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Abstract: Quartz crystal microbalances are widely used sensors with applications for the detection
of very-low-mass deposition in many different fields, from contamination monitoring in the high
vacuum of deep space missions to the monitoring of biological activity or pollution using specifically
designed active substrates. These sensors are very stable over time; nevertheless, their sensitivity to
the temperature is well known, and different implementations have been devised to correct it, e.g.,
through compensation with a dual crystal. This paper deals with the effects of temperature on QCM
but separates the case of uniform crystal temperature from the case of in-plane temperature gradients
considering a QCM based on quartz crystals with deposited film resistors used as both RTDs and
heaters. This configuration allows both an accurate temperature measurement and efficient thermal
control, allowing the achievement of crystals temperatures in the order of 400 ◦C higher than the
environment with a low power dissipation of the order of 1 W. The film resistors deposited around the
electrodes allow directly measuring the average crystal temperature and directly delivering power
to the crystal for thermal control. The localized delivery of the heat nevertheless also determines
uncommon temperature fields on the crystal, and thus, an analysis of both the effects of temperature
on the new microbalance was performed. The temperature gradient has strong effects on the
frequency; therefore, along with the temperature, the thermal gradients have tobe compensated. The
calibration of the QCM thermometers and the assessment of the achievable measurement accuracy
were performed, as well as the determination of the frequency–temperature relationship. The
comparison between frequency changes in the case of uniform temperature and those observed while
using crystal heaters proved that temperature gradients have a strong effect on the crystal frequency.
To identify the temperature field on the crystal surface of a QCM crystal, the gold coating of the
deposited films was removed to achieve an emissivity acceptable for thermal imaging with an IR
camera. Moreover, image processing for emissivity correction was developed. In order to correlate
the temperature gradient with the frequency variation, a test campaign was performed to measure
the frequency changes derived from different power levels delivered to the crystal heaters. From this
test campaign and thermal analysis, the effect of the thermal gradient was assessed.

Keywords: QCM; TGA; CAM; calibration; uniform temperature; thermal gradient; frequency
variation

1. Introduction

QCMs (quartz crystal microbalances) can provide continuous monitoring of very-
small-mass deposition with high stability over time [1]; this kind of sensor, therefore,
finds applications in many different fields, i.e., space [2], chemical and pharmaceutical
industries [3–5] and environmental monitoring. The physical and mechanical properties
of quartz crystals are quite stable with respect to environmental conditions. Moreover,
the measurement is not influenced by gravitational forces [6], ambient pressures have a
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small effect on measurements and best performances are achieved under high-vacuum
conditions, and the operating temperature range has no lower limit [7]. Moreover, the
typical masses of these instruments are in the tens-of-grams range, and there is no trade-off
between size (collecting area) and sensitivity, so miniaturization is possible. The above
characteristics make QCMs optimal candidates for space usage. The possibility of the active
thermal control of the crystal enables performing thermogravimetric analyses (TGA), a
common technique for in-ground applications that would be very interesting for planetary
exploration [8]. Given these perspectives, in 2014, under an ESA contract, our group
developed the Contamination Assessment Microbalance (CAM) instrument, a QCM with
potential usage for the contamination assessment of space hardware, both during ground
activities and during flight [9–12].

The CAM instrument is based on the double-crystal configuration, i.e., with a mea-
suring crystal and a reference one, and the mass deposition measurement is based on the
beating frequency. This configuration allows reducing the frequency range to be mea-
sured because the temperature-generated drifts are compensated. The configuration of the
crystals developed for this instrument would, nevertheless, allow for the accurate com-
pensation of the temperature effects when using the single-crystal configuration because
the temperature is directly measured on the crystals through a deposited-film thermal
resistor. This is quite relevant in space applications, where the thermal environment can
jeopardize the temperature compensation of the double-crystal configuration because of
varying heat fluxes (sun or planetary) on the exposed crystal. CAM crystals include film
resistors deposited on each face, and they can be used either as temperature sensors or
as heaters. This film heater is the most effective way to increase the crystal temperature
because the power is released right at the controlled point; actually, with a power in the
range of 1 W, a difference in the order of 300 ◦C from the environment can be achieved [10].
Nevertheless, the drawback of the direct delivery of power to the crystal is an increase in
the thermal gradients. While the sensitivity of QCMs to temperature is well known and
also the object of recent studies [13–15], thermal gradients are mostly neglected.

The effect of non-uniform temperature distributions over the crystal surface has
been analyzed and modeled in the literature in the last century [16–18]. Nevertheless, the
prediction of the effect is awkward because it depends on many temperature functions of the
crystal’s mechanical and physical properties. The effect of temperature gradients, therefore,
requires an experimental characterization similar to that performed to characterize the
effect of uniform temperature.

This study was aimed at characterizing the effect of temperature gradients, and
it was carried out following the classical approach for linear systems, relying on the
superimposition of the effects. The issue of the sensitivity to temperature gradients was
analyzed through an experimental campaign allowing the characterization of the quartz
crystal temperature distribution along with its natural frequency. The effect of temperature
gradients was eventually determined by removing the effect of the average temperature
from the combined results of the temperature and the gradients.

In Section 2, the calibration of the frequency in a uniform temperature field under vac-
uum conditions is reported, whereas Section 3 describes the thermal gradient identification
on the surface of the crystal. Section 4 finally concludes the paper.

2. Quartz Crystal Temperature Sensitivity

The determination of the relationship between oscillating frequency and temperature
was performed between 20 ◦C and 100 ◦C in a vacuum chamber with an internal pressure
of 0.1 mbar (with a measurement uncertainty of ±15% of the reading), achieved by a rotary
vacuum pump (Varian DS 402). In order to ensure the cleaning of the chamber and avoid
contamination during the calibration, the chamber was cleaned with isopropyl alcohol
before testing. The microbalance was mounted on a cryostat placed over a thermoelectric
cooling element (TEC). The latter allows for the heating and cooling of the crystal assembly.
To measure the temperature of the TEC during the tests, a platinum temperature sensor



Sensors 2022, 22, 7256 3 of 12

(Pt100 type, accuracy class A) was used. A cold-water loop was used as a heatsink for
the TEC, and to measure the crystal temperature, the embedded deposited sensor was
calibrated. Figure 1 shows the measured electrical resistance of the deposited heater (in
red) and the temperature sensor (in blue) between −20 ◦C and 100 ◦C.
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Figure 1. Calibration of the deposited resistors on the QCM in a thermal bath.

Least-Square (LS) linear fitting was extracted from the measured data. The obtained
results evidenced good linearity of the deposited resistors, providing a sensitivity of
7.400 × 10−2 Ω/◦C and 7.498 × 10−2 Ω/◦C for the temperature sensor and heater, respec-
tively. The standard deviation of the regressors was found to be constrained to 0.05% of
the measured slope. Recently, the good performance of this type of deposited resistor was
proved even at low temperatures, down to liquid nitrogen temperature [19]. The setup
to evaluate the temperature sensitivity of the crystal is shown in Figure 2a, where the
positioning of the Pt100 sensors, cryostats, and TEC is provided. The testing procedure
required three different cycles within the investigated temperature range. Figure 2b depicts
the performed cycling. The TEC was used in reverse mode during heating and normal
mode when cooling was required.
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of the crystal, heat sink, and TEC.

A flowchart of the crystal calibration procedure is shown in Figure 3.
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The measured variation in the crystal frequency during calibration is shown in Figure 4,
where three VC cycles are compared.
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Comparing the measured trends, it was found that the measurement repeatability (1σ
band) was about 12.6 Hz. In fact, despite the curve is similar for the various cycles and
not far from the theoretical one [7] for AT-cut crystals, analyzing the measured trends in
detail, it can be shown that the measured frequency variation is characterized by a negative
drift of the frequency curves with time, evidencing that some condensation was occurring.
This problem is related to the chamber cleanliness and the achieved vacuum level, which,
being in the range of a few Pa, does not warrant the removal of the outgassed components
that at least partially also condense on the crystal. Nevertheless, the obtained result was
judged to be accurate enough for the intended application, and it was decided to keep the
contamination effect as part of the procedure uncertainty. Thus, a third-order polynomial
was extracted from the measured data to model the frequency change vs. temperature in
uniform temperature conditions. The best fitting result considering all three cycles is given
in Table 1.

Table 1. Third-order polynomial coefficients from the best calibration data fit.

a3 a2 a1 a0

Units Hz/◦C3 Hz/◦C2 Hz/◦C Hz
Regressor 1.393 × 10−3 −0.1012 1.85 −21.2

Standard deviation 2.1 × 10−5 3.7 × 10−3 0.19 2.9

The regression standard deviation was found to be 13 Hz, therefore providing an
uncertainty of less than 2% of the full-scale effect in the considered temperature range.

3. Thermal Gradient Measurement
3.1. Infrared Camera Calibration

The temperature distribution on the crystal surface was identified by using a micro-
bolometric infrared camera (NEC TH7102). Thermal imaging leads to huge temperature
uncertainty when there is poor knowledge of the surface’s emissivity, such as the one



Sensors 2022, 22, 7256 6 of 12

achievable through tabulated figures. This is especially relevant in the case of low average
values, where relative uncertainty can be quite large. To achieve acceptable uncertainty, the
emissivity was firstly measured nevertheless, it was also necessary to calibrate the infrared
camera in order to overcome the declared accuracy of 2 ◦C and finally to determine the
different emissivities of the imaged materials. Camera calibration was performed by using
a black body (BB) (model type CS 110, DIAS). The black body consists of a box with an
aperture that behaves like an ideal emitter, providing a temperature uncertainty of 0.3 ◦C
and nominal emissivity of 0.98. In order to determine the corrective factor, the temperature
of the black body was varied between 40 ◦C and 100 ◦C with steps of 5 ◦C, and for each
value, a thermal image of the black body was taken. The test was repeated three times to
consider the measurement repeatability. The measurement setup is shown in Figure 5.
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The experimental procedure consisted of the following phases:

1. Setting the temperature to the black body and waiting until the steady-state condition
was reached;

2. Taking the thermal image of the BB by using the infrared camera with a set emissivity
of 1;

3. Analyzing the thermal image and evaluating the average, minimum, and maximum
temperatures within the area of the BB using postprocessing software (InfraRec
analyzer) before computing the corrective factor Fc.

Fc is defined as the ratio between the radiated intensity of the calibration BB and that
measured by the camera, i.e.:

Fc =
0.98 T4

BB
T4

TH
(1)

where TBB and TTH are the set temperature of the black body and the average temperature
measured by the infrared camera (in Kelvin), respectively. Figure 6 shows the experimen-
tally determined Fc values and the points corresponding to the third-order polynomial
regression of those data.

The third-order polynomial model obtained by LS fitting is provided in the following:

Fc(T) = 4.71 × 10−7 T3 − 1.08 T2 + 8.31 T + 0.802 (2)

where T is the temperature measured by the infrared camera in ◦C units. The uncertainty
for the Fc factor was computed as well from the residual sum of squares, obtaining a value
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of 0.003. Thus, the measured temperature-dependent corrective factor was applied to
the measured temperatures during the emissivity measurements of the materials and the
thermal gradient assessment. The variable of utmost interest is the temperature distribution
on the electrode whose surface was originally gold-coated, i.e., with emissivities in the
range of 2–5%; the gold film plating was removed to allow for the recording of meaningful
temperature mappings. For the emissivity determination, the crystal was thermally con-
nected to a heated plate through a thermal filler to ensure matching between the crystal
and plate temperatures. The measured emissivities for the electrode and quartz were 0.254
and 0.629, respectively, with a measurement uncertainty of about 0.007 for both materials.
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3.2. Setup Description

Having characterized the emissivity, the infrared camera was used to determine the
thermal fields on the crystal while it was heated by the built-in heater. To determine the
thermal gradient, firstly, the crystal was mounted on a structure that allows connecting the
deposited resistances to the devices. The structure with the cabling connection is shown in
Figure 7.
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There are two deposited films on the crystal, one on each side. One film is used as
a heater, and the other serves as a temperature sensor. A circuit connected to the two
electrodes allows measuring the crystal frequency, whereas the temperature sensor is
connected to a Keysight 34,970 A multiplexer that measures the resistance with the four-
wire technique. Finally, the bottom heater is fed by a voltage-controlled power supply.
The IR camera was placed perpendicularly to the surface of the crystal at the minimum
focus distance of 35 cm, and a cardboard cylinder was used to avoid the influence of
the laboratory background variable because of moving people and heat sources. The
background temperature was measured with three platinum resistance thermometers
(PT100, accuracy class A) placed along the cylinder and acquired by the multiplexer.

3.3. Thermal Gradient Measurement

The test was performed by providing a voltage of 20 V (0.022 A) to the heater from
the power supply. Once the steady state was achieved, the thermal image was taken
and analyzed by imposing the computed material emissivity and the thermal imager’s
corrective factor. The measured temperature map and detailed views of the electrode and
heater areas are shown in Figure 8.
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As shown by the thermal map, the temperature ranges between 96 ◦C and 80 ◦C in
the electrode area. Moreover, a gradient of temperature toward the crystal center is found,
as testified by the brighter area in the middle of the image. To compute the temperature
uncertainty, propagation according to ISO-GUM was performed:

Tc =
4

√
(TthFc)

4 − (1 − εc)T4
bk

εc
(3)
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uTc =

√(
∂TC
∂Tth

uFc

)2
+

(
∂TC
∂Tbk

uTbk

)2
+

(
∂TC
∂εc

uεc

)2
(4)

where Tc is the corrected temperature, Fc is the IR camera calibration function, Tth is
the temperature indicated by the IR camera, Tbk is the background temperature, and εc
is the electrode emissivity, while uFc is the uncertainty of the calibration function, and
similarly, the other “u” variables indicate the uncertainties of all parameters. The results of
temperature correction for the electrode and the heaters are summarized in Table 2, along
with the corresponding measurement uncertainties.

Table 2. Corrected temperatures and measured uncertainties.

Tbk Tth ele T ele T heater uFc uT bk uε uT ele uT heater

Units [◦C] [◦C] [◦C] [◦C] - [◦C] - [◦C] [◦C]
Value 23.16 43.16 86.10 90.88 0.0029 0.20 0.0032 0.85 0.42

3.4. Thermal Gradient Effect on The Frequency Variation

In order to identify the temperature gradient effects on the frequency variation, a test
was performed by feeding the deposited heater with the power supply at different voltages
(from 3 V to 24 V, with steps of 3 V each). The acquisition was completed following the
steps described below:

• The heater was powered at constant voltage for a time sufficient to reach the steady-
state condition;

• The electrical resistance of the temperature sensor film and the temperatures of the
background were simultaneously measured with the multiplexer;

• The frequency was recorded by using a frequency counter synchronized with the
multiplexer unit.

Figure 9 provides the block diagram of the measurement chain.
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The thermal gradient characterization was performed in both heating and cooling con-
ditions by increasing and decreasing the feeding voltage, respectively. For the calibration
of the crystal frequency vs. uniform temperature, the setup in Figure 7 was mounted in the
vacuum chamber.

The analysis was carried out by determining the mean temperatures of the electrode
and heater areas (as conducted for the thermal gradient measurement) from the acquired
thermal images and measuring the frequency variation as the difference between the
initial value (i.e., at ambient temperature) and the values related to the different heating
conditions. Finally, the temperature of the electrode was measured by determining the
electrical resistance of the calibrated temperature sensor deposited on the crystal. Figure 10
shows the obtained frequency variation vs. the electrode temperature. In the following
equation, the LS fitting of the experimental data by using a third-order polynomial function
is given:

Frequency = 3.5 × 10−3 t3 − 0.5397 t2 + 52.73 t − 1044 (Hz) (5)

where t is the measured crystal temperature in ◦C. The computed RMSE from the fitting
was 87.1 Hz.
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It can be observed that all heating and cooling cycles at different power levels are
quite overlapping, evidencing the repeatability of the effect of the thermal gradient on the
oscillating frequency. Moreover, during the test, the crystal was always warmer than the
environment, so the condensation on it was negligible, despite the vacuum chamber used
in the tests being the same used in the uniform temperature characterization. The uniform
temperature–frequency variation trend was compared with the obtained results. It can be
seen that already at low temperatures, i.e., around 40 ◦C and 50 ◦C, the measured differ-
ence between the uniform and non-uniform conditions matches the maximum variation
measured during the crystal calibration at a uniform temperature. The difference becomes
larger with increasing temperature, achieving about a 1600 Hz difference at 100 ◦C.

The huge difference in the sensor output between the uniform temperature and the
localized heating conditions recorded in these tests demonstrates the prevailing effect of the
thermal gradient and poses new objectives for QCM development related to the correction
of the effect of the thermal gradient. For that purpose, a finite element model of the crystal
is under development to numerically derive the thermal gradient on the electrode and find
a correction procedure to increase the measurement accuracy provided by the microbalance
when operating in non-uniform temperature conditions.

It must be noted that the double-crystal configuration would also compensate for the
effect of temperature gradients if the temperature distribution was the same on both the
measuring and reference crystals. The remaining error once again depends on the heat
fluxes on the exposed crystal, which, in space applications, is often a variable parameter in
different mission phases.

4. Conclusions

The quartz crystal under development is characterized by an innovative crystal config-
uration that includes heaters and thermometers deposited on the surfaces as film resistors.
The great advantages of the new configuration in terms of the accuracy of the temperature
measurement and the efficiency of thermal control raise new issues related to significant
thermal gradients on the crystal. The temperature–frequency characterization of the quartz
crystal microbalance required not only the analysis of the effect of different uniform tem-
peratures of the crystal but also the identification of the effect of the temperature gradients.
The built-in temperature sensor allowed measuring the crystal temperature right at the
sensing area, i.e., on the electrode border, with minimum error. The direct measurement of
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the crystal temperature allows for performing an accurate determination of the relationship
between the oscillating frequency and temperature. Crystal characterization was performed
within a temperature-controlled enclosure in a vacuum chamber, and the obtained curve
qualitatively matches the literature data. Compatibility with the literature is not expected
because of the dependency of this characteristic on the specific crystal manufacturing
details. The test also showed the high sensitivity of the instrument to the contamination
that was noticed in the medium vacuum of the test chamber.

The analysis was then focused on the crystal frequency behavior under temperature
gradients. The results of the combined temperature and thermal gradient effects on the
frequency variation were compared with the uniform temperature–frequency variation
relationship. It was evidenced that, with the adopted configuration, the effect of thermal
gradients when directly heating the crystal with the built-in heater is by far more relevant
than that of the average temperature. The temperature field on the crystal surface was
measured with a thermal mapper, which allowed determining the temperature distribution
and the thermal gradients at the electrode border. The information, nevertheless, was
affected by the low spatial resolution of the thermal image. In the next steps of the
research, a thermal model of the crystal surface will be developed to predict, with high
spatial resolution, the temperature field on the quartz crystal surface and, as a result, the
thermal gradients on it. It is mandatory to implement a procedure for the thermal gradient
correction, a key step toward achieving a deeper knowledge of the sensor behavior and,
eventually, more accurate mass measurements.
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