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Abstract 
Cardiotocography (CTG) is the most common technique for electronic fetal monitoring and consists of the simultaneous 
recording of fetal heart rate (FHR) and uterine contractions. In analogy with the adult case, spectral analysis of the FHR 
signal can be used to assess the functionality of the autonomic nervous system. To do so, several methods can be employed, 
each of which has its strengths and limitations. This paper aims at performing a methodological investigation on FHR 
spectral analysis adopting 4 different spectrum estimators and a novel PRSA-based spectral method. The performances 
have been evaluated in terms of the ability of the various methods to detect changes in the FHR in two common pregnancy 
complications: intrauterine growth restriction (IUGR) and gestational diabetes. A balanced dataset containing 2178 record-
ings distributed between the 32nd and 38th week of gestation was used. The results show that the spectral method derived 
from the PRSA better differentiates high-risk pregnancies vs. controls compared to the others. Specifically, it more robustly 
detects an increase in power percentage within the movement frequency band and a decrease in high frequency between 
pregnancies at high risk in comparison to those at low risk.

Keywords Electronic fetal monitoring · Cardiotocography · Spectral analysis · Phase-rectified signal averaging

1 Introduction

The fetal heart rate (FHR) is a readily available source of 
physiological information which can be acquired non-inva-
sively either using cardiotocography (CTG) [1] or from the 
fetal ECG measured through abdominal electrodes (antepar-
tum) [2] or directly on the fetal scalp (intrapartum).

Thanks to its relative ease of acquisition and ability to 
reflect fetal wellness, electronic FHR monitoring is the most 
common technique for assessing fetal well-being in preg-
nancy. An improvement to the FHR analysis came when 
several biomarkers were proposed in the literature together 
with systems for the computerized analysis of the signals. 
This has allowed to overcome some of the limitations linked 
to simple eye inspection of the traces [3, 4].

In fact, quantitative analysis of the FHR signal allows 
the identification of important characteristics that can go 
missed by visual inspection and ensures the reproducibility 
of the analysis. Moreover, parameters can be used to build 
classifiers of FHR recording by means of machine learning 
techniques [5–7].

Despite the advancements made in the last years, how-
ever, biomarkers of the most common fetal pathologies, e.g., 
intra-uterine growth restriction (IUGR), still have limited 
reliability [8, 9] and most have been tested on a very limited 
number of subjects.

The rationale behind the study of the FHR antepartum 
is that disturbances in the normal intrauterine development 
lead to changes in the autonomic functions that are observ-
able from the cardiovascular regulation [10]. Monitoring 
these changes is important both in perinatal medicine for 
their prognostic and diagnostic value and in the frame-
work of the “developmental origin of health and disease” 
[11] for the possibility to predict disturbances later in life. 
Among the parameters presented in the literature, those 
that allow quantifying the frequency distribution of the 
oscillations in the heart rate variability (HRV) have the 
desirable property of being physiologically interpretable, 
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since it has been shown that the sympathetic and parasym-
pathetic branches of the autonomic nervous system (ANS) 
influence the HRV at different frequencies [12].

When analyzing the power spectral density (PSD) of 
the FHR signal, three main bands are typically defined in 
analogy with those employed for adults [13] and specifi-
cally adapted to the fetal case. These include the very low 
frequency (VLF), low frequency (LF), and high frequency 
(HF) bands. In addition, some authors also consider an 
additional frequency band, called movement frequency 
(MF), between LF and HF [4]. The exact frequency ranges 
vary between different authors and have been summa-
rized in [14]. In general, the power in VLF is related to 
long period and non-linear contributions and gross body 
movements, LF with mainly sympathetic activity and HF 
with parasympathetic activity and fetal breathing [4]. MF 
has been hypothesized to be related to fetal movements 
and maternal breathing [4] but overlaps with what other 
authors consider HF [14].

The FHR signal presents characteristics that complicate 
its analysis in the frequency domain. The variability of 
the FHR and its frequency distribution change over time. 
While in adults, the experimental conditions can be easily 
controlled (for example, asking the subject not to move and 
breathe at a controlled rate); this is impossible to do in the 
fetal case, due to frequent changes in behavioral states [15]. 
It results that the FHR signal is inherently non-stationary, 
which must be addressed in frequency analysis. Moreover, 
it is expected that some oscillations in the FHR, like the 
ones induced by respiratory movements, are transient and 
possibly not phase-synchronized, which means they may not 
be captured by standard spectral analysis. Lastly, FHR traces 
are often very noisy and subject to signal loss.

Since the task of analyzing the frequency content of 
the FHR signal is not trivial, several methodologies have 
been applied [16, 17]. In particular, we expect that some of 
these may be more effective in detecting oscillations even 
when the assumptions of classical spectral analysis do not 
hold (more noticeably, stationarity, and linearity). These 
techniques can be broadly classified as parametric (typi-
cally autoregressive (AR)) and non-parametric (based on 
the discrete Fourier transform (DFT) or the Hilbert–Huang 
transform) and may use explicit windowing (such as the 
short-time Fourier transform (STFT)) or not (such as the 
continuous wavelet transform (CWT)).

More recently, the phase-rectified signal averaging 
(PRSA) technique has been proposed to detect quasi-peri-
odicities in non-stationary signals [18]. The PRSA is not a 
method for spectral analysis itself, but rather a technique 
that produces a compressed version of the original signal 
(i.e., the PRSA curve) in which the noise is smoothed-out 
and (quasi) oscillations are highlighted, even in the presence 
of phase-resetting.

Several works employing measures extracted using PRSA 
have been applied to FHR analysis: in particular, accelera-
tion and deceleration capacity [19–21], acceleration and 
deceleration phase-rectified slope [22], and deceleration 
reserve [23]. Some authors postulate that the deceleration 
capacity is a measure of the vagal control of the heart rate 
and the acceleration capacity is a measure of sympathetic 
activity [24]. However, this assumption has been challenged 
in [25] and [23].

In this study, we propose a different approach for the anal-
ysis of the PRSA curve derived from FHR signals. Similarly 
to what proposed by Bauer et al. [18], we perform the CWT 
of the PRSA curve but evaluate the relative distribution of 
the oscillations in the frequency domain instead of evaluat-
ing it only at specific scales, like it is done when calcu-
lating acceleration and deceleration capacity. This allows 
to compare the proposed method with classical spectral 
analysis and permits to rely on the frequency content of the 
PRSA curve to investigate the activity of the ANS, even if 
indirectly.

The proposed approach is compared to four more tradi-
tional methods used to perform spectral analysis of FHR 
signals from cardiotocographic recordings [17], i.e., DFT, 
AR modeling, CWT, and empirical mode decomposition 
(EMD).

The paper describes the performances of the proposed 
method and of the other existing in the detection of changes 
in the FHR due to two very common complications of preg-
nancy, which are expected to produce changes in the FHR 
signal characteristics: intrauterine growth restriction (IUGR) 
and gestational diabetes (GDM). For the analyses, we used a 
very large database of antepartum CTG recordings collected 
at different gestational ages.

2  Methods

2.1  Dataset description

The dataset employed is presented in more detail in [26]. It 
currently contains a total of 24492 cardiotocographic record-
ings collected and annotated at Federico II University Hospi-
tal in Naples, Italy. Data were collected in accordance with 
the Declaration of Helsinki after approval of the local Ethics 
Committee. All subjects included in the dataset signed an 
informed consent, and data were completely anonymized 
before the analysis by our clinical partners.

The FHR signal is sampled at 2Hz with a resolution 
of 0.25 bpm. This sampling frequency is the one used by 
the 2CTG2 software [27] and was chosen because it is 
a reasonable compromise to achieve enough bandwidth 
and an acceptable accuracy of the FHR signal. Indeed, it 
allows to correctly represent all the frequencies contained 
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in the FHR signal estimated by the cardiotocograph, while 
minimizing the number of repeated samples. It should be 
noted, in fact, that commercial ultrasound cardiotoco-
graphs provide an approximation of the true FHR which is 
low-passed by the smoothing effect produced by the auto-
correlation procedure embedded in the firmware. Moreo-
ver, reading the value of FHR at higher sampling frequen-
cies (e.g., 4Hz) produces non-negligible distortions in 
the power spectrum of the signal, since cardiotocographs 
replicate the current values until a new one is detected.

CTG signals are often affected by artifacts, signal loss, 
and noise. A quality index (i.e., good, acceptable, interpo-
lated) provided by the cardiotocograph is also available for 
each data point of the signals. The length of each recording 
varies between 20 min and 1 h according to the clinician’s 
decision. Along with the FHR, each recording includes 
the uterine contractions’ signal, the fetal movement (FM) 
series (which is set to 1 when the mother presses a button 
and 0 when she does not), and annotations by the clinician 
noting any known maternal and fetal pathologies.

In this study, we selected the first 20 min of recordings 
that have no more than 10% of interpolated points in this 
window and were performed between the 32nd and 38th 
gestational week. The choice of using only the first 20 
min of each recording was made to avoid possible biases 
that may arise from the use of series of different lengths, 
since recordings belonging to complicated pregnancies 
tend to be longer. We then identified three distinct popu-
lations: controls, i.e., physiological pregnancies without 
known maternal or fetal pathologies, IUGRs (diagnosed 
when the fetal weight is lower than the 10th percentile for 
gestational age and are present alterations in the umbilical 
artery flow, in agreement with [28]), and GDMs (diag-
nosed following a positive 1-step glucose tolerance test 
[29]). For each week, we selected a subset of equal size 
from each population randomly downsampling from the 
largest groups. The final dataset thus contains the same 
numerosity for the three analyzed groups in each week and 
includes a total of 2178 recordings.

Recordings were then divided into two groups: from week 
32 of gestation to week 36 (pre-term) and from 37 to 38 
(early-term), since considerable differences in fetal matura-
tion are expected between the two periods. The first includes 
a total of 1161 recordings and the second 1017.

2.2  Time‑frequency analysis: classical methods

Among the traditional methods to perform spectral analy-
sis we selected: DFT, AR modeling, CWT, and EMD. All 
these methods aim to estimate the PSD, albeit in very differ-
ent ways. In this paragraph, we briefly outline some details 
about their implementation and their differences.

2.2.1  Explicit windowing: DFT and AR

The DFT and AR are the most common methodologies to 
estimate the PSD. Since both make the assumption of sta-
tionarity, the FHR signal was divided into windows of 2 
min overlapped by 1 min, which is a compromise between 
spectral resolution and the fulfillment of the stationarity 
condition. Inside each window, we removed the linear trend 
from the signal. The DFT was estimated by applying the fast 
Fourier transform and directly used to estimate the PSD. 
Parametric spectral analysis with AR models was performed 
as reported in [4]. The order was set to 12, and the param-
eters were estimated using the Levinson–Durbin algorithm.

2.2.2  Time‑varying algorithms: CWT and EMD

Time-varying algorithms, i.e., the CWT and the EMD, are 
expected to provide better time-frequency resolution com-
pared to methods that employ explicit windowing. Moreo-
ver, since the EMD assumes neither stationarity nor linearity 
of the signal [30], it appears to be particularly suitable for 
the analysis of the FHR. Prior to their application, the signal 
was detrended by removing the moving average computed 
over windows of 1 min and padded with a periodized exten-
sion of 240 samples to reduce distortions at the borders.

For the computation of the CWT, we employed the Mor-
let wavelet with non-dimensional central frequency equal to 
6. The scales “s” were defined according to (1).

N is the length of the signal and δt the sampling period 
(i.e., 0.5s). s0 was set to 1s ( 2 ⋅ �t ) and J to 179. Wavelet 
software was provided by C. Torrence and G. Compo [31] 
and is available at the URL: http:// paos. color ado. edu/ resea 
rch/ wavel ets/.

The EMD was computed using the Complete Ensem-
ble Empirical Mode Decomposition with Adaptive Noise 
(CEEMDAN) algorithm, which is more robust to noise [32]. 
The number of realizations was set to 30, the noise standard 
deviation to 0.2 times the standard deviations of the signal, 
and the maximum number of shifting iterations to 50. The 
SNR increases for every stage.

2.2.3  Feature computation

Spectral features, i.e., LF%, MF%, and HF%, are computed 
by integrating the spectra (or spectrograms) over the fre-
quency and considering the mean over time. Segments with 
more than 5% of interpolated points were excluded from 
averaging. In the present paper, we consider the following 
frequency bands: LF (0.03–0.15 Hz), MF (0.15–0.5 Hz), 

(1)

{

�j = J−1 ∙ log2

(

N∙�t

s0

)

sj = s0 ∙ 2
j�j , j = 0, 1,… , J

http://paos.colorado.edu/research/wavelets/
http://paos.colorado.edu/research/wavelets/
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and HF (0.5–1 Hz), following the definition provided in [4]. 
Spectral features are expressed as percentages of the total 
power. Indeed, what we are interested in quantifying in this 
study is the frequency distribution of the signal variability, 
rather than the variability itself. We do not report the values 
of VLF, which can be trivially obtained from the others.

2.3  PRSA spectrum evaluation

In this section, we briefly describe the PRSA technique, 
which was introduced by Bauer et al. [18]; the computation 
of the PRSA spectrum [33]; and the proposed approach for 
its evaluation and extraction of spectral features.

2.3.1  The PRSA curve

Deceleration anchor points (xdec) are defined as samples that 
satisfy the condition:

where x is the FHR series expressed in milliseconds 
(Fig. 1a). For each xdec, a window of length 2L is defined 
taking the values of the original signal that go from xdec − L to 
xdec + L − 1. The PRSA curve ( xPRSA

k
 ) is constructed by averag-

ing all these windows (Fig. 1b). This procedure highlights 

(2)
1

T

∑T−1

i=0
x[t + i] >

1

T

∑T

i=1
x[t − i]

components that are phase-synchronized with the anchor 
points and cancels out the others.

In this study, T was set to 1 sample (i.e., 0.5 s). We 
acknowledge that the choice of such a small value of T can 
make the procedure more sensitive to noise, but selecting a 
bigger value would filter the power in the HF band, which is 
of interest in this study. Indeed, the larger the value of T, the 
lower the frequency of the components that are highlighted 
by the PRSA [34]. To reduce the influence of noise, signal 
samples with poor quality were prevented from being anchor 
points and were not included in the averaging procedure. L 
was set to 100 samples.

2.3.2  The PRSA spectrum

To compute the PRSA spectrum (PRSA_Spt), we first com-
puted the scalogram XPRSA

w
 using the CWT according to 

Eq. 3 in a similar fashion to [33]

s is the scale, p is the position, and w is the mother wave-
let. We employed the analytic Morse wavelet with γ equal 
to 3 and time-bandwidth product equal to 60 and applied L1 
normalization. The spectrogram is obtained as the square 

(3)XPRSA
w

(s, p) =
∑L−1

k=−L
xPRSA
k

∙
w
[

(k − p)∕s
]

s

a) b)

d) c)
LF MF HF

Fig. 1  Illustration of the technique employed to compute the PRSA spectrum. a fHR signal; b PRSA curve; c CWT spectrogram of the PRSA 
curve obtained by squaring wavelet coefficients; d CWT spectrum at k=0 (section of the spectrogram)
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of the wavelet coefficients (Fig. 1c) and is evaluated at k=0 
(Fig. 1d), thus obtaining a single spectrum, i.e., PRSA_Spt.

As discussed in [18], the PRSA_Spt presents relevant dif-
ferences compared with conventional spectral analysis. The 
signal-to-noise ratio is improved by two effects:

• Short patches of periodicities with a particular fre-
quency that are not phase synchronized cancel out in 
conventional spectral analysis, while, due to the way it is 
defined, they all contribute to the PRSA curve and, there-
fore, to its spectrum. On the other hand, non-periodic 
components are smoothed-out by the averaging proce-
dure applied by the PRSA.

• A sinusoidal component of amplitude Af produces an 
oscillation proportional to A2

f
∙ f  in the PRSA curve. It 

derives that while its contribution in the conventional 
power spectrum is proportional to A2

f
 in the PRSA_Spt is 

proportional to A4

f
∙ f 2 . Therefore, a 1/f noise has an 

approximately flat PRSA spectrum. This makes it sub-
stantially easier to identify deviations from the standard 
scaling behavior of long-term correlated series caused by 
quasi-periodicities.

Both these properties are useful in the analysis of FHR 
signal. Indeed, oscillatory patterns in the FHR are usually 
transient and not phase synchronized. Moreover, most of the 
variability is contained at very-low frequencies, consistently 
with a long-term correlated series, rendering it difficult to 
identify superimposed quasi-oscillations, especially at high-
frequency that, despite their smaller amplitude, may offer 
important information on fetal physiology.

2.3.3  PRSA‑derived spectral features

The method we present in this study is a variation of the 
method presented in [33] to evaluate the PRSA_Spt. Here, 
instead of considering the Wavelet coefficients at a single 
scale, we propose to quantify the distribution of the oscilla-
tions integrating the PRSA_Spt (Fig. 1d) in the frequency 
bands used in traditional spectral analysis (i.e., LF MF and 

HF). The features considered are ultimately the percentages 
of power obtained integrating the PRSA_Spt in the fre-
quency bands described previously.

It should be noted that spectral features computed after 
the application of PRSA can no longer be regarded as an 
estimate of the distribution of the signal variance in the fre-
quency domain. Rather, it is a measure of the localization in 
frequency of the oscillations that survive the PRSA proce-
dure evaluated in descending signal segments.

This approach allows using the distribution in the fre-
quency domain of the oscillations to estimate the fetal auto-
nomic activity, rather than the fact that they are aligned 
around portions in which the signal increases or decreases. 
Therefore, unlike the other features that can be extracted 
from the PRSA, the ones proposed should not suffer from 
the limitations in the interpretation of their physiological 
meaning which have been pointed out in [25] and [23].

2.4  Statistical methods

Since the features discussed are not normally distributed, 
we employed the Mann-Whitney U test to evaluate differ-
ences between the two high-risk groups and controls and 
computed the Cohen’s r size effect to quantify them [35]. 
Results are considered significant when p<0.0167, follow-
ing Bonferroni correction for multiple comparisons. Con-
fidence intervals were computed using empirical bootstrap 
with 1000 repetitions.

All analyses were conducted using MATLAB R2022a.

3  Results

Table 1 reports values in relative spectral power obtained in 
the first group of weeks and Table 2 in the second. It can be 
noticed that the values obtained from classical methods of 
spectral analysis did not show substantial differences among 
each other. On the other hand, the PRSA_Spt accentuates 
higher frequency components, a result consistent with the 
scaling behavior of the PRSA_Spt described in paragraph 
2.3. As a result, the PRSA_Spt reports higher values for 

Table 1  Medians and quartiles of the spectral features at weeks 32–36 obtained with the methods discussed. All values are reported in percent-
ages of the total power

LF% MF% HF%

Control GDM IUGR Control GDM IUGR Control GDM IUGR 

DFT 39 (33–45) 39 (33–46) 37 (32–44) 5.6 (4.0–7.0) 6.4 (4.5–8.7) 6.0 (4.5–7.9) 1.8 (1.2–2.7) 1.7 (1.1–2.5) 1.5 (1.1–2.4)
AR 35 (25–48) 35 (25–48) 32 (25–43) 4.3 (3.0–5.8) 5.2 (3.5–7.1) 5.0 (3.6–6.7) 1.8 (1.2–2.8) 1.9 (1.2–2.8) 1.5 (1.1–2.4)
CTW 40 (34–46) 41 (35–46) 40 (35–46) 5.3 (3.9–7.2) 6.5 (4.5–8.7) 6.3 (4.6–8.7) 1.7 (1.1–2.4) 1.5 (1.1–2.4) 1.4 (1–2.3)
EMD 33 (28–39) 34 (29–40) 33 (28–39) 5.5 (4.2–7.1) 6.6 (5.0–9.1) 6.4 (4.9–8.3) 3.2 (2.1–4.7) 3.0 (1.9–4.5) 2.7 (1.9–4.6)
PRSA_Spt 38 (25–52) 36 (22–50) 37 (23–50) 20 (16–25) 30 (22–37) 28 (20–35) 33 (19–46) 25 (17–37) 25 (14–38)
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MF% and HF% compared to the other methods. Moreover, 
employing classical spectral analysis a considerable portion 
of the total power is contained in the VLF band (i.e., f<0.03 
Hz), while the power in this band is almost entirely filtered-
out by the PRSA.

The results related to the comparison between GDMs and 
controls are reported in Fig. 2, while comparisons between 
IUGRs and controls in Fig. 3.

In general, more differences were identified in the first 
group of weeks. This result is in agreement with other stud-
ies [5, 36], which also found more differences in the pre-
term period compared to the early-term, even though the 
FHR features analyzed were different.

In the first groups of weeks, all methods identified a sig-
nificant increase in MF% both in the comparison between 
GDMs against controls and IUGRs against controls. It can 
be noticed that the PRSA_Spt method resulted in a signifi-
cantly bigger size effect. Indeed, traditional methods resulted 
in both cases in small size effects (lower than 0.2), while 
the ones obtained with PRSA_Spt were moderate (0.40 for 
GDMs and 0.36 for IUGRs).

Classical methods did not detect any significant difference 
in the HF band for GDMs, while a small reduction was iden-
tified by AR and DFT in the IUGR population. The PRSA_
Spt instead evidenced significantly lower values in the HF 
band for both pathological groups compared to controls. The 
effect sizes however are small (−0.17 for GDMs and −0.16 
for IUGRs), even though the p-values are well below the 
5% significance level (3×10−6 and 7.5×10−6 , respectively).

No differences were identified in the LF band for GDMs, 
while a small reduction was identified by AR in the GDMs. 
The PRSA_Spt did not evidence a significant difference in 
this band.

In the second group of weeks, some traditional meth-
ods, but not PRSA_Spt, suggest a slight increase in LF% for 
GDMs. An increase in MF% in both high-risk groups was 
identified only by PRSA_Spt. No differences were identified 
in HF%.

The differences between groups identified with the 
PRSA_Spt method can also be clearly seen by looking at 
the average spectra, which are reported in Fig. 4. It can be 
noticed that at weeks 32 to 36 high-risk pregnancies and 

Table 2  Medians and quartiles of the spectral features at weeks 37–38 expressed as percentages of the total power

LF% MF% HF%

Control GDM IUGR Control GDM IUGR Control GDM IUGR 

DFT 37 (32–43) 38 (33–44) 37 (32–44) 6.0 (4.5–7.8) 6.3 (4.7–8.1) 5.9 (4.7–8.2) 1.7 (1.1–2.5) 1.7 (1.2–2.5) 1.6 (1.1–2.3)
AR 32 (22–41) 33 (25–44) 33 (24–43) 4.7 (3.4–6.4) 5.1 (3.6–7.0) 4.9 (3.5–4.8) 1.7 (1.1–2.5) 1.6 (1.2–2.4) 1.6 (1.1–2.3)
CTW 38 (33–44) 39 (35–45) 39 (34–46) 5.9 (4.4–7.9) 6.5 (4.5–8.5) 6.1 (4.7–8.5) 1.4 (0.9–2.3) 1.5 (0.9–2.3) 1.5 (1.0–2.1)
EMD 32 (27–38) 33 (28–39) 33 (28–28) 6.4 (4.9–8.5) 6.6 (4.9–9.0) 6.6 (4.9–9.0) 2.8 (1.9–4.6) 2.9 (1.9–4.5) 2.8 (1.9–4.1)
PRSA_Spt 38 (24–53) 37 (24–53) 36 (26–51) 25 (19–33) 29 (22–37) 28 (21–36) 26 (14–41) 25 (14–36) 23 (14–36)

Week 32-36 Week 37-38

LF% MF% HF% LF% MF% HF%
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Fig. 2  Cohen’s effects size for the Mann-Whitney U test in comparison between controls and GDMs. Positive values indicate an increase in the 
high-risk population. Confidence intervals are computed using empirical bootstrap with 1000 repetitions
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controls show different behaviors in MF and HF, while they 
substantially overlap in the LF band. Moreover, it is clearly 
visible a reversal of the trends of physiological and high-
risk pregnancies around 0.55Hz. The differences among the 

average PRSA_Spt for the three analyzed groups at weeks 
37 and 38 are much less evident.

As reported in Table 3 the FHR variance, or total power, 
shows a trend which aligns with expectations, i.e., higher 
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Fig. 3  Cohen’s size effects for the Mann-Whitney U test in comparison between controls and IUGRs and p-values

Week 32-36 Week 37-38

LF

MF HF

LF

MF HF

Fig. 4  Average normalized deceleration-related PRSA_Spt with 95% 
confidence intervals computed using empirical bootstrap with 1000 
repetitions. Notice that high-risk pregnancies show similar behaviors 
(increase in MF and decrease in HF) and more relevant differences 

are observed in the first group of weeks. Spectra have been normal-
ized by dividing by the total power of the PRSA_Spt and are pre-
sented in normalized units

Table 3  Medians and quartiles of the total power of the fHR

32–36 37–38

Control GDM IUGR Control GDM IUGR 

Tot. Pow.  [ms2] 259 (158–404) 220 (143–391) 243 (137–391) 297 (178–452) 265 (166–418) 266 (172–451)
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variability in controls. However, the differences are not sta-
tistically significant.

4  Discussion

The purpose of the research work presented in this manu-
script is twofold. Firstly, we elaborated on the applicability 
and robustness of spectral analysis in FHR signals using a 
very large dataset of healthy and complicated pregnancies 
and compared several existing methods of spectral analy-
sis. Secondly, we proposed a different approach for evalu-
ating the spectrum of the PRSA and compared the results 
with those obtained with more classical spectral analysis 
methods.

We found that the application of the PRSA method before 
computing the spectra improves substantially the capability 
to distinguish between uncomplicated and high-risk preg-
nancies compared to classical spectral analysis. On the other 
hand, we did not observe substantial differences among the 
other methods tested.

Classical methods for time-frequency analysis have the 
advantage that allows localizing in time the results, allowing, 
for example, to investigate how the fetus reacts to stimuli 
(e.g., uterine contractions [37]) and differentiating among 
different fetal behavioral states [38]. Moreover, standard 
spectral analysis has a direct physiological interpretation. 
In fact, changes in the PSD of the HRV signal have been 
connected to the action of regulatory mechanisms of the 
autonomic nervous system [12].

Concerning the PRSA method, our results suggest that it 
presents a marked advantage in the discrimination abilities, 
which could lead to an advantage in clinical practice, at the 
expenses of providing a less direct physiological interpreta-
tion of the results. Indeed, it does not directly measure the 
oscillations in the signal as in classical spectral analysis, but 
only the ones that survive the averaging procedure.

We attribute the better ability of the PRSA to discrimi-
nate among complicated and uncomplicated pregnancies to 
its intrinsic reduce insensitivity to noise and capability of 
capture oscillations that are not phase synchronized. Indeed, 
the averaging procedure that is applied when computing the 
PRSA curve cancels-out non periodic components. On the 
other hand, periodic components that are not phase-synchro-
nized (“phase jumps,” as reported by Bauer et al. [18]) are 
enhanced by the procedure. We speculate that in the FHR 
these types of short and not phase-synchronized oscillations 
may be induced by transient events, like fetal movements of 
the body and fetal respiratory movements. Moreover, the 
intrinsic non-stationarity and non-regularity of the FHR sig-
nal calls for the application of a method which is robust to 
noise, as the PRSA method has demonstrated to be. Lastly, 
as demonstrated in [18], the PRSA method is advantageous 

for the detection of quasi-oscillations superimposed on a 
long-term correlated series, as it is the case of FHR. While 
traditional spectral analysis may be unable to disentangle 
these oscillations, the PRSA is able to reliably detect them.

The most relevant difference observed between controls 
and high-risk groups is a relative increase in the power in 
MF for the latter. Previous studies have attributed oscilla-
tions in this band to the presence of fetal movements [4]. 
However, we did not observe a significant increase in their 
occurrence as perceived by the mother in the high-risk 
groups. This may be indicative that other pathophysiologi-
cal mechanisms are at the source of this pattern. Indeed, this 
frequency band is arguably the one with the least clear physi-
ological interpretation, which requires further study. Quite 
interestingly, in [38], the authors found very little power in 
this band in uncomplicated low-risk pregnancies.

The reduction in HF that was observed in the pathological 
groups is consistent with a reduction of respiratory move-
ments. Concerning IUGR fetuses, this is backed up by other 
studies which found that respiratory movements are lower in 
speed, power, and intensity and in general have lower “qual-
ity” [39]. We did not observe significant differences between 
the groups in LF% with PRSA_Spt, while minimal differ-
ences were identified using other methods. This is probably 
due to the scaling behavior of the PRSA and the choice of 
T = 1. Indeed, quasi-oscillations that are enhanced the most 
lay around 1/2.5T [18] which in our case corresponds to the 
HF band. We did identify a significant reduction in LF% 
in the high-risk groups at weeks 32–36, but not at weeks 
37–38 using T = 2 (size effect: −0.19 for GDM and −0.15 for 
IUGRs). This, however, came at the expense of substantially 
reduced differences in MF% and HF%. At T = 4, the relative 
power in HF was virtually null.

Interestingly, we did not find substantial differences when 
considering the acceleration-related PRSA curve instead of 
the deceleration-related one.

Ultimately, the results show that spectral analysis of the 
FHR can be a useful tool to distinguish complicated and 
uncomplicated pregnancies, which is made substantially 
more robust by the use of the PRSA. This may have impor-
tant clinical applications. Concerning IUGR identification, 
the use of FHR as a biomarker for screening of the pathology 
may be useful, especially in low-income countries. Indeed, 
low-cost and easy to use instrumentation for FHR monitor-
ing is already available on the market. However, reliable 
IUGR detection via FHR only is still challenging, hence the 
need to introduce more reliable and robust features. Moreo-
ver, FHR analysis may be useful to differentiate between 
real IUGR and SGA fetuses that can be confused using only 
echography.

Regarding diabetes, pregnancy management in pres-
ence of the pathology is still highly uncertain, and develop-
ing methods able to provide additional information to the 
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clinicians may be useful for optimal management. Indeed, 
identifying variations induced by the pathology in the FHR 
may be a first step towards a better understanding of the 
effect of maternal diabetes on fetal development and hope-
fully be useful for risk stratification in future studies.

One limitation of the present study is that we only ana-
lyzed data collected using CTG with a sampling frequency 
of 2Hz. We acknowledge that the results may change using 
FHR acquired with different techniques, such as fetal elec-
trocardiography (fECG). Indeed, high-resolution fECG 
recordings allow to obtain the true beat-to-beat fetal heart 
rate, which is recommended for PRSA analysis [33]. Moreo-
ver, high-resolution fECG recordings would allow to bet-
ter quantify high-frequency components of the FHR signal 
which, as a result of the application of the autocorrelation 
technique, are partially filtered-out by ultrasound cardioto-
cographs. However, fECG is still less commonly used in 
clinical practice [40] and databases of sufficient size that 
include both complicated and uncomplicated pregnancies 
are currently not available.

Numerous cardiotocographs provide the values of FHR 
every 250 ms (4 Hz). To obtain comparable results in this 
setting, the values of T and L should be multiplied by 2 (i.e., 
T=2 and L= 200). It should be noted however that if in the 
250 ms time window, there is no detection of a new heart-
beat; the previous FHR value is repeated. This procedure 
causes a frequent repetition of FHR values, which affects the 
frequency content. To better understand how using a higher 
sampling frequency affects the results of the PRSA-based 
methodology, we ran some additional simulation studies, 
not shown in this manuscript, using surrogate data sampled 
at 4 Hz. The simulations show that when using higher sam-
pling frequencies results are similar, but the spectral power 
is slightly lower, especially in the HF band. We speculate 
that this effect arises from increasing the number of signal 
samples, which increases the number of windows used in 
the averaging procedure of the PRSA, since about half of 
the samples are anchor points, but does not introduce new 
quasi-oscillations. Therefore, it produces a PRSA curve with 
generally lower amplitude, and, as a result, the PRSA_Spt 
has lower power. This effect is more accentuated in the HF 
range (over 0.5 Hz), since the new windows will be shifted 
by approximately ±1 sample, resulting in high frequency 
components being probably in counterphase. This further 
underlines the fact that it is important to emphasize that, 
when analyzing CTG traces, it must be considered that they 
are an approximation of the true RR series. While a low 
sampling frequency limits the possibility to observe higher 
frequency components, increasing the sampling frequency 
generates spurious samples which may impair the quality of 
the spectral estimation.

Moreover, we selected 20 min from each recording, which 
is the minimum length available for all. This is a relatively 

short signal length for the application of the PRSA technique 
that would benefit from the use of longer series. Indeed, we 
believe that employing longer signals, such as those that can 
be obtained by non-invasive fECG, would likely improve the 
robustness of the results.

Another limitation is that we did not differentiate between 
behavioral states, which is something we aim to do as future 
development. Moreover, we hope that, in the future, longitu-
dinal clinical studies will be carried out to test the predictive 
value of the features discussed for risk stratification, which 
is the ultimate goal of antepartum FHR analysis.

5  Conclusions

The analysis in the frequency domain of the FHR provides 
useful insights into the fetal physiology, since it allows to 
assess non-invasively the functioning of the ANS. In this 
paper, we compared four relatively traditional methods to 
perform spectral analysis and a novel approach based on 
the CWT of the PRSA curve and conclude that the latter 
allows to identify more clearly the differences in the fre-
quency content of the FHR induced by GDM and IUGR. We 
believe that this approach may have relevant applications, for 
example, for improving multi-parameters classification and 
assessment of fetal autonomic activity.
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