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An Iterative Data-Driven Linear Quadratic Method to Solve
Nonlinear Discrete-Time Tracking Problems

Corrado Possieri, Gian Paolo Incremona, Giuseppe C. Calafiore and Antonella Ferrara

Abstract—The objective of this note is to introduce a novel
data-driven iterative linear quadratic control method for solving
a class of nonlinear optimal tracking problems. Specifically,
an algorithm is proposed to approximate the Q-factors arising
from linear quadratic stochastic optimal tracking problems. This
algorithm is then coupled with iterative linear quadratic methods
for determining local solutions to nonlinear optimal tracking
problems in a purely data-driven setting. Simulation results
highlight the potential of this method for field applications.

Index Terms—Data-driven control design, linear quadratic
control, optimal control, dynamic programming.

I. INTRODUCTION

Reinforcement learning seeks to determine an efficient
control policy without knowledge of the system model, by
coupling features of adaptive [1] and optimal [2] control.
These two methodologies are based on different paradigms: the
former learns on-line how to control an unknown system based
on measurements but does not have optimality as primary
objective [3], whereas the latter allows one to determine the
optimal feedback policy but requires a model for the system
dynamics [4]. In turn, reinforcement learning methods aim at
designing adaptive controllers that, on the basis of observations
of the correspondence between actions and penalties/rewards,
dynamically determine the optimal control policy [5].

The dynamic programming algorithm [6] constitutes one
of the most intuitive approaches for dealing with dynamic
optimization problems. It allows to break the complexity of
a cumulative optimization problem by subdividing it into
sub-problems in a recursive manner [7]. When dealing with
nonlinear optimal control problems, this reduces to computing
the solution of a recursive equation (see [6, Eq. (3.2), (3.3)]),
whose analytical expression is generically hard to obtain in
practice [8]. On the other hand, if the system is linear, the
dynamic programming algorithm reduces to a simple differ-
ence equation to be solved backwards in time: the so-called
difference Riccati equation [9]. In [10]–[12], iterative versions
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of linear quadratic (LQ) methods have been shown how to use
such a difference equation for finding the solution to nonlinear
optimal control problems. However, in all the above cases,
perfect knowledge of the model of the system is required.

Reinforcement learning (also referred to as approximate dy-
namic programming, or neuro-dynamic programming) meth-
ods have been proposed to overcome such a requirement and
for dealing with problems in which the dynamic programming
equation is not analytically solvable [13]. Among these tech-
niques, Q-learning is one of the most commonly used [14]. The
key idea behind Q-learning is to employ samples of the system
trajectories in order to find an approximation of the state-action
value function of the dynamic programming algorithm [15].

Q-learning for linear discrete-time systems has a relatively
long history. A policy iteration-based Q-learning algorithm
that requires an initial stabilizing feedback gain has been
proposed for instance in [16] to solve the LQ regulator prob-
lem. This requirement has been removed in [17] by designing
a value-iteration based Q-learning algorithm, while in [18]
both policy-iteration and value-iteration based algorithms have
been proposed to solve the LQ regulator problem by output
feedback. In [19], [20], similar techniques have been used to
solve the infinite-horizon LQ tracking problem.

Differently from [16]–[18], [20], in this note we deal with
LQ optimal tracking over finite-horizon rather than with the
LQ regulator problem over infinite-horizon. Furthermore, dif-
ferently from [19], where policy-iteration and value-iteration
based algorithms have been proposed to solve the determinis-
tic LQ optimal tracking problem, here we propose a value
function approximation method for dealing with stochastic
LQ optimal tracking problems over finite-horizon. This ap-
proximation method can be viewed as a particular instance
of the normalized advantage function method (briefly, NAF)
firstly introduced in [21], and suitable for systems featuring
continuous state and action spaces such as those commonly
found in robotics (see e.g., [22], [23]). This novel technique
is instrumental for determining a locally optimal control policy
for nonlinear tracking problems. In fact, it is readily amenable
to coupling with iterative LQ methods, thus allowing one
to break the complexity of nonlinear problems by iteratively
applying the proposed value function approximation approach.
Overall, our proposed method belongs to the class of data-
driven (model-free) control algorithms, which are gaining
increasing popularity, as testified by e.g., [24]–[29].

II. APPROXIMATION IN VALUE SPACE OF
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LQ STOCHASTIC PROBLEMS

A. Linear quadratic finite-horizon optimal control problem

Consider the discrete-time stochastic linear system

xk+1 = Akxk +Bkuk +Gkwk, (1)

where k ∈ N is a time index, xk ∈ R
n is the state of the

system, uk ∈ R
m is the control input, and wk ∈ R

p is a
disturbance acting on the system. In particular, we assume
that {wk}k∈N is a sequence of independent random variables
with mean E[wk] = µk and variance Var[wk] = Σk. Define
then the quadratic, finite-horizon cost function

J(x0, u0, . . . , uN−1) = E

[N−1∑
k=0

(
‖xk − x�k‖Wk

+ ‖uk − u�k‖Rk
)

+ ‖xN − x�N‖WN

]
, (2)

where N ∈ N, Wk ∈ R
n×n, Wk � 0, k ∈ {0, . . . , N},

Rk ∈ Rm×m, Rk � 0, k ∈ {0, . . . , N − 1}, ‖x‖W = x>Wx,
{x�k}Nk=0 is a desired trajectory for the state of (1), and
{u�k}Nk=0 is a reference control input. Note that, differently
from other techniques proposed in the literature, e.g., [30],
we do not require feasibility of the references {x�k}Nk=0 and
{u�k}Nk=0, i.e., we admit the case that x�k+1 6= Akx

�
k +Bku

�
k.

In order to determine a solution to the optimal control
problem (1), (2), it is possible to use the dynamic programming
algorithm [6]. Such a procedure iteratively constructs the cost-
to-go functions J�κ(xκ) := minuκ,...,uN−1

E[
∑N−1
k=κ (‖xk −

x�k‖Wk
+ ‖uk − u�k‖Rk) + ‖xN − x�N‖WN

], κ = 0, . . . , N .
This method starts by letting J�N (xN ) = ‖xN −x�N‖WN

, and,
going backwards for κ = N −1, . . . , 0, defining the Q-factors
(sometimes referred to also as state-action value function [5])

Qκ(xκ, uκ) = E

[
‖xκ − x�κ‖Wκ

+ ‖uκ − u�κ‖Rκ

+ J�κ+1(Aκxκ +Bκuκ +Gκwκ)

]
, (3)

and solving the problem J�κ(xκ) = minuκ Qκ(xκ, uκ).
The dynamic programming iteration can be equiva-

lently formulated in terms of the Q-factors by letting
QN−1(xN−1, uN−1) = E[‖xN−1 − x�N−1‖WN−1

+ ‖uN−1 −
u�N−1‖RN−1

+ ‖AN−1xN−1 + BN−1uN−1 + GN−1wN−1 −
x�N‖WN

], and, going backwards for κ = N − 2, . . . , 0, letting

Qκ(xκ, uκ) = E

[
‖xκ − x�κ‖Wκ + ‖uκ − u�κ‖Rκ

+ min
uκ+1

Qκ+1(Aκxκ +Bκuκ +Gκwκ, uκ+1)

]
. (4)

With such a construction, the input solving the optimal control
problem (1), (2) is given by

u?κ = argmin
uκ

Qκ(xκ, uκ), κ = 0, . . . , N − 1.

The following theorem provides the solution to the optimal
control problem (1), (2), and its proof follows by classical
preview control (see, e.g., [31, Sec. 2.1]).

Theorem 1 (Solution to LQ stochastic problems). The solution
to the optimal control problem (1), (2) is given by

u?κ = −(Rκ +B>κ Pκ+1Bκ)−1

(
B>κ Pκ+1Aκxκ

+B>κ Pκ+1Gκµκ + 1
2B
>
κ Dκ+1 −Rκu�κ

)
, (5)

where the matrices Pκ ∈ Rn×n, Dκ ∈ Rn, and cκ ∈ R are
computed iteratively starting from

PN = WN , DN = −2WNx
�
N , cN = x�>N WNx

�
N . (6)

and proceeding backwards as

Pκ = A>κ Pκ+1Aκ +Wκ

−A>κ Pκ+1Bκ(Rκ +B>κ Pκ+1Bκ)−1B>κ Pκ+1Aκ, (7a)

Dκ = A>κDκ+1 − 2Wκx
�
κ + 2A>κ Pκ+1Gκµκ

−A>κ Pκ+1Bκ(Rκ +B>κ Pκ+1Bκ)−1B>κ Dκ+1

+ 2A>κ Pκ+1Bκ(Rκ +B>κ Pκ+1Bκ)−1Rκu
�
κ

− 2A>κ Pκ+1Bκ(Rκ +B>κ Pκ+1Bκ)−1B>κ Pκ+1Gκµκ, (7b)

ck = cκ+1 + tr(G>κ Pκ+1GκΣκ) + u�>κ Rκu
�
κ

+Dκ+1Gκµκ + x�>κ Wκx
�
κ + µ>κG

>
κ Pκ+1Gκµκ

− µ>κG>κ Pκ+1Bκ(Rκ +B>κ Pκ+1Bκ)−1B>κ Pκ+1Gκµκ

+ 2µ>κG
>
κ Pκ+1Bκ(Rκ +B>κ Pκ+1Bκ)−1Rκu

�
κ

−D>κ+1Bκ(Rκ +B>κ Pκ+1Bκ)−1B>κ Pκ+1Gκµκ

− 1
4D
>
κ+1Bκ(Rκ +B>κ Pκ+1Bκ)−1B>κ Dκ+1.

+D>κ+1Bκ(Rκ +B>κ Pκ+1Bκ)−1Rκu
�
κ

− u�>κ Rκ(Rκ +B>κ Pκ+1Bκ)−1Rκu
�
κ. (7c)

Furthermore, the cost-to-go functions J�κ(xκ) are given by

J�κ(xκ) = ‖xκ‖Pκ +D>κ xκ + cκ. (8)

We thus consider the following corollary.

Corollary 1 (Q-factors in LQ stochastic problems). Define
ηκ = col(xκ, uκ). There exist Θκ ∈ R

(n+m)×(n+m), Ψκ ∈
R
n+m and φκ ∈ R such that

Qκ(ηκ) = ‖ηκ‖Θκ + Ψ>κ ηκ + φκ, (9)

with Θκ � 0, for κ ∈ {0, . . . , N−1}. Furthermore, if Wκ � 0
for κ = 0, . . . , N , then Θ0, . . . ,ΘN−1 � 0 and[

φκ
1
2Ψ>κ

1
2Ψκ Θκ

]
� 0, κ = 0, . . . , N − 1. (10)

Proof. By Theorem 1, we have that (9) holds with

Θκ =

[
Wκ +A>κ Pκ+1Aκ A>κ Pκ+1Bκ

B>κ Pκ+1Aκ Rκ +B>κ Pκ+1Bκ

]
, (11a)

Ψκ =

[
A>κDκ+1 − 2Wκx

�
κ + 2A>κ Pκ+1Gκµκ

B>κ Dκ+1 − 2Rκu
�
κ + 2B>κ Pκ+1Gκµκ

]
, (11b)

φk = x�>κ Wκx
�
κ + u�>κ Rκu

�
κ + tr(G>κ Pκ+1GκΣk)

+ µ>κG
>
κ Pκ+1Gκµκ +D>κ+1Gκµκ + cκ+1. (11c)

Furthermore, note that (7a) is the well-known discrete-time
Riccati equation. Thus, by classical results about LQ optimal
control [9], [32], one has Pκ � 0, κ = 0, . . . , N . Therefore, we
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have that Θκ � 0 for κ = 0, . . . , N since Rκ+B>κ Pκ+1Bκ �
0 and the Schur complement of Θκ equals Pκ � 0 [33].

If, additionally, one has Wκ � 0, κ = 0, . . . , N , then Pκ �
0, κ = 0, . . . , N , thus implying that Θκ � 0, κ = 0, . . . , N ,
by the same reasoning given above. Therefore, by (3) and
Theorem 1, it results that Qκ(ηκ) ≥ 0 for all ηκ ∈ R

n+m.
Hence, by completing the squares in (9), one obtains

Qκ(ηκ) = ‖ηκ + 1
2Θ−1

κ Ψκ‖Θκ − 1
4Ψ>κ Θ−1

κ Ψ + φκ,

which implies that φκ− 1
4Ψ>κ Θ−1

κ Ψ ≥ 0. Thus, the inequality
in (10) follows by classical Schur complement arguments.

By partitioning Θκ and Ψκ, κ = 0, . . . , N − 1, as

Θκ =

[
Θκ,1 Θκ,2

Θ>κ,2 Θκ,3

]
, Ψκ =

[
Ψκ,1

Ψκ,2

]
, (12)

with Θκ,1 ∈ Rn×n, Θκ,2 ∈ Rn×m, Θκ,3 ∈ Rm×m, Ψκ,1 ∈ Rn,
Ψκ,2 ∈ R

m, by Corollary 1, if Wκ � 0 for κ = 0, . . . , N ,
then Θκ,1 � 0 and Θκ,3 � 0. Furthermore, under such an
hypothesis, letting Pκ ∈ Rn×n, Dκ ∈ Rn and φ ∈ R be such
that (8) holds, by (11), it results that, for κ = 0, . . . , N − 1,

u?κ = −Θ−1
κ,3(Θ>κ,2xκ + 1

2Ψκ,2), (13a)

Pκ = Θκ,1 −Θκ,2Θ−1
κ,3Θ>κ,2, (13b)

Dκ = Ψκ,1 −Θκ,2Θ−1
κ,3Ψκ,2, (13c)

cκ = φκ − 1
4Ψ>κ,2Θ−1

κ,3Ψκ,2. (13d)

As shown in Theorem 1 and Corollary 1, the optimal policy
is unaffected when the disturbances {wk}Nk=0 are replaced by
their means {µk}Nk=0, i.e., the certainty equivalence property
[13] holds for the stochastic optimization problem (1), (2).
In particular, as shown in (7) and (8), the presence of wk
resulted in an additional constant term tr(G>κ Pκ+1GκΣκ), that
is irrelevant for the optimal control policy. Therefore, solving
the stochastic optimal control problem (1), (2) is equivalent to
minimizing (2) with respect to the deterministic dynamics

xk+1 = Akxk +Bkuk +Gkµk. (14)

Thus, define for each κ ∈ {0, . . . , N − 1} the function

Ωκ(xκ, uκ, µκ) = ‖xκ − x�κ‖Wκ
+ ‖uk‖Rκ

+ J�κ+1(Aκxκ +Bκuκ +Gκµκ), (15)

which is the certainty equivalent of the Q-factor Qκ given
in (3), and consider the following corollary, whose proof is
identical to that of Corollary 1.

Corollary 2 (Certainty equivalent of Q-factors in LQ
problems). Let ζκ = col(xκ, uκ, µk). There exist Πκ ∈
R

(n+m+p)×(n+m+p), Γκ ∈ Rn+m+p and σκ ∈ R such that

Ωκ(ζκ) = ‖ζκ‖Πκ + Γ>κ ζκ+σκ, κ ∈ {0, . . . , N −1}. (16)

Although Corollary 2 is of theoretical interest, it cannot be
used in practice since the values µκ are not usually known.

B. Approximation of the Q-factors

We propose a technique to approximate the Q-factors of LQ
stochastic control problems. Assume to have at one’s disposal
state-control-successor triplets (x

(i)
κ , u

(i)
κ , x

(i)
κ+1), where i ∈

{1, . . . , S} is the experiment number and κ ∈ {0, . . . , N − 1}
is the discrete-time in the i-th experiment, with

x
(i)
κ+1 = Aκx

(i)
κ +Bκu

(i)
κ +Gκw

(i)
κ , (17)

for i = 1, . . . , S and κ = 0, . . . , N − 1. In view of the results
given in Section II-A, Algorithm 1 allows one to approximate
the Q-factors on the basis of the available data.

Algorithm 1 Data-driven approximation of the Q-factors

Input: state-control-successor triplets (x
(i)
κ , u

(i)
κ , x

(i)
κ+1), i =

1, . . . , S, κ = 0, . . . , N − 1, reference signals {u�κ}N−1
κ=0

and {x�κ}Nκ=0, weights {Wκ}Nκ=0 and {Rκ}N−1
κ=0

Output: estimates of the Q-factors Qκ, κ = 0, . . . , N − 1
1: for κ = N − 1 to 0 do
2: if κ = N − 1 then
3: for i = 1, . . . , S, define

γ
(i)
N−1 := ‖x(i)

N−1 − x
�
N−1‖WN−1

+ ‖u(i)
N−1 − u

�
N−1‖RN−1

+ ‖x(i)
N − x

�
N‖WN

(18)

4: else
5: for i = 1, . . . , S, define

γ(i)
κ := ‖x(i)

κ − x�κ‖Wκ
+ ‖u(i)

κ − u�κ‖Rκ
+ ‖x(i)

κ+1‖P̂κ+1
+ D̂>κ+1x

(i)
κ+1 + ĉκ+1 (19)

6: let η(i)
κ := col(x

(i)
κ , u

(i)
κ ), i = 1, . . . , S

7: let Θ̂κ, Ψ̂κ, and φ̂κ be the solution to

min
Θκ,Ψκ,φκ

S∑
i=1

(
‖η(i)
κ ‖Θκ + Ψ>κ η

(i)
κ + φκ − γ(i)

κ

)2

with Θκ,3 � 0, Θκ � 0 (20)

8: letting Θ̂κ and Ψ̂κ be partitioned as in (12), let

P̂κ = Θ̂κ,1 − Θ̂κ,2Θ̂−1
κ,3Θ̂>κ,2,

D̂κ = Ψ̂κ,1 − Θ̂κ,2Θ̂−1
κ,3Ψ̂κ,2,

ĉκ = φ̂κ − 1
4 Ψ̂>κ,2Θ̂−1

κ,3Ψ̂κ,2.

9: return Q̂κ(ηκ) = ‖ηκ‖Θ̂κ+Ψ̂>κ ηκ+φ̂κ, κ = 0, . . . , N−1

The following theorem shows that the outputs of Algo-
rithm 1 are unbiased estimates of the Q-factors.

Theorem 2 (Estimation of the Q-factors). The function Q̂N−1

returned by Algorithm 1 is a feasible and unbiased estimate
of QN−1. Similarly, the function Q̂k returned by Algorithm 1
is a feasible and unbiased estimate of Qk given the estimate
Q̂k+1 of Qk+1, for k = 0, . . . , N − 2.

Proof. Let η(i)
κ = col(x

(i)
κ , u

(i)
κ ), κ = 0, . . . , N − 1, i =

1, . . . , S. Letting γ
(i)
N−1 be defined as in (18) and following
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the construction given in the proof of Corollary 1, we have

γ
(i)
N−1 = QN−1(η

(i)
N−1) + ε

(i)
N−1, (21a)

ε
(i)
N−1 = M

(i)
N−1$

(i)
N−1 + ‖$(i)

N−1‖G>N−1PNGN−1

− tr(G>N−1PNGN−1Σ), (21b)

M
(i)
N−1 = 2x

(i)>
N−1A

>
N−1PNGN−1 + 2u

(i)>
N−1B

>
N−1PNGN−1

+ 2µ>N−1G
>
N−1PNGN−1 +D>NG, (21c)

$
(i)
N−1 = w

(i)
N−1 − µN−1. (21d)

Since E[wN−1] = µN−1 and E[‖$N−1‖G>N−1PNGN−1
] =

tr(G>N−1PNGN−1Σ), we have that E[εN−1] = 0. Hence, by
[34, Thm. 10.1], since E[εN−1] = 0, the function Q̂N−1 ob-
tained solving the ordinary least squares (OLS) problem (20)
with κ = N − 1 is a feasible and unbiased estimate of QN−1.

Following the construction given in (3), (8), (13), and using
the results given in [13, Sec. 2.1.4], one has that

γ(i)
κ = ‖x(i)

κ − x�κ‖Wκ
+ ‖u(i)

κ − u�κ‖Rκ
+ min
uκ+1

Q̂κ+1(x
(i)
κ+1, uκ+1) + ε(i)κ , (22a)

ε(i)κ = M (i)
κ $(i)

κ + ‖$(i)
κ ‖G>κ P̂κ+1Gκ

− tr(G>κ P̂κ+1GκΣ), (22b)

M (i)
κ = 2x(i)>

κ A>κ P̂κ+1Gκ + 2u(i)>
κ B>κ P̂κ+1Gκ

+ 2µ>κG
>
κ P̂κ+1Gκ + D̂>κ+1Gκ, (22c)

$(i)
κ = w(i)

κ − µκ. (22d)

Note that, given the estimate Q̂k+1 of the Q-factor Qk+1, the
matrix P̂κ is fixed and is given by (13b). Therefore, by the
same reasoning given above, E[εκ] = 0. Thus, the function
Q̂k obtained solving the OLS (20) is a feasible and unbiased
estimate of Qk, given the estimate Q̂k+1 of Qk+1.

Once an estimate of the Q-factors has been obtained via
Algorithm 1, and letting Θ̂k and Ψ̂k be partitioned as in (12),
an estimate of the optimal control u?k is obtained as

û?k = −Θ̂−1
k,3(Θ̂>k,2xk + 1

2 Ψ̂k,2).

Building upon the proof of Theorem 2, the next remark
deals with the case of noisy samples x(i)

κ and u(i)
κ .

Remark 1 (Noisy samples). Let the measured samples x̄(i)
κ and

ū
(i)
κ be affected by zero mean random noise, that is

x̄(i)
κ = x(i)

κ + ϑ(i)
κ , ū(i)

κ = u(i)
κ + κ(i)

κ ,

where x
(i)
κ , u(i)

κ satisfy (17), E[ϑκ] = 0, and E[κκ] = 0.
Letting %(i)

κ = col(ϑ
(i)
κ ,κ(i)

κ ), this implies that γ(i)
κ computed

as in (21a) or as in (22a) with x(i)
κ and u(i)

κ substituted by x̄(i)
κ

and ū(i)
κ , respectively, satisfies γ(i)

κ = Qκ(η
(i)
κ ) + χ

(i)
κ , where

χ(i)
κ = 2η(i)>

κ Θκ%
(i)
κ + ‖%(i)

κ ‖Θκ + Ψ>κ %
(i)
κ + ε(i)κ .

Since E[χκ] = tr(ΘκVar[%κ]), the presence of measurement
noise leads to biased estimates φ̂κ, although, by construction,
it does not alter the estimated optimal control û?κ. 4

Note that, although the estimates of the Q-factors obtained
via Algorithm 1 are unbiased, they need not be the best esti-
mates in terms of variance of col(vec(Θ̂N−1), Ψ̂N−1, φ̂N−1)

due to the presence of heteroscedasticity (see (21), (22)
and [34, Sec. 11.1]). In particular, since Var[εκ] de-
pends on the values of η(i)

κ , statistical inference based on
OLS may be misleading, i.e., the OLS variance estima-
tor Var[col(vec(Θ̂κ), Ψ̂κ, φ̂κ)], where vec(Θ̂κ) is the vector
formed by stacking the columns of matrix Θ̂κ does not provide
a consistent estimate of the variance of the OLS estimates (see
[34, Sec. 10.2.2]). In principle, this aspect can be mitigated
by letting S → +∞ and using the feasible generalized least
squares estimator (see [34, Sec. 11.6]). However, for small
and medium sizes of S, it may be convenient to use the OLS
estimator (20) since it is more efficient (see [34, Chap. 11]).

In the following corollary, we characterize the minimum
number of samples that are generically required in the certainty
equivalent so as to let the output of Algorithm 1 be the Q-
factors Q0(x0, u0), . . . , QN−1(xN−1, uN−1).

Corollary 3 (Sample complexity in the certainty equivalent).
Let wk = µk for all k ∈ {0, . . . , N − 1}. If

S ≥ 1

2
(m+ n+ 1)(m+ n+ 2), (23)

then, for almost all initial conditions x(i)
0 ∈ Rn and control

sequences {u(i)
k }k=0,...,N−1, i = 0, . . . , `, the output of Algo-

rithm 1 are the Q-factors Qk(xk, uk), k = 0, . . . , N − 1.

Proof. Following the proof of Theorem 2, since wN−1 =

µN−1, one has γ
(i)
N−1 = QN−1(η

(i)
N−1). Note that the Q-

factor given in (9) can be rewritten as QN−1(ηN−1) =
col(ηN−1 ⊗ ηN−1, ηN−1, 1)>col(vec(ΘN−1),ΨN−1, φN−1),
where ⊗ is the Kronecker product. Following the construction
made in [35, p. 40], note that ηN−1 ⊗ ηN−1 is the quadratic
polynomial vector containing all possible products of the
n + m components of ηN−1. Since ΘN−1 is a symmetric
matrix and it has only 1

2 (n + m)(n + m + 1) independent
elements, it is possible to define a quadratic basis set η̄N−1

having 1
2 (n + m)(n + m + 1) independent elements by

removing redundant entries from ηN−1⊗ηN−1. Hence, letting
vec(ΘN−1) be the vectorization of the corresponding elements
of ΘN−1 and γN−1 = col(γ

(1)
N−1, . . . , γ

(S)
N−1), ΛN−1 =

col(vec(ΘN−1),ΨN−1, φN−1), δ(i)
N−1 = col(η̄

(i)
N−1, η

(i)
N−1, 1),

i = 1, . . . , S, ΞN−1 = col(δ
(1)>
N−1 , . . . , δ

(S)>
N−1 ), the objective

function of the optimization problem (20) with κ = N − 1
can be rewritten as ‖ΞN−1ΛN−1 − γN−1‖2. By [36], if (23)
holds, that is the number of rows of ΞN−1 is greater than or
equal to the dimension of the vector ΛN−1, then the matrix
ΞN−1 has full rank for almost all x(i)

0 and control sequences
{u(i)

k }k=0,...,N−1, i = 0, . . . , `. In all these cases, there is an
unique solution to the unconstrained ordinary least squares
problem minΛN−1

‖ΞN−1ΛN−1 − γN−1‖2,

Λ̂N−1 = (Ξ>N−1ΞN−1)−1Ξ>N−1γN−1.

Reshaping Λ̂N−1 in order to obtain the matrices Θ̂N−1, Ψ̂N−1

and the constant φ̂N−1, one obtains the matrix given in (11)
with κ = N − 1, which satisfies the constraints of the con-
strained ordinary least squares problem (20) with κ = N − 1
and let the corresponding value of the objective function be 0.
Hence, the matrix Θ̂N−1, the vector Ψ̂N−1 and the constant
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φ̂N−1 obtained reshaping Λ̂N−1 are the unique solution to
the ordinary least squares problem (20) with κ = N − 1 and
Θ̂N−1 = ΘN−1, Ψ̂N−1 = ΨN−1, φ̂N−1 = ΦN−1. Thus,
the function Q̂N−1 returned by Algorithm 1 is the Q-factor
QN−1. Therefore, following the same induction employed in
the proof of Theorem 2 and repeating verbatim the reasoning
given above with N − 1 substituted by k, we have that the
output Q̂k of Algorithm 1 matches with the Q-factors Qk.

Note that if (23) does not hold, then the matrix Ξκ is
singular and hence such a condition is necessary and sufficient
in the certainty equivalence case.

The proof of Corollary 3 suggests how to simplify the
computations to be carried out in Algorithm 1 when the
certainty equivalent system (14) is considered. Namely, if
the disturbances acting on the system are small (so that the
dynamics of the system are essentially given by its certainty
equivalent) and (23) holds, then, following the notation and the
constructions used in the proof of Theorem 2 and Corollary 3,
the solution to the optimization problems (20) is

Λ̂κ = (Ξ>κ Ξκ)−1Ξ>κ γκ. (24)

Then, the matrix Θ̂κ, the vector Ψ̂κ and the constant φ̂κ can
be obtained by reshaping Λ̂κ. In this case, if singular value
decomposition (SVD) is used to compute the pseudo-inverse
of Ξκ, the computational complexity of using the formula
given in (24) is O(S2) [37, Sec. 5.12]. On the other hand, by
[38, Sec. 6.4] the computational complexity of determining a
solution to (20) via interior point methods is O(S3). Therefore,
using (24) may be preferred for solving (20) provided that
certainty equivalence essentially holds.

Algorithm 1 has been presented as a batch learning method.
However, such an algorithm can be easily modified into an
iterative learning algorithm, as discussed in the next remark.

Remark 2 (Iterative implementation of Algorithm 1). Assume
that the disturbance acting on the system is small so as to allow
to use the formulas given in (24) to determine a solution to
the optimization problem (20) and let (23) hold. Note that,
following the notation used in the proof of Corollary 3, the
formula in (24) can be rewritten as

Λ̂κ =

(
S∑
i=1

δ(i)
κ δ(i)>

κ

)−1 S∑
i=1

γ(i)
κ δ(i)

κ .

Hence, if a new sequence of state-control-successor triplets
(x

(S+1)
κ , u

(S+1)
κ , x

(S+1)
κ+1 ), κ ∈ {0, . . . , N − 1}, is gathered,

the estimates of the Q-factors can be updated using recursive
least squares (see [39, pp. 8-12]). Namely, assuming that the
matrices Θ̂κ+1, Ψ̂κ+1, φ̂κ+1 are known, define P̂κ+1, D̂κ+1,
and ĉκ+1 as in Step 8 of Algorithm 1 with κ substituted by
κ + 1. Hence, defining ZSκ = (

∑S
i=1 δ

(i)
κ δ

(i)>
κ )−1 , ρSκ =∑S

i=1 γ
(i)
κ δ

(i)
κ , and γ(S+1)

κ := ‖x(S+1)
κ − x�κ‖Wκ

+ ‖u(S+1)
κ −

u�κ‖Rκ + ‖x(S+1)
κ+1 ‖P̂κ+1

+ D̂>κ+1x
(S+1)
κ+1 + ĉκ+1, and let δ(S+1)

κ

be defined as in the proof of Corollary 3. The matrix ZSκ and
the vector ρSκ can be then updated as

ZS+1
κ = ZSκ +

ZSκ δ
(S+1)
κ δ

(S+1)>
κ ZSκ

1 + δ
(S+1)>
κ ZSκ δ

(S+1)
κ

, (25a)

ρS+1
κ = ρSκ + γSκ δ

(S+1)
κ . (25b)

and the estimate of the matrix Λκ can be updated as

Λ̂κ = ZS+1
κ ρS+1

κ . (25c)

The matrix Θ̂κ, the vector Ψ̂κ and the constant φ̂κ can be then
obtained by reshaping the vector Λ̂κ. Hence, as new state-
control-successor triplets (x

(ı)
κ , u

(ı)
κ , x

(ı)
κ+1), κ ∈ {0, . . . , N −

1}, are gathered, the formulas in (25) can be used to iteratively
update the estimates of the Q-factors. 4

The references {x�k}Nk=0 and {u�k}Nk=0 are used in Algo-
rithm 1 to define the samples γ

(i)
k of the Q-factors. The

following remark shows how to apply Algorithm 1 in the case
that such references are not known explicitly.
Remark 3 (Unknown references). Algorithm 1 can be used
even if the reference trajectory {x�k}Nk=0 and input {u�k}Nk=0

are not known explicitly. Namely, if these references are not
known, but the running cost ςk(xk, uk) = ‖xk−x�k‖Wk

+‖uk−
u�k‖Rk and the final cost ςN (xN ) = ‖xN − x�N‖WN

are mea-
surable, as, e.g., when dealing with output tracking problems
or with vision based control where relative positions error can
be measured but not absolute positions, it suffices to redefine
γ

(i)
N−1 in (18) as γ

(i)
N−1 = ςN−1(x

(i)
N−1, u

(i)
N−1) + cN (x

(i)
N )

and γ
(i)
k in (19) as γ

(i)
κ = ςκ(x

(i)
κ , u

(i)
κ ) + ‖x(i)

κ+1‖Pκ+1
+

D>κ+1x
(i)
κ+1 + cκ+1. This aspect, together with the fact that the

references {x�k}Nk=0 and {u�k}Nk=0 need not be feasible, further
motivates the interest in the technique given in this section. In
particular, note that it does not require any dynamics inversion
but just samples of the state, of the input, and of the cost. 4

The next remark discusses the relation between Algorithm 1
and the normalized advantage function method [21].
Remark 4 (Relation with NAF). Algorithm 1 can be viewed as
a particular instance of the NAF method [21]. In fact, by parti-
tioning the matrices Θκ and Ψκ as in (12), since Qκ(xκ, uκ) =
x>κ Θκ,1xκ+2x>κ Θκ,2uκ+u>κ Θκ,3uκ+Ψ>κ,1xκ+Ψ>κ,2uκ+φκ,
by completing the squares [37] with respect to uκ, one obtains

Qκ(xκ, uκ) = ‖uκ + Θ−1
κ,3(Θ>κ,2xκ + 1

2Ψκ,2)‖Θκ,3
− ‖Θ>κ,2xκ + 1

2Ψκ,2‖Θ−1
κ,3

+ x>κ Θκ,1xκ + Ψ>κ,1xκ + φκ.

Therefore, by defining the advantage functions

Aκ(xκ, uκ) := Qκ(xκ, uκ)− J�κ(xκ),

for κ = 0, . . . , N − 1, by (13), one obtains that Aκ(xκ, uκ) =
‖uκ + Θ−1

κ,3(Θ>κ,2xκ + 1
2Ψκ,2)‖Θκ,3 . Hence, Algorithm 1 es-

sentially consists in a NAF with affine policies. 4

III. DATA-DRIVEN ITERATIVE LQ CONTROL

In Section II, an algorithm has been proposed to estimate
the Q-factors of LQ stochastic optimal tracking problems from
data. In this section, we show how such an algorithm can be
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coupled with the techniques given in [10] to solve a class of
nonlinear optimal tracking problems in a data-driven setting.
Namely, consider the system

ξk+1 = fk(ξk, νk), (26)

where ξk ∈ Rn is the state, νk ∈ Rm is the input, fk : Rn ×
R
m → R

n is at least C2, k = 0, . . . , N − 1, and the cost

Φ =

N−1∑
k=0

(‖ξk − ξ�k‖Wk
+ ‖νk‖Rk) + ‖ξN − ξ�N‖WN

, (27)

where N ∈ N, Rk � 0, k ∈ {0, . . . , N − 1}, Wk � 0,
k ∈ {0, . . . , N}, and {ξ�k}Nk=0 is a given reference signal. By
coupling Algorithm 1 with the techniques given in [10], the
following Algorithm 2 allows us to determine a locally optimal
solution to the optimal control problem (26), (27) from the
initial condition ξ0 ∈ Rn in a data-driven setting.

In fact, following the construction in [10], Algorithm 2
iterates the next procedure until convergence. Letting {ξ̄κ}Nκ=0

be a nominal trajectory of system (26) corresponding to the
control sequence {ν̄κ}N−1

κ=0 , the linearization of system (26)
about {(ξ̄κ, ν̄κ)}N−1

κ=0 is given by (1) with

Ak =
∂fk
∂ξk

(ξ̄k, ν̄k), Bk =
∂fk
∂νk

(ξ̄k, ν̄k). (28)

Furthermore, letting xk and uk denote the increment with
respect to ξ̄κ and ν̄κ, respectively, k = 0, . . . , N − 1, the
corresponding value of the cost function Φ given in (27) is

Φ =

N−1∑
k=0

(
‖xk − (ξ�k − ξ̄k)‖Wk

+ ‖uk − (−ν̄k)‖Rk
)

+ ‖xN − (ξ�N − ξ̄N )‖WN
. (29)

Therefore, Steps 2–10 of Algorithm 2 perform a data-driven
approximation of the Q-factors of the optimal control prob-
lem (28), (29) using the results given in Section II-A. Then,
Step 11 of Algorithm 2 determines an improved control
sequence using the solution to the problem (28), (29). The
following remark details how Algorithm 2 can be employed
in a data-driven scenario.

Remark 5 (Data-driven scenario). Algorithm 2 can be used
even if a closed-form for the functions f0, . . . , fN−1 is not
available. In fact, such functions are used in Steps 2, 7,
and 11 to generate state-control-successor triplets to be fed
to Algorithm 1. However, the same steps can be carried out
either performing experiments or simulating the behavior of
system (26) in a purely data-driven setting. 4

The next theorem discusses the convergence of Algorithm 2.

Theorem 3 (Convergence to local minima). Suppose that (23)
holds. There exists ε > 0 such that if ‖∆ξ(i)

0 ‖ ≤ ε and
‖∆ν(i)

κ ‖ ≤ ε, then Algorithm 2 converges locally to a solution
of problem (26), (27).

Proof. By [12, Eq.s (4)–(11)], the deterministic prob-
lem (26), (27) is locally approximated by the LQ stochastic
problem given by (29) and

xκ = Aκxκ +Bκuκ +Gκ(xκ, uκ)wκ, (30)

Algorithm 2 Data-driven iterative LQ control

Input: initial condition ξ0, weights {Wκ}Nκ=0 and {Rκ}N−1
κ=0 ,

reference signal {ξ�k}Nk=0, initial guess {ν̄κ}N−1
κ=0 on the

optimal solution to (26), (27), number S ∈ N of experi-
ments to perform the approximation

Output: a locally optimal control sequence for (26), (27)
1: repeat
2: compute ξ̄κ+1 = fκ(ξ̄κ, ν̄κ), for κ = 0, . . . , N − 1,

starting from the initial condition ξ̄0 = ξ0 and let

Φ̄ =

N−1∑
k=0

(‖ξ̄k − ξ�k‖Wk
+ ‖ν̄k‖Rk) + ‖ξ̄N − ξ�N‖WN

3: let x�κ = ξ�k − ξ̄κ, κ = 0, . . . , N
4: let u�κ = −ν̄κ, κ = 0, . . . , N − 1
5: for i = 1 to S do
6: pick at random sufficiently small

∆ξ
(i)
0 ,∆ν

(i)
0 , . . . ,∆ν

(i)
N−1

7: compute ξ
(i)
κ+1 = fκ(ξ

(i)
κ , ν̄κ + ∆ν

(i)
κ ), for κ =

0, . . . , N − 1, starting from ξ
(i)
0 = ξ0 + ∆ξ

(i)
0

8: let x(i)
κ = ξ

(i)
κ − ξ̄κ, κ = 0, . . . , N

9: let u(i)
κ = ∆ν

(i)
κ , κ = 0, . . . , N − 1

10: use Algorithm 1 with the data gathered in Steps 2–9 to
compute Θ̂κ, Ψ̂κ, and φ̂κ, κ = 0, . . . , N − 1

11: letting Θ̂κ and Ψ̂κ be partitioned as in (12), compute

ξ̂κ+1 = fκ

(
ξ̂κ, ν̄κ − Θ̂−1

κ,3

(
Θ̂>κ,2(ξ̂κ − ξ̄κ) + 1

2 Ψ̂κ,2

))
,

κ = 0, . . . , N − 1, starting from ξ̂0 = ξ0 and let

Φ̂ = ‖ξ̂N − ξ�N‖WN
+

N−1∑
k=0

(
‖ξ̂k − ξ�k‖Wk

+ ‖ν̄k − Θ̂−1
k,3(Θ̂>k,2(ξ̂k − ξ̄k) + 1

2 Ψ̂k,2)‖Rk
)

12: if Φ̂ < Φ̄ then
13: assign ν̄κ ← ν̄κ − Θ̂−1

κ,3(Θ̂>κ,2(ξ̂κ − ξ̄κ) + 1
2 Ψ̂κ,2),

κ = 0, . . . , N − 1
14: until Φ̂ < Φ̄
15: return {ν̄κ}N−1

κ=0

where Aκ, Bκ are as in (28), Gκ is a continuous function,
and wκ are independent random variables. Therefore, there
exists ε > 0 such that if ‖∆ξ(i)

0 ‖ ≤ ε and ‖∆ν(i)
κ ‖ ≤ ε,

then Gκ(xκ, uκ) can be further approximated as a constant
matrix. Thus, Step 11 of Algorithm 2 determines an improved
control sequence using the solution to the LQ optimal tracking
problem (29), (30), which, by Theorem 2 and Corollary 3, is
determined in Steps 2–10 by approximating its Q-factors using
Algorithm 1. By the discussion given in [11, Sec. VI], these
steps correspond to a Newton method using the true Hessian.
Thus, by Kantorovich theorem [40, Thm. 2.2] Algorithm 2
converges locally to a solution of problem (26), (27).

In view of Theorem 3, the following remark shows how to
determine a locally optimal policy from Algorithm 2.
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Remark 6 (Locally optimal policy). Algorithm 2 can be used
also to generate a policy that locally solves the optimal control
problem (26), (29). In fact, letting {Θ̂κ}N−1

κ=0 and {Ψ̂κ}N−1
κ=0 be

the matrices computed at Step 10 of Algorithm 2 partitioned
as in (12), and letting {ξ̄κ}N−1

κ=0 be the solution to system (26)
with input {ν̄κ}N−1

κ=0 , the control policy π = {π0, . . . , πN−1},

πκ(ξκ) = ν̄κ − Θ̂−1
κ,3

(
Θ̂>κ,2(ξκ − ξ̄κ) + 1

2 Ψ̂κ,2

)
,

κ = 0, . . . , N−1, constitutes a local solution to (26), (29). 4
The next remark shows how to adapt the step size in Algo-

rithm 2 in order to improve its convergence proprieties.
Remark 7 (Levenberg-Marquardt adaptation of the step-size).
Following [11], it is possible to improve the convergence of
Algorithm 2 by using a method related to the Levenberg-
Marquardt algorithm [41]: by defining an additional positive
parameter λ and letting λ be its upper bound (which essentially
governs the minimum step size), we can substitute Step 11 of
Algorithm 2 with the following procedure:

1: compute an eigenvalue decomposition of Θ̂κ,3 = V DV >,
with D being a nonnegative diagonal matrix

2: repeat
3: let Υ = V (D + λI)V >

4: letting Θ̂κ and Ψ̂κ be partitioned as in (12), compute

ξ̂κ+1 = fκ

(
ξ̂κ, ν̄κ −Υ−1

(
Θ̂>κ,2(ξ̂κ − ξ̄κ) + 1

2 Ψ̂κ,2

))
,

κ = 0, . . . , N − 1, starting from ξ̂0 = ξ0 and let

Φ̂ = ‖ξ̂N − ξ�N‖WN
+

N−1∑
k=0

(
‖ξ̂k − ξ�k‖Wk

+ ‖ν̄k − Θ̂−1
k,3(Θ̂>k,2(ξ̂k − ξ̄k) + 1

2 Ψ̂k,2)‖Rk
)

5: if λ < λ then
6: assign λ← 2λ
7: else
8: assign λ← 1

2λ

9: until Φ̂ > Φ̄ and λ < λ

As shown in [11], if λ is close to zero, then we have a Newton
method using the true Hessian of the optimization problem,
whereas, if λ is large, then the Hessian of the optimization
problem is replaced by λI , that is the algorithm takes small
steps in the direction of the gradient. This procedure has been
proved empirically to perform better than the plain Algo-
rithm 2 in terms of robustness and convergence speed1. 4

IV. NUMERICAL EXAMPLE

Inspired by [22], [23], where, motivated by the uncertain
nature of the plant, deep reinforcement learning methods with
NAF have been applied to robot manipulators, hereafter the
proposed algorithm is assessed relying on a model of a robot
by Comau (see Figure 1), identified on real data.

1A MATLAB package implementing this procedure is available at the link:

https://github.com/Corrado-possieri/iterative LQ Qlearning.

At the same link, the MATLAB code that has been used to carry out the
simulation reported in Section IV is made available together with other
examples of application of the proposed algorithm.

(a)

ξ1

ξ 2

ξ3

x

y

(b)

Fig. 1. The robot manipulator. (a) Comau industrial robot manipulator setup.
(b) Schematic view of the simulated three joints robot manipulator

During our tests, for the sake of simplicity, making reference
to the model identified in [42], only vertical planar motions
of the robot manipulator were enabled, by locking three of
the six joints. Note that the proposed algorithm is valid for
any configuration of the manipulator, even in the spatial case.
Hence, the dynamics of the system can be described in the
joint space, by using the Lagrangian approach [43], as

B(ξ)ξ̈ + C(ξ, ξ̇)ξ̇ + Fvξ̇ + Fs sgn(ξ̇) + g(ξ) = ν,

where ξ ∈ R3 is the vector of joint variables, B(ξ) ∈ R3×3 is
the inertia matrix, C(ξ, ξ̇) ∈ R3×3 represents centripetal and
Coriolis torques, Fv ∈ R

3×3 is the viscous friction matrix,
Fs ∈ R3×3 is the static friction matrix, g(ξ) ∈ R3 is the vector
of gravitational torques and ν ∈ R

3 represents the motors
torques. The ode45 solver with input sampled each T = 1 s
is used also in this example. The initial position of the joints
is set equal to ξ0 = [ 0 0 0 ]>, the weights are Wκ =
1× 10−6I , WN = I and Rκ = 1× 10−12I , while the desired
target is ξ�k =

[
π
3

π
4

π
3

]>
. The horizon is set equal to

N = 3 and the initial guess is {ν̄1κ}N−1
κ=0 = {130, 160, 200}

for joint 1, and {ν̄2κ}N−1
κ=0 = {−100, 70, 20}, {ν̄3κ}N−1

κ=0 =
{−50, 50,−20} for joints 2 and 3, respectively. The number
of experiments for Q-factors approximation is S = 200.

The value of the cost function Φ is minimized after few
iterations (see its logarithmic value in Figure 2). In Figure 3,
instead, the joint space and the corresponding velocity space
are illustrated. More specifically, the dotted lines represent
the case when the initial guess ν̄iκ , i = 1, 2, 3 is given as
input. On the other hand, the solid lines refer to the case
when Algorithm 2 is applied until convergence, and it can
be observed that the joint positions reach the reference target,
as well as velocities start from zero and, after N − 1 steps,
are zeroed again in correspondence of the desired points.

V. CONCLUSIONS

In this paper we discussed dynamic programming solutions
for linear quadratic optimal control problems in a data-driven
setting. More precisely, a solution to stochastic problems in
terms of Q-factors has been presented, and an approximation
algorithm has been proposed. It is worth noticing that the
approximation of Q-factors can be viewed as a particular case
of the NAF algorithm, usually applied for deep-learning prob-
lems where the value function is approximated as a quadratic
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Fig. 2. Logarithmic value of the cost function Φ for the robot example

Fig. 3. Joint space and the corresponding velocity space in case of initial
guess (dotted lines) and after the learning procedure (solid lines)

expression. Further, we proposed a new data-driven iterative
linear quadratic control, capable of determining locally optimal
solutions for a class of nonlinear tracking problems in a data-
driven setting. A possible way for improving the convergence
speed of the algorithm has been also suggested, and satisfac-
tory simulated results have been obtained.
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