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Keeping risk under control is a primary objective in many critical real-world domains, 
including finance and healthcare. The literature on risk-averse reinforcement learning 
(RL) has mostly focused on designing ad-hoc algorithms for specific risk measures. As 
such, most of these algorithms do not easily generalize to measures other than the 
one they are designed for. Furthermore, it is often unclear whether state-of-the-art risk-
neutral RL algorithms can be extended to reduce risk. In this paper, we take a step 
towards overcoming these limitations, proposing a single framework to optimize some of 
the most popular risk measures, including conditional value-at-risk, utility functions, and 
mean-variance. Leveraging recent theoretical results on state augmentation, we transform 
the decision-making process so that optimizing the chosen risk measure in the original 
environment is equivalent to optimizing the expected cost in the transformed one. We then 
present a simple risk-sensitive meta-algorithm that transforms the trajectories it collects 
from the environment and feeds these into any risk-neutral policy optimization method. 
Finally, we provide extensive experiments that show the benefits of our approach over 
existing ad-hoc methodologies in different domains, including the Mujoco robotic suite 
and a real-world trading dataset.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances have enabled Reinforcement Learning (RL) [58] to achieve milestone results in many complex problems, 
including playing games [36,56,8] and controlling robotic systems [28,29,24]. A wide variety of powerful policy optimization 
algorithms are now available in the literature, such as TRPO [52], PPO [54], DDPG [30], and SAC [23], to name a few. 
These approaches are designed to efficiently minimize the expected total cost (or, equivalently, maximize the expected total 
reward). However, in many real-world domains, and particularly in critical applications such as finance or healthcare, a 
primary objective, besides minimizing the expected costs, is to keep risk under control [33,38,34,32]. There are many ways 
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to express this notion of risk, primarily split into two categories [20]: model uncertainty and inherent uncertainty. The former 
arises from the imperfect knowledge of the underlying parameters of the environment and is typically addressed by using 
robust [46,41,65,69,31] or safe [21,20] RL techniques. The latter, which will be the primary focus of this paper, is related to 
the intrinsic stochasticity of the environment and is addressed by optimizing specific risk measures, i.e., different objective 
functions than the classic expected cost.

Several risk criteria have been taken into consideration in the RL literature, including utility functions [37,55,40], condi-
tional value-at-risk [61,13–15], variance-related objectives [18,48,59], and the general class of coherent measures [60]. Since 
these risk criteria possess very different properties, a common approach consists in developing ad-hoc RL algorithms to 
optimize each risk measure (or class of risk measures), i.e., algorithms that are highly-specialized to the chosen objective 
function. While this enables a full understanding of the problem at hand, in practice it can be limited for at least two 
reasons: (1) Given a risk-averse RL algorithm for a specific risk measure, it is often not clear whether the algorithm can 
be easily adapted to optimize a different measure; and (2) Given any state-of-the-art (risk-neutral) RL algorithm, it is often 
non-trivial to adapt the algorithm to optimize some desired risk measure instead of the expected return. Intuitively, over-
coming these two limitations is highly desirable from a practical viewpoint. Ideally, we would like an algorithm that enables 
optimization of a multitude of risk measures in an almost transparent manner and which, at the same time, can leverage 
recent advances in risk-neutral RL to improve learning efficiency.

In this paper, we take a step forward in this direction by proposing a single framework to optimize some of the most 
popular risk measures, including conditional value-at-risk, entropic risk measure, and mean-variance, by adopting any risk-
neutral RL algorithm. Instead of focusing on deriving algorithms for optimizing each single risk measure, we transform the 
underlying Markov decision process (MDP) so that optimizing the chosen risk measure in the original MDP is equivalent 
to optimizing the expected cost in the transformed one. We achieve this by leveraging previous theoretical results on state 
augmentation [4,5], which we use to unify the optimization problem for the considered measures. The price we have to 
pay for this generality is the addition of one or two extra state variables and one extra optimization variable to the original 
problem, which we show can be easily handled in practice. Overall, our framework enables practitioners to learn risk-averse 
policies with minimal additional effort beyond learning risk-neutral ones. We believe this to be a significant step towards 
applying risk-sensitive RL algorithms to complex real-world problems.

Our detailed contributions are as follows.

1. Using recent results on state augmentation [5], we derive a unified objective for the considered risk measures (Sec-
tion 3). In addition to reducing the conditional-value-at-risk and the entropic risk measure to an ordinary MDP, as 
originally shown by Bäuerle and Rieder [5], we also show that mean-variance can be treated analogously, by exploiting 
the decomposition provided in Xie et al. [68].

2. We propose a very simple meta-algorithm, Risk-averse policy Optimization by State Augmentation (ROSA), to optimize 
the unified objective by exploiting any available risk-neutral RL algorithm (Section 4).

3. We propose extensive empirical results that demonstrate:

(i) the benefits of our single meta-algorithm over existing ad-hoc methodologies
(ii) the scalability of our approach

(iii) its performance on a real-world trading dataset (Section 6).

2. Preliminaries

A discounted Markov decision process (MDP) [49] is a tuple M = (S, A, p, c, μ, γ ), where S is a measurable state space, 
A is a measurable action space, p : S ×A → �(S) is the transition kernel, c : S ×A ×S →R is a measurable cost function, 
μ : S → �(S) is the initial-state distribution, and γ ∈ [0, 1) is the discount factor. Here �(S) denotes the set of probability 
measures over S .

Without loss of generality,3 we shall suppose that costs are positive and bounded by cmax > 0 almost surely. The decision 
process works as follows. First, the initial state S0 is drawn from μ. Then, the agent takes an action A0, it transitions to 
a new state S1 ∼ p(·|S0, A0), it receives the cost C1 = c(S0, A0, S1), and so on. Let Ht := (S0, A0, S1, C1, . . . , St) denote a 
t-step history and Ht the set of such histories. The agent’s actions are governed by a possibly history-dependent policy 
π = {πt}t≥0, i.e., a sequence of mappings πt : Ht → �(A). We denote by �HR the set of history-dependent policies and by 
�MD ⊂ �HR the set of Markovian deterministic policies, which are mappings π : S → A. Each policy π ∈ �HR induces a 
sequence of states and costs {(Sπ

t , Cπ
t+1)}t≥0 and we denote by Pπ , Eπ the resulting probability measure and expectation 

operator, respectively. We suppose there exists a subset S̄ ⊂ S of absorbing (or terminal) states, such that, for all s, s′ ∈ S̄
and a ∈ A, p(S̄|s, a) = 1 and c(s, a, s′) = 0. Let’t define the random variable Tπ := inf{t ∈ N+ : Sπ

t ∈ S̄} to be the hitting 
time of an absorbing state when executing policy π . We need the following assumption.

Assumption 1 (Bounded hitting times). There exists T < ∞ such that, for any π ∈ �HR, Tπ ≤ T almost surely.

3 Any MDP can be reduced to this setting by translating the cost function and properly modifying the cost of the terminal absorbing state.
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This assumption is common, e.g., in the policy gradient literature [45,17], where the trajectories collected by the 
agent terminate almost surely, no matter what policy is executed. Finally, the total (discounted) cost is denoted by 
G := ∑∞

t=0 γ tc(St , At, St+1) = ∑T −1
t=0 γ t c(St , At , St+1), where the second equality follows from Assumption 1.

2.1. Risk measures

Let (X , F) be a measurable space. A risk measure over X is a function ρ :X →R that maps uncertain outcomes X ∈X
to the real line. In this paper, we are interested in optimizing a risk measure of the total discounted cost:

min
π∈�HR

ρπ(G), (1)

where we add a dependency on π to emphasize that the underlying probability measure is induced by the chosen policy. 
The simplest example is ρπ = Eπ , for which (1) reduces to the standard risk-neutral RL problem. We now introduce the 
risk measures considered in this work.

Conditional value-at-risk The Value-at-Risk (VaR) at level α ∈ (0, 1) of G is ρπ
VaR(G; α) := inf{x : Pπ {G ≤ x} ≥ α}. VaR is a 

popular risk measure, e.g., in finance, but it is often unstable and it does not handle losses suffered beyond the threshold 
amount it indicates. The Conditional Value-at-Risk (CVaR) has been defined in Rockafellar et al. [50] as:

ρπ
CVaR(G;α) = min

η∈R
{η + 1

1 − α
Eπ

[
(G − η)+

]},
and it has several advantages over VaR: it allows to quantify the losses encountered in the tail, it can be expressed as a 
minimization, and it is a coherent risk measure [2].

Utility functions and entropic risk measure A popular approach to incorporate risk sensitivity into objective functions makes 
use of utility theory [22]. For a convex function u :R →R, the utility-based risk measure is ρπ

U (G; u) :=Eπ [u(G)]. Among 
them, exponential utility functions have been the first type of risk-aversion employed in MDPs [26]. Let β > 0 be the level 
of risk aversion. The entropic risk measure (ERM) of G is ρπ

ERM(G; β) := 1
β

logEπ
[
eβG

]
. Optimizing ERM is equivalent to 

optimizing an exponential utility function (EU), ρπ
EU(G; β) :=Eπ

[
eβG

]
.

Mean-variance For λ ≥ 0, the mean-variance (MV) of G is ρπ
MV(G; λ) := Eπ [G] + λVarπ [G]. Optimizing MV trades off 

between minimizing the expected total cost and its variance, where λ is a tunable parameter controlling the level of risk 
aversion. We note that a common alternative formulation is to minimize the expected cost subject to the variance not 
exceeding a given threshold. The methods we shall propose generalize straightforwardly to this constrained problem by 
optimizing its Lagrangian.

Mean-volatility The mean-volatility (MVo) risk measure [9] is an alternative to MV where the variance is taken w.r.t. the 
single-step cost under the discounted state-occupancy measure induced by π . For λ ≥ 0, the MVo is ρπ

MVo(G; λ) :=Eπ [G] +
λνπ [G], where νπ [G] := (1 − γ )Eπ

[∑
t γ

t
(
Ct+1 −Eπ [G]

)2
]

is called reward-volatility.

3. A unified perspective

Our first step is to reduce the main optimization problem (1) to a single objective that unifies all the risk measures 
introduced in Section 2.1. Later on, we shall see how to design a common framework that optimizes it by leveraging any 
risk-neutral RL algorithm as a sub-routine.

Definition 1 (Unified objective). Let ρ be a risk measure and fρ : R × R → R, gρ : R → R be two functions. The unified 
optimization problem is:

min
η∈R

{
min

π∈�HR
Eπ

[
fρ(G, η)

] + gρ(η)

}
. (2)

The explicit definition of the quantities involved depend on the chosen risk measure and its parameters, as specified in 
the following proposition.
3
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Proposition 1. For any of the risk measures of Section 2.1, an optimal policy computed by solving (1) is also optimal for (2) and vice 
versa, where

• for CVaR at level α, fCVaR(G, η) = 1
1−α (G − η)+ and gCVaR(η) = η [50];

• for a utility function u, we have no external parameter η, fU(G) = u(G), and g = 0. In particular, for ERM with parameter β , 
fERM(G) = eβG and g = 0;

• for MV with parameter λ, fMV(G, η) = (1 − 2ηλ)G + λG2 and gMV(η) = λη2 . MVo is analogous with the one-step cost instead 
of G and the expectation under the state-action occupancy measure.

Proof. From the definition

ρπ
CVaR(G;α)

we have:

min
π∈�HR

ρπ
CVaR(G;α) = min

π∈�HR
min
η∈R

{
η + 1

1 − α
Eπ

[
(G − η)+

]}

= min
η∈R

{
η + min

π∈�HR
Eπ

[
1

1 − α
(G − η)+

]}
.

In the case of utility functions, the objective in (1) is actually equivalent to the one in (2) with no outer variable η. For 
ERM, the result simply follows by noting that the problem is equivalent to optimizing the exponential utility, which in 
fact does not require any extra variable. For MV with parameter λ, we use the same trick as in Xie et al. [68]. Starting 
from Varπ [G] = Eπ

[
G2

] − Eπ [G]2, we use Legendre-Fenchel duality to reduce the squared expectation to a standard 
expectation, Eπ [G]2 = − minη∈R

{
η2 − 2ηEπ [G]

}
. Thus,

min
π∈�HR

ρπ
MV(G;α) = min

π∈�HR

{
Eπ [G] + λ

(
Eπ

[
G2

]
−Eπ [G]2

)}

= min
π∈�HR

{
Eπ [G] + λEπ

[
G2

]
+ λmin

η∈R

{
η2 − 2ηEπ [G]

}}

= min
η∈R

{
min

π∈�HR
Eπ

[
(1 − 2ηλ)G + λG2

]
+ λη2

}
. �

The unified objective (2), together with Proposition 1, reveals that computing the optimal risk-averse policy in (1) can 
be reduced to computing the policy minimizing the expected value of some (non-linear) function of the total cost. One of 
the consequences due to moving from the risk operator to the expectation one is the introduction of a single additional 
optimization variable η. We now discuss how to optimize (2) by considering the two variables, π and η, separately. Specif-
ically, in Section 3.1, we show that optimizing for π when η is fixed (inner objective) can be reduced to an ordinary MDP 
and thus solved by any RL algorithm. In Section 3.2, we show that the optimal value of η given π (outer objective) can be 
conveniently estimated for all the considered risk measures. Hence, a natural approach to solve (2) is an alternating opti-
mization method, also known as block coordinate descent [67]. We present such an approach for our policy optimization 
framework in Section 4.

3.1. Inner objective as an ordinary MDP

Fix some value η ∈ R for the outer variables. The inner problem in (2) seeks a policy π ∈ �HR that minimizes 
Eπ

[
fρ(G, η)

]
. Computing its solution is non-trivial for at least two reasons. First, when fρ is a non-linear function of 

the total cost, as for our risk measures, we may lose some guarantees about the optimal solution. In fact, provided that 
such optimal solution exists, Markovian deterministic policies may not be sufficient anymore to ensure optimality [49] and 
we need to look for history-dependent ones. Second, the optimization depends on the specific choice of fρ , i.e., on the 
underlying risk measure ρ . Instead of designing ad-hoc methodologies, we address these two complications by reducing the 
inner objective to an ordinary MDP via state-space augmentation. This will enable the application of any RL algorithm to its 
optimization. To achieve this, we borrow the state-augmentation proposed by Bäuerle and Rieder [5]. The key intuition is 
that making an optimal decision at each time only requires keeping track of the cumulative discounted cost suffered so far, 
instead of the whole sequence of states and actions. Formally, we define the augmented MDP as follows.
4
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Algorithm 1 Trajectory-based State Augmentation.
Require: Trajectories {τ1, τ2, . . . , τn}

where τi = (S0,i , A0,i , S1,i , C1,i . . . , STi ,i , CTi ,i),
function fρ :R ×R →R, parameter η

Ensure: Augmented trajectories {τ̃1, ̃τ2, . . . , ̃τn}
1: for i = 1, 2, . . . , n do
2: for t = 0, 1, . . . , Ti do
3: S̃t,i ← (St,i , 

∑t
h=0 γ h Ch,i+1, γ t )

4: end for
5: C̃ Ti ,i ← fρ(

∑Ti −1
t=0 γ t Ct,i+1, η)

6: τ̃i = (S̃0,i , A0,i , ̃S1,i , 0 . . . , ̃STi ,i , ̃CTi ,i)

7: end for

Definition 2 (Augmented MDP [5]). Let M = (S, A, p, c, μ, γ ) be the original MDP. The augmented MDP for optimizing 
Eπ

[
fρ(G, η)

]
is M̃ = (S̃, A, p̃, ̃c, μ̃, γ̃ ), where:

• S̃ := S × [0, cmax/(1 − γ )] × (0, 1];
• for s̃ = (s, v, w), a ∈ A, and s̃′ = (s′, v ′, w ′), the transition kernel p̃ is such that4 p̃(s̃′|s̃, a) = p(s′|s, a)δ

(
γ w − w ′)δ(v +

wc(s, a, s′) − v ′);
• the cost function is c̃(s̃, a, ̃s′) = fρ(v ′, η) if s′ ∈ S̄ , the terminal states set, and s /∈ S̄ , zero otherwise;
• the initial state-distribution is μ̃(s̃) = μ(s)δ (v) δ (w − 1)

• and the discount factor is γ̃ = 1.

Intuitively, the state-space is augmented with two scalar variables, while the action-space remains unchanged. We de-
note each augmented state by a tuple s̃ = (s, v, w), where s is the original state of our system, v keeps track of the running 
cumulative cost, and w keeps track of the discounting.5 The transition kernel is such that the first state variable evolves 
according to the original transition dynamics, while the remaining two evolve deterministically. If (s̃0, a0, . . . , ̃sT ) is a tra-
jectory in the augmented MDP, we have wt+1 = γ wt and vt+1 = vt + wtc(st , at, st+1). Since v0 = 0 and w0 = 1, unrolling 
this dynamics, it is easy to see that wt+1 = γ t and vt+1 = ∑t

h=0 γ hc(sh, ah, sh+1), i.e., the two extra state variables have 
the intended meaning. If a transition to an absorbing state of the original MDP occurs at time t , c̃(s̃t , at, ̃s′

t+1) = fρ(vt+1, η). 
Since the cost function is zero everywhere except when entering an absorbing state and γ̃ = 1, 

∑T −1
t=0 γ̃ t c̃( S̃t , At, ̃St+1) =

fρ
(∑T −1

t=0 γ tc(St , At , St+1), η
)

= fρ(G, η), that is, the cumulative cost of the augmented trajectories is the same as the 
application of fρ to the cumulative cost of the original ones. This implies that we can solve the augmented MDP as an 
ordinary one, in which we seek a policy π̃ : S̃ → A that minimizes Eπ̃

[∑T −1
t=0 γ̃ t c̃( S̃t , At , S̃t+1)

]
. Provided that standard 

compactness and continuity assumptions hold [5], an optimal Markov deterministic policy exists for this (augmented) prob-
lem. Furthermore, there is always a corresponding non-Markovian policy that is (at least locally) optimal for the original 
(non-augmented) problem. Here Markov refers to the fact that π̃ directly maps augmented states to actions, though these 
states depend on the history of the original process. The key result is, thus, that we can solve the inner objective in (2)
by first augmenting the state space and then applying any (risk-neutral) RL algorithm. Clearly, we cannot directly build the 
augmented MDP as in Bäuerle and Rieder [5] since the dynamics are unknown. However, we note that it is simple to per-
form this augmentation on given samples, such as trajectories collected by the chosen RL method. In fact, all we have to do 
is keep track of the running costs and discounting and progressively add them to the original state samples. This procedure 
is summarized in Algorithm 1.

3.2. Optimizing the outer objective

Now that we have a convenient way to solve the inner objective in (2) for any fixed η, it only remains to specify how to 
compute the optimal value of η for any fixed policy. We now see that this is actually simple and can be done in closed-form 
for all the risk measures that we consider, or, if the model is not available, it can be efficiently estimated from samples. 
Formally, let π ∈ �HR be any policy and η�(π) := argminη∈R

{
Eπ

[
fρ(G, η)

] + gρ(η)
}

. Starting from the definitions of the 
functions fρ, gρ for the various risk measures, we have what follows.

• For CVaR:

η�
CVaR(π) = argmin

η∈R

{
1

1 − α
Eπ

[
(G − η)+

] + η

}
.

4 Here δ(x) denotes the Dirac delta function at x.
5 Keeping track of the discounting can be avoided, but the augmented MDP would have a non-stationary transition kernel. Clearly, when γ = 1 this extra 

state variable can be neglected.
5
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This was shown by Rockafellar et al. [50] to be exactly the value-at-risk at level α, i.e., η�
CVaR(π) = ρπ

VaR(G; α).
• For mean-variance, we have:

η�
MV(π) = argmin

η∈R

{
Eπ

[
(1 − 2ηλ)G + λG2

]
+ λη2

}
.

This is a simple quadratic function of η. Taking its derivative and equating it to zero, we obtain η�
MV(π) = Eπ [G], i.e., 

η�
MV(π) is the expected total cost of π . It is easy to see that the same holds for the mean-volatility, η�

MVo(π) =Eπ [G].
• Finally, the ERM has no outer parameter and thus it can be optimized by solving exclusively the inner objective via 

state-augmentation.

4. Policy optimization

We now present our general approach to risk-averse RL. Our meta-algorithm, called ROSA (Risk-averse policy Optimiza-
tion by State Augmentation), is shown in Algorithm 2. ROSA takes as input a risk measure ρ among those of Section 2.1
and a risk-neutral RL algorithm A (hence the name meta-algorithm). No requirement on A is imposed and, in principle, 
it can be any RL algorithm. We shall elaborate more on its choice later on. Before learning starts, ROSA casts ρ into the 
unified objective (2) by finding the corresponding functions fρ and gρ . At each iteration j = 1, . . . , k, ROSA collects a batch 
of n trajectories using the current policy π j . Then, it estimates the next value of η j by using the closed-form expression 
as mentioned in Section 3.2. Since this involves the expected value of f (G; η j) under π j , an unbiased estimator is built 
using the collected trajectories. Finally, ROSA augments the trajectories by using Algorithm 1 and feeds them into the policy 
optimization algorithm A. The latter performs one or more updates to the current policy. The overall procedure is an incre-
mental block coordinate descent method [67], whose convergence to a local optimum has been proven for general convex 
[7] and non-convex [64] settings.

Algorithm 2 Risk-averse policy Optimization by State Augmentation (ROSA).
Require: Risk measure ρ , risk-neutral RL algorithm A (e.g., PPO, TRPO, etc.), batch size n, number of iterations k
1: Compute functions fρ and gρ as in Proposition 1
2: Initialize policy π1

3: for j = 1, 2, . . . , k do
4: Collect a batch {τi}n

i=1 of n trajectories using π j

5: Compute η j ← argminη∈R h j(η) where

h j(η) := 1
n

∑n
i=1 fρ

(∑Ti−1
t=0 γ t Ct+1,i , η

)
+ gρ(η)

6: Get augmented trajectories {τ̃i}n
i=1 with Algorithm 1

7: Feed {τ̃i}n
i=1 into A, optimize π j and obtain π j+1

8: end for

The possibility to adopt any risk-neutral RL algorithm A to optimize a risk measure is the key component of ROSA. 
Such algorithm can be freely chosen among those available in the literature. For instance, it can be an on-policy [51,
54] or off-policy [23,39] policy search algorithm or even a value-based method [36]. In our experiments, we shall indeed 
combine ROSA with both on-policy and off-policy methods. Regardless of the chosen algorithm A, ROSA interacts with the 
environment in an online on-policy fashion, collecting, at each step, a batch of trajectories under the current policy and 
updating the latter by means of A. This is required to compute the outer variables, whose update requires the estimation 
of some statistics of the current policy (e.g., the expected return). While this is the solution that we consider in this paper, 
we note that it is not restrictive and ROSA can be generalized to a fully off-policy setting by employing, e.g., importance 
sampling [43].

Additional component A possible concern in using the proposed approach regards the state augmentation’s negative impact 
to the underlying RL problem. While it is true that adding state variables might increase the sample complexity, we note 
that this augmentation has been shown as a sufficient condition for representing optimal Markov policies for CVaR and 
concave utilities criteria [4,5]. On the other hand, existing ad-hoc approaches typically consider only Markov policies in the 
original state space and, thus, while solving simpler problems, might not necessarily converge to near-optimal risk-averse 
behavior.

Sparse costs The augmented MDP features a modified cost function, which is zero valued in all the steps apart from the last 
one. This sparse cost function may make the problem harder from a credit assignment viewpoint. Moreover, it can make 
more challenging the use of importance sampling techniques, whose variance grows exponentially with the time at which 
rewards occur. In tasks in which these issue are more severe, one could prefer, for instance, on-policy methods employing 
eligibility traces [57], to better deal with credit assignment.
6
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Sensitivity to the outer variable estimation While the outer variable η can always be computed in closed form knowing the 
model, when the MDP is unknown we need to estimate it from samples. This estimation is easier in the MV case, where η is 
the expected return, while it is more challenging in the CVaR case, where a quantile estimate needs to be computed instead. 
The errors in these estimates may influence the optimization path, by altering the sequence of the augmented problems to 
be solved. However, convergence to some local optimum of the original CVaR objective is not affected from these errors, 
and policy initialization is more likely to have a critical role in determining which local optimum will be obtained at the 
end.

Non-stationary costs We note that, when using alternated incremental updates (in a block-coordinate descent fashion) as in 
ROSA, the reward function optimized by the risk-neutral RL algorithm becomes non-stationary. This is due to the fact that 
the reward at each iteration depends on η through f , and the value of η is repeatedly updated by the outer optimizer. Such 
non-stationarity could become problematic for value-based methods, where a moving target may cause instability. In order 
to avoid non-stationary costs, it is possible to explicitly inform the agent of the new context, by including the outer variable 
η as part of the state or, more simply, as an input to the policy and/or value function. In this way costs become stationary, 
at the price of introducing some non-stationarity into the initial state distribution. However, in a function approximation 
regime, this approach could allow to generalize what the agent has learnt for previous value of η to new ones. More refined 
techniques can be adopted, by taking inspiration from non-stationary [44], multi-task [3,12] and lifelong learning literature 
[1]. Luckily this is not an issue for policy gradient algorithms, whose convergence could still be guaranteed using analyses 
from the block-coordinate literature.

To conclude, we summarized the main challenges that the ROSA framework poses, together with some possible solutions. 
We argue that, while the framework allows the employment of any RL algorithm, state-of-the-art trust-region approaches 
as TRPO [51] and PPO [54] are likely to be exempt from most of the aforementioned issues, since they are on-policy policy 
gradient approaches, naturally including mechanisms to deal with credit assignment issues [53].

5. Related works

In recent years, there has been a growing interest in designing practical and efficient risk-sensitive RL algorithms, with 
the risk measures introduced in Section 2.1 being among the most popular. Our approach sheds a new light on this topic, 
while allowing the unification of some existing methods into the same framework. A general treatment of these popular risk 
measures under a constrained-optimization perspective can be found in Prashanth and Fu [47]. For what concerns CVaR, 
an actor-critic algorithm was proposed by Chow and Ghavamzadeh [13], while a value-based perspective was considered 
by Chow et al. [14]. In a slightly different fashion, Chow et al. [15] designed a method to minimize the expected cost 
subject to CVaR constraints. More recently, CVaR was optimized with distributional approaches [16,62]. Tamar et al. [60]
considered the class of coherent risk measures, generalizing a previous work on CVaR [61], and obtaining algorithms for 
its optimization. Interestingly, the same algorithm is equivalent to a particular case of ROSA applied to CVaR when using 
REINFORCE [66] for the inner optimization. The only difference is that the methods do not optimize in the same state-space 
since ROSA includes the augmentation variables.

For what concerns ERM, a modified optimal Bellman equation has been obtained by Howard and Matheson [27], and 
furthered studied in successive works [11,10,35]. A policy-search method for optimizing this objective has been recently 
proposed by Nass et al. [40]. The authors derived the exact risk-sensitive policy gradient and proposed an actor-only al-
gorithm on top of it. This approach also turns out to be similar to our solution: it is, indeed, equivalent to instantiating 
ROSA for ERM using GPOMDP [6] as the inner optimizer, in which augmented returns are weighted by the current ERM. 
The optimization of this risk measure can also be seen as a particular KL-constrained robust MDP [42].

Di Castro et al. [18] proposed policy gradient algorithms for optimizing MV and sharpe-ratio. Actor-critic approaches 
for the same problem were proposed by Prashanth and Ghavamzadeh [48] and Tamar and Mannor [59]. Xie et al. [68]
decomposed the mean-variance objective in the same form as (2) and designed an incremental block-coordinate algorithm 
to optimize it. The inner objective is directly optimized by gradient descent, while ROSA can use any RL algorithm for this 
purpose and reduces to their approach when choosing REINFORCE.

The mean-volatility was introduced by Bisi et al. [9], who also proposed a trust-region algorithm for its optimization. 
Recently, Zhang et al. [70] showed that optimizing this risk measure can be stated as a double optimization problem. Their 
block-coordinate method is similar to ROSA but can only be applied to mean-volatility, while ours generalizes to any of the 
risk measures of Section 2.1.

6. Experiments

We conducted an empirical analysis of the proposed approach on three domains: two toy problems (a multi-armed 
bandit problem and a more complex MDP problem), a trading environment based on real financial data, and standard 
robotics benchmarks, with the last two being contexts where risk aversion plays a fundamental role. The purpose of our 
experiments is three-fold:

1. to show that ROSA can be successfully combined with different risk-neutral RL algorithms;
7
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Fig. 1. Learning curves for ROSA optimizing MV, CVaR, and ERM when combined with TRPO, PPO, SAC, and DDPG.

2. to show that ROSA outperforms existing ad-hoc methodologies;
3. to show that ROSA scales to high-dimensional continuous domains which have received little to no attention in the 

risk-averse literature.

We focused on three risk measures: mean-variance, ERM and CVaR, which are representative of all the transformations 
we propose. ERM is indeed a particular case of utility function, while we did not test the mean-volatility since thorough 
8
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Fig. 2. Results of ROSA optimizing mean-variance when combined with different risk-neutral algorithms compared to the optimal solutions.

Fig. 3. Results of ROSA optimizing CVaR when combined with different risk-neutral algorithms compared to the optimal solutions.

experiments, for an algorithm that is conceptually equivalent to ROSA, have been recently provided by Zhang et al. [70]. We 
compared our algorithm with baselines from the risk-averse RL literature for each of the chosen risk measures. We employ, 
respectively, a policy search approach [40] for ERM, a block-coordinate approach [68] for mean-variance, and GCVaR Tamar 
et al. [61] for CVaR. The implementation details, together with additional results, can be found in the appendix.

6.1. Multi-armed bandit

We consider a multi-armed bandit problem with a continuous space of actions. More precisely, the agent can take any 
action in the interval [−1, 1]. When taking an action a ∈ [−1, 1], the agent receives a reward R distributed as N (1 −
|a|, (1 − |a|)2). Clearly, the optimal risk-neutral policy is to take action a = 0 (which has maximum expected value equal to 
1). However, this action has also the largest variance and is thus risky. Therefore, depending on the chosen risk measure, 
the agent needs to trade off between taking small actions (in absolute value) to maximize the expected return, and taking 
large actions to reduce risk. Since the reward is Gaussian, we are able to compute the optimal trade-off for mean-variance 
and CVaR in closed form, which allows us to perfectly evaluate the solutions learned by ROSA.

Results We combine ROSA with four different risk-neutral algorithms: TRPO [51], PPO [54], SAC [23], and DDPG [30]. We 
report the results for mean-variance in Fig. 2. More precisely, the three figures show the optimal values of expected return, 
return variance, and mean-variance as function of the risk-aversion parameter λ compared with the solutions learned by 
ROSA combined with the four base algorithms. Among these, the right-most plot is clearly the most indicative since it 
reports the actual objective function optimized by ROSA. Notably, all the algorithms almost perfectly learn the optimal 
mean-variance curve. The fact that expected returns and return variances of the learned policies are not as close to the 
optimal curve seems to indicate that mean-variance objective function is nearly flat in a neighborhood of the optimal points. 
Moreover, the slight sub-optimality of the learned risk-neutral solutions (for λ = 0) is probably due to the fact that online 
RL algorithms tend to be sensible to return variances (especially when learning with small batch sizes), thus converging to 
slightly risk-averse solutions.

The results for CVaR are shown in Fig. 3 in the same format as those for MV. Consistently with MV, ROSA learns almost 
perfectly the optimal CVaR curve when combined with all algorithms. We report the results for ERM in Fig. 4. Differently 
from before, for ERM we cannot compute the optimal solution in closed-form, so we simply report the learned pareto 
frontiers. We can appreciate that ROSA combined with all algorithms achieves very clear pareto frontiers, where solutions 
with high expectation/variance correspond to low risk-aversion parameters and viceversa.
9
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Fig. 4. Pareto frontiers for ROSA optimizing ERM when combined with different risk-neutral algorithms.

Fig. 5. Comparison between the base risk-neutral RL algorithms with and without ROSA’s state augmentation in the Point Reacher domain.

Fig. 6. Results of ROSA optimizing MV when combined with different risk-neutral algorithms on the Point Reacher domain.

Fig. 1 report the learning curves, for Multi-armed bandit for all risk measures and base algorithms. Here we notice that 
MV seems the simplest risk measure to optimize as all algorithms converge quickly with a stable learning behavior. On 
the other hand, ERM seems the most difficult and, due to its exponentiated nature, makes some algorithms (especially the 
off-policy ones) more unstable. Nonetheless, all curves converge to good solutions as we have already seen in the previous 
plots.

6.2. Point Reacher

In the second toy problem, the agent controls a point mass that moves along the real line in order to bring it to a target 
location in the minimum number of steps. The state of the system is described by the position of the mass in the interval 
[−10, 10], while the agent chooses (continuous) actions in [−2, 2]. If the system is in state s and the agent takes action a, 
the new state is s′ ∼ N (s + a, a2) and the immediate reward is r = −0.1|s′| + a2. The goal is the ball of radius 0.05 around 
the origin. Episodes have length at most 10 and terminate whenever the agent reaches a goal state. The initial state is 
drawn uniformly in [−5.1, −5] ∪ [5, 5.1].

Results First, we investigate the effects of the state augmentation on the learning process of the standard risk-neutral ob-
jective function. To this purpose, we run the original version of our four base algorithms for optimizing the expected return 
10
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Fig. 7. Learning curves for ROSA optimizing MV, CVaR, and ERM when combined with different risk neutral algorithms on the Point Reacher domain.

and compare it to their ROSA counterparts with state augmentation (i.e., with rewards delayed to the end of the episode 
and state augmented by the running cumulative return). Fig. 5 shows the results, each point is obtained by evaluating 20
different policies (learned on 20 independent runs) on 1000 samples. While it is true that the state augmentation slightly 
slows down the learning process (especially for the off-policy algorithms), we notice that this performance degradation is 
never too severe. Moreover, convergence seems unaffected. This ablation experiment seems to confirm the intuitions of Sec-
tion 4: in this multi-step problem, TRPO and PPO suffer less from the sparser reward signal, arguably thanks to the presence 
of a mechanism to explicitly tackle credit assignment issues, namely, the generalized advantage estimator [53].

The results of ROSA optimizing the different risk measures are shown in Fig. 6 for MV, Fig. 8 for CVaR, and Fig. 9 for ERM. 
Since we cannot evaluate the optimal solutions in closed-form as before, here we plot the mean-variance Pareto frontier 
achieved by the learned policies for all risk measures. As expected, all the algorithms achieve a clear approximated Pareto 
frontier when optimizing the mean-variance. However, in terms of hyper-volume, the Pareto frontier obtained by TRPO 
seems to be the best one. Good results are also obtained for the CVaR, while a clear frontier is not achieved in ERM. The 
latter result is probably due to the fact that the adopted risk aversion parameters are all very similar and do not encode 
much risk aversion. All the algorithms seem to keep an almost constant expected return but, interestingly, they manage to 
slightly reduce variance with higher levels of risk aversion.

By inspecting the learning curves in Fig. 7, it can be observed that TRPO plots are less noisy than PPO and SAC ones, 
especially when optimizing MV with higher level of risk-aversion. For what concerns SAC, an increased variability in the 
performance is also observed while optimizing the other objectives. This can be due to either its entropy regularization 
component, which may collide with risk minimization, or to its being off-policy. This latter feature, in particular, may 
conflict with the non-stationary nature of the costs, hampering the algorithm to correctly track them. A way to circumvent 
11
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Fig. 8. Results of ROSA optimizing CVaR when combined with different risk-neutral algorithms on the Point Reacher domain.

Fig. 9. Results of ROSA optimizing ERM when combined with different risk-neutral algorithms on the Point Reacher domain.

Fig. 10. Figures report the results obtained on the Trading environment instantiating ROSA for Mean-Variance, ERM, and CVaR. The optimization was 
performed employing TRPO Schulman et al. [51]. Figs. 1a-b show the Mean-Variance trade-off for, respectively, Mean-Variance and ERM optimization tasks. 
Pareto Frontiers for both our approach and baselines are included. Figs. 1c-d reports instead the learning curve for Mean-Variance and CVaR, respectively, 
comparing the convergence of our approach and the corresponding baselines, with two different values of risk aversion.

the problem could consist in saving in the replay buffer the original samples instead of the transformed ones, in order 
to transform them w.r.t. the current η by the time the are re-sampled from the buffer. This allows to avoid re-sampling 
rewards from previous tasks, and, for the CVaR case, to decrease the number of discarded samples per trajectory. We indeed 
expect η to grow with the iterations, since the policy is improving.

6.3. Trading environment

The S&P trading environment simulates a trading scenario in which an agent has to trade a single asset, whose price 
follows the daily S&P index values from the ’80s until 2019. In each episode, the agent starts its trajectory from a random 
day of the S&P time-series and observes the ordered sequence of historical prices for 49 steps (two months). Its state is 
composed of its current portfolio, the price, and the time left until the end of the episode, plus the 10 previous prices. 
The action space in this task is discrete, and the three possible actions are: buy, sell or stay flat. The reward is equal to 
Rt = at(pt − pt−1) − f |at −at−1|, where the first term is the profit or loss given by action at , and the second term represents 
the transaction costs, where f is set to 7 · 10−5. See Bisi et al. [9] for further details.
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Fig. 11. The figures report the results obtained for the Walker and the Hopper environments on the first and the second row, respectively. Figures (a-c) and 
(e-g) display the learning curves obtained by employing ROSA to optimize, respectively, mean-variance, ERM, and CVaR. For each risk-measure, two levels 
of risk-aversion are shown. The inner optimization was performed by employing both TRPO and PPO for the Walker case, and only TRPO for the Hopper 
one. Shaded areas represent the standard deviation between 5 independent runs, while solid lines represent their means. Figures (d) and (h) show the 
trade-off between expected return and return variance obtained when optimizing mean-variance.

Results In Fig. 10, we report the results obtained in the Trading environment for all the selected risk measures. For this task, 
we instantiated ROSA with TRPO. A mean-variance Pareto frontier is plotted for both our approach and the corresponding 
baseline when optimizing mean-variance and ERM.6 The algorithms were trained with the same budget of 15M samples. 
It can be noticed that ROSA learns solutions that dominate those of the baselines. For ERM (Fig. 10b) the baselines cannot 
even obtain a clear frontier, while in Fig. 10a it is clear that the learning process is still far from convergence. The improved 
learning speed for mean-variance and CVaR can be noticed from Fig. 10c-d, which show the learning curve for two levels 
of risk aversion. Notably, ROSA achieves faster and more stable learning behavior.

6.4. Robotic locomotion

For the robotic setting, two challenging environments from the MuJoCo simulator [63] were evaluated: Walker and Hop-
per.7 The state of the robot is composed by its generalized position and velocity, while the controls are torques applicable 
to various joints. Both the state and the action spaces are continuous and high-dimensional. The reward is a linear combi-
nation of the following components: (1) a bonus for being alive, (2) a penalization for large action torques, (3) a bonus for 
moving forward, and (4) a bonus for high speed. Since these environments have deterministic dynamics, it can be difficult 
to understand the meaning of a risk-averse optimization. Therefore, we modified the task by introducing a perturbation to 
the action chosen by the agent. In particular, we added a white Gaussian noise to each action, with zero mean and a stan-
dard deviation proportional to the action magnitude. Intuitively, this models the fact that high torques have typically more 
unpredictable effects on the resulting system states. These environments, presenting high-dimensional continuous actions 
and states, are out of reach for the aforementioned baselines which performed very poorly in all our experiments. Their 
results have thus been neglected from our plots to ease readability. The experiments were run with a fixed budget of 6M 
and 2M of samples for the Walker and the Hopper environments, respectively. All the reported results are the average of 5
independent runs with shaded areas representing plus-minus standard deviation.

Results Fig. 11(a-d) shows the results we obtained on the Walker environment, where we optimized the three risk measures 
under consideration while instantiating ROSA with both PPO an TRPO. In particular, we report the learning curves of both 
algorithms for two of the risk-aversion coefficients we trained the agents with. It can be noticed that the learning process 
is stable and improving for all the objectives and for both risk-neutral algorithms. This empirically demonstrates that ROSA 
successfully optimizes the considered risk measures even in high-dimensional tasks when combined with state-of-the-art 
RL approaches. As expected, the most critical risk measure to be optimized seems to be the CVaR, which is known to pose 
many estimation issues [47]. In fact, both PPO and TRPO seems to struggle in optimizing CVaR with the higher level of risk 

6 We recall that ERM is an approximation to the mean-variance objective, so it makes sense to plot the same Pareto frontier.
7 We employed the refined version of these environments from Pybullet [19]. Moreover we set the maximum length of each episode to 500 instead of 

1000.
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Fig. 12. Comparison between TRPO with and without ROSA’s state augmentation on the Hopper environment.

aversion, while they perform well with the lower level. In Fig. 11(d), we report the approximated Pareto frontier obtained 
for the mean-variance criterion. It can be noticed that, independently from the base algorithm chosen, ROSA obtains nice 
trade-offs between expected return and return variance by varying the risk-aversion coefficient.

In Fig. 11 (e-h), we reported the results of ROSA optimizing the three risk measures on the Hopper environment, obtained 
using TRPO as base risk-neutral algorithm. Consistently with the Walker environment, ROSA successfully optimizes the 
different objectives with a stable and improving learning process. The mean-variance Pareto frontier in Fig. 11(h), generated 
from the policies learned with three different values of λ, is less clear than before since the solution associated with 
λ = 0.01 is dominated by the one of λ = 0.001. This is probably due to the fact that the optimization process of the former 
did not reach convergence in 2M steps. However, as desired, both risk-averse solutions achieve a clear variance reduction 
with respect to the risk-neutral counterpart.

Finally, as illustrated in Section 4, we recall that the state-augmentation could increase the sample-complexity for learn-
ing. In our experiments, we indeed noticed that a greater number of samples is required to solve augmented tasks. However, 
this increase revealed to be reasonable in all our experiments, even in the most complex robot locomotion tasks. In Fig. 12, 
we compare the learning curves of TRPO optimizing the expected return on the Hopper environment with and without 
ROSA’s state augmentation. We note that, despite the state augmentation, the learning process remains reasonably close to 
the one in the original state space, confirming what we have already noticed in the ablation study for the Point-Reacher 
environment.

7. Conclusions

We presented a unified framework for risk-averse RL which captures many of the most popular risk measures. Our 
simple meta-algorithm, ROSA, allows to optimize risk-sensitive policies by using any risk-neutral RL algorithm. We tested 
our approach on both a financial and a robotic setting. The empirical results presented reveal that our method combined 
with state-of-the-art policy optimization approaches scales to complex problems and outperforms ad-hoc risk-sensitive 
algorithms, while requiring minimal additional efforts, both in terms of computation and implementation, with respect to 
learning risk-neutral policies. A relevant direction for future work is to extend ROSA to the batch RL setting, which would 
further increase its applicability. Moreover, we could investigate whether our framework generalizes to a larger class of risk 
measures, such as the coherent ones. Empirically, we noticed that risk-averse agents tend to under-explore the environment, 
occasionally converging to poor local optima. As a possible workaround, it would be interesting to run ROSA starting from 
some good pre-trained risk-neutral policy.
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Appendix A. Reproducibility details

Here we provide the configurations and hyperparameters that we adopted for all the considered algorithms in our experi-
ments. We implemented ROSA on top of Stable Baselines [25]. For each algorithm and domain, we used the hyperparameters 
suggested in the library or slight variations of them.

A.1. Multi-armed bandit

TRPO We used the default MLP policy of Stable Baselines. The main parameters are: γ : 0.999, generalized advantage 
estimation factor: 0.95, maximum KL: 0.01, batch size: 200, entropy coefficient: 0.
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PPO We used the default MLP policy of Stable Baselines. The main parameters are: γ : 0.999, clip range: 0.2, generalized 
advantage estimation factor: 0.95, learning rate: 0.003, batch size: 200, entropy coefficient: 0, number of mini-batches: 1.

SAC We used the custom SAC policy from Stable Baselines. The main parameters are: γ : 0.999, learning rate: 0.001, batch 
size: 50, buffer size: 1000, entropy coefficient: automatically learned, number of gradient steps: 5. Every 500 time steps, we 
collected 50 samples under the current policy to update the outer variables.

DDPG We used the default MLP policy of Stable Baselines. The main parameters are: γ : 0.999, batch size: 50, memory 
limit: 30000, number of rollouts per iteration: 10, number of training steps per iteration: 5, noise type: Ornstein-Uhlenbeck 
with 0.1 std. Every 500 time steps, we collected 50 samples under the current policy to update the outer variables.

A.2. Point Reacher

TRPO We used the default MLP policy of Stable Baselines. The main parameters are: γ : 0.999, generalized advantage 
estimation factor: 0.95, maximum KL: 0.01, batch size: 2048, entropy coefficient: 0.

PPO We used the default MLP policy of Stable Baselines. The main parameters are: γ : 0.999, clip range: 0.2, generalized 
advantage estimation factor: 0.95, learning rate: 0.005, batch size: 2048, entropy coefficient: 0, number of mini-batches: 1.

SAC We used the custom SAC policy from Stable Baselines. The main parameters are: γ : 0.999, learning rate: 0.001, batch 
size: 100, buffer size: 20000, entropy coefficient: automatically learned, number of gradient steps: 5. Every 500 time steps, 
we collected 50 episodes (i.e., 500 additional steps) under the current policy to update the outer variables.

A.3. Trading

For this environment we used a Boltzmann policy on top of a neural-network architecture composed of 2 layers with 
64 hidden neurons each. We used the following parameters for TRPO: γ : 1, generalized advantage estimation factor: 1, 
maximum KL: 0.001, batch size: 700, entropy coefficient: 0, conjugate-gradient iterations: 10, conjugate-gradient damping: 
0.01, value-function step size: 0.0003, value-function update iterations: 3. The episodes in this setting have a fixed length of 
49 steps. The total number of iterations was 400.

The risk-aversion coefficients used for the two risk measures are λ ∈ {1, 5, 10, 20, 25, 30} for mean-variance and β ∈
{−0.1, −2, −3, −3.5, −4, −5} for ERM.

A.4. Walker and Hopper

We used a Gaussian policy on top of a neural-network architecture composed of 2 layers with 64 hidden neurons each. 
We used the following parameters for TRPO: γ : 0.999, generalized advantage estimation factor: 0.95, maximum KL: 0.01, 
batch size: 2048, entropy coefficient: 0. The episodes in this setting have a maximum length of 500. For PPO instead, the 
main parameters were: γ : 0.999, generalized advantage estimation factor: 0.95, batch size: 4096, minibatches: 32 and a 
learning rate starting from 0.0002 and decreasing with a linear schedule.
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