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Abstract: Urban water demand forecasting is essential for water supply network optimization
and management. In this case study, we comparatively investigate different state-of-the-art
predictive models on short- (1 day-ahead) and long-term (7 day-ahead) urban water demand
(UWD) forecasting for the city of Milan, Italy. The contribution of this paper is two-fold. First,
we compare the forecasting performance of different time series and machine learning models on
daily UWD. The tested models include Autoregressive Integrated Moving Average (ARIMA)
models, Artificial Neural Networks (ANN), Support Vector Regression (SVR), Light Gradient
Boosting Machine (LightGBM), and Long Short-Term Memory (LSTM) networks. Second, we
investigate whether coupling a Wavelet Data-Driven Forecasting Framework (WDDFF) with
these models further improves predictive capacity. Results show that, in general, WDDFF can
improve model predictive performance. LSTM coupled wavelet decomposition technique can
achieve high levels of accuracy with R? larger than 0.9 for both short- and long-term UWD
forecasts. Light GBM can efficiently reduce the number of predictors and show the potential to
forecast and select important features in the hydrology and water resources field.
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1. INTRODUCTION

Urban water security is paramount for water utilities and
water users alike. Yet, it is hampered by rapid urbani-
sation, population growth, and climate change (Hoekstra
et al., 2018). As the global water supply and demand gap
is estimated to reach 40% in 2030 (UNEP, 2015), water
demand-side management strategies have emerged as im-
portant complementary measures to supply-side interven-
tions in pursuit of water security (Cominola et al., 2015).
Accurately predicting urban water demands (UWD) con-
stitutes a critical input for planning and managing wa-
ter supply systems and their operations and formulating
demand-side management programs (Qi et al., 2018).

A variety of mathematical models have been developed in
the literature on UWD forecasting and have been tested
in different cities all over the world (e.g., Tiwari and
Adamowski, 2013; Guo et al., 2018; Rezaali et al., 2021).
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Time series models like Autoregressive Integrated Moving
Average (ARIMA) have been popular for UWD forecast-
ing tasks (e.g., Adamowski et al., 2012; Bougadis et al.,
2005). However, challenges emerge due to non-linearity in
hydrological and UWD data (Chang and House-Peters,
2011). A recent review by Zounemat-Kermani et al. (2020)
analysed the most widely adopted neural-based machine
learning (ML) models in the hydrology and hydraulics
fields, emphasising their suitability to deal with non-linear
processes and observations. Within this class of models,
those mainly used in the literature on UWD forecasting
include Artificial Neural Networks (ANN), Feedforward
Neural Networks (FFNN), and Multi-Layer Perceptrons
(MLP). Only a few researchers also explore the potential of
Recurrent Neural Networks (RNN) and Long Short-Term
Memory (LSTM) Networks in UWD forecasting (Guo
et al., 2018; Mu et al., 2020). Tree-based models (e.g., Ran-
dom Forests (RF)) and kernel-based models (e.g., Support
Vector Machines (SVM) and Regression (SVR)) have also
been proven effective to accurately forecast UWD (e.g.,
Braun et al., 2014; Chen et al., 2017).

In last decades, the use of hybrid models has also signifi-
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cantly increased. Coupled ML models with wavelet trans-
form (WT) emerged as one of the promising hybrid models
in hydrological process forecasting as well as UWD predic-
tion (Nourani et al., 2014). Wavelet transform is regarded
as a data pre-processing step to deal with non-stationarity
in time series and further improve the predictive capacity
of ML models. However, Quilty and Adamowski (2018)
pointed out the misuse of wavelet decomposition in some
research leading to over-optimal forecasting results in real-
world applications. Consequently, a new Wavelet Data-
Driven Foresting Framework (WDDFF) has been pro-
posed (Quilty and Adamowski, 2018) to overcome the
drawbacks of inappropriate applications (i.e., boundary
condition-related issues) and provide a set of best practices
(i.e., algorithm selection, filter and decomposition selec-
tion, data partitioning, feature selection) for developing
an appropriately coupled WT-ML model.

Accounting for the variety of forecasting models exist-
ing in the literature, the main objective of this paper is
to compare the forecasting performance of different ML
models on UWD forecasting at different temporal scales.
The contribution of this study is three-fold. First, we com-
paratively test different state-of-the-art predictive models,
namely, ARIMA, ANN, SVR, Light GBM and LSTM, for
predicting UWD in Milan (Italy). Second, we combine
the WDDFF to investigate whether using hybrid models
coupled with wavelet transform technique enables more
accurate forecasting of short- (1 day-ahead) and long-
term (7 day-ahead) urban water demands. Finally, we use
LightGBM to identify and select relevant predictors of
UWD for the same case study.

The rest of the sections are organised as follows: Section
2 describes the case study and introduces methods as well
as the experimental settings; Section 3 includes the main
results and discussions; finally, Section 4 summarises the
main conclusions of this study.

2. MATERIAL AND METHODS
2.1 Data: the Milan Case Study (Italy)

Water supply in Milan is managed by Metropolitana Mi-
lanese S.p.A. (MM), the largest water utility in Milan.
In total, there are 28 active pump stations that extract
groundwater and distribute it to final users through a com-
plex distribution network with a total length of approxi-
mately 2,228 km. The total water pumped to the system is
measured with a daily frequency at the input node of the
whole system. For this study, time series with daily UWD
data (U) are available from January 1, 2017 to December
31, 2019 (1095 records). The observed mean UWD in these
3 years is 601.14 megalitres per day (ML/D). Here, we use
these data to forecast water demands 1 day- and 7 day-
ahead.

Future UWD may depend on historical UWD as well as
meteorological variables. Therefore, we also included po-
tentially relevant meteorological data, which are collected
at the Lambrate meteorological station by ARPA Lom-
bardia (the Lombardy Regional Environmental Protection
Agency). These data include: daily average temperature
(Taver), daily maximum temperature (Tinqz), and daily
cumulated precipitation (P.y, ). Table 1 shows a summary
of the statistics of each variable in our dataset.

Table 1. Summary statistics of urban water
demand and meteorological data.

Statistics U(ML/day) Taver(°C) Tmae(°C)  Peum(mm/day)
Minimum 464.14 -2.80 0.50 0.00
Maximum 791.85 32.00 38.90 79.40
Mean 601.14 14.97 20.28 2.57
1st Quartile 575.25 7.80 12.30 0.00
Median 595.72 14.80 20.20 0.00
3rd Quartile 620.51 22.85 28.85 0.60
Standard Deviation 48.36 8.46 9.27 7.46

2.2 Predictive Models

ARIMA. ARIMA was first developed by Box and Jenk-
ins (1976) and assumes a linear relationship in the data
sequence considering random errors. There are three com-
ponents in an ARIMA model: (i) autoregressive (AR)
terms, (ii) moving average (MA) terms, and (iii) integrated
(I) terms dealing with non-stationality in data. In this
case study, a seasonal version of the ARIMA model was
developed to model the influence of external variables and
account for seasonality. The resulting model is named Sea-
sonal Autoregressive Integrated Moving Average with eX-
ogenous factors (SARIMAX). Consequently, the seasonal
AR, MA, and I terms are added to the model structure,
and meteorological variables are also added to the input
space to check for weather influences on UWD.

ANN. The multilayer perceptron (MLP), a layered feed-
forward neural network, has been proven as a simple and
efficient ANN architecture in UWD forecasts (Pacchin
et al., 2019). For this reason, we also use it in this case
study. An MLP consists of three types of layers that are
interconnected with each other in a sequence: input layer
(which receives and processes the input data), hidden layer
(which transfers and processes intermediate data), and
output layer (which predicts the outputs). An important
step in constructing accurate ANN models is to identify
the optimal number of hidden layers and neurons in each
layer via hyperparameter optimisation. In this study, the
number of hidden layers was selected in a range of 1-
3, and the number of neurons was bounded between 5
and 50. The optimal hyperparameter values were found
via k-fold cross-validation (k=3) and grid search over the
defined parameter space to minimise the Mean Squared
Error (MSE) on the validation set.

SVR. SVM model is a well-known ML algorithm in
classification, and the SVR is the extended regression
version of SVMs first proposed by Vapnik et al. (1996).
An important step is to map the original data to a higher
dimensional space by a kernel function ¢ so that a linear
regression problem is solved in that space (Bishop, 2006).
In order to train a SVR model, the kernel function and
several important hyperparameters need to be chosen and
tuned appropriately. Polynomial, radial basis function, and
sigmoid kernels were tested in this study. Kernel coefficient
v was tuned in a range from 0.0001 to 0.9 and the
regularisation parameter C in a range from 0.1 to 1000
by means of the same hyperparameter tuning procedure
used for the ANN model.

LSTM. To overcome the limitations of traditional RNN
models, which are not able to deal with long-term de-
pendencies when the prediction has the connection with
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information far before, LSTM was proposed by Hochreiter
and Schmidhuber (1997). LSTM has a sequence of memory
modules, where three gates control the information passed
to the cell states (Cy). Ct is a key component in LSTM
representing the long-term memory of data information.
The three gates are the forget gate (producing forget value
f+), input gate (producing input value i;), and output gate
(producing output value o;) in a forward sequence, which
is composed of a sigmoid neural network layer (o) and
a pointwise multiplication action (®). The fundamental
equations of the LSTM are given by Gers et al. (2000):

ft =0 (Wffﬂt -+ Ufht_l + bf)

it =0 (Wliﬁt + Ul'ht,1 + bl)

Oy =0 (WO.’Et + Uoht,1 + bo) 1
ét = tanh (Wexy + Uchi—1 + be) ( )

Cy :ft®Ct71+it®ét
ht = o ® tanh (Cy)

where h; is the output vector, C; is the candidate vector
added to update the new cell state, the weights (W, W,
Wo, Uy, U;, U,) and biases (bs, b;, b,) parameters are
determined by the training process.

As ANN models, the number of hidden layers and neurons
are two important hyperparameters. In this case, the
number of hidden layers is chosen between 2 and 3 and
the number of neurons is chosen between 1 to 100.

LightGBM.  LightGBM was designed by Microsoft Re-
search Asia (Ke et al., 2017) as a computational efficient
Gradient Boosting Decision Tree (GBDT) framework. Re-
cently, LightGBM has been used as a predictive model
and as an embedded input variable selection (IVS) method
(Banga et al., 2021; Effrosynidis and Arampatzis, 2021). In
Light GBM, the gain of variance after splitting is measured,
and the leaf with the largest value is found to do the split in
each tree, resulting leaf-wise growing trees. Gradient-based
One-Side Sampling (GOSS) was developed in Light GBM
to efficiently reduce the number of data instances for train-
ing. In the GOSS technique, all data are first sorted in a
descending order based on their absolute value of gradients
and the top a x 100% data are selected to form a subset
A. As for the remaining data, b x 100% number of data
are randomly sampled as subset B. In this way, the model
focuses more on the data that cause more loss while not
changing the data distribution much with the reduced data
space AUB. The variance gain V;(d) of the splitting feature
J at point d is defined as follows(Ke et al., 2017):

_ 2
_ 1 (ZTiGAl gi + 1Ta inGBz gi)

Vj(d) - E( klj(d) + (2)
(Za:ieA;L 9i + % > zicBy g¢)2>
k3, (d)

where k is the total number of samples in AU B, k:fl(d)

and kj (d) represent the number of samples with a value of
feature j higher than or less than the threshold d. Subsets
are defined as: Aj = {z; € A:xz;; < d},B, = {z; € B:
Tij < d},Ah = {xl cA: Tij > d},Bh = {x1 € B: Tij >
d}, and g; is the negative gradient of the loss function
with respect to the output z; of the model. The optimal
threshold d* is decided by optimizing d; = argmaxq V;(d).

Hyperparameter tuning in Light GBM is similar to that in
more traditional RF. Some critical parameters are chosen
by the grid search algorithm in the following ranges:
number of estimators between 2 and 400, maximum depth
of tree between 2 and 8, number of leaves between 10 and
160, minimum child samples in leaf between 1 and 20.

2.3 Wawvelet Transform and WDDFF

WT has the advantage of dealing with highly non-
stationary data by using amplitude decayed wavelets and
improve the understanding of characteristics of time series
data (Daubechies, 1992). In general, the original time se-
ries data can be decomposed into sub-components, namely
wavelet and scaling coeflicients, representing useful low
and high frequency information. Discrete wavelet trans-
form (DWT) has been widely used in hydrological and
water resources problems to improve forecasting capac-
ity with low computational efforts (Graf et al., 2019;
Zhou et al., 2020). However, as pointed by Quilty and
Adamowski (2018), wavelet decomposition has been mis-
used in some research which leads to over-optimal fore-
casting results in real-world applications. These problem
are mainly related to the boundary condition (BC) issue
(Aussem et al., 1998). To address the disadvantages of
DWT applications, Quilty and Adamowski (2018) pro-
posed the WDDFF which incorporates a couple of best
practices to develop an appropriate hybrid WT-ML model.
The prerequisite of WDDFTF is using the Maximal Overlap
DWT (MOWDT) or a trous algorithm (AT) instead of the
DWT, since DWT cannot be adjusted to eliminate the BC
issues due to its decimation property (Du et al., 2017).
In this case study, the MOWDT introduced by Percival
and Walden (2000) is implemented as a decomposition
algorithm.

MODWT decomposes the original time series X (t =

0,1,..., N — 1) into wavelet coefficients (W} ;) and scaling
coefficients (V; ;) by applying the wavelet filter (h;;) and
scaling filter (§;;) respectively. The decomposition equa-
tions are given by Percival and Walden (2000):

Lj—1

Wi = Z h;iX¢—1 mod N (3)
1=0

Vi = Z 95,1 Xt—1 mod N (4)
=0

where L is the length of filter, j = 1,2, ..., J represents the
decomposition level, mod refers to the modulo operator.
For more detailed definition and formulas of MODWT we
refer the reader to Percival and Walden (2000). According
to the best practices in the WDDFF, two important steps
should be considered:

(1) Choose wavelet filters and decomposition levels: db2
filter was explored here regarding the length of time
series and the decomposition level. The decomposi-
tion level of J = 4 was chosen to keep enough data
for training various models and the frequency range.

(2) Remove ‘boundary-influenced’ records to avoid bound-
ary condition-related issues: the number of removed
records in the input-output space is determined by
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Lj = (22=1)(L — 1) + 1 where j represent the
decomposition level, and L is the length of a wavelet
filter (Quilty and Adamowski, 2018). Accordingly, a
total of 46 (4.2% of total data) records were removed
from the beginning of original data and wavelet and
scaling coefficients.

After selecting the appropriate filter and decomposition
level, a direct approach is implemented where only input
variables are decomposed and used to predict the original
target variable. Then an IVS algorithm is run to select
favorable wavelet and scaling coefficients to the predic-
tive models. Light GBM is used to determine informative
features here for both non-wavelet and wavelet settings.
As the feature selection is an embedded function of the
learning algorithm, Light GBM can learn for prediction and
obtain importance values for input variables during the
training period. Finally, ANN, SVR and LSTM models
are calibrated and evaluated based on features selected by
LightGBM in both settings.

2.4 Model Performance Metrics

Four wide-adopted evaluation metrics were used in this
study: Root Mean Square Error (RMSE), Mean Ab-
solute Error (M AE), Mean Absolute Percentage Error
(MAPE), and Coefficient of Determination (R?). They
are formulated as follows:

RMSE =

=1

MAE — Zi:1 ‘yl - yz|
. (5)

1 Yi — Ui
MAPE = —

Yi
. \2
Z?:l (yi — 9i)
2
>t (Yi —9)
where (91, ga, ..., Yn) are predicted data, (y1,y2,...,Yn) are
observed data, g is the mean of all observed data. Values of

RMSE, MAE, and MAPE close to zero, and R? values
approaching 1 indicate good model performance.

R*=1-

2.5 Ezxperiment Settings

The UWD forecasting models presented in the previous
section can be divided into two types: those using time
series data versus those using tabular data. Temporal fea-
tures are treated as independent input variables in tabular
data, while time information is embedded with sequential
indexes of time series data. Among the five models used
in this study, SARIMAX and LSTM use time-series data,
while LightGBM, ANN, and SVR process tabular data.
Available data were split to use 80% for training and 20%
for test in model development.

Future UWD is usually determined by historical UWD,
meteorological, and temporal variables. Therefore, the ini-
tial input space of non-wavelet decomposed tabular data
includes numerical variables of U, Tuver, Tmaz, Peum,
and a binary variable Holy indicating holiday occurrence
(Holy = 1 indicates holidays; Holy = 0 represents non-
holiday days), a weekend indicator Wek (Wek = 1 repre-
sents weekends; Wek = 0 represents weekdays) and binary

month indicators Mony, Mona, ..., Monia (Mony, 12 =1
represents the day is in that month; Mon, . 12 = 0 rep-
resents the day is not in that month). Each predictor (U,
Tavera Tmawa Pcum7 W@k‘, HOlZ/, MO’I’Ll, M0n27 (X3} MOTL12)
was time-lagged up to 14 days (¢, t—1,..., t—13) considering
the close relationship between successive data and weekly
patterns. The resulting dataset after data processing con-
sisted of 252 variables. The inputs for time series data
are only historical UWD (U) and meteorological variables
(Tavers Tmaz, and Peyy,) with the assumption that all
time information is embedded. The target variables are
the UWD at time ¢t + 1 and ¢t 4+ 7 for 1 day- and 7 day-
ahead prediction respectively for all models.

Once the input space is defined, all five predictive models
are run with and without wavelet analysis. In both set-
tings, only the top 20 features with high importance values
are selected by Light GBM and used to make predictions
for models using tabular data.

3. RESULTS
8.1 Model Performance for 1 day-ahead Prediction

Table 2. Model performance metrics computed
for 1 day-ahead forecasting.

Models RMSE(ML) MAE(ML) MAPE(%) R?
Training Phase
SARIMAX 19.285 13.716 2.3 0.828
SVR 18.101 14.025 2.3 0.837
ANN 15.126 10.990 1.8 0.886
LightGBM 8.629 6.516 1.1 0.963
LSTM 10.373 6.274 1.1 0.947
WA-SVR 16.435 13.895 2.3 0.873
WA-ANN 2.556 1.927 0.3 0.997
WA-Light GBM 2.627 2.032 0.3 0.997
WA-LSTM 4.666 3.158 0.5 0.990
Test Phase

SARIMAX 15.460 11.284 1.9 0.906
SVR 19.546 14.747 2.5 0.896
ANN 18.058 13.273 2.3 0.911
Light GBM 20.524 14.510 2.5 0.885
LSTM 24.942 17.630 3.0 0.810
WA-SVR 20.721 14.193 2.4 0.886
WA-ANN 10.913 4.874 0.9 0.968
WA-Light GBM 16.637 12.038 2.1 0.926
WA-LSTM 9.596 6.300 1.0 0.974

SARIMAX, SVR, ANN, and LightGBM models used original se-
lected tabular data for calibration and validation, while LSTM used
original time series data for calibration and validation; WA-SVR,
WA-ANN, and WA-LightGBM used selected wavelet-decomposed
tabular data for calibration and validation, while WA-LSTM used
selected wavelet-decomposed time series data for calibration and
validation. The bold values indicate performance achieved by the
best model in training and test phase specifically.

The results in Table 2 show that all models can achieve
satisfying results with R? larger than 0.8 and RMSE less
than 20 ML/day in the test phase. According to several
researches about daily UWD forecasting (e.g., Tiwari and
Adamowski, 2013; Quilty and Adamowski, 2018), RMSE
lower than 27 ML/day and R? larger than 0.9 are usually
very satisfying performance for 1 day-ahead prediction.
In the non-wavelet setting, ANN and SARIMAX outper-
form the other models resulting R? of 0.911 and 0.906.
These two are typical machine learning and time series
models, which are usually used as benchmark models in
comparative research (e.g., Adamowski et al., 2012; Ti-
wari and Adamowski, 2013). Light GBM achieves the best
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Fig. 1. 1 day-ahead prediction results achieved by the WA-
ANN and WA-LSTM models in model testing.

performance in the training phase, but its performance
deteriorates in the test phase in both wavelet and non-
wavelet settings. However, Light GBM is suitable for select-
ing appropriate inputs for machine learning models using
tabular data, which improves model training efficiency
and prediction interpretability. Wavelet decomposition, in
general, improves the performance of all types of models
for 1 day-ahead predictions, demonstrating the usefulness
of extracting major information in data for forecasting
tasks. In the wavelet setting, WA-ANN and WA-LSTM are
the most suitable hybrid models (see prediction results in
Fig. 1). The major difference between these two models is
observed in December 2019. The WA-ANN model overes-
timates the UWD in early December and underestimates
the UWD later, while WA-LSTM can capture the trend
well.

Table 3. Model performance metrics computed
for 7 days-ahead forecasting.

Models RMSE(ML) MAE(ML) MAPE(%) R?
Training Phase
SARIMAX 32.947 23.663 4.0 0.492
SVR 21.228 16.792 2.8 0.776
ANN 21.841 16.060 2.7 0.763
Light GBM 14.042 10.586 1.8 0.902
LSTM 12.841 7.058 1.2 0.919
WA-SVR 13.110 10.195 1.7 0.919
WA-ANN 11.652 8.818 1.5 0.936
WA-Light GBM 7.209 5.487 0.9 0.975
WA-LSTM 7.701 5.396 0.9 0.972
Test Phase

SARIMAX 34.391 24.969 4.3 0.526
SVR 29.561 21.784 3.7 0.763
ANN 30.672 22.292 3.8 0.745
Light GBM 31.326 22.699 3.9 0.734
LSTM 45.802 34.152 5.9 0.439
WA-SVR 31.854 16.080 2.9 0.730
WA-ANN 28.362 14.829 2.6 0.786
WA-Light GBM 29.538 20.737 3.6 0.773
WA-LSTM 18.374 13.777 2.4 0.900

SARIMAX, SVR, ANN, and LightGBM models used original se-
lected tabular data for calibration and validation, while LSTM used
original time series data for calibration and validation; WA-SVR,
WA-ANN, and WA-Light GBM used selected wavelet-decomposed
tabular data for calibration and validation, while WA-LSTM used
selected wavelet-decomposed time series data for calibration and
validation. The bold values indicate performance achieved by the
best model in training and test phase specifically.

800
—— observations
750 LSTM predicted data
700 J\’\:\
= AENE
1geso \l lw \,’ a o\
\ \ { \w X
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Fig. 2. 7 days-ahead prediction results achieved by the
WA-LSTM models in model testing.

8.2 Model Performance for 7 days-ahead Prediction

The results of the 7 days-ahead forecasting are summarised
in Table 3. In general, the predictive performance of all
models deteriorates compared to 1-day forecasting re-
sults. Similar results are also illustrated in Quilty and
Adamowski (2018), where from 1 day- to 7 day-ahead
prediction, R? drops from 0.916 to 0.735, RM SE increases
from 27.358 ML/day to 46.840 ML/day. SARIMAX had
the worst performance in both training and test phases.
In many pieces of research, ARIMA models are usually
developed for 1 lead time prediction and can achieve sat-
isfying results, as in Section 3.1. A few researchers also
explore the possibility of predicting successive data and
obtained a similar conclusion that ARIMA models have
limited capacity for multi-step prediction tasks (Tiwari
and Adamowski, 2013; Mu et al., 2020).

In turn, ML models using tabular data (ANN, SVR, and
Light GBM) achieve comparable and relatively satisfying
results with R? around 0.75 in the test phase of the
non-wavelet setting. Applying the wavelet technique only
slightly improved the performance of these models in the
test phase. The best performance across all four evaluation
metrics is still achieved by the LSTM model coupled with
the wavelet decomposition technique. The comparison of
predicted values and observed values in the test phase
is shown in Fig. 2. In contrast, the traditional LSTM
model cannot provide accurate prediction on test data,
with the lowest R? of 0.439 even though it performed well
on training data. Specifically, this model cannot predict
the low UWD during summer holidays in August and
Christmas holidays in December. A possible reason is that
the information on holiday is not well captured in the
traditional LSTM model due to the short length of the
time series data, influencing the 7 days-ahead forecasting.
By applying wavelet decomposition, low-frequency infor-
mation indicating the main patterns of time series data
is better represented and relevant high-frequency informa-
tion representing weekly /monthly patterns are preserved.
Also, time information is still embedded in the decomposed
data. As a result, WA-LSTM can model the transformed
time series data better than other machine learning models
relying on transformed tabular data.

3.8 IVS Results

The top 20 important features selected by LightGBM in
the input spaces used for 1 day-ahead and 7 day-ahear
forecasts are listed in Fig. 3 and 4. The importance value
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Fig. 3. Feature importance of the top 20 variables ranked
for 1 day-ahead prediction.

represents the number of times that one feature is used in
a model. In general, variables related to lagged historical
UWD (U) and temperature (Taver, Tmas) are usually
ranked as most important ones. For both 1 day and 7
day lead time input spaces, one time lag UWD (U(lagl))
is always the most influential feature, and the week-
day/weekend indicator of 7 days lead time (Wek(lag7))
is also identified as one of the top 5 important ones.
Differences are also observed between these two data sets.
For 1 day lead time data selection, UWD of lead time less
than 7 days are more critical, while UWD of 8, 9, 10, 13,
and 14 lead times become more significant in 7 day-ahead
data selection. Also, the cumulated precipitation (Peym)
emerges as relevant for long-term prediction.

In the wavelet setting, IVS selection is based on all
wavelet coefficients and scaling coefficients of each selected
variable in the non-wavelet setting. It is not surprising
that all scaling coefficients of important variables (e.g.,
U(lagl), Tuver(lagl), Thax(lagl)) are selected, which are
main patterns of original data representing low frequency
information. Additionally, all level decomposed wavelet
coefficients of UWD are kept for prediction, while only
high-level wavelet coefficients (level 3 and level 4) are kept
for meteorological variables. According to Basta (2014),
decomposition levels 1 to 4 have corresponding frequency
ranges from 27! to 27° indicating changes in intervals of 1
day to 1 week. In this case study, the selection results show
that changes from daily to weekly of UWD and weekly
changes in meteorological variables are highly relevant to
forecast UWD at lead times of 1 day and 7 days.

4. CONCLUSIONS

Five different models, including ARIMA, ANN, SVR,
LightGBM, and LSTM, are developed and compared
to predict UWD 1 day- and 7 day-ahead using UWD
data collected in Milan, Italy, in the period 2017-2019.
Among them, ML models are also distinguished be-
tween those using tabular data (SVR, ANN, LightGBM)
and those using time series data (LSTM). Moreover,
the best practices of the wavelet decomposition tech-
nique from a recent proposed Wavelet Data-Driven Fore-
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Fig. 4. Feature importance of the top 20 variables ranked
for 7 day-ahead prediction.

casting Framework (WDDFF; Quilty and Adamowski,
2018) are adopted to improve model performance, where
the input variable selection is conducted by LightGBM.
All wavelet-setting models (WA-SVR, WA-ANN, WA-
Light GBM, WA-LSTM) are compared with non-wavelet-
setting models (SVR, ANN, Light GBM, LSTM) based on
wide-adopted evaluation metrics (RMSE, MAE, MAPE,
and R?). The numerical results indicate the following key
insights:

(1) For 1 day-ahead UWD prediction, ANN model is
robust and reliable in both non-wavelet and wavelet-
settingz, while for 7 day-ahead prediction WA-LSTM
had significant performance over all other models
with an R? of 0.9.

(2) Historical UWD is the main predictor of future water
demands over the time scale from daily to weekly, but
weekly patterns of meteorological variables also con-
tribute in a non-negligible way to accurate prediction.

(3) The wavelet decomposition technique can improve the
overall machine learning model performance but it
mostly improves the LSTM model using time series
data.

(4) LightGBM is suitable for conducting IVS in the
WDDFF to improve the model performance and has
relatively high predictive capacity following ANN and
LSTM.

Future studies may focus on testing the developed method-
ology on other UWD forecasting cases and evaluating the
possibility of forecasting UWD under varying social and
environmental uncertainties (e.g., COVID-19 Pandemic,
climate change).
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