The state of turbulence in a pipe flow with drag reduction

Emanuele Gallorini¹, Daniele Massaro², Philipp Schlatter³ and Maurizio Quadrio¹

- $^1\,$ Politecnico di Milano
- ² KTH Royal Institute of Technology
- ³ Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg

Background¹

Experiment of Auteri et al, PoF 2010, streamwise traveling waves of spanwise velocity (StTW):

- Pipe flow ($Re_b = 4900$, $Re_\tau = 175$);
- StTW: $w(x) = A\sin(k_x x \omega t);$
- StTW discretized with *s* rotating slabs, Discrete Traveling Waves (DTW).

¹Gallorini & Quadrio, JFM 2024

Background¹

Experiment of Auteri et al, PoF 2010, streamwise traveling waves of spanwise velocity (StTW):

- Pipe flow ($Re_b = 4900$, $Re_\tau = 175$);
- StTW: $w(x) = A\sin(k_x x \omega t);$
- StTW discretized with *s* rotating slabs, Discrete Traveling Waves (DTW).

¹Gallorini & Quadrio, JFM 2024

Background¹

Experiment of Auteri et al, PoF 2010, streamwise traveling waves of spanwise velocity (StTW):

- Pipe flow ($Re_b = 4900$, $Re_\tau = 175$);
- StTW: $w(x) = A\sin(k_x x \omega t);$
- StTW discretized with *s* rotating slabs, Discrete Traveling Waves (DTW).

¹Gallorini & Quadrio, JFM 2024

Fourier series expansion of DTW

$$w = \frac{3\sqrt{3}}{2\pi} A \left[\underbrace{\sin(\omega t - \kappa_x x)}_{1SD} + \underbrace{\frac{1}{2} \sin(\omega t + 2\kappa_x x)}_{1OD} - \underbrace{\frac{1}{4} \sin(\omega t - 4\kappa_x x)}_{2SD} - \underbrace{\frac{1}{5} \sin(\omega t + 5\kappa_x x)}_{2OD} \right] \overset{\text{ge}}{\underset{1}{5}} \overset{\text{so}}{\underset{2}{5}} \overset{\text{so}}{\underset{2}{5}}$$

 $\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$

← S3 ← SIN ← EXP

60

-10

-0.3

-0.2

-0.1

0

 ω^+

0.1

0.2

0.3

Localized turbulence

- For high $\mathcal{R} \rightarrow$ Localized turbulence;
- Could explain high \mathcal{R} peaks;
- Complex experimental setup → impossible to control perturbations.

Ref

 $\omega^{+} = -0.02$

Localized turbulence?

Localized turbulence (puff, slugs) is common in pipe flow transition.

- Critical Re_C is around $Re_C = 2000$ (Faisst and Eckhardt, JFM 2004: $Re_C = 2250$; Willis and Kerswell, PRL 2007 $Re_C = 1870$);
- Our simulations are well beyond Re_C ($Re_b = 4900$);
- What produces localized turbulence? Re_b ? Re_{τ} ?

$$k_x^+ = 0.0082, \, \omega^+ = 0$$

A complete dataset for StTW in the pipe

 ${\cal R}$ map for the pipe, 1184 simulations.

 $L_x = 30D$ to catch the presence of transition phenomena.

Identify the localized turbulence

$$q(x,t) = \frac{\int (u_r^2 + u_\theta^2) \, dA}{AU_h^2}$$

$$k_x^+ = 0.00126, \ \omega^+ = 0.08, \ \lambda_2^* = 0.03$$

Localized turbulence in $\omega - k_x$ map

Re_b is not critical for the turbulence state. Maybe friction (Re_{τ}) ? P1: $\omega^+ = +0.08$, $k_x^+ = 0.0126$, R = 31%P2: $\omega^+ = -0.08$, $k_x^+ = 0.0126$, R = 31%

P1: $\omega^+ = +0.06$, $k_x^+ = 0.0126$, R = 31%P3: $\omega^+ = +0.08$, $k_x^+ = 0.0126$, R = 43%

P1: $\omega^+ = +0.06$, $k_x^+ = 0.0126$, R = 31%P3: $\omega^+ = +0.08$, $k_x^+ = 0.0126$, R = 43%

P1: R = 31%

P3: R = 43%

Conclusions

DNS to replicate (and expand) the experiment by Auteri et al, PoF 2010 \rightarrow localized turbulence at $Re_b = 4900$ Localized turbulence at $Re_b > Re_C$? \rightarrow Expand the $\omega - k_x$ space

- Presence of localized turbulence does not depend (only) on Re_b and Re_{τ} ;
- When present, regions of localized turbulence have similar dimensions, Re_{τ} , q;
- Number of localized turbulence regions $\leftrightarrow \mathcal{R}$ (Re_{τ}).