAB application PID tuner.

4.2. TVC and Fin SISO Configuration

Here, the MIMO formulation is translated into an SISO formulation by defining a
surrogate variable that gathers gimbal and fin angle deflections and achieving control
synthesis on it. More specifically, following Ref. [16], the control moment mctr(t) is defined
as a parameter that specifies the necessary pitch or yaw moment to correct the trajectory
of the vehicle. Knowing the control effectiveness level of each actuator, a control alloca-
tion algorithm is then used to determine the actual control inputs {βTVC,y(t), β f in,y(t)}
and {βTVC,z(t), β f in,z(t)}.

The control effectiveness levels are expressed as follows. The effectiveness of TVC in
generating control moments is quantified by

µTVC(t) = [xCG(t)− xPVP]
Tre f (t)
JN(t)

. (50)

Regarding the fins, the control effectiveness is given by

µ f in(t) = 2[x f in − xCG(t)]
Q(t)S f inCN, f in\α(t)

JN(t)
(51)

where CN, f in\α(t) = 2π
( AR f in

AR f in+2

)
cos (γ f in,i(t)) is the normal fin force gradient with

γ f in,i(t) computed from Equation (37) for the pitch plane and Equation (38) for the yaw
plane. The relationship between the control moment and the control inputs is then ex-
pressed as

mctr,#(t) = −µTVC(t)βTVC,#(t)− µ f in(t)β f in,#(t) (52)

where # = {y, z} for the pitch plane and the yaw plane, respectively.
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Therefore, these parameters are obtained from the reference trajectory, and similarly
to Equation (47), the following linear systems are built for the pitch and the yaw planes:

xpitch(t) =
[
m(t) vx(t) vz(t) ωy(t) θ(t)

]T ∈ R5,

upitch(t) = mctr,y(t), ypitch(t) = θ(t)

xyaw(t) =
[
m(t) vx(t) vy(t) ωz(t) ψ(t)

]T ∈ R5,

uyaw(t) = mctr,z(t), yyaw(t) = ψ(t).

(53)

The Jacobian matrices and the corresponding PIDs for the given altitude slots are
computed in the same manner as for the previous configuration. Note that the obtained
controllers must be robust enough to cope with a range of trajectories since the guidance is
recomputed several times during the descent, but not the tuning of the gains. However, it is
observed that the updated guidance trajectories follow the same scheme, which is enforced
by the boundary constraint on the quaternion (recall Figure 7), and since the controllers are
interpolated with respect to the altitude (and not the time of flight, which is unknown), the
obtained gains provide satisfactory results all along the descent flight.

Finally, the commanded control moment mctr(t) is allocated between the TVC system
and the planar fins following the algorithm in Ref. [16], repeated in Algorithm 1. More
specifically, if the commanded thrust magnitude Tre f (t) is above the user-defined high
thrust limit THTL, then the TVC system is used as the primary actuator, and the planar fins
are used only if the maximum authority βTVC,max of the TVC system is reached. In contrast,
if the thrust magnitude command Tre f (t) is below the user-defined high thrust limit THTL,
then the planar fins are used as the primary actuator, and the TVC system is used as the
secondary actuator if the maximum authority β f in,max of the planar fins is reached. Here,
βTVC,max = 10 deg and β f in,max = 20 deg.

Algorithm 1 Control allocation [16]

1: if Tre f ≥ THTL then
2: βTVC ← −mctr/µTVC
3: β f in ← 0
4: if |βTVC| > βTVC,max then
5: βTVC ← βTVC,max × sign(βTVC)
6: β f in ← −(mctr + µTVC × βTVC)/µ f in
7: end if
8: else
9: β f in ← −mctr/µ f in

10: βTVC ← 0
11: if |β f in| > β f in,max then
12: β f in ← β f in,max × sign(β f in)
13: βTVC ← −(mctr + µ f in × β f in)/µTVC
14: end if
15: end if
16: OUTPUTS : βTVC, β f in

Note that this control configuration also enables a fin-only actuation configuration by
setting a high thrust limit THTL superior to the maximum thrust magnitude allowed by the
guidance algorithm. Note also that this choice of criteria for changing the actuator allocation
configuration was made after further analyses. Other criteria were tested, such as dynamic
pressure or control effectiveness levels, that is, allocation primarily to the TVC system if
µTVC(t) > µ f in(t) and to the planar fins otherwise. However, the dynamic pressure profile
was not accurate enough, since at the beginning of the trajectory the dynamic pressure
is high, as well as the thrust magnitude; thus, the planar fins are efficient but in reality
not as efficient as the TVC system. Furthermore, the control effectiveness level was not
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optimal, since some overlaps when both actuators had a similar control authority were
observed that could lead to convergence issues, since it would involve rapid switches in
the commands given to the actuators. Moreover, since the reference thrust magnitude is
among the control inputs and completely decoupled from the TVC system by design, this
parameter is less complex to implement, preventing coupling effects and therefore leading
to the best results.

Once verified through linear analysis, the controllers were implemented in the nonlin-
ear simulator according to the actual altitude following the scheme described in Figure 8.
Basically, no interpolation was achieved, and a controller was selected as soon as we entered
the altitude region in which this controller had been defined. Note that the controllers’ gains
could have been interpolated linearly with respect to the altitude using a finite-difference
method as in Ref. [33]. However, this solution was not adopted, since the values of two
adjacent gain-scheduled controllers were considerably different, leading to inaccuracies
when achieving the interpolation. Another strategy would be to use a so-called signal
blending scheme to mitigate the previous issue [34]. However, this could cause large
transients in the switching regions and would be quite complex to implement. Therefore,
this technique was not studied, since the objective was primarily the design of a closed-loop
baseline simulator. The gain-scheduling method should be more thoroughly investigated
in future work, since an improved scheduling strategy would be a substantial extension for
enhanced robustness.

Figure 8. Gain-scheduling method description.

5. Simulation Results

This section illustrates the results obtained with the proposed G&C architecture cou-
pled with the RLV controlled dynamics simulator under different control configurations:
TVC-only, fins-only, and both (Section 5.1). Then, a sensitivity analysis is carried out to
assess the impact on the obtained trajectory from disturbances such as wind gusts as well
as multiple uncertainties through a Monte Carlo approach (Section 5.2).

5.1. Nominal Trajectory Simulations for Different Actuation Configurations

For this study, no wind was considered, and neither propellant sloshing effects nor
flexible bending modes were included, since the described simulator is still at an early
design stage and more complex studies are necessary for future developments. Three
different actuation configurations were tested. The first one with TVC actuation only used
the control architecture defined in Section 4.1 and considered fixed planar fins with 0 deg
deflection. The second used only planar fins actuation with the control architecture defined
in Section 4.2 (with THTL = Tmax = 600 kN). Finally, the third configuration used TVC
and planar fins actuation with a thrust magnitude limit of THTL = 70 kN. The initial
and final conditions are described in Table 4. The initial conditions allowed us to study a
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trajectory evolving mainly in the pitch plane. Other simulations were also carried out for
a trajectory mainly in the yaw plane and for a trajectory in both planes, showing similar
results; therefore, they are not displayed in this paper.

Table 4. Initial and final conditions.

Parameter Value Parameter Value

rI [0] [25 0 − 15]T km rI [K] [0 0 0]T m
vI [0] [−850 0 950]T m/s vI [K] [−5 0 0]T m/s
ωB[0] [0 0 0]T rad/s ωB[K] [0 0 0]T rad/s
m[0] 14, 000 kg qI

B[K] [0 0 0 1]T

Figure 9 shows the converged trajectories for the different cases, as well as the control
contributions of the vehicle through the TVC and fin deflection angles and the thrust
magnitude level. The forces acting on the vehicle as well as the vertical axes of the vehicle
and fins are represented at different times during the descent. Table 5 summarises the
performance results obtained for each configuration through the final vehicle mass, the
final downrange error, and the final velocity error. Performance criteria were defined to
evaluate the different simulation cases. In this study, a precise soft landing was considered
satisfactory when the final mass of the vehicle was greater than the dry mass, when the
downrange error was lower than 300 m, and when the final velocity was lower than 10 m/s.

From these simulations, some observations could be made. For the case with the
TVC-only configuration in Figure 9a, we noticed that the commanded thrust vector in red
was not anti-parallel to the velocity vector in magenta, since the TVC system was activated
to counteract the deviations caused by the aerodynamic force in orange. No saturation
was observed since the TVC deflections remained between −10 and 10 deg, and the rocket
managed to reach the landing site vertically, satisfying the landing requirements quite
accurately. However, for the case with the fins-only control configuration represented in
Figure 9b, the trajectory obtained was considerably different. The fins’ deflection can be
observed with the emergence of the pitch fins’ vertical body axis in dark blue, which is
not merged with the rocket vertical body axis in green. This created the normal force of
the corresponding fins, which corrected the trajectory of the vehicle. However, even if
saturation was not reached, the performance results obtained were not as good as those
of the TVC-only configuration, since the final downrange was higher and exceeded the
aforementioned criterion for precision landing. This lack of precision was compensated
for by a slight reduction in propellant use. This suggests that TVC is essential for precise
landing. This observation was justified by the last configuration using TVC as the primary
effector when the thrust magnitude level was higher than 70 kN and fin control otherwise;
the results are shown in Figure 9c. Note that the obtained trajectory was similar to a
combination of both previous trajectories: the TVC-only trajectory until 80 s of flight and
around 4 km of altitude and then the fins-only profile. However, we observed a saturation
of the fins between 80 and 95 s of flight. This was likely a consequence of the control
allocation switch. In terms of performance results, this enabled us to obtain more accurate
results regarding the final downrange position than the fins-only configuration, again
with the advantage of a reduction in propellant mass use. Saturation due to the control
allocation switching was more likely to lead to a higher final velocity error, although this
remained within the desired bounds. Therefore, we observed the limitations of the adopted
control law, since a rapid change in control allocation could generate undesired transients
that could damage the final performance. However, this method enabled us to easily
notice the advantages of combining TVC and steerable planar fins for the aerodynamic
and powered descent phase of reusable launchers. Note that in the problem studied, the
steerable planar fins were used at a relatively low altitude compared to standard scenarios.
In fact, under 5 km of altitude, the TVC system is typically preferred. This is due to the
thrust magnitude profile given by the guidance algorithm, which does not follow so-called
bang-bang behaviour and therefore causes the control authority of the TVC system to be
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higher than the steerable planar fins during most of the descent flight. In Ref. [35], the
authors analysed the guidance strategy to obtain this bang-bang profile and compared
the global performance using the same simulator. In fact, this enabled us to a obtain a
significant increase in performance with a trajectory for which the fins were primarily used
in the middle of the flight, between the two thrust burns from the main engine.
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(a) TVC-only. (b) Fins-only, THTL = 600 kN. (c) TVC and Fins, THTL = 70 kN.
Propagated trajectory Vertical body axis (RB

I e1)

Inertial velocity (vI) Thrust (TI)

Fin force (F f ins,I) Fin body axis (RB
I R

Fy
B e1)

Aerodynamic force (Faero,I)

Figure 9. Nominal trajectory simulations for different actuation configurations: TVC-only, Fins-only,
and TVC & Fins. Wind is not considered. No propellant sloshing effects neither flexible modes
are included.

Table 5. Performance results for the different actuation configurations.

TVC-Only Fins-Only TVC and Fins

Final mass 2775 kg 2761 kg 2767 kg
Final downrange 77 m 354 m 84 m

Final velocity 4.96 m/s 4.86 m/s 6.53 m/s

5.2. Sensitivity Analyses

In this section, the simulator was complexified by adding external forces such as wind and
dispersion to specific parameters. This study enabled us to demonstrate how the combination
of TVC and steerable planar fins managed to counteract these forces well and assess the
robustness of the actual G&C architecture against disturbances and uncertainties.

5.2.1. Wind

In this study, we considered three different wind cases that modified the gust am-
plitude and the altitude range at which the gust occurred (recall Equation (2)). Case
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1 corresponded to Agust = 15 m/s, h1 = 7 km, h2 = 4 km, Case 2 corresponded to
Agust = 25 m/s, h1 = 17 km, h2 = 10 km, and Case 3 corresponded to Agust = 30 m/s,
h1 = 17 km, h2 = 14 km. Figure 10 displays these cases in the up-north plane, as well as the
horizontal wind. Note that the same wind conditions were also considered in the up-east
plane to study the impact on the yaw motion. This led to the creation of an out-of-plane
component along the east direction and a 3D trajectory. Note also that the wind gust model
used here was not realistic and that using noise-coloring Dryden filters as in Ref. [36] would
be more accurate. However, for this baseline analysis, the goal was only to analyse the
behaviour of the G&C system in counteracting external events such as wind, and more
accurate models remain to be developed in future work.
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Figure 10. Description of the wind cases studied.

The three wind cases were tested under nominal initial conditions with the en-
hanced aerodynamic model and the TVC and fins control configuration corresponding to
Figure 9c of the previous section. Figure 11 presents the simulation results showing the
altitude versus downrange and velocity profiles and the control contributions in terms of
deflection angles for each control configuration. The deflection angles in the yaw plane,
βTVC,z and β f in,z, are also represented to show that the consideration of the wind also
led to the emergence of trajectory corrections in the yaw plane. Table 6 summarises the
performance results.
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Figure 11. Study of the impact of the wind in three different cases using the nominal conditions.
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From these simulations, it is possible to observe how the trajectory was modified
due to the corresponding wind gust by examining the altitude versus downrange pro-
file in Figure 11a. In fact, Case 3 with a strong gust at an upper altitude did not im-
pact the trajectory profile considerably, since it followed the nominal profile relatively
well. However, we could observe with Cases 1 and 2 that at a lower altitude such gusts
could modify the trajectory quite significantly, even if they were not particularly strong
(Agust = 15 for Case 1). This statement was confirmed by considering the performance
results in Table 6, where Case 1, in which the wind gust occurred at the lowest altitude,
shows the highest final errors. Furthermore, looking at the control commands generated in
Figure 11b, slight changes in the deflection angles compared to the nominal profile can be
observed at the times of the gusts. Since the gusts also occurred in the yaw plane, we also
noticed the emergence of deflections arising from the actuators controlling the yaw motion.
These also impacted the rest of the trajectory, since yaw fin deflections were generated
when the wind gusts had stopped. Overall, even though the controller was not designed to
specifically counteract the wind (which was made possible by including the wind as an
exogenous input in the control synthesis [36]), it still provided satisfactory performance
results within the desired bounds for precise landing defined previously, and therefore
enabled us to study G&C interactions in the presence of wind.

Table 6. Performance results for three wind cases.

Case 1 Case 2 Case 3

Final mass 2751 kg 2764 kg 2758 kg
Final downrange 260 m 133 m 201 m

Final velocity 7.90 m/s 8.46 m/s 8.07 m/s

5.2.2. Monte Carlo Analyses

Finally, the G&C system was tested within the 6-DoF controlled dynamics simulator
in the presence of multiple uncertainties and disturbances through a 100-run Monte Carlo
analysis. Note that 100 cases might not have been sufficient to properly assess the robustness
of the present control system. However, the objective of the study was not to provide a high-
performance control system, but rather a relevant tool to perform controllability analyses
of reusable rockets during the D&L phase. Therefore, the robustness analysis carried out
here had to first ensure that the present tool could adapt to a range of different trajectories
and be evaluated with this number of runs. The corresponding dispersions are indicated
in Table 7. Note again that neither sloshing effects nor flexible modes were included in
this analysis. The results of the analysis are depicted in Figure 12, showing the errors in
terms of position, velocity, and pitch angle, as well as the corresponding control commands
in terms of thrust magnitude, TVC gimbal angle, and fin deflection angle profiles. At the
bottom of the figure, a table gives the number of cases belonging to each of three different
categories: (i) those for which a convergence issue occurred or the final mass obtained
was greater than the dry mass of the vehicle and that were therefore considered as failure;
(ii) those for which the final velocity or downrange did not verify the criteria defined in
Section 5.1; and finally (iii), those whose results satisfied these criteria.

Table 7. Perturbations considered for the Monte Carlo analysis.

Perturbation Variable Distribution Value

Initial lateral velocity vz[0] Normal σ = 20 m/s
Initial mass m[0] Uniform 2%

Moments of inertia JA(t), JN(t) Uniform 2%
Reference thrust Tre f (t) Uniform 10%

Atmospheric density ρ(t) Uniform 20%
Ambient pressure Pamb(t) Uniform 10%
Drag coefficient CD(t) Uniform 20%
Lift coefficient CL(t) Uniform 20%
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These results confirmed that the G&C system was not highly robust to uncertainties.
In fact, of the 100 cases, 41 were failures. This was due to a convergence issue for 31 cases
(not shown in the figure). This meant that among all the tested cases, 31% were not usable,
showing that the current G&C solution could not be applied for real scenarios. However,
all other cases could be used to study the controllability of reusable rockets, which was
the main objective of the simulator. Among them, 34 cases satisfied the criteria for a
precise soft landing, showing the system’s relative flexibility to undertake the necessary
corrections and counteract the existing uncertainties. In terms of pitch angle error, we
noticed some cases where the error was greater than for the nominal case, but the controllers
and actuators managed to correct it well and land with a pitch angle within [−1, 2] deg. In
fact, looking at the control contributions, we observed that as soon as the pitch angle error
grew, the controller quickly compensated for this by generating the corresponding actuator
deflection angles. We actually observed significant differences in the control command
profiles because the thrust reference profile generated by the guidance algorithm was
sensitive to the disturbances and uncertainties considered. This profile showed in some
cases a higher commanded thrust at the beginning and a lower one in the second part of
the flight, causing the actuator switch from the TVC to the steerable planar fins to occur
earlier. Consequently, the deflection profiles obtained from the actuators are significantly
different. However, it also enables to observe that for some cases, this behaviour does not
reduce overall performance, confirming that even if this control strategy is not optimal, it
manages to overcome the challenging task of combining TVC and steerable planar fins for
the descent phase and precise landing of reusable launchers.
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Figure 12. Results of the 100-run Monte Carlo analysis for the nominal case. Wind was not considered.
No propellant sloshing effects or flexible modes were included.

6. Conclusions

This paper described the development of a controlled dynamics simulator with closed-
loop guidance and control integration for the D&L phase of reusable launchers. We
considered a VTVL first-stage booster descent and soft pinpoint landing. The simulator
included the 6-DoF descent dynamics of a rigid-body model with a varying mass, evolv-
ing in the terrestrial atmosphere with varying environmental parameters, uncertainties,
and disturbances and subjected to external forces. To steer the spacecraft towards a con-
trolled descent and a soft pinpoint landing, the vehicle is equipped with a TVC system
and steerable planar fins controlled by gain-scheduled PID controllers, which correct the
trajectory deviations with respect to the reference profile generated by a successive convex
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optimisation guidance algorithm. More specifically, the simulator involved a modular
control architecture, allowing us to study different actuation configurations according to
the mission requirements and the flight phase: TVC-only, planar fins-only, or both.

Several simulations were carried out that allowed us to provide preliminary assess-
ments of the controllability challenges encountered by a rocket during the D&L phase
while highlighting the necessary improvements for enhanced robustness to uncertainties.
The combination of the TVC system and steerable planar fins was critical to provide a
fuel-optimal trajectory and a precise landing for the reusable rocket while counteracting
the possible disturbances and uncertainties existing in the terrestrial atmosphere. Despite
the simplifying assumptions used in the simulator design and the low complexity of the
control and allocation laws adopted, the tool obtained represents a powerful and versatile
baseline for the development of more sophisticated G&C techniques. For example, as
mentioned in the previous section, the guidance could be leveraged to generate the so-
called bang-bang thrust magnitude profile, likely leading to less propellant consumption.
Advanced approaches such as pseudospectral convex optimisation could be assessed and
compared with the actual successive convex optimisation strategy. Concerning the control
system synthesis, methods based on robust algorithms such as structured H∞ could also be
assessed in the simulator and are expected to provide improved performance.
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4. Szmuk, M.; Reynolds, T.P.; Açıkmeşe, B. Successive Convexification for Real-Time Six-Degree-of-Freedom Powered Descent

Guidance with State-Triggered Constraints. J. Guid. Control Dyn. 2020, 43, 1399–1413. [CrossRef]
5. Sagliano, M. Pseudospectral Convex Optimization for Powered Descent and Landing. J. Guid. Control Dyn. 2018, 41, 320–334.

[CrossRef]
6. Huang, J.; Zeng, Y. An hp-Legendre Pseudospectral Convex Method for 6-Degree-of-Freedom Powered Landing Problem.

Aerospace 2023, 10, 849. [CrossRef]
7. Liu, X. Fuel-Optimal Rocket Landing with Aerodynamic Controls. J. Guid. Control Dyn. 2019, 42, 65–77. [CrossRef]
8. Sagliano, M.; Heidecker, A.; Hernández, J.M.; Farì, S.; Schlotterer, M.; Woicke, S.; Seelbinder, D.; Dumont, E. Onboard Guidance

for Reusable Rockets: Aerodynamic Descent and Powered Landing. In Proceedings of the AIAA Scitech 2021 Forum, Virtual
Event, 11–15 and 19–21 January 2021; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [CrossRef]

9. Simplício, P.; Marcos, A.; Bennani, S. Guidance of Reusable Launchers: Improving Descent and Landing Performance. J. Guid.
Control Dyn. 2019, 42, 2206–2219. [CrossRef]

10. Mooij, E. Linear Quadratic Regulator Design for an Unpowered, Winged Re-Entry Vehicle; Number 03 in 08 Astrodynamics and
Satellite Systems; Delft University Press: Delft, The Netherlands, 1998.

11. Navarro-Tapia, D.; Marcos, A.; Bennani, S.; Roux, C. Structured H-infinity and Linear Parameter Varying Control Design for
the VEGA Launch Vehicle. In Proceedings of the 7th European Conference for Aeronautics and Space Sciences, Milan, Italy,
3–6 July 2017. [CrossRef]

12. Sagliano, M.; Tsukamoto, T.; Heidecker, A.; Maces Hernandez, J.A.; Farì, S.; Schlotterer, M.; Woicke, S.; Seelbinder, D.; Ishimoto,
S.; Dumont, E. Robust Control for Reusable Rockets via Structured H-infinity Synthesis. In Proceedings of the 11th International
ESA Conference on Guidance, Navigation & Control Systems, Virtual Event, 22–25 June 2021.

13. De Oliveira, A.; Lavagna, M. Reusable Launch Vehicles Re-entry: Preliminary Architecture towards Optimal Guidance and
Robust Control. In Proceedings of the XXVI International Congress of the Italian Association of Aeronautics and Astronautics
(AIDAA), Virtual Event, Pisa, Italy, 31 August–3 September 2021.

14. MATLAB Aerospace Toolbox User’s Guide; MathWorks: Natick, MA, USA, 2017.
15. Committee on Extension to the Standard Atmosphere. U.S. Standard Atmosphere 1976; Technical Memorandum NASA-TM-X-74335;

NASA: Washington, DC, USA, 1976.
16. Simplício, P.; Marcos, A.; Bennani, S. Reusable Launchers: Development of a Coupled Flight Mechanics, Guidance, and Control

Benchmark. J. Spacecr. Rockets 2020, 57, 74–89. [CrossRef]
17. Gentry, A.E.; Smyth, D.N.; Oliver, W.R. The Mark IV Supersonic-Hypersonic Arbitrary-Body Program, Volume I, User’s Manual;

Technical Report AFFDL-TR-73-159; USAF Flight Dynamics Laboratory: Dayton, OH, USA, 1973.
18. De Oliveira, A.; Lavagna, M. Assessment of Reusable Launch Vehicles Re-entry Dynamics Control Effectiveness with En-

hanced Aerodynamics Modelling. In Proceedings of the 73rd International Astronautical Congress (IAC), Paris, France, 18–22
September 2022.

19. Gentry, A.E.; Smyth, D.N.; Oliver, W.R. The Mark IV Supersonic-Hypersonic Arbitrary-Body Program, Volume II, Program Formulation;
Technical Report AFFDL-TR-73-159; USAF Flight Dynamics Laboratory: Dayton, OH, USA, 1973.

20. Ecker, T.; Karl, S.; Dumont, E.; Stappert, S.; Krause, D. A Numerical Study on the Thermal Loads during a Supersonic Rocket
Retro-propulsion Maneuver. In Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, USA, 10–12
July 2017; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [CrossRef]

21. Sagliano, M.; Seelbinder, D.; Theil, S.; Im, S.; Lee, J.; Lee, K. Booster Dispersion Area Management through Aerodynamic
Guidance and Control. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; American
Institute of Aeronautics and Astronautics: Reston, VA, USA, 2022. [CrossRef]

22. De Oliveira, A.; Lavagna, M. Reusable Launchers Re-entry Controlled Dynamics Simulator. In Proceedings of the 9th European
Conference for Aeronautics and Aerospace Sciences, Lille, France, 27 June–1 July 2022. [CrossRef]

23. Anderson, J. Fundamentals of Aerodynamics, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2017.
24. Nelson, R.C. Flight Stability and Automatic Control; McGraw-Hill Education: New York, NY, USA, 1989.
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