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Abstract

This work consolidates and compounds previous investigations in recognizing defects

for infrastructure-as-code (IaC) scripts using general software development quality

metrics with a focus on defect severity but adding to previous work an explorative

look at creating datasets, which may boost the predictive power of provided

models—we call this notion a fluid dataset. More specifically, we experiment with

50 different metrics harnessing a multiple dataset creation process whereby different

versions of the same datasets are rigged with auto-training facilities for model

retraining and redeployment in a DataOps fashion. At this point, with a focus on the

Ansible infrastructure code language—as a de facto standard for industrial-strength

infrastructure code—we build defect prediction models and manage to improve on

the state of the art by finding an F1 score of 0.52 and a recall of 0.57 using a Naive–

Bayes classifier. On the one hand, by improving state-of-the-art defect prediction

models using metrics generalizable for different IaC languages, we provide interesting

leads for the future of infrastructure-as-code. On the other hand, we have barely

scratched the surface on the novel approach of fluid-datasets creation and

automated retraining of Machine Learning (ML) defect prediction models, warranting

for more research on the same direction in the future.
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1 | INTRODUCTION

With the “need for speed” being more and more important in the current IT market, the software development cycle is becoming shorter every-

day.1 Because of this more agile approach on software development and IT operation teams, both teams are more and more cooperating as a

DevOps team. A lot of good software engineering practices are adopted by these teams in the form of Infrastructure as Code (IaC):

code-versioning, code-revision management, and so forth,2 but—according to Gartner— infrastructure code failure and downtimes can cost

$5600 per minute.3 According to Kief Morris,4 IaC can be defined as follows:

“a declarative or procedural code to provision and/or configure software-defined infrastructure. It is an approach to infrastructure

automation based on software development practices, emphasizing consistent, repeatable routines for changing systems and their

configuration.”
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In essence, IaC helps practitioners in automating the management of the infrastructure by mapping each maintenance task with a dedicated

script that is unambiguous, versionable, and re-executable. However, being code, IaC is subject to bugs and defects that could significantly hinder

the operations of a software system.

According to Rahman et al.,5 IaC is a relatively new research area with most research done on IaC frameworks, their usage as well as their

defect proneness. Similarly, other recent publications have been related to empirical meta-studies. Rahman et al5 fail to find studies on IaC defects

and security flaws and observes a need for this type of study while also highlighting the shortage of data concerning specific types of defects and

issues thereof. Similarly, previous studies of the same authors have shown that defects can occur in IaC scripts, resulting in costly system

outages.6

In summary, although recent research is starting to take IaC into account for software quality analyses, there is a shortage of both data and

increased risks connected to IaC outages. Stemming from this fact and drawing from typical bagging7 and bootstrapping8 practices in machine

learning and computational intelligence,9 we conjecture that different versions of the same existing datasets in IaC can be created to boost the

predictive performances of available IaC defect-predictive models, with a focus on predicting the defect suspiciousness of areas of code, rather

than specific code instances—we refer to this notion as a fluid dataset; that is, a dataset that is created and recreated according to prespecified

code data properties and characteristics drawn from the target modelling problem's features. To address the aforementioned conjecture, we enact

an exploratory ML-based investigation focusing on predictive modelling of defects in the Ansible language. Our goal is to answer the following

research questions:

• RQ1: How well can we classify IaC scripts as defective using software development quality metrics within fluid datasets?

• RQ2: Can changes in code be of predictive value for the defectiveness of the infrastructure code?

• RQ3: How well can we generalize the fluid-data quality prediction of an IaC script to other IaC languages?

To answer RQ1, we train several machine learning models to classify Ansible Playbooks as defect or sound using metrics from the state of the

art.10 We scrape multiple GitHub repositories and extract their IaC scripts as a data set for model training and validation. We acquire labeled data

by searching through the commit history of the repositories, and we assume that a commit containing the keyword FIXED fixes a bug.* We

retrieve the code before and after the commit and label them as defect and sound, respectively.

To answer RQ2, we use the labeled data from RQ2 by trying to correctly predict the code before the commit as defect and after the commit

as sound.

To answer RQ3, we look at the generalizability of the identified important metrics. In this research, we focus mainly on Ansible scripts. How-

ever, by taking an extra look at generalizable metrics, we can extend our scope to other IaC languages like Chef, Puppet, and Tosca as well.

In the following sections, we first discuss the available literature on software development quality metrics, defect prediction, and DevOps in

Section 2. In Section 3, we discuss our experimental configuration, our approach on generating data and metrics, and the clustering and prediction

techniques used to come to our results. In Section 4, we give a brief discussion of all the generated metrics and analyze their behavior in the data

set. We discuss the clustering results in Section 5 and the prediction results in Section 6. Our research questions are answered in Section 7. We

conclude our research in Section 8.

2 | BACKGROUND AND RELATED WORK

This section first describes Infrastructure as Code with an example in Ansible that helps the reader to grasp the main concept of the domain.

Second, to reach our goal of using traditional software quality metrics to find defects in IaC scripts, we review the history and the current state of

these metrics to find metrics that can be used, and to gain knowledge of the effect of these metrics on the quality of software. Third, we give an

overview of existing defect prediction methods. Including data generation, metrics, and defect prediction models. Fourth, we give an overview of

the workflow and problems of development and operations teams in a company. Fifth, we analyze existing research on defect prediction in

DevOps. We conclude by summarizing the key findings from the literature and how we use them in this manuscript to answer our research

questions.

2.1 | Infrastructure as code

While cloud computing materialized the idea of a programmable backend with virtually infinite resources, it also increased the need of a more rig-

orous, deterministic, and less error-prone approach to the provisioning, configuration, and management of (virtual) resources. This need is the

main enabler of the DevOps paradigm2 that binds any management task with a corresponding IaC script that is versionable, executable, and

unambiguous. Several languages and platforms have been realized in the last few years, each focusing on specific characteristics of infrastructure
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management ranging from virtual machine (e.g., Cloudify and Terraform) and container (e.g., Docker Swarm and Kubernetes) orchestrators to con-

figuration management tools (e.g., Ansible, Chef, and Puppet).

Among other tools, Ansible† is recently gaining traction‡ for its simple and agent-less architecture, and we use it as an exemplary technology

in the rest of this subsection. Ansible is an automation engine that allows users to provision cloud resources and configure the infrastructure and

applications using the YAML language. Ansible allows to write two main types of artifacts: modules and playbooks.

Ansible connects to infrastructure nodes (e.g., provisioned virtual machines) and execute modules to change their configuration (i.e., each

module executes a single management operation). The execution of a module is called a task. The orchestration of tasks is made possible by play-

books. Playbooks allow to deploy and configure multiple nodes and orchestrate and synchronize the execution of tasks on a slice of or the whole

infrastructure topology.

As an example,11 Figure 1 shows an Ansible playbook that provisions and deploys a website composed of a set of web servers and a

PostgreSQL database. Lines 2–5 identify the host type webservers, while line 7 declares the corresponding set of tasks. Lines 8–11 defines a task

that the latest version of the Apache web server is installed. The task executes module yum with a given name and desired state (i.e., latest). Lines

13–14 identify the databases host type. Lines 17–20 and 22–25 declare two dedicated tasks, respectively. The former ensures the installation of

the latest version of PostgreSQL (again with module yum), while the latter guarantees that PostgreSQL is started on each database node

(with module service). With more complex scripts, it is possible to synchronize the execution of the different tasks, order their execution and

create conditional executions.

2.2 | Software development quality metrics

Li et al12 study 31 different software metrics and find that metrics based on program size are useful for evaluating software quality. Tang et al13

identify three types of faults correlated with object-oriented design metrics. The first two types identified are object oriented, the third type is

not. The metrics mentioned can all be related to either class complexity, inheritance, and coupling.

Xenos et al14 provide an overview of existing software development quality metrics that can be used for object oriented programming (OOP).

The authors present a set of traditional metrics that can be applied to OOP and a set of metrics specifically designed for OOP. According to the

authors, the latter cannot be applied to other programming styles than OOP.

Yu et al15 define a software metric as a measurement to quantify characteristics or attributes of a software entity. The authors divide software

metrics into three categories: Quality of source codes, development processes, and accomplished applications. Software complexity is said to be

focusing on the quality of source code, divided into three categories: Essential complexity, selecting complexity, and incidental complexity. The

F IGURE 1 An example of an Ansible script
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essential and selecting complexity are set by the problem being solved and the programming language, whereas the incidental complexity is set by

the implementation.

According to Keshavarz et al,16 complexity is an important factor to affect code quality. The authors analyze different factors that are

important to software complexity. The number of inputs, outputs, files, external interfaces, and user inquiries are mentioned. The authors also

mention the Halstead Complexity Metric (HCM), which is based on the number of unique operators and operands, and the number of all

operators and operands. The McCabe Cyclomatic Complexity Metric is computed by counting the number of decisions in a program, which is

related to the number of IF/ELSE statements. The authors however do warn for the difficulty of computing the HCM and the McCabe

complexity.

Rashid et al17 study the impact of software metrics on software quality, the authors conclude that the reliability of a program decreases once

the complexity increases: Object oriented metrics prove to be very good in predicting complexity fast and, therefore, these metrics enhance software

quality.

The metrics studied by Li et al12 are mostly measurements of different properties in a script, most of which are applicable to each type of lan-

guage. Tang et al13 concludes that a large method, containing more code, introduces more defects than a small method, motivating to look at the

size of a script and its contents. Because of the findings of Rashid et al,17 we try to create a similar metric applicable to IaC for each metric used

by Xenos et al.14 Like the work of Yu et al,15 we focus on the quality of source code. Because of Keshavarz et al.'s16 warning for the difficulty of

computing the HCM and McCabe complexity, we start by focusing on the easier to compute metrics that they are related to, like the number of

operators and operands, and the number of IF/ELSE statements.

Being full-fledged code, traditional software metrics can be applied to IaC as is. Della Palma et al11 proposed an initial refinement of tradi-

tional software metrics into ones dedicated to IaC that takes into account, for example, not only the numbers of code block in a script but also

the number of Ansible tasks or distinct modules. However, the study of a broader taxonomy of IaC quality metrics is considered out-of-scope for

this paper and it is considered future work.

2.3 | Defect prediction

Defect prediction18 is an important research field of software engineering. Several approaches have been presented in the literature including

ones that estimate the number of defects in a software program,19 others20 that find “associations” among defects (i.e., they detect additional

problems starting from a defected piece of code), and ones21 that classify the defect-proneness of software components (as the ones discussed in

this manuscript).

Defect prediction models can be used to control (semi-)automatically the software integration cycle: If number of defects or the defect-

proneness of a software artifact is too high, its deployment in production can be delayed or subject to further inspection. Defect prediction

models can also be used as tools to guide software reviews (e.g., pull requests) helping the reviewer in discovering bugs and their root causes

(e.g., through defects associations) or to highlight the need of a refactoring action. Finally, they can be utilized for prioritizing unit and integration

testing (roughly, the more defects detected the more tests are needed).

Several defect prediction models, as the one presented herein, can be complemented with an explainability layer that transcends the detec-

tion task and helps practitioners understanding why a software component is defected.22 This kind of extensions deserves a dedicated focus, and

their integration in the presented model is considered out-of-the scope of this work.

When creating a defect prediction model, the first step is to generate data from software archives. Version control systems, e-mail archives,

and issue tracking systems are examples of these archives. The second step is to extract metrics or features from the generated data, the third

step is to label the data as either sound, buggy, or defect. An option is to pre-process the data, by using feature selection, data normalization, or

noise reduction. At last, a prediction model can be trained that classifies whether a program contains bugs or not.23

Wan et al24 give a recent overview of defect prediction models. The authors identify the following categories:

1. Prediction models and learning approaches

2. Metrics in defect prediction models

3. Cross-project defect prediction

4. Imbalance, mislabeling, bias and noise

5. Granularity of defect prediction

6. Privacy

7. Performance evaluation

We follow a similar strategy to Nam.23 Our study is placed into categories 1 and 2 of Wan et al.24
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2.3.1 | Data generation

Vendome et al25 mine the commit history of 16,221 open source Java Applications from GitHub by first mining a list of projects hosted on GitHub

using the GitHub API. Similarly, Reyes et al26 provide a study collecting available research on GitHub. The study provides a set up for retrieving

data from GitHub and gives insight on the use of keywords. Horton et al27 present Gistable, a database and framework using Github's gist system,

containing 10,259 code snippets. Schermann et al28 provide 100,000 unique Dockerfiles in over 15,000 Github repositories to answer questions

about typical programming languages and defects.

The mentioned researches focus on different coding styles and languages, but their research can prove helpful in crawling GitHub repositories

and generating data.

2.4 | Defect prediction in DevOps

Schwarz et al29 use code smells to assess the quality of Puppet code. They also find that smells from other technologies are transferable. New

code smells that are introduced and applied to Chef are as follows: Long resources, using too many attributes, not using comments, the Law of

Demeter (each unit should only have limited knowledge about other units), using hyphens, and having empty default values. We note that the last

two smells are derived directly from the Chef style guide.

Rahman et al30 tries to identify characteristics of Puppet scripts that correlate with defects and violate security and privacy objectives. 14 IaC

characteristics that correlate with defects are found.

Rahman et al6 also do a first step toward predicting defects in IaC scrips, by using textual features to train a random forest (RF) classifier that

classifies defective Puppet scripts.

Borg et al31 presents an implementation of the SZZ algorithm to identify bug-introducing software changes. The authors find an F1 score of

½0:10�0:15�, a recall of ½0:13�0:20�, and a precision of ½0:07�0:12� when predicting bugs in Jenkins code.§

2.5 | Technical landscape

Infrastructure as code is becoming a key component in the management of applications because it facilitates, speeds up, and automates recurring

nonfunctional operations. IaC materializes any of these tasks with a dedicated script that is versionable and re-executable. Being code, IaC scripts

(e.g., Ansible, Chef, and Puppet) can be analyzed through software quality metrics and prediction models can be created in order to help practi-

tioners detect defects. While some approaches have been presented on this matter, the literature on IaC defect proneness is still in its infancy

calling for more research effort.

3 | METHODOLOGY

3.1 | Research problem

The technical space of infrastructure code—intended as the set of technological assets, languages, and tools potentially employable for infrastruc-

ture code design, development, and management—is quite extensive and therefore a need arises to produce metrics as well as varied perspectives

on their usage to quantify and predictively model infrastructure code.

While some quantification mechanisms are starting to emerge (as described in Section 2), they tend to be technology-specific and do not

account for the individual varieties of each technology, for example, varying the features and characteristics to be quantified depending on the

target (set of) technologies.

3.2 | General overview and experimental setup

The general approach for this work—tailored from previous studies that paved the way to the topic23—is recapped in Figure 2.

In essence, to answer RQ1, we train classification models on two different target variables. The first target variable is the clustering result of

RQ1, the second target variable is the outlier result. The classification models are discussed in Section 3.7.

QUATTROCCHI AND TAMBURRI 5 of 26
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To answer RQ2, we use the classification models trained to answer RQ1. We count the number of times an instance from our test set is

predicted defect before the commit, and sound after the commit. We use the same classification models that are used to answer RQ1; they are

discussed in Section 3.7.

To answer RQ3, we discuss the metrics and their generalizability in Section 4.1.

Essentially, to complete this research, we first scrape GitHub repositories to find Ansible, Chef, and Puppet files. After finding that Ansible

data returns the most data files, we converge our research to focus solely on Ansible files.

Second, we consider a total of 50 different metrics using the Ansible documentation and existing literature on software development quality

metrics. For each metric, we estimate its generalizability for other IaC languages. By combining existing research software development quality

metrics and existing research on the other popular IaC languages with the Ansible documentation, we make an educated guess about metrics that

are relevant for the complexity of Ansible scripts and therefore influence the probability of defects present in the script.

Third, we create a dataset of measurements of each metric for each Ansible script (see Section 6.4 for more information about the tool that

we created to accomplish this task). Some of the metrics are correlated by design. Think of the number of blank lines of code in a script and the

relative number of blank lines of code: The number of blank lines of code compared to the total lines of code. To compare for the different effects

of these metrics in bug prediction, we create eight separate datasets: The first containing all the metrics (AM), the second containing only the

absolute metrics (“number of blank lines of code”) (ABS), the third containing only the relative counterparts of these absolute metrics (REL), and

the fourth containing no metrics with a correlation higher than 0.7. Each dataset is considered with and without outliers.

These datasets are used for outlier detection and clustering. We use nine different outlier detection algorithms that can be found in Table 3.

We use an independent ensemble framework with a maximization method for score combination. Outliers can be interesting for our research

because an outlier, by definition, does not behave according to the rest of the population. We can use them to identify new smells in Ansible

scripts and use these smells to create a defect prediction algorithm. If the set of outliers indeed consists of a lot of defective scripts, we can also

use the set for training our prediction model.

Clusters are created for the same reasons as outliers are detected: By analyzing the resulting clusters, we find Suspicious Clusters, as defined

in Section 1. We use an ensemble clustering framework using random projection to generate ensemble members, spectral graph partitioning as a

consensus function, and silhouette, Davies Bouldin, and Calinski Harabasz scores as evaluation metrics.

Fourth, we train classification models on the resulting clusters. We gain insights on metrics that are relevant for the suspicious clusters. The

methods used can be found in Section 3.6.

Fifth, we train random forest, decision tree, and Naive–Bayes classifiers, as suggested by Rahman30 and Hammouri et al,32 on the clustering

and the outlier detection results. We train each classifier on each dataset and compare its results. We also train each classifier on each dataset,

using only the most important metrics, classified in the previous step.

F IGURE 2 Common process of software defect prediction, tailored from previous work;23 the same and identical approach was followed for
this work

TABLE 1 Results of GitHub scraping

Ansible Chef Puppet

Total repositories 428 216 224

Number of files 25,034 1,071 2,682

Number of authors 246 85 402

Avg. stars 301 174 94

6 of 26 QUATTROCCHI AND TAMBURRI
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3.3 | Data gathering

We use a GitHub scraper to extract multiple repositories related to IaC from Github.33 To ensure some quality, each repository should have at

least 5 stars and has to be updated recently (within six months since the day of scraping). Using the keywords Ansible, Chef, IaC, Infrastructure as

TABLE 2 Infrastructure code metrics considered in this study; name and abbreviation of each metric are reported in columns 1 and 2, while
their respective factor of generalizability is reported in column 3

Abbreviation Name Type

ATSS Average task size Semi-specific

BLOCð_relativeÞ Blank lines of code General

CLOCð_relativeÞ Commented lines of code General

DPT Depth General

ETP Entropy General

LOC Lines of code General

NBEHð_relativeÞ Number of blocks error handling Semi-specific

NBL Number of blocks Specific

NCD Number of conditionals General

NCMD Number of 'command' commands Semi-specific

NCO Number of comparison operands General

NDKð_occurrencesÞ Number of deprecated keywords Semi-specific

NDMð_occurrencesÞ Number of deprecated modules Semi-specific

NEMDð_relativeÞ Number of external modules Semi-specific

NFL Number of filters Semi-specific

NFMDð_relativeÞ Number of fact modules Semi-specific

NICD Number of inline conditionals Specific

NIERR Number of ignore_errors Specific

NIMPP Number of import_playbook Semi-Specific

NIMPR Number of import_role Semi-Specific

NIMPT Number of import_tasks Semi-Specific

NINC Number of include Semi-Specific

NINCR Number of include_role Semi-Specific

NINCT Number of include_tasks Semi-Specific

NINCV Number of include_vars Semi-Specific

NKEYS Number of keys General

NLK Number of lookups Semi-specific

NLO Number of logic operands General

NLP Number of loops Semi-specific

NMD Number of modules Semi-specific

NMO Number of math operands General

NNNVð_relativeÞ Number of names without variables Semi-Specific

NNWVð_relativeÞ Number of names with variables Semi-Specific

NSCM Number of suspicious comments General

NSH Number of shell commands Semi-Specific

NTKN Number of tokens General

NTNNð_relativeÞ Number of tasks without a name Specific

NTS Number of tasks Semi-Specific

NTUNð_relativeÞ Number of tasks with a unique name Semi-Specific

NTVR Number of task variables Semi-Specific

NUNð_relativeÞ Number of unique names General

QUATTROCCHI AND TAMBURRI 7 of 26
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Code, Puppet, and TOSCA, we find a total of 880 repositories, written by as many as 402 different authors per technology (for a total of

733 authors involved as indirect subjects of our study) and containing 28,787 files. The average number of stars for each repository is 215.5, with

an average of 231 pull requests. The most popular programming languages for each keyword are as follows: Python for Ansible, and Ruby for Chef

and Puppet. The results can be found in Table 1. We find no more than 30 repositories for the keywords IaC, Infrastructure as Code, and TOSCA

combined. Therefore, we consider them to be irrelevant for this work and decide to only include Chef, Ansible, and Puppet results. The high num-

ber of Ansible scripts together with the little research that has already been done on Ansible as compared to Chef and Puppet motivated us to

focus the rest of our research on the Ansible technology.

3.4 | Metrics and fluid datasets overview

According to the documentation, Ansible Playbooks describe a policy you want your remote systems to enforce, or a set of steps in a general IT pro-

cess. Playbooks can be used to manage configurations of and deployments to remote machines.34 Based on this documentation and on the existing lit-

erature on traditional software development quality metrics, we derive 50 metrics drawn from previous work10 to extract from Ansible playbooks

that might provide an indication for defective IaC scripts. All metrics are divided in seven categories, essentially a fluid dataset, with six degrees of

freedom:

1. General complexity: LOC, BLOC, CLOC NTKN, DPT, NKEYS, ETP,

2. Tasks and modules: ATSS, NTS, NTVR, NMD, NFMD,

3. External: NINC, NINCT, NINCV, NINCR, NIMPT, NIMPR, NEMD, NLK, NSH,

4. Naming conventions: NUN, NNNV, NNWV, NTUN, NTNN,

5. Errors and bad practices: NIERR, NDK, NBEH, NDM, NSCM,

6. Other complexity: NBL, NCD, NCO, NICD, NLP, NFL, NLO, NCMD.

For each metric, we estimate a factor of generalizability (FoG), which is either General, Semi-Specific, or Specific. We consider a metric to be

General if it is applicable to other languages without effort, Semi-Specific if it is only applicable to Ansible in the current form, but can be translated

to different IaC languages, and Specific if it is only applicable to Ansible. A full overview of the metrics and their self-explanatory nature along with

their FoG score are recapped in Table 2. We discuss these metrics briefly in the following sections.

3.4.1 | General complexity metrics

General complexity metrics are metrics that have little relation to Ansible code specifically. They can be created for other languages with ease,

and therefore, their FoG is General. General complexity metrics tell something about the general size and structure of the script.

Every script has a number of lines of code (LOC). It was one of the first software development quality metrics, and there is no reason not to

take it into account. Together with LOC, there's the number of blank lines of code (BLOC), and the relative number of BLOC: BLOC=LOC. We also

count the number of commented lines of code (CLOC), as well as its relative counterpart: CLOC=LOC. We also count the number of tokens (NTKN) in

a script which represents an interesting dimension: it cannot be semi-specific since some infrastructure languages are not consistent with

tokenization, making it difficult to predict their properties and complexity.

The last metrics in this category are the depth (DPT) of a playbook, the number of keys (NKEYS) in a playbook, and its entropy (ETP). Because

Ansible playbooks are written as YAML-code, they can be depicted as dictionaries. The depth of such a dictionary, is what we call the depth of the

playbook. The same goes for the number of keys in such a dictionary.

3.4.2 | Task and module related metrics

According to the documentation, each playbook is composed of one or multiple plays, and the goal of a play is to map a group of hosts to well-defined

roles, represented by tasks.35 A play usually consists of executing tasks. A task itself can be seen as a call to an Ansible module. The goal of each task

is to execute a module with very specific arguments.35 Because other languages like Chef and TOSCA also allow to use and execute modules, but

using a different syntax, the FoG of these metrics is Semi-Specific.

To start, we count the number of tasks (NTS) in a playbook. A larger task size, denotes more modules to be executed, denoting a more com-

plex playbook. Therefore, we define the average task size (ATSS) as 1
NTS

XNTS

i¼1
TSi. Where TSi the size of task i.

8 of 26 QUATTROCCHI AND TAMBURRI
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Each task is able to use and create variables. By the Ansible documentation, these are called task variables. We count the number of task vari-

ables (NTVR), the number of modules (NMD) and the number of fact modules (NFMD). A fact module is is defined as a module that does not alter

state, but rather returns data (facts) about the playbook.

3.4.3 | External metrics

An Ansible playbook uses a lot of external information by including and importing external sources. Importing external sources is something that is

used in every programming language, but the different types of import and the syntax differs. Therefore, the FoG of these metrics is Semi-Specific.

We count external metrics by counting the number of include (NINC), include_role (NINCR), include_task (NINCT), and include_vars (NINCV)

statements. In the same way, we count the number of import_playbook (NIMPP), import_role (NIMPR), and import_task (NIMPT) statements. Last,

we count the number of lookup commands (NLK), the number of shell commands (NSH), and the number of external modules (NEMD).

3.4.4 | Naming conventions

In Ansible, everything can be named. The best practices page of the Ansible documentation recommends to always name tasks, to use variables

for naming them, and to use unique names.35,36

Therefore, we count the number of unique names (NUN), the number of names with a variable (NNWV) and with no variable (NNNV), the number

of tasks with a unique name (NTUN), and the number of tasks with no name (NTNN).

Puppet, for example, does not allow for unnamed tasks.37 Therefore, the FoG of NTNN is Specific, for the rest of the above metrics, the FoG

is Semi-Specific.

3.4.5 | Errors and bad practices

Ansible offers the possibility to ignore errors with the ignore_errors command. Keywords and modules can be used, despite being deprecated.

Blocks allow for errors to be handled, similar to exceptions in other programming languages.38 We count the number of ignore_errors (NIERR), the

number of deprecated keywords (NDK) and modules (NDM), and the number of blocks used for error handling (NBEH).

Last, we count the number of suspicious comments (NSCM). A comment is considered suspicious when it contains any of the following key-

words: TODO, FIXME, HACK, XXX, CHECKME, DOCME, TESTME, PENDING.

In Puppet, there is no way to ignore errors. Therefore, the FoG of NIERR is Semi-Specific. Every language contains (different) deprecated key-

words and modules, and offers methods for error handling, giving an FoG of Semi-Specific for NDK, NDM, and NBEH. Comments are language

independent, giving an FoG of General to NSCM.

3.4.6 | Other complexity metrics

These are the metrics that are quite regularly used for different programming languages, which give some indication on the complexity of a pro-

gram but that are not as straightforward to compute as the general complexity metrics, and not as easy to generalize for different languages due

to different syntax. The FoG of all metrics in this category is Semi-Specific.

The metrics contained in this category are as follows: The number of conditionals (NCD), inline conditionals (NICD), comparison operands (NCO),

loops (NLP), filters (NFL), logic operands (NLO), command commands (NCMD), and the number of blocks (NBL).

3.5 | Data preprocessing

As suggested by Aggarwal,39 we use an independent ensemble framework of outlier detection techniques to classify outliers in our dataset, since

independent ensembles are popularly used with high dimensional data.40 The idea behind independent ensembles of outlier detection techniques

is that different algorithms are applied to either the complete data or portions of the data. The results of these algorithms can then be combined

to obtain more robust outliers.39 We use a total of nine different outlier detection algorithms, as proposed by Zhao et al.40 The techniques used

can be found in Table 3. As suggested by Aggarwal39 and Zhao et al,40 we use the maximization method for score combination. Since outliers can

be very relevant for the purpose of our research, we construct two additional types of fluid datasets: With and without outliers.

QUATTROCCHI AND TAMBURRI 9 of 26
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3.6 | Clustering

In order to get more insight in our dataset, we divide the data in clusters and use multiple classification tools to find the metrics that are

most influential to these clusters. As suggested by Domingos,41 we use an ensemble clustering method for our cluster analysis. A clustering

ensemble framework consists of three main components: Ensemble member generation, a consensus function, and evaluation.42 The empirical

study of Fern et al43 on cluster ensembles on high dimensional data suggests using a random projection (RP)-based approach with spectral

graph partitioning44 as a consensus function. We use Silhouette (SH), Davies Bouldin (DB), and Calinski Harabasz (CH) scores as our

evaluation metrics.

The resulting clusters are used as target variables for three classification algorithms: Random Forest, Extra Trees (ET), and XGBoost (XGB)

classification. By doing so, we can extract the features that are most relevant for the clusters found in the previous step.

In the following subsections we elaborate on the clustering ensemble method and the parameters chosen for our model.

3.6.1 | Random projection based ensembles

Let f :ℝn�d !ℝd�d0 a linear transformation given by fðXÞ¼X �R¼X0 , where R�ℝd�d0 a random projection matrix with rij �N 0, 1
d0

� �
8i� d,8j� d0

i.i.d. The resulting matrix X0 is clustered following a k-means algorithm to create k�ℕ clusters.

This process is repeated m�ℕ times to create m clusterings c1,…,cm, each containing k clusters.

3.6.2 | Spectral graph partitioning

The points in our dataset and the clusterings from the previous part, can be represented as a bipartite graph GðU,V,EÞ so that each vertex u�U

represents a cluster u�Ci ði�1,…,m and each vertex v�V represents an instance in our dataset. This means that for each edge e¼ðe1,e2Þ� E

holds that either e1 �U and e2 �V or e1 �V and e2 �U. Let A the connectivity matrix between points in U and V. We can write GðU,V,EÞ as

W¼ 0 AT

A 0

" #
.43 We use W to calculate the normalized Laplacian matrix L and create a matrix A consisting of the eigenvectors belonging to the k

greatest eigenvalues of L. By using k-means to cluster the points in A, we assign each point from our dataset to one of k clusters.

3.6.3 | Parameter selection

According to Fern et al.,43 d0 needs to be chosen so that at least 90% of the explained variance of the data is kept. Therefore, we choose d0 ¼2. n

is the number of rows in the used dataset, and d the number of columns. We let k go from 2 to 10 clusters and use the SH, DB, and CH scores to

determine the optimal number of clusters.

TABLE 3 Outlier detection techniques

Abbreviation Technique

AKNN Average k nearest neighbors

CBLOF Cluster-based local outlier factor

FB Feature bagging

HBOS Histogram based outlier detection

IF Isolation forest

KNN k nearest neighbors

LOF Local outlier factor

MCD Minimum covariance determinant

OCSVM One class support vector machine

10 of 26 QUATTROCCHI AND TAMBURRI
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3.7 | Prediction modelling and model evaluation

To test our findings, we create a prediction model that predicts whether a playbook contains bugs or not. We use the results found in the cluster-

ing procedure to label the data, where playbooks in the deviating cluster are considered as “buggy” and playbooks in the other clusters are consid-

ered sound.

To create a test set, we used the retrieved GitHub repositories. By looking in the projects for commits that closed a “bug”-labeled issue, we

were able to retrieve files consisting of bugs. The resulting files of these commits were labeled sound.

Following Rahman and Williams6 who used a random forest classifier earlier for IaC scripts, we trained several classifiers: Random Forest,

Decision Tree, Naive Bayes, and a Multilayer Perceptron. Each classifier is trained on each dataset, both on all the metrics, as well as on the most

important metrics, found during the clustering procedure, with the deviating cluster as target variable.

4 | DESCRIPTIVE STATISTICS

4.1 | Metrics overview

The 428 Ansible repositories consist of 9290 Ansible files. We find no suspicious comments, no math operands, and no imported playbooks in

our entire data set. There are 5 rows in the data set containing NaN values. After deletion of these metrics and rows, we are left with a Table of

9285 rows and 50 columns. The data has a sparsity of #zeros
#rows�#columns ≈0:62. Meaning that, although over half of the data being 0, the data are not

very sparse. A correlation plot of the most highly correlated variables can be found in Figure 14. In the following subsections, we discuss each

metric shortly.

4.1.1 | General complexity metrics

The value distribution of the metrics can be found in Figures 3 and 4. To keep the visualization insightful, the data are cut off at the .95th percen-

tile. We note that LOC, NTKN, and NKEYS are relatively equally distributed. Most playbooks have depth 1,2, or 3. CLOC becomes constant, and

BLOC is almost constant. This means that playbooks for which BLOC >0 or CLOC >0 might be interesting for our prediction. As expected, LOC,

NTKN and NKEYS share strong correlations. ETP has a negative correlation with LOC, NTKN, DPT, and NKEYS, indicating a lower entropy for

larger, more complex playbooks. Relative counts share a correlation with their absolute counterparts.

4.1.2 | Task and module related metrics

The value distribution of the metrics can be found in Figures 5 and 6. The data are cut off at the .95th percentile. NFMD becomes constant with

this cutoff. NTS, NTVR, and NMD seem to be quite equally distributed. As seen in Figure 6, they are correlated as well. For most of the playbooks,

F IGURE 3 Counts of general complexity metrics
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their values are 0 or close to 0. ATSS is generally greater than 0, but smaller than 10. We conclude that for the largest part, task and module

related metrics are not too high.

4.1.3 | External metrics

For visualization purposes, we omit figures and representations concerning this dimension as We note that very little playbooks get information

from external sources. Also, no correlation is found between the variables involved in this dimension.

4.1.4 | Metrics related to naming

The value distribution of the metrics can be found in Figure 7. The data are cut off at the .95th percentile. NUN, NNNV, and NTUN seem to be

fairly evenly distributed. As can be seen in Figure 8, unnamed tasks (NTNN) show a general negative correlation with other name giving metrics.

Surprisingly, we see no correlation between the relative variables and their absolute counterparts. We conclude again that most of these variables

are generally low valued.

F IGURE 4 Correlations of general complexity metrics

F IGURE 5 Counts of task and module related metrics
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4.1.5 | Complexity metrics

The value distribution of the metrics can be found in Figure 9. The data are cut off at the .95th percentile. We notice that conditionals tend to

occur most in the playbooks, whereas loops occur the least amount of times. However, most of the playbooks do not report having any of them.

All the variables are slightly correlated, as can be seen in Figure 10.

4.1.6 | Errors and bad practices

The correlations between the metrics can be found in Figure 11. There are correlations between each absolute metric and its occurrences counter-

part. The playbooks with a relatively high number for these metrics were considered interesting for our analysis as they reflect considerable condi-

tions according to the infrastructure code programming model.

F IGURE 6 Correlations of task and module related metrics

F IGURE 7 Counts of naming metrics
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 20477481, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2480 by PO
L

IT
E

C
N

IC
O

 D
I M

IL
A

N
O

, W
iley O

nline L
ibrary on [26/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F IGURE 8 Correlations of naming metrics

F IGURE 9 Counts of other complexity metrics

F IGURE 10 Correlations of other complexity metrics
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4.2 | Outlier detection

We find 397 outliers, which is roughly 4.27% of our data. The behavior of the outlier maximization score (OMS) can be found in Figure 12. When

comparing the behavior of outliers and inliers, we find that for the metrics NDM, NDM_occurrences, NFMD, NFMD_relative, NIMPR, NIMPT,

NINC, NINCR, NINCT, NINCV, the distribution within the set of outliers is not significantly different from the distribution within the set of inliers.

In Table 4, we see that outliers generally have a lower value than inliers for the metrics: ETP, NDK_Occurrences, NNNV_relative, NTUN_relative,

and NUN_relative. We expected NDK_occurrences to have higher values in the set of outliers. Generally, in the inliers, more variables are used in

task names, probably meaning that more variables are created dynamically. We also find more unique names in the playbooks belonging to the

set of inliers. In general, the comparison of the outlier distribution with the inlier distribution satisfies our expectations: outliers tend to have

higher values, indicating more complex playbooks.

5 | CLUSTERING RESULTS

As discussed in Section 3.2, we create four different datasets. Each dataset is considered with and without outliers. We refer to the resulting

datasets with the following abbreviations:

F IGURE 11 Correlations of error distributions

F IGURE 12 Outlier maximization score
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TABLE 4 Significance of each inlier (most significant in red color) vs. outlier (most significant in blue color) distribution

Metric Avg inliers Avg outliers Significant p value

atss 8.65 47.48 True 5.90e�21

bloc 0.27 3.09 True 3.20e�11

bloc_relative 0.01 0.03 True 5.76e�7

cloc 0.05 0.61 True 1.49e�4

cloc_relative 0.0 0.0 True 3.06e�2

dpt 2.06 2.79 True 1.85e�34

etp �4.91 �5.85 True 2.36e�67

loc 41.31 265.64 True 7.85e�118

nbeh 0.02 0.27 True 1.27e�10

nbeh_relative 0.02 0.18 True 1.27e�10

nbl 0.17 0.88 True 1.24e�16

ncd 11.49 69.35 True 2.00e�99

ncmd 0.34 0.97 True 9.90e�5

nco 2.32 10.22 True 1.16e�16

ndk 0.09 0.26 True 3.12e�10

ndk_occurrences 0.13 0.8 True 3.12e�10

ndm 0.0 0.03 False 1.00e+0

ndm_occurrences 0.0 0.11 False 1.00e+0

nemd 1.03 4.36 True 2.67e�38

nemd_relative 0.22 0.34 True 5.01e�14

nfl 1.72 9.79 True 8.02e�23

nfmd 0.04 0.3 False 2.69e�1

nfmd_relative 0.0 0.02 False 2.69e�1

nicd 0.19 1.41 True 2.20e�5

nierr 0.2 1.43 True 2.45e�6

nimpr 0.02 0.07 False 1.00e+0

nimpt 0.12 0.39 False 5.62e�1

ninc 0.18 0.89 False 9.99e�1

nincr 0.03 0.08 False 1.00e+0

ninct 0.26 0.68 False 9.03e�1

nincv 0.04 0.1 False 9.88e�1

nkeys 34.11 212.08 True 2.01e�112

nlk 0.03 0.49 True 3.31e�5

nlo 1.16 5.84 True 3.74e�10

nlp 0.78 3.18 True 1.87e�17

nmd 2.61 4.29 True 2.39e�16

nnnv 6.06 33.29 True 2.26e�94

nnnv_relative 0.84 0.71 True 1.87e�47

nnwv 0.68 7.63 True 3.87e�52

nnwv_relative 0.09 0.24 True 3.87e�52

nsh 0.31 1.1 True 5.92e�3

ntkn 132.25 851.33 True 8.85e�124

ntnn 0.81 3.34 True 5.25e�12

ntnn_relative 0.23 0.28 True 5.25e�12

nts 5.77 26.6 True 3.83e�64

ntun 4.64 19.63 True 2.62e�59

16 of 26 QUATTROCCHI AND TAMBURRI

 20477481, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2480 by PO
L

IT
E

C
N

IC
O

 D
I M

IL
A

N
O

, W
iley O

nline L
ibrary on [26/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1. AM: a dataset containing all metrics,

2. AMNO: AM without outliers,

3. ABS: a dataset containing only absolute metrics,

4. ABSNO: ABS without outliers,

5. REL: a dataset where we keep only the relative counterpart if an absolute metric has one,

6. RELNO: REL without outliers,

7. NOCOR: a dataset without all the highly correlated metrics,

8. NOCORNO: NOCOR without outliers.

For each dataset, we compute 2 � 10 clusters and evaluate the results using the Silhouette (SH) score, Davies Bouldin (DB) score, and the

Calinski Harabasz (CH) score. A high SH and CH score, and a low DB score are indications of good clusterings. For each dataset, we see that the

optimal number of clusters equals 6. For each dataset, the size of each cluster can be found in Table 5

We explore the resulting clusters by using different classification methods to identify the metrics most relevant to the clusters. By looking at

the results in Table 6, we see that the influence of correlated metrics is heavily present in the AM, ABS, and REL tables, with NTKN, LOC, NKEYS,

NCD, NTS, and NUN being important metrics. For each dataset, they are distributed according to the figures in the following subsections. For

TABLE 4 (Continued)

Metric Avg inliers Avg outliers Significant p value

ntun_relative 0.75 0.64 True 2.90e�25

ntvr 5.91 22.15 True 1.13e�66

nun 5.8 27.35 True 2.13e�101

nun_relative 0.87 0.74 True 8.44e�51

TABLE 5 Cluster sizes per data set

Data set c0 c1 c2 c3 c4 c5

AM 6440 1697 487 174 335 152

AMNO 339 1038 2281 484 4548 198

ABS 6434 1546 418 237 509 141

ABSNO 2252 4524 1037 203 487 385

REL 6464 1551 395 475 155 245

RELNO 2253 4560 1040 517 348 170

NOCOR 6268 1724 651 165 400 77

NOCORNO 1100 4418 2185 460 489 236

Note: The colored cells represent the suspicious clusters.

TABLE 6 Most important features per table

AM AMNO ABS ABSNO REL RELNO NOCORR NOCORRNO

ntkn ntkn ntkn ntkn ntkn ntkn loc loc

loc loc loc loc loc loc atss atss

nkeys nkeys nkeys nkeys nkeys nkeys etp etp

ncd ntun ntun etp ncd etp nmd nfl

etp nun ncd nun nts ncd nfl nlo

nnnv ncd etp nts etp atss nemd_rel nmd

nun etp atss ncd ntvr nts nlo nlp

nts nmd nts atss atss ntvr ntnn ntnn

ntun atss nun ntun nmd nmd nlp nemd_rel

nlp ntvr nnnv ntvr nlp nsh nun_rel nun_rel

QUATTROCCHI AND TAMBURRI 17 of 26

 20477481, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2480 by PO
L

IT
E

C
N

IC
O

 D
I M

IL
A

N
O

, W
iley O

nline L
ibrary on [26/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



every dataset, we note one cluster behaving very different from the other datasets: a Suspicious Cluster. For each dataset A in the set of datasets,

we define the Suspicious Cluster to be SCA. In the following sections we will elaborate on the contents of this cluster and whether we expect to

find defects. The distribution of important metrics for the AM dataset can be found in Figure 13.

5.1 | All metrics (AM)

In Figure 13, we see the distribution of the most important metrics per cluster for the AM dataset. We immediately note cluster 3 as behaving

very different from the other clusters: for 8 out of 10 metrics, the values in the cluster are much higher than for the other clusters. The values in

the cluster are also more widely distributed than for the other clusters. This could also be attributed to the small size of cluster 3 (with 174 play-

books), however, note that cluster 5 also contains only 152 playbooks. We do note in Figure 14 that NTKN, LOC, NCD, NKEYS, NNNV, NTS,

NTUN, and NUN are highly correlated metrics, which can also be seen in their behavior in the boxplots. Note that the median number of loops

equals 0 for clusters 0, 3, and 5.

For the Playbooks in SCAM, this means that they are generally much larger playbooks: more tokens, lines of code, conditionals, and variables.

More stuff happens in these playbooks, suggesting that there is also a higher chance of things going wrong.

5.1.1 | No outliers (AMNO)

For a large part, this dataset holds the same metrics as most important as the AM dataset. The metrics NNNV, NTS, and NLP are replaced for

NMD, ATSS, and NTVR. The suspicious cluster in this dataset is cluster 5, consisting of 198 Playbooks. Note that for 53 playbooks p� SCAMNO

holds that p� SCAM.

In comparison to the other clusters, the playbooks in SCAMNO are larger. Just like for the AM dataset. However, we note that outliers are

removed from this dataset: where the median number of tokens for AM lies around 1400, for AMNO, this value lies just above 800.

F IGURE 13 Distribution of the most important metrics in the AM dataset
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5.2 | Absolute metrics (ABS)

We immediately note one suspicious cluster, just like in the previous datasets. This dataset introduces no new metrics. SCABS consists of 141 Play-

books. For 40 Playbooks p� SCABS holds p� SCAMNO. For all p� SCABS holds P� SCAM.

5.2.1 | No outliers (ABSNO)

We find cluster 3 to be of interest, consisting of 205 playbooks. For 38 playbooks p� SCABSNO, we find that p� SCABS. For 191 playbooks

p� SCABSNO, we find that p� SCAMNO.

5.3 | Relative metrics (REL)

We note that cluster 4 sticks out. No new metrics are introduced. For 154 playbooks p� SCREL holds p� SCAM. For 39 playbooks p� SCREL, we find

p� SCAMNO.

5.3.1 | No outliers (RELNO)

For this dataset, cluster 5 sticks out. Less important metrics seem more evenly distributed than the more important metrics. NSH is newly intro-

duced as an important metric, for which the .75th quartile is equal to 1 in cluster 2 and 3. However, due to its deviation compared to other clus-

ters in the more important metrics, we remain more interested in cluster 5 than in clusters 2 and 3. For 18 playbooks p� SCRELNO, we find

p� SCAM. For 163 playbooks p� SCRELNO, we find p� SCAMNO.

F IGURE 14 Correlation plot of most highly correlated metrics
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5.4 | No Correlated metrics (NOCOR)

We see cluster 5 deviating the most for the most important metrics. In this dataset, we notice a real difference from the previously investigated.

Because the highly correlated metrics are dropped, a lot of new metrics are introduced. However, for a lot of metrics, the behavior of the suspi-

cious cluster does not deviate very much from the other metrics. However, all the outlying ATSS values seem to be included in the suspicious

cluster. This cluster also seems to contain playbooks with, in general, a lower amount of unique names (NUN_relative). We find that for 64 play-

books p� SCNOCOR holds p� SCAM. For 9 playbooks, p� SCNOCOR holds p� SCAMNO.

5.4.1 | No outliers (NOCORNO)

Interesting is that where the number of filters behaved differently for a different cluster in the previously discussed dataset, for this dataset, the

number of filters stands out in cluster 5, our suspicious cluster. We find that for 51 playbooks p� SCNOCORNO holds p� SCAM. For 182 playbooks,

p� SCNOCORNO holds p� SCAMNO.

5.4.2 | Suspicious clusters

We see that the number of tokens, lines of code, and the number of keys are the most important metrics for all datasets, except NOCOR and

NOCORNO. For NOCOR(NO), where NTKN, and NKEYS (amongst others) are removed, the number of lines of code is the most important metric.

The entropy of a playbook, and the average task size are also reoccurring metrics. Despite the entropy being an important metric for our classi-

fiers, it doesn't seem to be very differently distributed from the other metrics in the suspicious clusters, in contrast to the other metrics. NTKN,

LOC, and NKEYS always seem to be much higher for the playbooks in the suspicious clusters.

For the playbooks in the suspicious cluster, this means that they are generally larger and more complex than the other playbooks: They con-

sist of more lines of code and more conditionals. We also see a higher average task size for each SC, meaning that also on a deeper level we see

the author trying to do more in a single step. In Table 5, we see the size of each Suspicious cluster. Note that for every dataset A, except for AM

SCA is also the smallest cluster in the dataset. This could explain the high variability within each cluster. Were it not that c5 from AM does not

share the high variability of SCAM and that c3 from ABS is about the same size as some of the SCs, without sharing their variability.

In Table 7, we see the number of playbooks present in suspicious clusters belonging to different datasets. We note that the SCs of datasets

containing outliers have a lot in common, as well as the SCs of datasets containing no outliers.

Our findings here seem to be in agreement with,17 who conclude that the reliability of a program decreases once the complexity increases.

Our playbooks that deviate most from the other playbooks have a higher complexity, which suggests that their reliability might be lower than that

of other playbooks.

6 | DEFECT PREDICTION MODELLING

6.1 | Using the suspicious cluster

We have trained three classification models (Random Forest, Decision Tree, Naive Bayes) to predict defects in Ansible Playbooks in eight different

datasets. We trained each classifier two times for each dataset: Once using all the features in the dataset, and once using only the identified most

TABLE 7 The number of playbooks found in the suspicious cluster of both tables

AM AMNO ABS ABSNO REL RELNO NOCORR

AM 174

AMNO 51 198

ABS 141 36 141

ABSNO 51 197 36 203

REL 155 40 141 40 155

RELNO 18 163 3 169 7 170

NOCORR 64 9 62 9 63 3 77

NOCORRNO 51 182 36 183 40 150 9
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TABLE 9 Accuracy (acc), precision (prec), recall (rec), and f score of predictions using Outliers as a target variable

all acc all prec all recall all fscore imp acc imp prec imp recall imp fscore

AM RF 0.52 0.57 0.13 0.22 0.51 0.50 0.10 0.17

DT 0.51 0.50 0.20 0.29 0.49 0.44 0.13 0.21

NB 0.49 0.48 0.43 0.46 0.49 0.44 0.13 0.21

ABS RF 0.52 0.57 0.13 0.22 0.49 0.40 0.07 0.11

DT 0.52 0.57 0.13 0.22 0.48 0.43 0.20 0.27

NB 0.52 0.52 0.43 0.47 0.51 0.50 0.10 0.17

REL RF 0.49 0.40 0.07 0.11 0.51 0.50 0.10 0.17

DT 0.51 0.50 0.10 0.17 0.46 0.36 0.13 0.20

NB 0.51 0.50 0.43 0.46 0.51 0.50 0.20 0.29

NOCORR RF 0.52 0.60 0.10 0.17 0.51 0.50 0.07 0.12

DT 0.52 0.60 0.10 0.17 0.48 0.40 0.13 0.20

NB 0.48 0.47 0.57 0.52 0.51 0.50 0.33 0.40

Note: We use “all” to refer to predictions using all metrics in a data set, and “imp” to refer to predictions using only the important metrics.

TABLE 8 Accuracy (acc), precision (prec), recall (rec), and F1 score of predictions using the Suspicious cluster as a target variable

clf all acc all prec all rec all F1 score imp acc imp prec imp rec imp F1 score

AM metrics RF 0.51 0.50 0.07 0.12 0.51 0.50 0.07 0.12

DT 0.51 0.50 0.07 0.12 0.51 0.50 0.07 0.12

NB 0.51 0.50 0.23 0.32 0.51 0.50 0.10 0.17

AMNO RF 0.49 0.40 0.07 0.11 0.51 0.50 0.10 0.17

DT 0.51 0.50 0.10 0.17 0.51 0.50 0.10 0.17

NB 0.51 0.50 0.23 0.32 0.51 0.50 0.27 0.35

ABS RF 0.51 0.50 0.07 0.12 0.51 0.50 0.07 0.12

DT 0.51 0.50 0.07 0.12 0.51 0.50 0.07 0.12

NB 0.52 0.53 0.27 0.36 0.49 0.40 0.07 0.11

ABSNO RF 0.51 0.50 0.10 0.17 0.51 0.50 0.10 0.17

DT 0.51 0.50 0.10 0.17 0.51 0.50 0.10 0.17

NB 0.51 0.50 0.33 0.40 0.51 0.50 0.27 0.35

REL RF 0.51 0.50 0.07 0.12 0.51 0.50 0.07 0.12

DT 0.51 0.50 0.07 0.12 0.51 0.50 0.07 0.12

NB 0.52 0.53 0.30 0.38 0.51 0.50 0.17 0.25

RELNO RF 0.51 0.50 0.03 0.06 0.51 0.50 0.03 0.06

DT 0.51 0.50 0.03 0.06 0.51 0.50 0.03 0.06

NB 0.51 0.50 0.23 0.32 0.51 0.50 0.27 0.35

NOCORR RF 0.51 0.50 0.03 0.06 0.51 0.50 0.03 0.06

DT 0.51 0.50 0.03 0.06 0.51 0.50 0.03 0.06

NB 0.52 0.56 0.17 0.26 0.51 0.50 0.10 0.17

NOCORRNO RF 0.51 0.50 0.07 0.12 0.51 0.50 0.07 0.12

DT 0.49 0.40 0.07 0.11 0.51 0.50 0.07 0.12

NB 0.52 0.53 0.30 0.38 0.51 0.50 0.33 0.40

Note: We use “all” to refer to predictions using all metrics in a data set, and “imp” to refer to predictions using only the important metrics.
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important features in the dataset. The results can be found in Table 8. Predictions using all metrics are referred to as all, predictions using only

important metrics are referred to as imp. We calculate the accuracy (acc), precision (prec), and recall (rec).

We find that each classifier gets about the same accuracy and precision. However, for the recall and the F1 score, we do find significant dif-

ferences. The Naive–Bayes classifier consistently gives the best result for almost each dataset. The highest F1 score is obtained for the ABSNO

and the NOCORNO datasets for all the metrics and only the important metrics respectively.

6.2 | Modelling using outliers

The defect prediction scores using outliers as classification target can be found in Table 9. Using the files we classified as outliers, we find an

f score of 0.52 for the Naive–Bayes classifier using only uncorrelated metrics on all data. This is a slight improvement compared to classifying

based on the suspicious clusters. This increase in f score is mainly due to an improvement of the recall, meaning that fewer playbooks have incor-

rectly been classified as sound. However, using outliers as a target variable seems to make the overall classification worse. Using only the impor-

tant metrics, NB is much less consistent.

6.3 | Bug detection based on code changes

An interesting aspect of our test set is that it consists of the same files, before and after debugging. In Table 10, we can see the number of files

that are correctly predicted as defect before the commit and correctly predicted as sound after the commit, trained on the suspicious clusters.

Table 11 shows the same results based on outliers.

Using suspicious clusters, we see that the Naive–Bayes classifier is most consistent and most successful in predicting bugs based on changes

in code, with a best accuracy score of 0.23.

TABLE 10 Number of correctly identified bug fixing commits using clusters as target variable

Using all metrics Using important metrics

AM RF 0 0

DT 0 0

NB 1 1

AMNO RF 0 1

DT 1 1

NB 0 3

ABS RF 0 0

DT 0 0

NB 7 0

ABSNO RF 1 1

DT 1 1

NB 1 3

REL RF 0 0

DT 0 0

NB 3 3

RELNO RF 1 1

DT 1 1

NB 0 3

UNCORR RF 1 1

DT 1 1

NB 4 1

UNCORRNO RF 0 0

DT 0 0

NB 4 3

22 of 26 QUATTROCCHI AND TAMBURRI

 20477481, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2480 by PO
L

IT
E

C
N

IC
O

 D
I M

IL
A

N
O

, W
iley O

nline L
ibrary on [26/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6.4 | Research solution

As a result of this study, we design an Ansible defect prediction tool. We create a tool that reads an Ansible file, as selected by the user, extracts

all metrics as mentioned in this report, and returns a prediction on whether the Ansible file is sound or not, using the Naive Bayes predictor that

returned the best result in our research. The prediction model can be found on GitHub.¶ Furthermore, to encourage verifyability, all materials and

scripts needed for the experimentation reported in this paper are available online.#

7 | DISCUSSION AND FUTURE RESEARCH

7.1 | Findings and outlook

From a software engineering perspective, the lack of technical debt management approaches to 'quantifying' infrastructure code makes it rela-

tively impossible to predict its qualities. At the same time, while several works are emerging to address such shortcoming, there is still a need to

look for more complex and effective measurements that cope with infrastructure code variety and its relatively wide technical space.

In the scope of the experimentation in this manuscript, we attempted to identify defectiveness as a property of generalisable metrics, chang-

ing the shape of the data being fed to a predictive modelling approach.

As a result of our experimentation, there are at least three evident limitations of this emerging field, stemming from this research: (1) There is

a need for interpretative layers on top of the predictions to make such predictions actionable—in our case, we observed that even though there

are models capable of yielding some useful predictions, their actionability is limited if not accompanied by an assessment of the individual metric

impact; (2) defective does not mean erroneous—although our predictive modelling indicates reasonable defectiveness areas, runtime defect pre-

diction approaches would be able to use such information pro-actively, and perhaps more formal specification of runtime checking for infrastruc-

ture code may be able to avoid such risks during orchestration. These mechanisms are not a reality yet and must be explored; (3) in the scope of

our work, modelling multiple infrastructure languages and analysing them at the same time and with the same predictive modelling approach

turned out to be more difficult than it originally seemed as, for example, modelling formats do not share the same programming model and it is

therefore difficult to prepare predictive analytics accounting for their collective peculiarities—consequently, abstraction-based modelling of infra-

structure code and model-checking of its properties during design time is both still in its infancy and useful, for example, to represent the analyzed

DevOps pipelines for their troubleshooting.

7.2 | Research goals and addressing research questions

The goal of our study was to develop traditional software development quality metrics in IaC scripts in order to predict the quality of said scripts.

We find that metrics related to the size of a script give the best quality indications. We also find results that are an improvement of the current

TABLE 11 Number of correctly identified bug fixing commits using outliers as target variable

Using all metrics Using important metrics

AM RF 2 1

DT 1 2

NB 2 1

ABS RF 2 0

DT 2 2

NB 2 2

REL RF 0 1

DT 1 2

NB 2 3

UNCORR RF 1 1

DT 1 0

NB 2 3
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state of the art, which is provided by the SZZ algorithm of Borg et al,31 who found an F1 score of ½0:10�0:15�, a recall of ½0:13�0:20�, and a pre-

cision of ½0:07�0:12�.
To answer RQ1, we use the results of our defect prediction in Section 3.7. On a test set consisting for 50% of sound files and 50% of defect

files, our best result is an F1 score of .52, with a recall of .57 and a precision of .47. This is a significant improvement compared to Borg et al,31

who found an F1 score of .10 � .15, a recall of .13 � .2, and a precision of .07 � .12, which is the current state of the art. The improvement on

the recall score compared to the current state of the art means that fewer scripts have incorrectly passed the test as sound.

To answer RQ2, we have tried to correctly classify bug-fixing commits on Ansible scripts as such. Using Random Forest and Decision Tree

classifiers, our best score is an accuracy of .03 in 16 different settings. Using a Naive Bayes classifier, in seven out of 16 settings, we find an accu-

racy smaller than .03 when recognizing bug fixing commits. In eight out of 16 settings, we find an accuracy of ½:10� :13�, and in one setting we

find an accuracy of .23. By being able to outperform RF and DT, Naive Bayes provides an interesting lead for identifying bug fixing commits.

To answer RQ3, we have revised the total set of 50 different metrics part of our fluid dataset creation exercise. A subset of these metrics is

derived from traditional software development quality metrics, making them easily generalizable for different IaC languages. The largest part of

the set of metrics is designed specifically for Ansible scripts, but are measurements of properties found in many different programming languages,

as discussed in Section 4.1. These metrics can be calculated for different IaC languages, but a different syntax has to be taken into account.

The most important metrics for identifying and predicting quality of IaC scripts can be found in Table 6. The most important metrics that are

easily generalizable for other IaC languages are: ETP, LOC, NCD, NKEYS, NLO, NSH, NTKN, NUN, NUN_REL. The metrics that can be used in

other IaC languages, but require a bit more work to retrieve are: ATSS, NEMD_REL, NFL, NLP, NMD. The important metrics specific for Ansible

are: NNNV, NTNN, NTUN, NTS, NTVR. This means that of the 19 metrics that help identifying defects in IaC scripts, 9 are very easily transferable

to other languages, 5 are transferable with a manual work and extensions to our framework,45 and 5 metrics are specific for Ansible.

Because29 have used smells in Puppet code to identify smells in Chef, we expect that with some extra effort, identifying and predicting the

quality of IaC scripts of other languages, such as Chef, Puppet, and TOSCA, can be done with the same metrics we used for Ansible.

It must be noted that the current implementation of our tool will not flag the source code as defected if a proper correction is applied. In addi-

tion to that, the model can be trained with user-feedback (e.g., users that mark an artifact as not-defected) making its precision improve during

utilization (active-learning).

7.3 | Limitations and future research

The reliability of the results is limited by the size and the selection method of our test data. The test data consists of only 61 files, while our

models are trained on 9290 files, giving an imbalance in the split of our train and test data. Our study also operates under the assumption that a

commit containing the keyword FIXED fixes a bug. While we can be quite certain that the script before the commit contains (a) bug(s), we cannot

be sure that the script after the commit is bug free.

The results we have found are promising, but future research following up on our results should build a bigger test dataset. By taking a closer

look into automatically labeled data, or by manually labeling data using experts, more reliable predictions can be made. We recommend to do

more research on the parameter settings of the Naive Bayes classifier and to develop tests to check our conclusions on the generalizability of our

results for other IaC languages.

Moreover, we plan to employ quality metrics that are specific to IaC (e.g., the ones presented in Dalla Palma et al.11) in addition to general

ones as we did in this work. A proper comparison will not only potentially improves the results obtained herein but also helps understanding the

need and the effectivness of ad hoc metrics.

Finally, our future work includes exploring the addition of an explainability layer that will enable users to not only detect defected code but

also have hints on the reasons why the problem arose.

8 | CONCLUSION

By using traditional software development quality metrics, we have succeeded to make an improvement on the current state of the art in

predicting bugs in an IaC script. By developing these metrics using existing literature and the Ansible documentation, we created several versions

of the same potential dataset, leading to the possibility to make clusters of our data set; with this approach, we were able to find a subset of

Ansible scripts showing a different behavior than the other scripts. We have shown that these clusters can be used quite well to find bugs in

Ansible scripts, and that they provide an interesting lead for recognizing bug fixing commits.

By trying to predict defects in Ansible scripts, we have provided a follow up on the research of Rahman et al6 and Borg et al.31 We also made

a contribution to the existing gap of studies on IaC defects, as mentioned by related works by Rahman et al.5
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Because of the use of simple, measurable metrics, we expect it possible to improve on our results by creating a larger and more thoroughly

inspected test data set, and by constructing and deriving more complex metrics, like McCabe's cyclomatic complexity metric.46

At the same time, in the scope of our research design, we chose to focus our efforts around the underlying assumption that a IaC commit with

the FIXED keyword does actually fix a bug since informal focus groups that drove the inception of our research design made us confident that

the aforementioned decisions/assumption actually reflects the state of industrial practice. Nevertheless, we recon that a focused study on how

infrastructure code is actually patched and how bugs are triaged in its scope should be warranted with further study.

An important part of the metrics we have constructed can be generalized for other IaC languages, like Chef, Puppet, and TOSCA. By creating

a model independent of the language that is able to extract said metrics and make a prediction on the quality of the script, it will be easier to find

defects before bringing the script to production, independent of the used IaC language, thereby reducing the chance for infrastructure downtime.
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ENDNOTES

* This assumption was worked out by confirming our research design within a focus group held in conjunction with the OASIS TOSCA—which stands for

Topology and Orchestration for Cloud Applications—Standardization group.
† https://www.ansible.com.
‡ https://www.jetbrains.com/lp/devecosystem-2019/devops.
§ https://jenkins.io/doc/.
¶ https://github.com/kckooijman/ansible-defect-predictor.
# https://github.com/kckooijman/ansible-metrics-defect-prediction.
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