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ABSTRACT
Due to the strong penetrability, long-wavelength synthetic aperture radar (SAR) can 
provide an opportunity to reconstruct the three-dimensional structure of the penetrable 
media. SAR tomography (TomoSAR) technology can resynthesize aperture perpendicular 
to the slant-range direction and then obtain the tomographic profile consisting of power 
distribution of different heights, providing a powerful technical tool for reconstructing the 
three-dimensional structure of the penetrable ground objects. As an emerging technol
ogy, it is different from the traditional interferometric SAR (InSAR) technology and has 
advantages in reconstructing the three-dimensional structure of the illuminated media. 
Over the past two decades, many TomoSAR methods have been proposed to improve the 
vertical resolution, aiming to distinguish the locations of different scatters in the unit 
pixel. In order to cope with the forest mission of European Space Agency (ESA) that is 
designed to provide P-band SAR measurements to determine the amount of biomass and 
carbon stored in forests, it is necessary to systematically evaluate the performance of 
forest height and underlying topography inversion using TomoSAR technology. In this 
paper, we adopt three typical algorithms, namely, Capon, Multiple Signal Classification 
(MUSIC), and Compressed Sensing (CS), to evaluate the performance in forest height and 
underlying topography inversion. The P-band airborne full-polarization (FP) SAR data of 
Lopè National Park in the AfriSAR campaign implemented by ESA in 2016 is adopted to 
verify the experiment. Furthermore, we explore the effects of different baseline designs 
and filter methods on the reconstruction of the tomographic profile. The results show that 
a better tomographic profile can be obtained by using Hamming window filter and Capon 
algorithm in uniform baseline distribution and a certain number of acquisitions. 
Compared with LiDAR results, the root-mean-square error (RMSE) of forest height and 
underlying topography obtained by Capon algorithm is 2.17 m and 1.58 m, which per
forms the best among the three algorithms.
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1. Introduction

Forest is known as the “lungs of the earth”, playing an 
essential role in preventing wind and sand fixation, con
serving water and soil, and maintaining the global carbon 
cycle in human life and production. According to statis
tics, forests cover about one-third of the land area globally, 
which is a crucial resource repository for human survival. 
Therefore, it is vital that keep an eye on forest resource 
changes to meet the global resource crisis (Bohn and Huth  
2017; Mitchard 2018; Spies 1998).

The vertical structure directly reveals the growing trend 
of the forest and is an essential parameter for estimating 
the Above-Ground Biomass (AGB) and the carbon sto
rage (Spies 1998; Zhang et al. 2014; Ramli and Tahar  
2020). As the penetrability of long-wavelength radar, 
interferometric synthetic aperture radar (InSAR) has 
become the most potent tool for reconstructing the forest 
vertical structure (Pardini et al. 2018), especially in L-band 
and P-band. In terms of many InSAR technical methods, 

SAR Tomography (TomoSAR) technology can obtain the 
three-dimensional structure of the penetrable natural 
medium and has a unique advantage in acquiring forest 
height and underlying topography (Reigber and Moreira  
2000; Yu et al. 2020; Aghababaei et al. 2020). Polarimetric 
InSAR (PolInSAR) technology can also obtain high- 
precision Canopy Height Model (CHM) and Digital 
Elevation Model (DEM) products, which has been proven 
in many works (Papathanassiou and Cloude 2001; Cloude 
and Papathanassiou 2003; Kugler et al. 2015; Neumann, 
Ferro-Famil and Reigber 2008; Cheng, Pinto, and Gong  
2012; Wu et al. 2019). It follows a physical model, namely, 
random volume over ground (RVoG) model (Treuhaft, 
Moghaddam, and van Zyl 1996), which establishes a linear 
relationship with different complex coherence coefficients 
in the complex unit circle space. The geometrical relation
ship can solve forest height and underlying topography 
under the pure volume coherence assumption (Lee and 
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Pottier 2017). However, considering the actual situation, 
PolInSAR technology can only obtain the phase center 
height of a single-pixel that is discrete and single through 
complex coherence coefficients. In addition, PolInSAR 
technology can only use multi-polarization (MP) or full- 
polarization (FP) datasets to invert high-precision forest 
height and underlying topography based on the RVoG 
model (Yardibi et al. 2010).

Reigber et al. firstly used L-band airborne FP 
SAR data in 2000 to obtain the three-dimensional 
structure of the forest using Fast Fourier 
Transformation (FFT) technology (Reigber and 
Moreira 2000). It is the first successful experiment 
of TomoSAR technology in forest applications, 
motivating many scientists to explore the new 
TomoSAR methods in forest applications. Inspired 
by the Direction-Of-Arrival (DOA) estimation 
technology, the forest structure is assumed to be 
divided into two layers: the ground and the canopy. 
The estimation of forest height and underlying 
topography becomes finding the phase center posi
tion of the ground and the canopy, which is similar 
to the estimation of source locations in the DOA 
estimation and appearing in the tomographic pro
file as a peak position (Yardibi et al. 2010; Del 
Campo, Nannini, and Reigber 2020). After more 
than 10 years of development, a variety of DOA 
estimation methods have been developed and intro
duced in TomoSAR technology. This paper mainly 
categorizes the TomoSAR methods into four cate
gories: (1) Non-parametric estimation method 
similar to Capon algorithm. Non-parametric meth
ods mainly depend on the estimation accuracy of 
the covariance matrix and can be solved without 
a priori knowledge of the number of scatterers. 
Based on the theory of statistical regularization, 
sparse iterative covariance-based estimation 
(SPICE) method (Stoica, Babu, and Li 2010), max
imum likelihood estimation (Del Campo, Nannini, 
and Reigber 2018), iterative adaptive approach 
(IAA) method (Yardibi et al. 2010; Peng et al.  
2018), regularized IAA (RIAA) method (Roberts 
et al. 2010), and other algorithms are introduced 
to improve the vertical resolution. (2) Parametric 
estimation method based on subspace fitting tech
nique (Viberg 1990). Those methods need to know 
the number of scattering sources, divide the signal 
into noise subspace and signal subspace, and recon
struct the tomographic profile of the required sig
nal by using the mathematical relationship of 
different subspaces, such as multiple signal classifi
cation (MUSIC) algorithm (Schmidt and Schmidt  
1986), weighted subspace fitting (WSF) algorithm 
(Huang, Ferro-Famil, and Reigber 2011), etc. (3) 
Compressed Sensing (CS) (Budillon, Evangelista, 
and Schirinzi 2010; Li et al. 2015; Zhu and 
Bamler 2010; Aguilera, Nannini, and Reigber  

2012, 2013). CS algorithm assumes that the forest 
signal obtained is sparse under the sparse basis. 
After selecting appropriate user parameters, convex 
optimization tools can be used to solve and recon
struct the tomographic profile. (4) Sum of 
Kronecker Product Decomposition (SKPD) 
(Tebaldini 2009). SKPD algorithm follows the 
assumption of two layers of the forest and applies 
the principle of algebraic geometry to separate the 
FP covariance matrix into the ground structure 
matrix and volume structure matrix. After that, 
any TomoSAR algorithm based on covariance 
matrix can be used to obtain the tomographic 
profile.

Whether using PolInSAR or TomoSAR technol
ogy to obtain the vertical structure of the forest, 
the forest height and the underlying topography 
have always been important parameters that are 
closely related to the AGB. As an emerging SAR 
technology, TomoSAR technology can offer reso
lution in the third dimension and detect ground 
objects, especially in forest areas. It is different 
from the traditional InSAR technology with two- 
dimensional focusing in the range-azimuth direc
tion. In the case of multiple data stacks, it 
resynthesizes the aperture at the normal-to-slant- 
range direction, forming its unique perspective of 
observing ground objects. Furthermore, it can 
provide the scattering information of the pene
trable natural medium in the form of continuous 
profiling along the height direction (see Figure 1). 
Therefore, TomoSAR technology has great poten
tial in obtaining the three-dimensional structure 
of the forest and provides a powerful technical 
tool for the upcoming BIOMASS mission.

In this paper, we mainly discuss the performance of 
obtaining underlying topography and forest height by 
using the first three kinds of TomoSAR methods and 
analyze the influence of baseline design and filters on the 
reconstruction of the tomographic profile. SKPD algo
rithm must use FP SAR data, and it is difficult to deter
mine the optimal parameters with different forests, which 

Figure 1. The simplified local coordinate system within the 
TomoSAR imaging.
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is very time-consuming. So, in this paper, we do 
not consider the SKPD algorithm. The article is arranged 
as follows: the second part mainly introduces the basic 
theory of the TomoSAR model and three kinds of meth
ods; the third part mainly introduces the research area and 
the data processing; the fourth part mainly introduces the 
results of forest height and underlying topography 
obtained by the three methods. The final two parts show 
the discussion and the summary.

2. TomoSAR model and methods

2.1. TomoSAR model

The essence of SAR tomography is similar to single- 
snapshot DOA estimation in signal processing. The 
model estimated by TomoSAR can be expressed as follows 
(Fornaro, Lombardini, and Serafino 2005; Tebaldini and 
Guarnieri 2010): 

where Y represents single look complex (SLC) data stack 
after registration and phase flattening, A represents the 
known steering matrix, X represents the unknown vertical 
reflectivity profile, and σ represents complex random 
Gaussian zero-mean additive noise vector. To clarify the 
meaning of the above parameters, we write them in matrix 
form as follows: 

where subscript �p¼1;���;N represents the numbers of height 
samples which is set to reconstruct the continuous tomo
graphic profiles (i.e. a height range from −60 to 30 m with 
an interval of 1 m, N equals 91); superscript yi i¼1;���;Lð Þ

represents the ith SLC image; hp p¼1;���;Nð Þ represents the 
potential source location associated with the position of 
the peaks of the tomographic profile; Xp p¼1;���;Nð Þ is the 
vertical reflectivity profile response to the location hp, 
ki i¼1;ð Þ

z is the phase-to-height parameter associated with 
the pair formed by the ith acquisitions and the first 
acquisitions; 

where B?; λ; θ, and R represent the vertical baseline, radar 
wavelength, incidence angle, and slant-range, respectively.

Since the continuous complex reflectivity profile can
not be accurately recovered, we can only use the discrete 
sampling method to approximate the true reflectivity. In 
fact, TomoSAR technology is interested in obtaining the 

backscattering power profile (i.e. the second-order statis
tics of the complex reflectivity, also named tomographic 
profile, for the consistent definition, hereinafter collec
tively referred to as tomographic profile) for a certain 
azimuth-range location, 

where E �ð Þ represents statistical expectation, �h i indicates 
temporal or spatial ensemble averaging, �H represents the 
Hermitian operator. The tomographic profile consists of 
the diagonal elements of the P matrix. The TomoSAR 
methods in obtaining the forest tomography profile are 
mostly established based on the covariance matrix. 
Therefore, the accuracy of tomographic profile estimation 
by TomoSAR is closely related to the estimation accuracy 
of the covariance matrix. The following formula indicates 
the relationship between the tomographic profile and the 
covariance matrix: 

where Σ represents noise covariance matrix.

2.2. Capon algorithm

Capon algorithm is a typical non-parametric estimator 
based on the covariance matrix, expressed in the following 
manner, 

where PCapon represents the obtained tomographic profile 
using Capon algorithm, R� 1 represents the inverse of the 
covariance matrix R. When the sampling height interval 
Δh ¼ hpþ1 � hp is determined, the tomographic profile 
can be obtained by using the above formula.

2.3. MUSIC algorithm

MUSIC is a short name of the multiple signal classification 
algorithm. First, MUSIC algorithm needs to know the 
number of scattering sources ns, as the input parameter. 
Then, the covariance matrix R can be obtained from the 
observed SLC data stack and divided into noise subspace 
and signal subspace by the eigendecomposition tool. 

where λl represents the lth eigenvalue corresponding to 
the eigenvector el;Es ¼ e1 � � � ens½ �represents the 
eigenvectors in the signal subspace; En ¼

ensþ1 � � � eL½ � represents the eigenvectors in the 
noise subspace; Λ ¼ diag λ1 � � � λL½ � represents the 
eigenvalues in the form of the diagonal matrix where 
λ1 � � � � λns � � � � λL. Finally, using the orthogonal rela
tionship between the steering matrix A and the 
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eigenvector of the noise subspace and the equality trans
formation, the tomographic profile PMUSIC expression is 
as follows. 

2.4. CS algorithm

In recent years, the theory of CS has been widely 
applied in sparse signal recovery. SAR technology has 
also been successfully applied CS technology for build
ing height extraction, four-dimensional urban defor
mation, and forest tomographic profile inversion. The 
forest tomographic profile can be reconstructed by CS 
algorithm with a limited amount of covariance samples 
under the following assumptions that (1) the signals 
must be sparse, indicating that there are a low number 
of non-zero coefficients in the reconstructed tomo
graphic profile and (2) the steering matrix A must 
satisfy the restricted isometry property (RIP) criterion.

Based on the representation of CS theory, we rewrite 
the TomoSAR model into vector form 

where vec �ð Þ represents the vec-operator which stacks the 
columns of a matrix; B¼A� A,� represents Khatri – 
Rao product; ψ represents sparse basis matrix; ε ¼
vec Σð Þ represents complex random Gaussian zero- 

mean additive noise; f represents the sparse forest signal 
associated with the tomographic profile. ψf ¼ diag Pð Þ, 
where diag �ð Þ denotes getting the diagonal elements of 
the matrix.

According to the above equations, the core of tomo
graphic profile estimation is solving the sparse signal f . 
The solution of f can be simplified as the following 
constrained inequality minimization problem. 

where � is the hyperparameter determined by the user 
related to the noise level. In order to simplify the problem, 
this paper adopts the constraint of nonlinear inequality 
adopted in literature (Cazcarra-Bes et al. 2019) to solve the 
problem. 

where �k k2;1 and �k kF represent mixed (2,1) and 
Frobenius norm, respectively. τ and μ are weighted para
meters and can be set 2 and 0.5 in this article, respectively. 
This problem is a convex optimization problem and can 
be solved by the CVX toolkit (http://cvxr.com/cvx/down 
load/).

3. Study area and data processing

3.1. Basic overview of SAR data

In this paper, airborne FP P-band SAR data of Lopè 
National Park, launched in Gabon, Africa, are used 
for validation. This test area is one of the four study 
areas in the biomass mission named “AfriSAR” 
implemented by European Space Agency (ESA) in 
2016. The topography of this area varies greatly, 
with an average elevation of about 288 m and the 
mature stands of canopy height distributed between 
30 and 50 m. Lopè park is characterized by a mosaic 
between grasslands and (dense) tropical forests, with 
a biomass ranging from about 50 to 600 t/ha. The dry 
season here is mainly concentrated from mid-June to 
mid-September, with an average annual rainfall of 
about 1440 mm/year (from 1984 to 2016) and 
a temperature range of 20–23°C. It has an average of 
35 abundant tree species per ha, with a wide variation 
between savanna and forest. In the AfriSAR cam
paign, a total of 10 FP P-band acquisitions are 
obtained to study the TomoSAR technology in the 
rainforest. The interval of the spatial baseline is uni
form. We can ignore the impact of temporal deco
herence due to the short time interval between 
acquisitions. Refer Table 1 for some specific SAR 
data parameters. Considering the purpose of the 
paper, we have selected a part of the area with 
a topography range between 200 and 300 m and 
a forest height between 0 and 50 m for the experi
ment. Figure 2 shows the RGB images based on Pauli 
basis in the UTM coordinate system, including the 
selected experimental area (azimuth:4500–6499 pixel; 
range:2200–3200 pixel).

3.2. LiDAR data

While acquiring airborne FP P-band SAR data, the LiDAR 
data are provided by the National Aeronautics and Space 
Administration (NASA), covering the same region. The 
lidar footprint on ground is around 20 m wide.The LiDAR 
data acquired by the LVIS system include level 1 products 
and level 2 products. Level 2 products include CHM and 
DEM derived from level 1 products. To be consistent with 
the selected experimental area, we crop the LiDAR data in 
the same range as shown in Figure 3. While evaluating 
TomoSAR DEM and CHM, LiDAR data are geocoded to 

Table 1. The parameters of the FP P-band datasets.
Parameters Value

Image size Range/Azimuth: 3772/ 12032 (pixel)
Wavelength 0.69 m
Resolution Range/Azimuth:3.9 m/2 m
Polarization HH/HV/VH/VV
Vertical baseline 

distribution
0/10/20/40/60/80/-20/-40/-60/-80(m)

Image NO. Flight06 : 02/03/04/05/06/07/08/09/10/11

314 C. WU ET AL.

http://cvxr.com/cvx/download/
http://cvxr.com/cvx/download/


SAR coordinates for evaluation. For details of more para
meters, please refer https://lvis.gsfc.nasa.gov/Data/Maps/ 
Gabon2016Map.html

3.3. Data processing

After registered and phase flattening, the SLC images form 
the TomoSAR data stack, and the tomographic profile can 
be obtained using the above three methods. It should be 
noted that AfriSAR data use TanDEM-X data for phase 
flattening. Therefore, the topography containing canopy 
height is removed simultaneously in the phase flattening 
procedure.

Some literature supports that HH polarization is 
sensitive to double-bounce scattering, which often 
occurs between the branches and the ground, leading 
to the corresponding phase center being located on 
the ground level. The HV polarization is sensitive to 
volume scattering, which generally acts on the inter
ior of the canopy (Arii, Van Zyl, and Kim 2010; 

Freeman 2007; Tebaldini and Rocca 2012). Due to 
the long-wavelength and strong penetrability of 
P-band SAR, the canopy phase center is usually 
lower than the real forest height. This phenomenon 
is represented in the tomographic profile, as shown in 
Figure 4. Because of that, the HH data stack is used to 
obtain the underlying topography, while the HV data 
stack is used to get the forest height with the power 
loss method proposed in the literature (Tebaldini and 
Rocca 2012). The criterion of power loss is:

where HCanopy
max represents the max peak position of the 

canopy phase center in tomographic profile; 
H represents the actual forest height; < represents the 
power loss value obtained by using a small amount of 
LiDAR sample data for data verification.

Figure 2. The RGB composite image of Lopè park. The right is the selected experiment area in the red box on the left.

Figure 3. The LiDAR data: (a) underlying topography; (b) forest height.
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The primary data processing processes in this paper 
are summarized in Figure 5. The processing chain of 
obtaining underlying topography and forest height is 
summarized as follows:

(i) Select the SLC (after registration and phase flat
tening) images with certain baselines to form the 
TomoSAR data stack (i.e. Equation (2));

(ii) Select a suitable filter, such as hamming win
dow filter, to estimate the covariance matrix 
R of the TomoSAR data stack (i.e. Equation 
(5));

(iii) Based on the known vertical wave number kz, set 
the sampling height and calculate the steering 
matrix A (i.e. Equation (2));

(iv) Pixel-by-pixel calculation can be performed 
using the Capon (i.e. Equation (6)), MUSIC 
(i.e. Equations (7) and (8)), and CS (Equations 
(9)–(11)) algorithm mentioned in the above to 
obtain a tomographic profile;

(v) Determine the underlying topography and the 
forest height based on the peak positions and 
power loss method with HH tomographic profile 
and HV tomographic profile.

Figure 5. The flowchart of forest height and underlying topography estimation using TomoSAR.

Figure 4. The power loss criterion for the retrieval of forest height.
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When estimating the covariance matrix, a large but 
appropriate filtering window setting can effectively sup
press the side lobes. In this paper, a 31 × 31 pixel win
dow is used to evaluate the covariance matrix. In order 
to verify the results, this paper uses LiDAR DEM and 
LiDAR CHM as the comparative verification data. We 
evaluate TomoSAR DEM and TomoSAR CHM by 30 ×  
30 pixel window to avoid the deviation of the pixel-by- 
pixel assessment. When evaluating the TomoSAR 
CHM, we ignore the forest height less than 10 m, 
which is not statistically significant in the tropical 
rainforest.

The proposed evaluation index factors are root-mean- 
square error (RMSE) and relative error (△), and the calcu
lation formulas are as follows: 

where K denotes the number of the selected samples that 
are used to participate in the experimental verification.

4. Experimental result

As mentioned above, we can obtain the underlying 
topography from HH data and the forest height 
from HV data. For this purpose, we firstly focus 
on the ability of each algorithm to reconstruct the 
tomographic profile. We use three different algo
rithms for drawing the same profile corresponding 
to the selected white line (range index: 200) in 
Figure 6. As a result, all of the following analyses 
correspond to the same profile with the top white 
dashed line is LiDAR CHM, and the bottom is 
LiDAR DEM. All of the following tomographic 
profiles are normalized 0 to 1.

4.1. The performance of tomographic profile 
reconstruction based on different algorithms

Figure 7(a,b) is the tomographic profile of HH data and 
HV data based on Capon algorithm. The results show that 
the HV tomographic profile demonstrates the ability to 
obtain the canopy height, and its power peaks are located 
in the phase center of the canopy (slightly lower than the 
top white dashed line). HH data have also shown the 
potential to invert underlying topography. Although 
some regions have obvious two-layer power centers, the 
phase centers of the ground can be found out easily by 
some criteria (Pardini et al. 2018; D’Alessandro and 
Tebaldini 2019). Since the experimental area is a tropical 
rainforest with high forest and density, the double-bounce 

scattering occurs not only on the surface and branches but 
also between branches in the canopy. Therefore, there is 
also a power peak at the phase center of the canopy and 
the result shows that the HH data also contain a strong 
volume scattering contribution.

The tomographic profile of CS algorithm is similar to 
Capon’s, which can obtain underlying topography by HH 
data and forest height by HV data, as shown in Figure 7(c, 
d). The difference is that CS algorithm needs to input 
hyper-parameter. With different forest types, changeable 
parameters may lead to different results.

The most interesting is the result of MUSIC algo
rithm. Figure 8 shows that the tomographic profile of 
HH and HV data obtained by MUSIC algorithm, with 
different numbers of scattering sources. By comparison, 
we find that the assumption that there are only two 
scattering sources is inappropriate in the rainforest. As 
shown in Figure 8, the location of the maximum peak of 
the HH tomographic profile cannot be the ground 
phase center when the number of scattering sources 
equals two. From quantitative evaluation, we find that 
the best performance in inverting underlying topogra
phy by using MUSIC algorithm when the number of 
scattering sources equals four. When drawing the HV 
tomographic profile, the best parameter to obtain the 
phase center of the canopy equals two. When the num
ber of input scattering sources is larger than two, the 
HV tomographic profile tends to have a peak at the 
ground, like the result of scattering sources equal four. 
Through quantitative analysis, we find that the highest 
accuracy of TomoSAR CHM is obtained only when the 
number of input scattering sources equals two.

Tropical rainforest is complex, penetrable volume 
layer, and the acquired signal contains not only from 
the canopy and the ground but also from inside the 
forest structure. Radar wave penetration through the 
vegetation canopy to the ground is a power attenua
tion process, and the scattering process is complex 
and not easy to interpret. Therefore, the assumption 
of the forest as a two-layer structure consisting of two 
point-like scatterers is not universal in the MUSIC 
algorithm. Second, due to the specificity of the forest 
scene and the high density of tropical rainforest, even 

Figure 6. Test azimuth profile (white solid line) in the Pauli RGB 
composite image.
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if HH is sensitive to the double-bounce scattering that 
occurs more often between the ground and the 
branches, such contributions still exist in the canopy. 
Therefore, the two scattering sources cannot get the 
optimal result, which also shows the uncertainty of 
MUSIC algorithm.

4.2. The results of underlying topography and 
forest height-based TomoSAR algorithms

The underlying topography and forest height obtained 
by Capon algorithm using HH data and HV data are 
shown in Figure 9. Compared with the LiDAR DEM in 
Figure 3, there is little difference between LiDAR DEM 
and TomoSAR DEM of Capon algorithm, with an RMSE 
of 1.58 m and a relative error of 1.1%. The reliability of 
the underlying topography obtained by using HH data 
sensitive to the double-bounce scattering is proved.

In order to find the optimal power loss value in the 
tomographic profile by using a small amount of LiDAR 
CHM samples, we set the power loss as 0–4 dB with an 
interval is 0.5 dB and quantitatively evaluated the differ
ence between the TomoSAR CHM and the LiDAR 
CHM. The results are shown in Figure 10. The results 
show that the maximum peak location (the power loss is 
equal to 0) of the canopy phase center based on HV data 
is not the actual forest height, significantly lower than the 
LiDAR CHM, as shown in Figure 4. That can be inter
preted as the strong penetrability of the P-band leading 
to the canopy phase center being lower than the forest 
height. As power loss increases, we can see that the forest 
height is closer to the LiDAR CHM, and when power loss 
is more than the optimal value, there will be a significant 
overestimation error. We find that the power loss equals 
2 dB, RMSE is the minimum, 2.17 m, and the relative 
error is 12.1%, as shown in Figure 9(c,d).

Figure 7. Normalized tomographic profile obtained by Capon algorithm (a)–(b) and CS algorithm (c)–(d).

Figure 8. Normalized HH and HV tomographic profile obtained by MUSIC algorithm with different numbers of scattering sources.
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Figure 11 shows the estimated underlying topography 
and forest height by MUSIC algorithm. MUSIC algo
rithm is a parametric method that needs to input the 
number of scattering sources when estimating the tomo
graphic profile. For forest scenarios, although the “two- 
layer” assumption of the RVoG model in PolInSAR 
technique is reasonable, the result is unsatisfactory 
when using two scattering sources in estimating the 
underlying topography by MUSIC algorithm. 
Compared with LiDAR DEM, we find that when the 

number of scattering sources equals four, the underlying 
topography is most close to LiDAR DEM, with 2.14 m of 
RMSE and 1.5% of the relative error. The obtained forest 
height by MUSIC algorithm is shown in Figure 11(c,d). 
The result shows that the RMSE is 2.79 m, and the 
relative error is 15.5%, which is very close to Capon’s 
products. It can be seen that both MUSIC algorithm and 
Capon algorithm can obtain approximately accurate 
DEM and CHM results compared with LiDAR data.

Figure 10. Differences between TomoSAR CHM and LiDAR CHM with different power loss values.

Figure 9. The estimated results of Capon algorithm: (a) underlying topography; (b) scatterplot of TomoSAR DEM validation; (c) forest height; 
(d) scatterplot of TomoSAR CHM validation.
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The estimated underlying topography and forest height 
based on CS algorithm are shown in Figure 12. It can be 
concluded from the results that, like Capon algorithm and 
MUSIC algorithm, the TomoSAR DEM is very close to 
LiDAR DEM based on HH data, with an RMSE is 1.86 m 
and a relative error is 1.3%. At the same time, the precision 
of the forest height is slightly lower than that of Capon 
algorithm, with an RMSE of 2.38 m and a relative error 
of 13.3%.

Although all algorithms can obtain high-precision 
underlying topography and forest height, the non- 
parametric Capon algorithm seems to perform the best 
among the three algorithms and has the advantage of no 
need for prior parameters. On the other hand, MUSIC 
algorithm needs to know the number of scattering sources, 
which may vary with different forest types. Moreover, CS 
algorithm is a convex optimization process, which is very 
time-consuming when using the CVX toolbox to solve the 
problem.

5. Analysis and discussion

In this paper, three typical TomoSAR methods are used 
to discuss and analyze forest height and underlying 
topography inversion in tropical forest area. It can be 
found from the results that all three algorithms can 
obtain precise underlying topography and forest 

height. Based on the algorithm principle, we know 
that the number of acquisitions and covariance matrix 
are crucial for reconstruction of tomographic profile. 
To further analyze the capability of tomographic profile 
reconstruction based on TomoSAR methods, we inves
tigate the effects of different processing operations on 
tomographic inversion, such as baseline designs and 
filter methods. It can be seen from the above results 
that the correct canopy tomographic profile can be 
obtained using HV data among all three algorithms. 
Therefore, the results of HH data are mainly analyzed 
in the following. Due to Capon algorithm performs the 
best among three algorithms, only Capon algorithm is 
used for analysis and comparison to avoid redundancy 
and duplication of work in the experiment.

5.1. The influence of the baseline design

A total of ten acquisitions covering the Lopè national 
park in AfriSAR campaign are adopted in the experi
ment. Due to the uniform baseline interval, the influ
ence of baseline interpolation on the inversion of 
forest height and underlying topography is not con
sidered. The spatial baseline of ten acquisitions 
ranges from −80 to 80 m, supporting exploring the 
influence of different baseline designs on 

Figure 11. The estimated results of MUSIC algorithm: (a) underlying topography; (b) scatterplot of TomoSAR DEM validation; (c) forest 
height; (d) scatterplot of TomoSAR CHM validation.
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tomographic profile reconstruction, including the 
number of acquisitions, baseline order, and regularity 
of baseline distribution.

Figure 13 shows the results of the tomographic profile 
reconstruction with different number of available acquisi
tions. As can be seen from the results in the red dashed 
circle, the results of the tomographic profile reconstruction 
using the ten acquisitions (Figure 13(a)) are significantly 
better than those using the six acquisitions (Figure 13(b)). 
The more acquisitions, the more redundant observations, 
which can provide a higher vertical resolution. To more 
obviously show the difference, we draw the evaluated 
DEM in the same plot, as shown in Figure 13(c). The 
black line represents the LiDAR DEM, the green line 
represents the DEM obtained using the ten acquisitions, 
and the red line represents the DEM obtained using the six 
acquisitions. From the results, we can see many misjudg
ments in some areas due to the fewer acquisitions that 
cannot separate the ground contribution and the volume 
contribution.

Figure 14 shows the obtained tomographic profile by 
using six acquisitions. Figure 14(a) shows the uniform 
distribution of the baseline (i.e. the selected images are 
No.02/03/04/05/06/07, corresponding to vertical baseline 
distribution:0/10/20/40/60/80), while Figure 14(b) shows 
the non-uniform distribution (i.e. the selected images are 
No.02/03/04/07/09/11, corresponding to vertical baseline 

distribution: 0/10/20/80/-40/-80). As shown from the part 
marked by red dotted circles, the tomographic profile with 
uniform baseline distribution is significantly better than 
those with the non-uniform. The non-uniform baseline 
cannot separate ground and volume contribution, reveal
ing the strict requirements for baseline design in 
TomoSAR technology.

Figure 15 illustrates the influence of baseline arrange
ment order on tomographic profile reconstruction with 
ten acquisitions. The results show that the disordered or 
ordered baselines arrangement does not affect recon
structing tomographic profile. The essence of tomographic 
profile reconstruction is to seek the eigenvalue of the 
covariance matrix (Stoica, Li, and Tan 2009). The elements 
in covariance are unchanged, and the baselines are not 
correlated with each other, so the eigenvalue of covariance 
is not changed eventually.

5.2. The effect of filters

Some literature has explored the application of dif
ferent filters to accurately estimate the covariance 
matrix considering the heterogeneity of experimental 
scenarios and successfully applied them to detect the 
presence of weak scatterers in urban areas (D’Hondt 
et al. 2017; Aghababaei 2020). In this paper, we 

Figure 12. The results based on CS algorithm: (a) underlying topography; (b) scatterplot of TomoSAR DEM validation; (c) forest height; (d) 
scatterplot of TomoSAR CHM validation.
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consider the heterogeneity of forest structure and 
analyze the effect of filter window size and different 
filters on tomographic profile reconstruction. 
Figure 16 shows the results of the tomographic profile 
with different Hamming window sizes. The results 
show that the filter window is small, the tomographic 
profile appears noisy with prominent sidelobe. The 
sidelobe decreases as the filter window size increases, 
but more details are lost. For the natural scene with 
heterogeneity, such as forest, a large filter window is 
often required to suppress the misjudgment of the 
sidelobe to obtain better statistical results of forest 
height and underlying topography.

At the same time, we also use different filters to 
evaluate the covariance matrix, including Boxcar filter, 
NL-SAR filter (Deledalle et al. 2014), and NDSAR-NLM 
filter (D’Hondt et al. 2017). The window size of the 
Boxcar filter is set to 31. The experimental results are 
shown in Figure 17. From the results, the tomographic 
profile of the Boxcar filter is smooth with many details 
lost, and the contribution from the ground and canopy is 
not separated in many areas. The NL-SAR filter result 
fully considers the heterogeneity of the forest; however, 
that does not satisfy the assumption that the forest is 
a two-layer structure. We expect the peak locations to 
appear on the ground and the canopy. Obviously, the 

Figure 13. Normalized tomographic profile obtained with different number of baseline: (a) ten acquisitions; (b) six acquisitions; (c) the 
estimated TomoSAR DEM profile compared with LiDAR DEM (N represents the number of baseline).

Figure 14. Normalized tomographic profile obtained by different baseline distribution: (a) uniform (the selected images areNo. 02/03/04/ 
05/06/07); (b) non-uniform. (the selected images are No. 02/03/04/07/09/11).

Figure 15. Normalized tomographic profile obtained by different baseline arrangement order: (a) ordered (the baseline arrangement order 
is 11/10/09/08/02/03/04/05/06/07); (b) disordered (the baseline arrangement order is 11/03/08/05/02/03/04/07/09/11).
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NL-SAR filter does not meet the requirement and is 
time-consuming. The results between the NDSAR- 
NLM filter and Hamming window filter are similar and 
perform the best among these filters. However, due to the 
need for continuous iterations and search processing, the 
NDSAR-NLM filter is very time-consuming. When eval
uating the covariance matrix, we should consider the 
consistency of the pixels in the sliding window so that 
an accurate covariance matrix can be obtained. Whereas 
tropical forests are typically natural scenes with complex 
structures, unlike urban buildings, the signal from forests 
is random. So NDSAR-NLM filter has no outstanding 
advantages in the forest area of this paper.

6. Conclusion

TomoSAR technology is different from traditional 
two-dimensional SAR technology. By synthesizing 
aperture in the direction of cross-slant range, 
TomoSAR technology can obtain the tomographic 
profile that consists of power distribution with differ
ent heights and has real three-dimensional resolution 
ability. This paper assesses the performance of three 
typical TomoSAR algorithms for obtaining underly
ing topography and forest height in tropical forests. 

The results show that all algorithms can effectively 
retrieve these two products from the tomographic 
profile of HH and HV data. According to the scatter
ing characteristics of the forest, we obtained the 
underlying topography by HH data and the forest 
height by HV data. We analyzed the performance of 
three typical super-resolution algorithms to recon
struct the tomographic profile. Furthermore, we dis
cussed the effects of different baseline designs and 
filters on the tomographic profile reconstruction. 
The conclusions are summarized as follows:

(1) All three algorithms can reconstruct the tomo
graphic profile representing the ground or canopy. 
Capon algorithm performs well, and the RMSE of 
the forest height obtained from HV data and the 
underlying topography obtained from HH data is 
2.17 m and 1.58 m, respectively.

(2) Under the same conditions, the more acquisitions, 
the more uniform baselines distribution, and the 
better performance in reconstructing the tomo
graphic profile.

(3) Aim to obtain forest height and underlying topo
graphy, it is necessary to select the appropriate filter 
window size and filters. Smaller window size fails 

Figure 16. Normalized tomographic profile obtained by different Hamming windows size.

Figure 17. Normalized tomographic profile obtained by different filters.
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to suppress side lobes, and larger ones lose more 
details. In the experiment, Hamming window filter 
performs well and is recommended.
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