
Binary-Stochasticity-Enabled Highly Efficient Neuromorphic
Deep Learning Achieves Better-than-Software Accuracy

Yang Li, Wei Wang,* Ming Wang, Chunmeng Dou, Zhengyu Ma, Huihui Zhou,
Peng Zhang, Nicola Lepri, Xumeng Zhang, Qing Luo, Xiaoxin Xu, Guanhua Yang,
Feng Zhang, Ling Li, Daniele Ielmini, and Ming Liu

1. Introduction

By adopting the in-memory computing
paradigm, a neuromorphic system using
analog memristors[1] as synaptic weights
can parallelly and efficiently accelerate
the massive high-precision (HP) multiply-
and-accumulate (MAC) operations[2] in
deep learning. The system can parallelly
accomplish the MAC operations of each
neural network layer in the forward or
backward propagations in one step by
using Kirchhoff ’s current law and Ohm’s
law,[1,3] where voltages represent the input
signals, the conductance in a crossbar array
of memristors store the weights between
the input nodes and output nodes, and
currents represent the output signals.
However, to complete this task, one needs
to accurately tune the input voltages and

accurately sense the output currents, which require HP digital-
to-analog converters and analog-to-digital converters (ADCs),
respectively. This results in high power consumption and a large
circuit footprint, thus counterbalancing the analog and parallel
in-memory computation gain.[4–7] In addition, while the system
can execute the gradient calculation and weight update in each
neural network layer in parallel,[8,9] it is challenging for the sys-
tem to tune the conductance of the memristor synapses precisely
and gradually due to device variations. Thus, efficient online, in-
memory learning in a stand-alone non-von-Neumann architec-
ture becomes a prohibitive task. Moreover, in a biological system,
voltage spikes, i.e., all-or-none action potentials,[10,11] transmit
neural signals, which mathematically translate the signals into
binary formats and make the use of HP signals biologically
implausible. Finally, the memristor-based hardware systems
use analog and noisy memristor artificial synapses, which are
inherently subject to stochastic fluctuations, to represent the syn-
aptic weights.[12,13] Current hardware systems have not fully
utilized this stochasticity to further simplify the hardware
design.

In contemporary deep learning theory, the HP handling of the
signals and errors is an inherent requirement since the gradient
descent learning rule relies on the product of a partial derivative
chain, i.e., the chain rule of calculus.[14,15] The computing sys-
tems need HP numbers to accurately represent the continuous
changes of the signals and errors, as well as HP synaptic weights
to accurately accumulate the descending gradient. Specialized

Y. Li, W. Wang, Z. Ma, H. Zhou, P. Zhang
Peng Cheng Laboratory
Shenzhen 518000, China
E-mail: wangwei@pcl.ac.cn

M. Wang, X. Zhang, M. Liu
Frontier Institute of Chip and System
State Key Laboratory of Integrated Chips and Systems
Zhangjiang Fudan International Innovation Center
Fudan University
Shanghai 200433, China

C. Dou, Q. Luo, X. Xu, G. Yang, F. Zhang, L. Li
Institute of Microelectronics
Chinese Academy of Sciences
Beijing 100029, China

N. Lepri, D. Ielmini
Dipartimento di Elettronica
Informazione e Bioingegneria
Politecnico di Milano
20133 Milano, Italy

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aisy.202300399.

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-
VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is
properly cited.

DOI: 10.1002/aisy.202300399

In this work, the requirement of using high-precision (HP) signals is lifted and the
circuits for implementing deep learning algorithms in memristor-based hardware
are simplified. The use of HP signals is required by the backpropagation learning
algorithm since the gradient descent learning rule relies on the chain product of
partial derivatives. However, it is both challenging and biologically implausible to
implement such an HP algorithm in noisy and analog memristor-based hardware
systems. Herein, it is demonstrated that the requirement for HP signals handling
is not necessary and more efficient deep learning can be achieved when using a
binary stochastic learning algorithm. The new algorithm proposed in this work
modifies elementary neural network operations, which improves energy effi-
ciency by two orders of magnitude compared to traditional memristor-based
hardware and three orders of magnitude compared to complementary metal–
oxide–semiconductor-based hardware. It also provides better accuracy in pattern
recognition tasks than the HP learning algorithm benchmarks.

RESEARCH ARTICLE
www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (1 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

mailto:wangwei@pcl.ac.cn
https://doi.org/10.1002/aisy.202300399
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faisy.202300399&domain=pdf&date_stamp=2023-11-12


algorithms such as neural network quantization[16] and binariza-
tion[17] mainly aim at reducing the computational cost in the
inference stage. In the learning stage, it is essential to estimate
partial derivatives and HP descriptions of error signals.[18,19]

Similarly, we need surrogate representations of derivatives
and errors with sufficient accuracy[20] to train a deep spiking neu-
ral network.

In this article, we go beyond the HP requirement of
deep learning and propose a binary stochasticity (BS)-based
hardware-friendly approach. First, we stochastically binarize both
the forwarding signals and the derivatives of the activation func-
tion in each layer. Instead of viewing the stochastic binarization
as a non-differentiable function and attempting to estimate its
derivative,[18] we view the stochastic binarization of the signal
as equivalent to its floating-point representation. Second, the
algorithm only backpropagates the sign of the errors and ignores
any error magnitude information, thus enabling the highly effi-
cient hardware implementation of the error backpropagation.
Finally, we propose a periodical-carry stepwise weight update
method, supporting the in-memory deep learning using noisy
and fluctuating memristor synapses. When implementing this
algorithm in a crossbar array of analog memristors, with the
help of external or intrinsic noise, highly simplified peripheral/
neuronal circuits can be employed to accomplish the stochastic
binarization operations. The hardware does not need to calculate
the activation function or its derivative, nor need to explicitly and
accurately sense the crossbar array outputs (i.e., the electrical cur-
rents). Thus, the neuronal circuits eliminate the complex and
expensive analog-to-digital and digital-to-analog converters.
The stepwise weight update method inherently enables the quan-
tization of the weight during the training, which guarantees a
large tolerance to the noisy and nonlinear synaptic plasticity of
analog memristors. We systematically investigate the effect of
these algorithms in fully connected and convolutional deep neu-
ral networks for modified National Institute of Standard
Technology (MNIST) and Canadian Institute For Advanced
Research (CIFAR)-10 datasets. When implementing the pro-
posed BS algorithms, an analog memristor-based
neuromorphic system improves the energy efficiency of deep
learning tasks by two orders of magnitudes compared to the
traditional memristive neuromorphic algorithms. Compared to
traditional HP algorithms using metal–oxide–semiconductor
(CMOS) technology in the graphical processing units (GPU)
of von-Neumann architecture, using the proposed algorithms,
an analog memristor-based neuromorphic system improves
energy efficiency by more than three orders of magnitudes.
The highly efficient neuromorphic deep learning system unex-
pectedly achieves better-than-software accuracy.

2. Results

2.1. Hardware-Friendly and Biologically Plausible Algorithms for
Deep Learning

Deep neural networks compute via multiple layers of neurons
interconnected by tunable weights. Signals and errors propagate
through the layers in the forward and backward directions,

respectively, while the learning is achieved by updating the
weights of each layer via the gradient descent rule. Our neural net-
works rely on three key concepts, namely 1) stochastic binarization
of the forward propagating signals (Figure 1a); 2) stochastic binar-
ization of the activation derivatives (Figure 1b); and 3) signed
binarization of the backpropagating errors (Figure 1c).

2.1.1. Stochastic Binarization of the Forwarding Signals

In the forward pass, signals of a training sample are transmitted
layer by layer to obtain a tentative output in the last layer. Within
a typical layer l, the state of a neuron j is a nonlinear function of
the weighted summation (ylj, i.e., the membrane potential) of

input signals (xli) from the previous layer, denoted by
zlj ¼ σðyljÞ ¼ σðPi x

l
iw

l
i,jÞ, where wl

i,j is the transmitting weight
(synapse) from the ith input signal to the neuron j, and σð⋅Þ is
the activation function (Figure 1a). Instead of directly transmit-
ting the lth layer’s output as the (lþ 1)th layer’s input, that is
xlþ1
j ¼ zlj, we activate the intra-layer transmitting signal by a sto-

chastic binarization process (i.e., the Bernoulli process), where
the transmitting signal is activated (state “1”) with a probability
of zlj and is deactivated (state “0”) otherwise, that is Pðxlþ1

j ¼ 1Þ ¼
zlj (Figure 1a). Note that the input signals (x

l
i) should have been in

binary states since the previous layer follows the same stochastic
binarization rule.

The layer-wise forward propagation can be mapped to a cross-
bar array of memristors, where the input signals are denoted by
the voltages (Vi) applied on the top parallel electrodes, the trans-
mitting weights correspond to the conductance (Gij) of the mem-
ristors in the intersections of top and bottom parallel electrodes,
and the currents (Ij) from the bottom electrodes represent the
membrane potential (Figure 1d).[3,21,22] The crossbar array inher-
ently performs weighted summation Ij ¼

P
i ViGij, where the

multiplications and summations are governed by Ohm’s law
and Kirchhoff ’s current law, respectively. In the conventional
feedforward propagation, the input voltages (Vi) are accurately
tuned according to the HP input signals. The output currents
Ij should be sensed with sufficient accuracy to allow the process-
ing of the membrane potential by the activation function. In our
algorithm, instead, the input voltage is binarized with only two
values, namely 0 V and a fixed read voltage V0. The stochastically
binarized output signals (xlþ1

j ) are directly obtained by compar-
ing the output currents Ij of the crossbar array with a noise
current signal Inoise (see Figure 1d, Experimental Section, and
Figure S1a and S2a–c, Supporting Information).[23,24] It should
be noted that the stochastic binarization of Ij is consistent with
the biological neuron in the human brain, where activation
occurs when the membrane potential reaches a noisy threshold.
The activation function provides the probability of a neuron to be
activated,[25] and thus can be viewed as the cumulative density
function (CDF) of the stochastic threshold of a McCulloch–
Pitts neuron[24,26] (Experimental Section and Figure S2c,
Supporting Information). In this sense, the activation function
should always be a monotonically nondecreasing function
bounded between 0 and 1.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (2 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


2.1.2. Stochastic Binarization of the Activation Derivatives

The activation function’s derivative
dzlj
dylj

¼ σ0ðyljÞ, which is required

to complete the backward propagation, is stochastically binarized
in our algorithm via a Bernoulli process. In particular, for a
logistic activation function zlj ¼ 1

1þexpð�yljÞ
, its derivative has a

simple form of
dzlj
dylj

¼ zljð1� zljÞ. Instead of directly using the acti-

vation derivative, we binarize it into “1” with a probability of
zljð1� zljÞ and “0” otherwise (Figure 1b).

To map this binarized backpropagation in hardware
(Figure 1e), we use two consecutive flip-flops to independently
sample the stochastically binarized transmitting signal (xlþ1

j )
and process the sampled binary results of the flip-flops by a logic

gate. The derivative
dzlj
dylj

takes the value of “1” only when the first

flip-flop is “1” and the second flip-flop is “0”. The probability of

the derivative
dzlj
dylj

being “1” is the product of the probability of the

first flip-flop being “1” (zlj) and the probability of the second

flip-flop being “0” (1� zlj), which meets the algorithm’s require-
ment exactly (see Experimental Section and Figure S1b and S2d,
Supporting Information).

2.1.3. Signed Binarization of the Backpropagating Errors

In the backward pass, the errors between the tentative output and
target output in the last layer backpropagate all the way back to
the first layer. As shown in Figure 1c, in our algorithm, only the
signs of the post-layer errors δxlþ1

j are transmitted to the

neurons of the current layer, i.e., δzlj ¼ signðδxlþ1
j Þ where δzlj

is equal to 1 when δxlþ1
j is nonnegative, otherwise it is equal

to �1. According to the chain rule of partial derivatives, within
the layer l, the errors of membrane potentials δylj are the product

of the neuron errors δzlj and the activation function’s derivative
dzlj
dylj
, i.e., δylj ¼ δzlj

dzlj
dylj
, and the errors of input signals δxli are the

weighted summation of the errors of membrane potential,
i.e., δxli ¼

P
j δy

l
jw

l
i,j (Figure 1c). Note that the errors of

(a)

(b)

(f)

(c)

(e)

(d)

Figure 1. Binary-stochastic (BS) learning algorithm and its hardware implementation. a) Stochastic binarization of the signal forwarding. In a typical layer
l, the neurons are stochastically binarized/activated to be transmitted to the post-layer, i.e., Pðxlþ1

j ¼ 1Þ ¼ zlj ¼ σðyljÞ ¼ σðPi x
l
iw

l
ijÞ. The input to the

weight matrix is binary valued, i.e., xli ∈ f0, 1g, since the neurons of the pre-layer have also been stochastically activated. b) Stochastic binarization
of the activation derivative. The derivative of the activation function is stochastically sampled for the uses in error backpropagation, i.e.,

P
dzlj
dylj

¼ 1
� �

¼ zljð1� zljÞ,
dzlj
dylj

∈ f0, 1g. c) Error sign backpropagation. Only the signs of the errors from the post-layer are taken to be backpropagated,

i.e., δzlj ¼ signðδxlþ1
j Þ, δzlj ∈ f�1, 1g. The backward input δylj to the weight matrix will be ternarily valued since δylj ¼ δzlj

dzlj
dylj
. d) The implementation of the

stochastically binarized signal forwarding in a crossbar array of memristors. The binary inputs to the array are converted to read voltages by level shifters,
and the stochastically binarized outputs are obtained by comparing the output currents of the crossbar array with noise currents, that is, a stochastic
activation process. e) The stochastic binarization of the activation derivative by individually sampling the stochastically activated forwarding signal twice
and processing the sampled signals through a simple logic gate. f ) The implementation of the error sign backpropagation utilizing the same array of
memristors. The sign of the error from the post-layer is obtained by a comparator and its product with the binarized activation derivative is performed by a
transistor. Level shifters are used to apply the ternary valued δylj back into the crossbar array.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (3 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


membrane potentials δylj are ternary valued (“�1”, “0”, or “1”).

δxlþ1
j stands for ∂L

∂xlþ1
j

for simplicity, where L is the cross-entropy

loss between the actual output and the target output of a training
sample. The same nomenclature applies to other variables, such
as δylj, δz

l
j, and δxlj.

When implemented in hardware, the voltages (Vb
j ) represent-

ing the errors of the membrane potential (δylj) are applied to the

bottom electrodes, while the currents Ibi are collected at the top
electrodes. In the traditional algorithm where the errors from
the post-layer are directly transmitted to the current layer,
i.e., δzlj ¼ δxlþ1

j , and the derivatives are in the original form,

i.e.,
dzlj
dylj

¼ zljð1� zljÞ, the errors of membrane potential δylj should

be calculated in the digital or analog domain with sufficient accu-
racy. Thanks to the binarized activation derivatives and the
signed errors, our algorithm results in a strong simplification
of the peripheral circuits for the error backpropagation
(Figure 1f and S1c, Supporting Information). The sign operation
can be performed by comparing the output current (Ibj ) of the
crossbar array with a zero current, to yield a negative or positive
output voltage representing the signed error δzlj. A single tran-
sistor can carry out the multiplication between the signed errors
and the binary derivatives. The ternary errors of membrane
potentials are then represented in the states of the negative volt-
age (“�1”), the high impedance (“0”), and the positive voltage
(“1”). The ternary output is then converted to a voltage Vb

j with
amplitudes�V0, 0, and V0 to be applied to the bottom electrodes
of the crossbar array.

Weight updates are performed after the completion of
the forwarding and backpropagation passes for a batch of
training samples, according to the gradient descent rule
wl
i,j ←wl

i,j � ηhδwl
i,jibatch, where η is the learning rate,

δwl
i,j ¼ ∂L

∂wl
i,j
¼ xli

∂zlj
∂ylj
δzlj is the partial derivative of the loss function

L to the weight and hδwl
i,jibatch is the average δwl

i,j over a training
batch.

2.2. BS Improves the Learning Performance

We trained a fully connected three-layered neural network for the
classification of the handwritten digits from the MNIST[15] data-
set (Figure 2a and Experimental Section). The same network was
trained with either HP or BS approaches. In HP learning, all sig-
nals, derivatives, and errors were represented with 32-bit floating
point (FP32) numbers, whereas in BS learning the forwarding
signals (0 or 1), activations derivatives (0 or 1), and backpropa-
gating errors (�1 or 1) were all mapped with binary states accord-
ing to the algorithms in Figure 1a–c.

More details about the HP and BS learning algorithm are
given in Table S1, Supporting Information. For HP learning,
the weight update rule can be written as

wl ←wl � η xl|{z}
FP

∂zl

∂yl|{z}
FP

δzl|{z}
FP

(1)

whereas, in BS learning, the weight update follows

wl ←wl � η xl|{z}
f0,1g

∂zl

∂yl|{z}
f0, 1g

δzl|{z}
f�1,1g

* +

batch

(2)

where the subscripts are disregarded for legibility. According to
the law of total expectation, the two weight update rules are equiv-
alent: in fact, the three terms represented in floating point pre-
cision in Equation (1) are expectations of the three binarized
terms in Equation (2). Both BS learning and HP learning show
good convergence tendency as the training epoch number
increases (Figure 2b). Although the cross entropies between
the final output and the target output in the BS learning are
higher than that in the HP learning, they both monotonically
decrease as a function of the training epoch, thus showing a
good learning convergence (Figure 2b). BS learning algorithm
achieves better performance compared to HP learning
algorithm since the network trained by stochastic binarization
algorithm shows lower recognition error compared to the one
trained by HP algorithm on the test set (Figure 2c). We use infer-
ence errors instead of inference accuracies to show the inference
result, since the errors are usually small and comparing errors
directly is more obvious for observation. The HP learning shows
an obvious overtraining effect than the BS learning since the test
error on the handwritten digits from the training set quickly
diminishes to 0. However, the test error on unseen handwritten
digits from the test set is lower for BS learning, thus highlighting
the higher generalization capability of the BS approach (Figure 2c).

The BS learning can adjust the synapse weights in earlier
layers more efficiently (Figure 2d,e and S3a,d,e, Supporting
Information). This can be explained by the signed operations
normalizing the backpropagating errors thus preventing the
error vanishing issue for the earlier layers. In HP learning,
the activations of neurons in each layer zl tend to segregate near
0 or 1 as the learning proceeds (Figure 2f ). This tendency is more
obvious in BS learning, which highlights that the stochastic
binarization well preserves the information of forwarding signals
(Figure 2f,g and S3b,c, Supporting Information).

To check the individual effect of the BS algorithms, we per-
mutationally combine them with the HP ones and tested the
learning performance of these partially BS-trained networks
(Figure S4, Supporting Information). The results show that
the BS in signal forwarding can prevent overtraining and
improve the test accuracy of the network on unseen data
(Figure S4a–c, Supporting Information). The signed binarization
of backpropagation errors is instead responsible for effectively
propagating the errors to earlier layers of the network (Figure
S4d–k, Supporting Information). The stochastic binarization
of the activation function derivative does not show a significant
effect on the learning process. We also tested BS learning algo-
rithms using various activation functions and derivative func-
tions (Figure S5, Supporting Information). The results show
that as long as the activation has a sigmoidal shape and the deriv-
ative function has a bell shape, the BS learning algorithm con-
verges to high accuracy (Figure S5, Supporting Information, and
Discussion).

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (4 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


2.3. BS Improves Inference Performance

To assess the impact of stochastic binarization on inference, we
compared three inference methods, namely 1) one-time infer-
ence using HP forwarding signals (HP inference, Figure 3a),
2) one-time inference using deterministic binarized forwarding
signals (binary inference, Figure 3b), and 3) majority voting
of repeated inferences using BS forwarding signals (stochastic
inference, Figure 3c). In the stochastic inference method,
results of repeated inference using BS forwarding signals are
obtained and a final recognition decision is made by voting.
Only the unseen data are used to test the inference
performance.

In the first neural network which is trained by HP learning
(Figure 3d), the HP inference has the lowest inference error.
The binary inference has a higher inference error but largely sim-
plifies neural operations and hardware circuits. The stochastic
inference has the highest one-time inference error, although
the inference error can be dramatically decreased by repeating
the stochastic inference and taking the majority vote as the final
recognition result. Overall, the accuracy of the stochastic
inference can be much lower than the binarized inference
and approximate the one of HP inference.

In the second neural network which is trained by BS learning
(Figure 3e), all three inference methods have lower inference
errors compared to each method in the first neural network,
respectively. Surprisingly, the HP inference test error is no

longer the asymptotic line for the stochastic majority vote infer-
ence method: the stochastic inference achieves lower inference
error than HP inference after 15 times votes (Figure 3e).

The HP-learned neural networks naturally show lower
inference accuracies when they are used for stochastic binary
inference algorithm, because propagated information suffers
accuracy loss. Here, we compare the inference results for
neural networks trained by both HP and stochastic binarization
algorithms only for a comprehensive comparison. Compared to
the error of the HP inference in the first neural network, which is
about 1.57%, the stochastic inference in the second neural
network has the lowest inference error (1.21%) (Figure 3f ).
A better performance is achieved in multiple learning schemes
that permutate the information representation methods as
shown in Figure S6, Supporting Information.

2.4. BS Is Efficient in Deep Convolutional Neural Networks

To study the efficiency of BS learning in convolutional neural
networks, we considered the network shown in Figure 4a, con-
sisting of two convolutional layers, two max-pooling layers, and
one fully connected layer, for learning and recognizing the hand-
written digits from the MNIST dataset.

The BS learning performance, which is shown as the test error
on the test set during the training, is better than the one of the
HP learning (Figure 4b), similar to the fully connected neural
network on the same data set. For the neural network trained

(a) (d)

(e) (g)

(f)

(b)

(c)

Figure 2. High-precision (HP) learning versus BS learning. a) A three-layered fully connected neural network for testing the learning algorithm on learning
the handwritten digits from the modified National Institute of Standard Technology (MNIST) dataset. b) The cross entropy of the output layer as a
function of the learning epoch. c) The test error as a function of training epoch for HP learning and the proposed BS learning. The BS learning shows
a less overfitting effect on the train set and better recognition performance on unseen handwritten digits from the test set. d,e) The evolution of the k–s
density of weight distributions during d) HP learning and e) BS learning. In BS learning, more weights in earlier layers have been updated. f,g) The
evolution of the cumulative density function (CDF) of the activations during f ) HP learning and g) stochastic learning. In BS learning, the bipartite of
activations to the regions near 0 and 1 are more obvious.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (5 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


with an HP learning algorithm, the HP inference shows the best
performance and is taken as the baseline (Figure 4c). For the neu-
ral network trained with a BS learning algorithm, the inference
performance in all cases has been improved dramatically and the
performance of the stochastic inference exceeds the HP learning
after 10 times repetition of the inferences (Figure 4d). Figure 4e
shows the summary of the various inference results for the neu-
ral network trained with the two learning algorithms.
Overtraining is completely avoided, and more salient features
are learned in the convolutional kernels when using BS learning
(Figure S7, Supporting Information).

Figure 4f shows a deeper convolutional neural network in
visual geometry group (VGG) style[27] consisting of six convolu-
tional layers, three max-pooling layers, and three fully connected
layers, for learning and recognizing the images from the
CIFAR-10 dataset.[28] The HP learning shows better learning per-
formance than BS learning (Figure 4g). For the neural network
trained with an HP learning algorithm, while the HP inference
shows the best performance (the baseline), the binary inference
and the stochastic inference are no longer suitable (Figure 4h).
For the neural network trained with a BS learning algorithm,
while the HP inference and the binary inference show similar
accuracies, the stochastic inference quickly exceeds them after
several repetitions (Figure 4i). Another interesting result is that
the binary inference shows even though slightly but better infer-
ence performance than the HP inference. This result shows that
HP inference is not always the best solution. Figure 4j shows the

summary of the various inference results for the neural network
trained with the two learning algorithms.

Note that, for a fair comparison, no other learning perfor-
mance enhancement techniques, such as dropout, batch normal-
ization, or data preprocessing methods, are employed in the deep
neural network for both learning algorithms.

2.5. Quantized Weights and Analog Weights Using Memristors

Thanks to binarization operations in signal forwarding, activa-
tion derivative, and error backpropagation, the partial derivative
of the loss function L of a single training sample to the weight,
δwl

i ,j, that is, the gradient of the loss to the weight, ∂L= ∂w
l
i ,j, has a

ternary value. However, to stabilize the learning procedure, the
gradient is averaged over a batch of training samples, according
to Equation (2). Thus, the weight needs to be updated or tuned
with sufficient precision. A stepwise update of the weight is
generally beneficial since it is compatible with quantized weights
(e.g., integers) or noisy and analog weights (e.g., analog
memristors).

To achieve this goal, we used a periodical carry method[29,30] to
update the weight, as illustrated in Figure 5a. The gradient of the
loss to the weight, ∂L= ∂wl

i ,j, is accumulated in a digital counter.
The weight is updated with a fixed step when and only when the
accumulated gradient reaches a positive threshold (thþ ) or a neg-
ative threshold (th�). For instance, the weight can be represented

(a)

(b)

(c)

(d)

(f)

(e)

Figure 3. Inference methods and inference accuracies. a) HP inference with the input of the post-layer being the activation of the pre-layer. b) Binary
inference with deterministic binary activation function. c) Stochastic inference with stochastic binarization within each layer and a majority vote in the
output layer. d) Comparison of the inference errors for different inference methods of HP-learned neural network. The HP inference is the asymptotic line
of the stochastic inference with increasing repetitions. e) Comparison of the inference errors for different inference methods of BS-learned neural net-
work. Better inference performance than HP inference is obtained for stochastic inference after 10 repetitions. f ) Summary of the inference errors
comparing HP-learned neural network and binary stochastically learned neural network. The performance (1.57%) in traditional algorithms, i.e., HP
learning and HP inference, is taken as the baseline. The BS learning reduces the recognition error by 0.21%, and the stochastic inference reduces
the recognition error by 0.15% after 100 repetitions.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (6 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


(a) (b)

(e)(d)(c)

(f)

(h) (i) (j)

(g)

Figure 4. The BS learning and stochastic inference for convolutional neural networks and deeper neural networks. a) A five-layer convolutional deep
neural network for the MNIST dataset. b) Comparison of the MNIST dataset HP inference error rate of each training epoch in two neural networks. Two
networks are trained using an HP learning algorithm and a BS learning algorithm, respectively. c) Comparison of the MNIST dataset inference error rate
dependency on inference repetition times using different inference methods. The five-layer convolutional neural network is trained using an HP learning
algorithm. d) Comparison of the MNIST dataset inference error rate dependency on inference repetition using different inference methods. The network
is trained using a BS learning algorithm. e) Comparison of the test error rates using five different inference methods. The networks are trained using HP
learning and BS learning, respectively. f ) A convolutional deep neural network for the CIFAR-10 dataset. g) Comparison of the CIFAR-10 dataset HP
inference error rate of each training epoch in two neural networks. Two networks are trained using an HP learning algorithm and a BS learning algorithm,
respectively. h) Comparison of the CIFAR-10 dataset inference error rate dependency on inference repetition times using different inference methods. The
five-layer convolutional neural network is trained using an HP learning algorithm. i) Comparison of the CIFAR-10 dataset inference error rate dependency
on inference repetition times using different inference methods. The neural network is trained using a BS learning algorithm. j) Comparison of the test
error rates using five different inference methods. The networks are trained using HP learning and BS learning, respectively.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (7 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


by an 8-bit signed integer (INT8, taking a value from �128 to
127). When the accumulated gradient reaches the positive
threshold, the corresponding weight subtracts 1, and vice versa.
The accumulated gradient is cleared whenever such a weight
update event happens. The learning rate is thus defined by
the thresholds and a scaling factor between the integer weight
and the effective weight (Experimental Section).

Using the analog memristor as synaptic weight, the weight
update can be largely simplified compared to the conventional
iterative write and verify which is usually employed to tune
the conductance of the memristor in sufficient accuracy.[7,31]

In our software-based in situ deep learning experiments, the
long-term potentiation (LTP) and long-term depression (LTD)
behaviors of a real memristor under identical pulses[32] were
used to verify the deep learning performance. The memristor
device, like the biological synapses, has high fluctuations and
nonlinear plasticity under identical potentiation pulses
(Figure 5b, left side) and identical depression pulses
(Figure 5b, right side). The features of the memristor devices

are captured by a device model. The model considers the on/
off ratio, the nonlinearities, the asymmetry between potentiation
and depression, and cycle-to-cycle write variations. More details
of the device model can be found in Experimental Section. Using
the periodical carry method,[33,34] when the accumulated gradient
reaches the positive threshold, a depression pulse is applied to
the correspondingmemristor in the crossbar array, and vice versa.
The conductance of the memristor is updated as is, or in other
words, blindly, regardless of the nonlinearity and fluctuation of
the weight changes: we do not read the initial and the updated
conductance to verify the correctness of the amplitude and direc-
tion of the weight changes.

Figure 5c shows the learning performance of a fully connected
neural network (same as in Figure 2a) for BS learning using
weights of FP32 numbers (without the periodical carry), INT8,
4-bit signed integers (INT4), ternary values (�1, 0, 1), and analog
memristors, compared with the HP learning (the baseline). More
details about the neural network setups and the training results are
reported in Experimental Section and Figure S8, Supporting

(a) (b)

(c) (d)

Figure 5. Weight quantization and analog weight using memristors. a) The integer-styled periodical carry method for training the stochastic neural
network in quantized weights represented by integers and analog weights using memristors. b) Typical long-term potentiation (left) and long-term
depression behaviors (right) of memristor devices under identical potentiation and depression pulses, respectively. The data are retrieved from the
SiGe epitaxial memory[32] and a model is developed to capture the nonlinearities and fluctuations of the weight updates. c) The learning curves of
the stochastic training using various types of weights compared to the baseline HP training. d) Summary of the inference accuracy of the stochastically
trained using various types of weights compared to the baseline HP-trained neural network. Better-than-baseline learning performances are obtained for
the quantized weights in 8-bit signed integer (INT8) and 4-bit signed integer (INT4) as well as for the noisy weights in analog memristors.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (8 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Information. The analog memristor-based neural network shows
an inference accuracy (98.82%) higher than the baseline
(98.43%) and slightly lower than the binary stochastically learned
neural network based on floating-point weights (98.88%), as
summarized in Figure 5d. It should be emphasized that the neural
network is trained in situ in artificial synapses of analog memris-
tors which have noisy plasticity just like their biological
counterparts.

We further simulated the learning performance of the newly
proposed algorithm in a fully connected neural network (same as
in Figure 2a) using different types of memristive devices as syn-
apses. We captured different device behaviors using our device
model, as shown in Figure 6a–e, including three types of the
SiGe epitaxial random access memory (epRAM) devices,[32] elec-
tro-metalization random access memory (ECRAM) device,[35]

Pr1�xCaxMnO3 (PCMO) device,[36] phase change memory
(PCM) device,[37] and oxide resistive random access memory
(OxRRAM) device.[38] The result of SiGe epRAM device 3 is
the same to the analog memristor in Figure 5c. Different learn-
ing performances are compared in Figure 6f,g. The learning per-
formance for HP learning method using weights of FP32

synapses (HP training), stochastic binarization learning method
using weights of FP32 synapses (stochastic training), and sto-
chastic binarization learning method using different simulated
devices as synapses (SiGe epRAM-1 to OxRRAM) during the
1000 training epochs are shown in Figure 6f. The results all show
decreased test errors as the training epoch numbers increase.
This indicates good convergence tendency for all cases.
Figure 6g shows the test error comparisons after 1000 training
epochs for each case. It can be seen that all learning performance
for stochastic binarization training method show lower test error
as compared to the HP training method regardless of the synap-
ses used. The result verifies the effectiveness of the proposed
learning algorithm using different devices as synapses.

The primary goal of the simulations using different memristor
devices as the artificial synapses is to provide a simulation plat-
form to estimate the effects of various nonideal factors of mem-
ristor devices. The device model supports analysis considering
other concerns, such as the line resistance and the sneak current
issues. We do not go into details to discuss the line resistance and
the sneak path current issues since they are not the major con-
cerns here. This is because the line resistance is not a major

(a) (b) (c)

(d)

(g)

(e) (f)

Figure 6. Test error comparisons using different synaptic devices. The experimental and simulated behaviors of different memristive devices: a) three
types of SiGe epRAM,[32] b) ECRAM device,[35] c) PCMO device,[36] d) PCM device,[36] and e) OxRRAM device;[38] f ) test errors comparison for each
training case during the 1000 training epochs; g) test error comparison for each training case after the 1000 training epochs.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (9 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


concern for usual crossbar array size (128� 128) and memristor
conductance ranges discussed above (10�3–10�9 S),[39] and the
negative effect introduced by the line resistance could also be
mitigated by online training. As for the sneak path current issue,
it is only an issue when RRAM devices need to be accessed indi-
vidually. In the vector–matrix-multiplication situation using the
devices shown in Figure 6, the sneak path current is not an
issue[22,40] since all device in the crossbar array have definite vol-
tages on both terminals.

Reduction of the computation demand and the energy cost can
be achieved in multiple aspects according to the specific applica-
tion scenarios of BS learning. For instance, if implemented in
CMOS technology[41] and using the weights represented by
FP32 numbers, the BS learning algorithm reduces the energy con-
sumption of the elementarymultiply-and-accumulate (MAC) oper-
ation from 4.6 to 0.9 pJ (Table S2, Supporting Information). By
quantizing the weight, the energy consumption could be reduced
further to 0.03 pJ, 15 fJ, and 5.6 fJ for weights implemented in
INT8, INT4, and ternary values, respectively (Experimental
Section). INT4 weights allow reducing the energy consumption
by 307 times without sacrificing the learning performance, while
ternary-valued weights reduce the energy consumption by 821
times with only a slight degradation of learning accuracy.
When implementing the BS learning in a memristor-based neuro-
morphic system, the energy consumption for a single MAC is
reduced from 0.18 pJ to 1.8 fJ (100 times reduction) since the input
is in a 1-bit binary state and the production does not need ADCs.[7]

Reduction of the footprint of the circuits in integrated chips by
57.8 times could also be projected (Experimental Section). Note
that the neural network implementation in CMOS technology
needs to retrieve the weight data from memory frequently,
whereas the weight data are stored in the memristor devices in
the memristor-based neuromorphic system. Thus, conservatively,
more than three orders of magnitudes of energy reduction can be
obtained using the proposed BS learning algorithm combined
with the memristive neuromorphic technology.

3. Discussion

Introducing stochasticity to a neural network has been proven to
be beneficial in several aspects, for instance, escaping from local
minima in the Boltzmann machine[42] and preventing the over-
fitting effect in the dropout technique.[43] Stochasticity has a sim-
ilar role in this work, resulting in better learning performance.
The better performance by the majority vote of repeated stochas-
tic inference than the HP inference (Figure 3e, and 4d,i),
requires deeper insight. One might expect that the HP inference
should be the asymptotic line of the repeated stochastic infer-
ence, in the sense that a real number between 0 and 1 in suffi-
cient precision contains all the information of a neuron state. The
sampled binary-valued numbers, which take the HP number as
their probability, can restore the full information of the HP num-
ber only after sufficient times of repetition. However, the neural
network experiments show that a group of sampled binary-valued
numbers after only a few repetitions could already convey more
information than the real numbers. This may also explain why
the recognition accuracy improved after introducing the random-
ness into the system.

Binarization or, more generally, quantization of the forward-
ing signals has been extensively investigated to reduce the
computational loads for inference in edge applications.[16] We
compared the inference accuracy of our work with other resistive
random access memory (RRAM)-based binary fully connected
and convolutional neural networks in Table S3 and S4
(Supporting Information),[44–46] respectively. However, these
works generally focus on the inference process without the
online training and come at a cost of decreased inference accu-
racy. Neural networks trained with binarized or quantized acti-
vation, i.e., quantization-aware training, need to estimate or
surrogate the derivative of the non-differentiable activation func-
tions.[19,20] Here, we use the stochastically binarized state of the
neurons as another representation of the activation value, with no
need to estimate any derivative. In other words, the “straight-
through estimator”[18] should be a straightforward solution to
the non-differential activation function issue, providing that the
binarization is stochastic and the activation function is sigmoid
and bounded between 0 and 1. The correctness of the neural
network learning is guaranteed by the law of total expectation
according to which Equation (1) and (2) should be equivalent.

Since the stochastic binarization operation is applied to each
layer, the proposed learning algorithm is a universal scheme and
can be easily applied to different neural networks, such as fully
connected neural networks and convolutional neural networks
illustrated in this work. This algorithm works well in neural net-
works smaller than 10 layers, but its performance begins to show
accuracy decay in neural networks deeper than 10 layers.

4. Conclusion

In summary, we have shown that deep learning algorithms can be
reformulated to be more biologically plausible and hardware
friendly for neuromorphic implementation. We stochastically
binarized the forwarding signals and the activation function deriv-
atives. Only the signs of the errors are backpropagated in the back-
ward pass. This algorithm largely simplifies the neural network
operations and results in higher deep learning accuracy.
Additionally, the stochastic binarization in the forwarding pass
also results in better inference accuracy. Mathematically, we prove
the correctness of the learning algorithm by the law of
total expectation, avoiding the derivative estimation of the non-dif-
ferential activation functions. We also provide a new view that the
activation function should be understood as the probability of the
neurons being activated, and the stochastically activated neurons
in binary states are more informative than the activation function
in real numbers. Finally, a periodical carry strategy is employed to
quantize the weight during the learning and adapt the deep learn-
ing algorithm to be tolerant to the fluctuation and noisy synapses
based on analog memristors. The energy efficiency for deep learn-
ing tasks is improved by more than three orders of magnitudes, in
addition to better deep learning accuracy.

5. Experimental Section

Crossbar Array of Memristors for Signed Weight Matrix: Assuming that a
typical fully connected layer (labeled as l) had n neurons that processed
forwarding information fromm neurons of the previous layer (layer l� 1),

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (10 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


in memristor-based hardware implementation, the vector–matrix multipli-
cations in both forward pass and backward pass could be implemented by
a crossbar array of memristors, which had mþ 1 horizontal bars/wires in
the top and nþ 1 vertical bars/wires in the bottom. In each intersection of
the horizontal bars and vertical bars except the intersection of the (mþ 1)
th horizontal bar and the (nþ 1)th vertical bar, there was one memristor
(or programmable resistor). The conductances of the memristors in the
intersections of the 1-to-m horizontal bars and the 1-to-n vertical bars were
denoted as Gi,j , where i ¼ 1, : : : ,m and j ¼ 1, : : : , n. The memristors in
the intersections of the 1-to-m horizontal bars and the (nþ 1)th vertical
bar and the intersections of the (mþ 1)th horizontal bar and the 1-to-n
vertical bars are called reference memristors, which have fixed conduc-
tance denoted as Gref (Figure S1a,c, Supporting Information). The refer-
ence memristors were suppressed as shown in the illustration of
Figure 1d,f and the discussion in the main text for legibility. They were
needed to form differential pairs since the synaptic weights were signed
numbers while the device conductance is always positively valued. The syn-
apse weights wl

i,j are represented by the conductance difference between

regular memristors and reference memristors Gi,j � Gref ¼ G0wl
i,j , where

G0 is a scaling factor. Assuming that the memristor had the maximal con-
ductance and minimal conductance of Gmax and Gmin, respectively, the
reference conductance was set to the middle point of the memristor con-
ductance, i.e., Gref ¼ GmaxþGmin

2 . To represent the weight values in the range

between wmin and wmax, the scaling factor G0 is defined as Gmax�Gmin
wmax�wmin

. wmin

and wmax are empirical parameters and take the default values of�1 and 1,
respectively.

Forward Weighted Summation by the Memristor Crossbar: If the previous
layer had already binarized the forwarding signals, that is, the input infor-
mation xli in this layer was in binary states, the weight summation for the
membrane potential ylj ¼

Pm
i xliw

l
i,j could be easily implemented. The

binary states, “1” or “0”, are represented by logic voltage levels with an
amplitude of VDD or 0 V, respectively, where VDD is the supply voltage
of the digital circuits. Since VDD was too large to be directly applied to
the memristor array without changing the conductance of memristors,
level shifters were used to convert VDD to a read voltage with the amplitude
of V0. Thus, the voltages Vi ¼ xliV0 (i ¼ 1, : : :m) were applied to the ith
top bar of the memristor array (Figure 1d and S1a, Supporting
Information). According to Ohm’s law and Kirchhoff ’s current law, if
the jth bottom bar was grounded, it had the current output of
Ij ¼

Pm
i ViGi,j (j ¼ 1, : : : n), and the (nþ 1)th bottom bar had the output

current of Iref ¼
Pm

i ViGref . The weighted summation was completed in

the sense that ylj ¼
Ij�Iref
V0G0

: However, the currents Ij and Iref will not be
measured, nor do we need to explicitly calculate the membrane
potential ylj.

Stochastic Binarization of the Forwarding Signals in Hardware Circuit: The
stochastic binarization of the forwarding signals, i.e., the Bernoulli sam-
pling process, Pðxlþ1

j ¼ 1Þ ¼ zlj ¼ 1
1þexpð�yljÞ

could be directly implemented

in a dedicatedly designed hardware circuit (Figure 1d and S1a, Supporting
Information). First, a noise current signal Inoise was added into the output
current of the bottom bars of the memristor array Ij . The combined current
Ij þ Inoise and the reference current Iref were then converted into voltage
signals of Vj ¼ �RtðIj þ InoiseÞ and V ref ¼ �RtIref , respectively, through
trans-impedance amplifiers with Rt being the feedback resistance. The
trans-impedance amplifiers also pulled the bottom bars into a virtually
grounded state. The voltage signals of the trans-impedance amplifiers
were fed to a comparator that outputs logic 1 voltage level (i.e., VDD) when
Vj < V ref and logic 0 voltage level (i.e., 0V) otherwise. Figure S2a,b,
Supporting Information, shows the typical behaviors of such a circuit,
where the noise current was obtained by amplifying the thermal noise
of resistors. The comparator’s output voltage Vl

outj was sampled by a

flip-flop and the sampled value was taken as the input signal xlþ1
j for

the next layer.

If Inoise follows normal distribution Inoise � Nðμ, σ2Þ, we have

Pðxlþ1
j ¼ 1Þ ¼ PðVj < V ref Þ ¼ PðIj þ Inoise > Iref Þ

¼ PðInoise > Iref � IjÞ ¼ 1�
ZIref�Ij

�∞

1

σ
ffiffiffiffiffi
2π

p exp �ðx � μÞ2
2σ2

� �
dx

¼ 1
2

1þ erf
ðIj � Iref Þ þ μ

σ
ffiffiffi
2

p
� �� �

¼ 1
2

1þ erf
yljV0G0 þ μ

σ
ffiffiffi
2

p
 !" #

:

(3)

Note that Equation (3) is also a sigmoid function. For the given read
voltage V0 and scaling factor G0, Equation (3) can closely approximate the
desired logistic function of zlj ¼ 1

1þexpð�yljÞ
if the expectation and the stan-

dard deviation of the current noise, i.e., μ and σ, could be appropriately
chosen.

For typical values V0 ¼ 0.1 V and G0 ¼ 10�6 S, the circuit behaviors
with different noise current levels were simulated. The simulation showed
that when μ ¼ 0 μA and σ ¼ 0.175 μA, the circuit behavior captured the
logistic function well (Figure S2c, Supporting Information). Similar sto-
chastically activated neuronal behaviors have been recently reported
exploiting various types of noise sources.[23,47,48] When μ ¼ 0 μA, chang-
ing of noise levels was equivalently scaling the membrane potential ylj in

the logistic function with a prefactor a, that is, 1
1þexpð�a�yljÞ

. Since the pre-

factor would not affect the overall learning performance (Supporting
Information Figure S5a–e), a coarse control of the noise level would be
sufficient.

Also, note that Equation (3) is the CDF of the normally distributed cur-
rent noise Inoise, to the current difference Ij � Iref . We have confirmed that
the proposed neural network algorithms work well as long as the activation
function is of the sigmoid type (Figure S5, Supporting Information).
Thus, we were not constrained to approximate the logistic function.
In other words, we were not limited to using the noise source that
followed a normal distribution, and any type of noise can be used for
the stochastic binarization, thanks to the simple fact that the CDF is always
of the sigmoid type.

Stochastic Binarization of the Derivatives in Hardware Circuit: After the
logistic function zlj ¼ 1

1þexpð�yljÞ
was stochastically binarized, the stochastic

binarization of its derivative P
∂zlj
∂ylj

¼ 1
� �

¼ zljð1� zljÞ could be easily imple-

mented. As shown in Figure 1e and S1b, Supporting Information, we used
two flip-flops to conduct two independent Bernoulli sampling processes
on the comparator’s output Vl

outj and the sampled values (logic signal A
and B) were processed by a logic gate. The logic gate was composed of a
NOT gate and an AND gate. The NOT gate reversed the second sampled
value (B), while the AND gate output the logical conjunction of the first
sampled value A and the reversed second sampled value B, that is, A ∩ B.
The logic gate output 1 only when the first sampled value was 1 and the
second sampled value was 0. Thus, assuming that Inoise follows normal
distribution Inoise � Nðμ, σ2Þ, we have

P
∂zlj
∂ylj

¼ 1

 !
¼ PðA ¼ 1Þ½1� PðB ¼ 1Þ� ¼ PðVj < V ref Þ½1� PðVj < V ref Þ�

¼ PðInoise > Iref � IjÞPðInoise < Iref � IjÞ

¼ 1
2

1þ erf
yljV0G0 þ μ

σ
ffiffiffi
2

p
 !" #

� 1
2

1� erf
yljV0G0 þ μ

σ
ffiffiffi
2

p
 !" #

� 1
1þ expð�yljÞ

1� 1
1þ expð�yljÞ

" #
¼ zljð1� zljÞ:

(4)

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (11 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Figure S2d, Supporting Information, shows the comparison between
the desired derivative probability and circuit behaviors of several different
noise levels. When μ ¼ 0μA and σ ¼ 0.175μA, the memristor array hard-
ware’s behavior could well resemble the desired activation’s derivative.

The derivation of Equation (4) relied on two assumptions: 1) the simi-
larity between the logistic function and the CDF of the normal distribution;
2) the simple expression of the derivative of the logistic function zljð1� zljÞ
where the argument of the logistic function, ylj, was not explicitly needed.
However, these two assumptions should not be the priorities for us to use
the designed hardware circuit for the stochastic binarization of the activa-
tion function’s derivative. As we have confirmed shown in Figure S5f–k,
Supporting Information, the BS learning algorithm would work nicely as
long as the activation was of sigmoid type (has an “S” shape) and the
“function derivative” was bell shaped. The “function derivative” did not
need to be the exact derivative of the activation function. For any type
of noise source, if the membrane potential ylj ∝ Ij � Iref was small enough,
the PðA ¼ 1Þ ¼ PðInoise > Iref � IjÞ approximated 0, and so did

P
∂zlj
∂ylj

¼ 1
� �

. While, if the membrane potential was large enough, the

1� PðB ¼ 1Þ ¼ PðInoise < Iref � IjÞ approximated 0, and so did P
∂zlj
∂ylj

¼ 1
� �

.

When the membrane potential was near the expectation of the noise
sources, that is, Inoise � Iref � Ij, both PðA ¼ 1Þ and 1� PðB ¼ 1Þ approxi-
mated 0.5, and P

∂zlj
∂ylj

¼ 1
� �

took the maximal value of 0.25. Thus, a “bell”

shape of the “function derivative” was well produced.
Equation (4) has the maximal value of 0.25. It could be linearly scaled to

have the maximum values of 0.5 and 1 (Figure S5b,c, Supporting
Information) by repeating the circuit behavior of Equation (4) for two times
and four times, respectively, and taking the logical disjunction of the out-
puts of these repetitions as the stochastic binarization of the derivative.
The probability of the logical disjunction was the union of the individual
implementation of Equation (4).

Note that the two logic levels A and B should be sampled indepen-
dently, which is now realized by sampling the comparator’s output
Vl
outj in two clock cycles. Otherwise, the joint probability in

Equation (4) was not valid. It should also be reminded that these two
sampling processes should both be independent of the sampling of
the forwarding signals in Equation (3). Otherwise, the learning rule
denoted by Equation (2) would not succeed since the equivalence to
the Equation (1) by the law of total expectation was invalid. Thus, the for-
warding pass needed at least three clock cycles to obtain the stochastic
binarizations of both the forwarding signals and the derivatives (top right
inset in Figure S1, Supporting Information).

Multiple Methods of Realizing the BS in Hardware: The stochastic binar-
ization for the forwarding signals and activation derivatives could be
achieved in multiple ways, in addition to our proposal (Figure S2,
Supporting Information). For instance, the intrinsic noise in the crossbar
array of memristors,[23] and the stochastic nature of the switching process
of a diffusive memristor[47] or a magnetic tunnel junction[48] could also be
exploited to obtain the stochastic binary output in the neuron.

Limitation of Previous Utilizations of the Hardware Stochasticity: The BS
that could be provided by the intrinsic noise or stochastic nature made
them ready to be employed in Hopfield-type neural networks, such as
finding the global minima in constraint satisfaction problems[23,48–50] or
learning through contrastive divergence in restricted Boltzmann
machines.[51,52] However, for deep learning with the error backpropagation
and gradient descent rule, the jigsaw puzzle of the in situ learning inde-
pendent of the von-Neumann architecture within a neuromorphic system
was not completed. For instance, a neural sampling machine with stochas-
tic synapses of ferroelectric field effect transistors was recently reported for
the learning and inference of a fully connected neural network.[53] While
the forwarding signals were stochastically binarized, the error backpropa-
gation and the gradient of the weights were calculated in a traditional HP
scheme.[54] Thus, only the inference and the forward pass in the learning
stage were accelerated. The error backpropagation still needed complex

peripheral circuits, and the weight update operation needed to be precisely
controlled. We completed the jigsaw puzzle by introducing the stochastic
binarization of the activation derivatives and the sign of backpropagating
errors. They helped to accelerate the error backpropagation and weight
update in the hardware implementation of deep learning.

Backward Weighted Summation by the Memristor Crossbar: The same
memristor crossbar was used for the backward weighted summation of
the backpropagating errors δxli ¼

P
j δy

l
jw

l
i,j. The ternary valued errors of

member potentials δylj (taking values of “�1”, “0”, and “1”) are repre-
sented by signals of �VDD, high impedance, and VDD, respectively.
Level shifters were used to convert the voltage signals �VDD and VDD
to read voltages with the amplitude of �V0 and V0, respectively, and
to convert the high-impedance signal to 0 V. Thus, the voltages
Vb
j ¼ V0δylj (j ¼ 1, : : : n) were applied to the jth bottom bar of the mem-

ristor array (Figure 1f and S1c, Supporting Information). According to
Ohm’s law and Kirchhoff ’s current law, if the ith top bar was grounded,
it had the current output of Ibi ¼

Pn
j V

b
j Gi,j (i ¼ 1, : : :m), and the (mþ 1)

th top bar had the output current of Iref ¼
Pn

j V
b
j Gref . The backward

weighted summation was completed in the sense that δxli ¼
Ibi �Iref
V0G0

:

Similar to the case in the forward-weighted summation, the currents Ibi
and Iref will not be measured, nor do we need to explicitly calculate the
errors δxli.

Sign Operation of the Backpropagating Errors in the Hardware Circuit: The
sign operation of the backpropagating error on a neuron δzlj ¼ signðδxlþ1

j Þ
was conducted by a current comparator who compared the currents Ibi
with Iref (Figure 1f and S1c, Supporting Information). The current compar-
ator output the positive voltage VDD to represent the signed error 1 when
Ibi ≥ Iref and output the negative voltage �VDD to represent the signed
error �1 otherwise (Figure 1f ). In Figure S1c, Supporting Information,
the current operator was implemented by first converting the currents
to voltages through trans-impedance amplifiers and then comparing
the voltages through a voltage comparator. The trans-impedance ampli-
fiers also pulled the top bars into a virtually grounded state.

The multiplication between the error on a neuron and the activation

function’s derivative δylj ¼ δzlj
dzlj
dylj

could be implemented by a single transis-

tor (Figure 1f and S1c, Supporting Information), since the error on a neu-
ron δzlj was binary valued (�VDD and VDD for �1 and 1, respectively), and

the derivative
dzlj
dylj

was binary valued (0 and VDD for 0 and 1, respectively).

The former was applied to the source/drain of a transistor, while the latter
was applied to the gate of the transistor. The product was then presented
in the drain/source terminal of the transistor, being �VDD, high imped-
ance, and VDD for �1, 0, and 1, respectively.

The Input to the First Layer: The first layer of a deep neural network, or
the input layer, received information directly from the training samples
during the learning. To make the first layer compatible with the BS
learning algorithm and the memristive hardware implementation scheme,
the input information from the training samples should also be stochasti-
cally binarized. The input information was first normalized to the range
of 0 to 1 and then binarized to either 0 or 1 through the Bernoulli
process.

For instance, in the task of learning the handwritten digits from the
MNIST dataset, the raw data are represented in INT8: the gray scale of
each pixel of the digit image is represented by an integer from 0 to
255 with 0 being fully black and 255 fully white (Figure 2a). These integers
were scaled to values between 0.0 and 1.0 by dividing the integer with the
largest number 255. The scaled pixel values were used as the probability of
the corresponding input nodes taking value 1 instead of 0. In the control
experiment of HP learning, the scaled pixel values were directly used as the
values of input nodes.

The Activation of the Output Layer: The output layer of the neural
networks should also be specially cared for. In the demonstrations of
the classification tasks (Figure 2 and 4), the SoftMax activation function
and cross-entropy loss were used for the output layer. The activation of the

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (12 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


output layer was given by zj ¼ expðyjÞP
k
expðykÞ

, where yj is the membrane poten-

tial of the neurons in the output layer and j ¼ 1, : : : , 10 for the classifica-
tion tasks in this work. The cross-entropy loss given by L ¼ �Pj tj logðzjÞ,
where tj (j ¼ 1, : : : , 10) is the target membrane potential of the neuron
given by the corresponding label of the training sample and encoded
in a one-hot format. The strategy of deep learning was to reduce cross-
entropy loss by adjusting all the weights in the neural network.

Traditionally, the errors of the membrane potential of the neurons in
the output layer (δyj), that is, the blames of the resulting cross-entropy loss
that could be assigned to the membrane potentials, were given by the gra-
dient of the cross-entropy loss to the membrane potential of each neuron,
reading

δyj ¼
∂L
∂yj

¼
X
k

∂L
∂zk

∂zk
∂yj

¼ zj � tj (5)

The errors of the neurons δyj were then backpropagated in the deep
neural network. Note that the value of the cross-entropy loss L was not
needed for calculating δyj .

In BS learning, the activation of the output layer zj acted as the proba-
bility of the output neuron to be activated, that is PðzBj ¼ 1Þ ¼ zj , where zBj
is the binary state of the output neuron. The error of the membrane poten-
tial δyj for backpropagating was replaced by

δyj ¼ zBj � tj (6)

Since the target outputs tj were also binary valued in one-hot format,
the errors δyj were ternary valued (�1, 0, or 1), the same as the errors in
previous layers.

The calculation of the SoftMax activation and the Bernoulli sampling
process was currently implemented in the software. However, they could
also be implemented by hardware circuits with the help of noise sources
without explicitly obtaining the exact value of the membrane potential yj
and calculating the SoftMax activation function. To achieve this, the win-
ner-take-all mechanism with inhibitory connections among neurons
should be employed, similar to the case in biological systems.[55]

Fully Connected Neural Network: The neural network shown in Figure 2a
consisted of three fully connected layers with the size of 784� 500,
500� 200, and 200� 10. The 784 input nodes corresponded to 784
(28� 28) pixels of one MNIST training sample and the 10 output nodes
corresponded to the 10 classes of digits.

In Figure S5a–e, Supporting Information, we tested the effect of the
shape parameter a of the logistic activation function zlj ¼ 1

1þexpð�ayljÞ
in var-

ious signal/error/derivative handling methods. The forwarding signals (F)
could be in HP or stochastic binary (S) format; the backpropagation errors
(E) could be in HP or signed (S) format; the derivative (D) could be in HP
or stochastic binary (S) format, as shown in Figure S5e, Supporting
Information. In stochastic binarization, the “probability” that is higher
than 1 was truncated (e.g., in Figure S5d, Supporting Information).
The cases labeled by “F: HP, E: HP, D: HP” corresponded to the HP learn-
ing in the main text, whereas the cases labeled by “F:S, E:S, D:S” corre-
sponded to the BS learning. The highest learning performance (>99%
recognition accuracy) was achieved when the forwarding signals and
the derivatives were binarized and the backpropagating errors were in
HP, i.e., “F: S, E: HP, D: S” with the shape parameter a being 8.
However, this case was not fully compatible with the designed memristive
hardware circuit.

We also tested the effect of other types of activation functions in Figure
S5f–k, Supporting Information. Note that, for the rectifying linear unit acti-
vation function (Figure S5f, Supporting Information), the learning algo-
rithms with HP forwarding signals worked well, whereas the learning
algorithms with BS forwarding signals were disruptive. As shown in
Figure S5i,j, Supporting Information, the “derivative functions” that were
used in the learning were faked (they are not the derivative function of the

activation functions). In these two cases, the learning algorithms still
worked well.

We used the logistic activation function with the shape parameter a
being 4 (Figure S5c, Supporting Information) for the learning results
shown in Figure 2a,3, S3, and S4, Supporting Information.

All the learnings used a batch size of 100 and a fixed learning rate
η ¼ 0.1. By default, we trained the neural network for 1000 epochs. No
other learning performance enhancement techniques, such as dropout,
batch normalization, and data preprocessing, were used.

Deep Convolutional Neural Network: The learning algorithms for the fully
connected layers could be directly transferred to the convolutional layers
with minor changes. The weighted summation in the fully connected layer
between the 1D input vector and the 2D synaptic matrix became the con-
volution between 2D/3D feature maps and convolutional kernels. For the
convolutional layer without being followed by a pooling layer, the transmis-
sion of the forwarding signals, the derivatives, and the backpropagating
errors were the same as in the fully connected layers. For the convolutional
layer followed by a pooling layer, it should be decided where the activation
function and the Bernoulli sampling should be performed. In this work, we
used the max-pooling layer, with the following strategy: 1) the activation
function was performed on the membrane potentials of the neurons in the
convolutional layers; 2) the max-pooling was performed on the activation;
and 3) the Bernoulli samplings of both the forwarding signals and the
derivatives were performed on the neurons in the pooling layers.

In Figure 4a, for learning and recognizing the handwritten digits in the
MNIST dataset, the deep convolutional neural network consisted of two
convolutional layers, two max-pooling layers, and one fully connected
layer. The first convolutional layer had eight filters that were using kernel
sizes of 9� 9. The second convolutional layer had 12 filters that were
using kernel sizes of 5� 5. Both convolutional layers were followed by
nonoverlapping max-pooling layers with pooling sizes of 2� 2. The fully
connected layer used a 108� 10 synaptic weight matrix. We used the logis-
tic activation function with the shape parameter a being 4 for regular
layers, except the output layer which used the SoftMax activation function.
The neural network was trained using a batch size of 100 and a fixed learn-
ing rate of 0.1.

In Figure 4f, for learning and recognizing images in the CIFAR-10 data-
set, the input was of dimensions of 32� 32� 3, with 3 being the red,
green, and blue channels of the colored images. The deep convolutional
neural network uses a VGG style, consisting of six convolutional layers,
three max-pooling layers, and three fully connected layers. All convolu-
tional layers had the same kernel size of 3� 3 with padding on the edges.
All max-pooling layers used the nonoverlapping pooling windows with the
same size of 2� 2. There was one pooling layer following two convolu-
tional layers. The sizes of the feature maps and the channels for each layer
are given in Figure 4f. The neural network was trained using a batch size of
100 and a fixed learning rate of 0.01.

Modeling of the Synaptic Behaviors of the Memristors: An empirical model
capturing the synaptic behavior of LTP and LTD under identical pulses was
used to simulate the synaptic plasticity of the analog memristors with non-
idealities.[52] This model considered the on/off ratio, the nonlinearities (αp
and αd), the asymmetry between potentiation and depression, and the
write variations. The median conductance changes (without cycle-to-cycle
write variations) for a memristor device with conductance Gij under poten-
tiation pulses and depression pulses can be written as

ΔGpot ¼
Gmax � Gmin

1� e�αp
� ðGij � GminÞ

� �
ð1� e�αp=Np Þ (7)

and

ΔGdep ¼ � Gmax � Gmin

1� e�αd
� ðGmax � GijÞ

� �
ð1� e�αd=Nd Þ (8)

respectively. Here, Np and Nd are the numbers of pulses needed to fully
potentiate and fully depress the memristor devices, respectively, and αp
and αd are the nonlinearities of weight updates in the potentiation and
depression phases, respectively.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (13 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


The cycle-to-cycle write variations are modeled by adding a Gaussian
distribution to the conductance change with its standard deviation propor-
tional to the median conductance change from Equation (7) or (8)

ΔG � N ½ΔG, ðγΔGÞ2� (9)

where ΔG ¼ ΔGpot for potentiation pulses, ΔG ¼ ΔGdep for depression
pulses, and γ is a parameter controlling the cycle-to-cycle variations.
For the synaptic behavior in Figure 5b, the values of the parameters were
Gmax ¼ 25 μS, Gmin ¼ 0.1 μS, Np ¼ Nd ¼ 100, αp ¼ 1, αd ¼ 2, and γ ¼ 2.
Note that, due to the write variation, the sign of the actual conductance
change ΔG had a large chance to be in the opposite direction of the
desired change.

Estimation of the Energy Consumption and on-Chip Footprint: The energy
consumption was estimated in terms of the elementary MAC operations in
neural networks (Table S2, Supporting Information).

Implemented in CMOS technology, i.e., using the central processing
units, GPUs, or other dedicated application-specific integrated chips,
the MAC operations for traditional HP learning were conducted typically
using FP32 numbers. Each MAC operation consisted of the multiplication
between two FP32 numbers and the addition of the production to another
FP32 number. In a 45 nm CMOS technology node and at 0.9 V supply volt-
age, this MAC operation[41] consumed a power of 3.7 pJþ 0.9 pJ= 4.6 pJ.
In the stochastic binary learning algorithm, the multiplication became the
production of a Boolean number (0 or 1) and an FP32 number, which did
not need to be conducted explicitly. If the Boolean number was 1, the MAC
operation only required the addition of the FP32 number on another FP32
number. If the Boolean number was 0, the addition was not needed.
Conservatively, we assumed each MAC operation needed one addition
between two FP32 numbers, thus the consumed power being reduced
to 0.9 pJ. When the weight was quantized to integers, the MAC operation
degraded to addition between two integers. For INT8 weights, each MAC
operation consumed at most 0.03 pJ. It was convenient to assume that the
energy consumption of the addition of two integers was proportional to
the bit-width of the integers. Thus, the MAC operations in INT4 weights
and ternary valued weights (�1.5 bits) were estimated to consume power
of 15 and 5.6 fJ, respectively.

The crossbar array of the memristors performed all MAC operations in
one vector–matrix multiplication parallelly. For instance, the crossbar array
with a typical size of 128-by-128 performed 128� 128 ¼ 16384 MAC oper-
ations, parallelly. A macrocore of such an array[7] that processed 1-bit input
and sensed the output currents of the array with analog-to-digital conver-
tors consumed a power of 371.89 pJ. To implement the HP learning algo-
rithm, sufficient input accuracy (e.g., 8-bit) was needed for acceptable
degradation of the learning performance. There were also shift and adder
circuits in the macrocore to shift and accumulate the bit-wised MAC
results. Thus, each effective MAC operation consumed a power of
371.89 pJ�8

16 384 ¼ 0.18 pJ. Using our stochastic binary learning algorithm, the
ADCs and shift and adder were not needed, thus parallel MAC operations
consumed only 29.23 pJ. Additionally, only 1-bit input was needed. Thus,
each MAC operation consumed a power of 29.23 pJ

16 384 ¼ 1.8 fJ. The expense
induced by trans-impedance amplifiers, the comparators, and the flip-
flops in the proposed hardware implementation (Figure S1, Supporting
Information) was not counted in the comparison. They were performing
the calculation of the activation function which was done in the digital
domain in the benchmark work.[7] The energy efficiency for the MAC oper-
ation was approximated to be 556 TOPs�1W�1.

The footprint of the implementation circuit would also be greatly
reduced. To implement the HP learning algorithm, the parallel
128� 128 ¼ 16384 MAC operations needed an on-chip area of
63801.92 μm2. Assuming that each input bit took 50 ns, the area efficiency
for 8-bit input was calculated as 16 384

8�50 ns�63801.92 μm2 ¼ 641.99GOPs�1mm�2.

Excluding the ADCs and shift and adder, the chip area reduced to
8824.3 μm2. The effective area efficiency was then

16384
50 ns�8824.3μm2 ¼ 37.13 TOPs�1mm�2, reduced by 57.8 times.

Periodical Carry to Accumulate the Ternary Gradient: The essential of the
periodical carry was to accumulate the gradient of the loss function to the
weight in a separated memory cell and update the synaptic weight periodi-
cally and stepwise. It was efficient in compensating for the nonlinearity and
fluctuation of weight changes.[29,33,34,56] Traditionally, the calculation and
accumulation of the gradient should be conducted with sufficient precision,
for instance, in dedicated capacitors[56]or HP digital circuits.[34] In this work,
the binarized three factors resulted in a ternary gradient (valued as�1, 0, or
1), which leads to twofold benefits. First, the calculation of the gradient for
an array of weights, a vector–vector outer product, could be performed par-
allelly.[52] Second, the gradient was accumulated in a unit step.

Limitation on Neural Network Depth: BS learning was, however, limited
by the depth of the neural network. Learning of a neural network with more
than 10 layers was difficult. This was because a long chain of stochastic
binarization over initially random weight matrices lost meaningful infor-
mation. This issue could be partially compensated by pretraining the neu-
ral network in HP format or could increase the batch size, according to our
experiences with software simulation. It should be further investigated for
extending the proposed algorithms to deeper neural networks for state-of-
the-art artificial intelligence applications. However, it should be noted that
the human-brain visual ventral pathway mainly consists of several areas,
including the retina, lateral geniculate nucleus (LGN), V1, and V4, which
correspond to the artificial neural network layers in this work.[57] Within
this depth limit, the BS learning algorithm worked well.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
The authors acknowledge the support from Basic and Frontier Research
Project of the Peng Cheng Laboratory, major key project of the Peng Cheng
Laboratory (grant no. PCL2023AS2-3), major key project of the Peng
Cheng Laboratory (grant no. PCL2023AS3-1), National Natural Science
Foundation of China (NSFC) (grant no. 62206141), National Key R&D
Program of China (grant no. 2021YFB3601200), and National Nature
Science Foundation of China (grant no. 62104042).

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available in the
supplementary material of this article. The source codes that support
the findings of this study are available at https://github.com/
leonlee2023/binary-stochasticity.

Keywords
backpropagation, deep learning, neuromorphic computing, signal
binarization, stochastic sampling

Received: July 10, 2023
Revised: September 4, 2023

Published online:

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (14 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/leonlee2023/binary-stochasticity
https://github.com/leonlee2023/binary-stochasticity
http://www.advancedsciencenews.com
http://www.advintellsyst.com


[1] M. A. Zidan, J. P. Strachan, W. D. Lu, Nat. Electron. 2018, 1, 22.
[2] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila,

H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, J. P. Strachan, Adv. Mater.
2018, 30, 1705914.

[3] D. Ielmini, H.-S. P. Wong, Nat. Electron. 2018, 1, 333.
[4] Y. LeCun, Y. Bengio, G. Hinton, Nature 2015, 521, 436.
[5] K. He, X. Zhang, S. Ren, J. Sun, in 2016 IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), IEEE, Piscataway, NJ 2016,
pp. 770–778.

[6] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, B. Kingsbury,
IEEE Signal Process. Mag. 2012, 29, 82.

[7] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang,
H. Qian, Nature 2020, 577, 641.

[8] S. Agarwal, S. J. Plimpton, D. R. Hughart, A. H. Hsia, I. Richter,
J. A. Cox, C. D. James, M. J. Marinella, in 2016 Inter. Joint Conf. on
Neural Networks (IJCNN), IEEE, Piscataway, NJ 2016, pp. 929–938.

[9] T. Gokmen, Y. Vlasov, Front. Neurosci. 2016, 10, 333.
[10] B. P. Bean, Nat. Rev. Neurosci. 2007, 8, 451.
[11] M. Häusser, Nat. Neurosci. 2000, 3, 1165.
[12] D. E. Feldman, Neuron 2012, 75, 556.
[13] G. Bi, M. Poo, J. Neurosci. 1998, 18, 10464.
[14] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Nature 1986, 323, 533.
[15] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Proc. IEEE 1998, 86, 2278.
[16] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko,

M. Van Baalen, T. Blankevoort, (Preprint) arXiv:2106.08295, 2021.
[17] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio,

(Preprint) arXiv:1602.02830, 2016.
[18] Y. Bengio, N. Léonard, A. Courville, (Preprint) arXiv:1308.3432, 2013.
[19] L. Deng, P. Jiao, J. Pei, Z. Wu, G. Li, Neural Networks 2018, 100, 49.
[20] E. O. Neftci, H. Mostafa, F. Zenke, IEEE Signal Process. Mag. 2019, 36,

51.
[21] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery,

P. Lin, Z. Wang, W. Song, J. P. Strachan, M. Barnell, Q. Wu,
R. S. Williams, J. J. Yang, Q. Xia, Nat. Commun. 2018, 9, 2385.

[22] Q. Xia, J. J. Yang, Nat. Mater. 2019, 18, 309.
[23] M. R. Mahmoodi, M. Prezioso, D. B. Strukov, Nat. Commun. 2019,

10, 5113.
[24] R. J. Williams, Mach. Learn. 1992, 8, 229.
[25] J. J. Hopfield, Proc. Natl. Acad. Sci. 1984, 81, 3088.
[26] W. S. McCulloch, W. Pitts, Bull. Math. Biophys. 1943, 5, 115.
[27] K. Simonyan, A. Zisserman, in 3rd Int. Conf. Learn. Represent. ICLR

2015, San Diego, CA May 7–9, 2015, https://dblp.org/db/conf/
iclr/iclr2015.html.

[28] A. Krizhevsky, Learning multiple layers of features from tiny images,
2009, http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf.

[29] T. Gokmen, W. Haensch, Front. Neurosci. 2020, 14, 103.
[30] W. Wang, L. Danial, Y. Li, E. Herbelin, E. Pikhay, Y. Roizin, B. Hoffer,

Z. Wang, S. Kvatinsky, Nat. Electron. 2022, 5, 870.
[31] W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu,

S. Deiss, P. Raina, H. Qian, B. Gao, S. Joshi, H. Wu, H.-S. P. Wong,
G. Cauwenberghs, Nature 2022, 608, 504.

[32] S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P. Y. Chen, H. Yeon, S. Yu,
J. Kim, Nat. Mater. 2018, 17, 335.

[33] S. Agarwal, R. B. J. Gedrim, A. H. Hsia, D. R. Hughart, E. J. Fuller,
A. A. Talin, C. D. James, S. J. Plimpton, M. J. Marinella, in Digest
of Technical Papers - Symp. on VLSI Technology, IEEE, Piscataway,
NJ 2017, pp. T174–T175.

[34] S. R. Nandakumar, M. Le Gallo, C. Piveteau, V. Joshi, G. Mariani,
I. Boybat, G. Karunaratne, R. Khaddam-Aljameh, U. Egger,
A. Petropoulos, T. Antonakopoulos, B. Rajendran, A. Sebastian,
E. Eleftheriou, Front. Neurosci. 2020, 14, 406.

[35] J. Tang, D. Bishop, S. Kim, M. Copel, T. Gokmen, T. Todorov, S. Shin,
K. T. Lee, P. Solomon, K. Chan, W. Haensch, J. Rozen, in Technical
Digest - Inter. Electron Devices Meeting, IEDM, IEEE, Piscataway, NJ
2018, pp. 13.1.1–13.1.4.

[36] J.-W. Jang, S. Park, G. W. Burr, H. Hwang, Y.-H. Jeong, IEEE Electron
Device Lett. 2015, 36, 457.

[37] M. Suri, O. Bichler, D. Querlioz, B. Traoré, O. Cueto, L. Perniola,
V. Sousa, D. Vuillaume, C. Gamrat, B. Desalvo, J. Appl. Phys.
2012, 112, 4749411.

[38] P. Huang, D. Zhu, S. Chen, Z. Zhou, Z. Chen, B. Gao, L. Liu, X. Liu,
J. Kang, IEEE Trans. Electron Devices 2017, 64, 614.

[39] T. Cao, C. Liu, Y. Gao, W. L. Goh, IEEE J. Emerg. Sel. Top. Circuits Syst.
2022, 12, 436.

[40] L. Shi, G. Zheng, B. Tian, B. Dkhil, C. Duan, Nanoscale Adv. 2020, 2,
1811.

[41] M. Horowitz, in 2014 IEEE Inter. Solid-State Circuits Conf. (ISSCC),
IEEE, Piscataway, NJ 2014, pp. 10–14.

[42] S. E. Fahlman, G. E. Hinton, T. J. Sejnowski, in AAAI-83 Conf., 1983,
pp. 109–113.

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
R. Salakhutdinov, J. Mach. Learn. Res. 2014, 15, 1929.

[44] M. Zahedi, T. Shahroodi, S. Wong, S. Hamdioui, (Preprint)
arXiv:2211.06261, 2022.

[45] S. Yin, X. Sun, S. Yu, J. S. Seo, IEEE Trans. Electron Devices 2020, 67,
4185.

[46] S. Yu, Z. Li, P. Y. Chen, H. Wu, B. Gao, D. Wang, W. Wu, H. Qian, in
Technical Digest - Inter. Electron Devices Meeting, IEDM, IEEE,
Piscataway, NJ 2017, pp. 16.2.1–16.2.4.

[47] K. S. Woo, J. Kim, J. Han, W. Kim, Y. H. Jang, C. S. Hwang, Nat.
Commun. 2022, 13, 5762.

[48] W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H. Ohno,
S. Datta, Nature 2019, 573, 390.

[49] F. Cai, S. Kumar, T. Van Vaerenbergh, X. Sheng, R. Liu, C. Li, Z. Liu,
M. Foltin, S. Yu, Q. Xia, J. J. Yang, R. Beausoleil, W. D. Lu,
J. P. Strachan, Nat. Electron. 2020, 3, 409.

[50] Z. Jonke, S. Habenschuss, W. Maass, Front. Neurosci. 2016, 10, 118.
[51] E. O. Neftci, B. U. Pedroni, S. Joshi, M. Al-Shedivat,

G. Cauwenberghs, Front. Neurosci. 2016, 10, 241.
[52] W. Wang, B. Hoffer, T. Greenberg-Toledo, Y. Li, M. Zou, E. Herbelin,

R. Ronen, X. Xu, Y. Zhao, J. Yang, S. Kvatinsky, Adv. Intell. Syst. 2022,
4, 2100249.

[53] S. Dutta, G. Detorakis, A. Khanna, B. Grisafe, E. Neftci, S. Datta, Nat.
Commun. 2022, 13, 2571.

[54] G. Detorakis, S. Dutta, A. Khanna, M. Jerry, S. Datta, E. Neftci,
in 33rd Inter. Conf. on Neural Information Processing Systems,
Vancouver, BC, Canada 2019, pp. 3291–3302, https://dblp.org/
db/conf/nips/nips2019.html.

[55] B. Nessler, M. Pfeiffer, L. Buesing, W. Maass, PLoS Comput. Biol.
2013, 9, e1003037.

[56] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, D. Nolfo,
S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha, B. Killeen,
C. Cheng, Y. Jaoudi, G. W. Burr, Nature 2018, 558, 60.

[57] D. G. Amaral, P. L. Strick, in Principles of Neural Science (Ed:
E. R. Kandel), McGraw Hill, New York 2013, pp. 338–341.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300399 2300399 (15 of 15) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300399 by PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
, W

iley O
nline L

ibrary on [12/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://dblp.org/db/conf/iclr/iclr2015.html
https://dblp.org/db/conf/iclr/iclr2015.html
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
https://dblp.org/db/conf/nips/nips2019.html
https://dblp.org/db/conf/nips/nips2019.html
http://www.advancedsciencenews.com
http://www.advintellsyst.com

	Binary-Stochasticity-Enabled Highly Efficient Neuromorphic Deep Learning Achieves Better-than-Software Accuracy
	1. Introduction
	2. Results
	2.1. Hardware-Friendly and Biologically Plausible Algorithms for Deep Learning
	2.1.1. Stochastic Binarization of the Forwarding Signals
	2.1.2. Stochastic Binarization of the Activation Derivatives
	2.1.3. Signed Binarization of the Backpropagating Errors

	2.2. BS Improves the Learning Performance
	2.3. BS Improves Inference Performance
	2.4. BS Is Efficient in Deep Convolutional Neural Networks
	2.5. Quantized Weights and Analog Weights Using Memristors

	3. Discussion
	4. Conclusion
	5. Experimental Section


