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A B S T R A C T

This work presents a technique to estimate on-line the global inertia of an electric power system by exploiting
the footprint of the principal frequency system dynamics. This method can estimate the inertia provided as
a whole by synchronous machines, as well as by converter-interfaced generators controlled to emulate the
behavior of the former through virtual inertia. Probing tones are injected by a grid-forming converter-interfaced
generator and its virtual rotor speed is used to extrapolate its footprint. As a result, the method requires neither
measuring the active power exchange of each synchronous generator nor extrapolating their rotor speeds.
Since the proposed technique is entirely data driven, it does not require any model of the power system
generators/prime-movers/controllers and of the interconnecting grid. The method is comprehensively tested
on a modified version of the IEEE 39-BUS system and a dynamic version of the IEEE 118-BUS system, both
containing grid-forming converter-interfaced generators.
1. Introduction

1.1. Motivation

Since the beginning of the century, the importance of estimating
the available inertia in electrical power grids has been steadily in-
creasing [1]. This explains the large amount of research on this topic
that one can find in the scientific literature. Limited to the ‘‘Scopus’’
abstract and citation database of peer-reviewed papers, those including
the keywords ‘‘inertia’’ and ‘‘power system’’ in their abstract spiked
from only 30 in 2000 to 1200 in 2022. Even if the literature concerning
this topic is vast and has been growing at a quickening pace, the
problem is still open, despite the untiring work of numerous research
groups. In this context, we present a reliable and efficient method for
estimating online the global inertia available in a power system. The
method belongs to the class of algorithms based on active perturbations,
where proper probing signals [2] are used for system identification
purposes [3,4].

1.2. Previous works

Methods for inertia estimation can be roughly classified into two
broad categories: (i) algorithms triggered by an adequate disturbance
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(i.e., a significant event in the power system); (ii) methods that either
use the measurements under normal operating conditions or rely on
the transient response to probing signals (active perturbations) injected
to seamlessly stimulate the power system. The approaches in the first
group analyze the measurements of electrical frequency and active
powers after a significant disturbance was detected [5–7]. When they
are intended for online estimation, finding the exact instant the dis-
turbance took place is of paramount importance, as misjudgments
significantly affect the estimation process. An additional drawback is
that these algorithms fail to provide updated inertia values on a contin-
uous basis, as they need a triggering event [8,9]. The algorithms in the
second group employ ambient measurements and need to run a system
identification procedure [10–13], or rely on the knowledge of accurate
real-time data [14], both potential limitations to the techniques. We
refer the interested reader to [15–17] for in-depth reviews on these
two approaches.

Focusing on active perturbation approaches, the method proposed in
[18] was verified in an actual power system and resulted effective for
small-scale islanded systems. In [19], a power system was probed by
small active power changes through an energy storage system that did
not impact the operational stability of the system. The goal was to
provide the energy storage system operators with a tool to estimate
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the unknown time-varying inertia of any generic power system and
properly tune/control their devices for fast-frequency strategies. Low-
level probing signals were used also in [20] for accurate estimation of
inertia and damping constants in microgrids by using a moving horizon
estimation approach. The method proposed in [21] is possibly the most
well-known in the considered class. The authors proposed a closed-loop
identification technique to estimate the equivalent inertia constant at
the connection bus. The method aims at estimating the inertia constant
of a single device connected to the grid.

The main source of inspiration for our work was the realm of fre-
quency synchronization of power generators. This is a necessary condi-
tion for the operation of power-grids. During steady-state operation, the
frequency is the same throughout the entire power grid and any pair of
generators has a fixed phase difference that determines the power flow.
Even if the focus of our work is not synchronization but global inertia
estimation, the main results we propose are grounded in this concept. It
is thus worthwhile mentioning that one can find in the literature many
contributions on synchronization (see for instance [22–28]).

1.3. Contribution

We provide a theoretical framework for the inertia estimation
of an entire power system based on the dynamic response of its
model containing synchronous generators equipped with primary fre-
quency control and grid-forming (GF) converter-interfaced generators
(CIGs) [29]. By interpreting the power system as a power-controlled
oscillator whose instantaneous frequency is controlled by the power
flows, we derive the analytical expression in the frequency domain of
the principal frequency system dynamics. We show that this expression
represents the behavior shared by the rotor speed of all the synchronous
generators and also by GF CIG elements present in the grid, provided
that a proper amount of synchronization (at low frequencies) is guar-
anteed among these devices. Global inertia is one of the parameters
of this expression, which can thus be estimated with appropriate
identification techniques. We show that the estimation depends neither
on the electrical characteristics of the interconnecting lines, nor on
the number of buses, controllers, governors, and synchronous machine
models but only on the collected data, i.e., the proposed estimation
method is agnostic with respect to the system.

Based on these considerations, we exploit a GF CIG that is either
already present in the power system, or can be inserted with the specific
purpose of allowing the estimation of the power system global inertia.
The probing signals used to stimulate the power system in a suitable
frequency band are injected by the GF CIG and its virtual rotor speed
is sampled. By resorting to the vector fitting (VF) technique [30–32],
we obtain the parameters that provide the best fit of the analytical
expression of the frequency spectrum of the collected samples. The
global inertia of the power system is among these parameters.

2. The power system as a power-controlled oscillator

In electronics, a voltage-controlled oscillator is an oscillator whose
frequency is controlled by an input voltage: the applied voltage deter-
mines the instantaneous oscillation frequency. Analogously, a generic
power system can be viewed as a power-controlled oscillator whose
instantaneous frequency, i.e., rotor speed of synchronous generators,
is controlled by the power flows.

In an oscillator, steady-state periodic solutions lack a phase ref-
erence [33,34]. Even if a limit cycle is unique and isolated in the
phase space, two orbits originating from two different initial conditions
belonging to this limit cycle will remain shifted in the time domain.
This property is at the origin of phase noise in oscillators [35]. From
the viewpoint of dynamical systems, according to Floquet’s theory, this
is justified by the presence of a characteristic multiplier equal to 1.

The same holds in power systems where a stationary solution is not
an isolated equilibrium but is embedded in a continuum of equilibria [36].
2
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When the power system is modeled in the dq-frame, the presence of a
characteristic multiplier equal to 1 corresponds to an eigenvalue equal
to 0 in the Jacobian matrix of the power system model linearized
around an equilibrium point [37]. Indeed, the classical power system
model aims at representing the envelope of the actual system dynamics
through a steady-state solution. In other words, the periodic steady-
state solution at the fundamental frequency with a constant envelope
is actually represented as a constant steady-state solution playing the
role of a stationary solution in the dq-frame.

In reality, the power system model is more complex than a voltage-
controlled oscillator since it is made up of several power-controlled os-
cillators (viz., synchronous generators and GF CIGs) [22,27]. An overall
instantaneous oscillation frequency, shared by all of these components,
is observed only when these local and interconnected oscillators are
synchronized. In practice, even in normal operating conditions, it never
occurs but on average. As a matter of fact, the power system model
never works at steady state because of random fluctuations in the power
consumption of the loads or in the energy production of renewable
energy sources.

To clarify these concepts, it is useful to discuss what happens in
a power system model including 𝑁 synchronous generators whose
dynamic evolution is modeled by the simple swing equation1 and that
are equipped with primary frequency control. Generators are intercon-
nected by lines and transformers, and constant-power and/or constant-
impedance loads are connected to the grid buses. Under these assump-
tions, the overall power system model is described by the following set
of 3𝑁 ordinary differential equations (ODEs),

𝜹̇ = 𝛺
(

𝝎 − 𝜔0
)

𝝎̇ = 𝑷 𝑚 − 𝑷 𝑒(𝜹) −(𝝎 − 𝜔0)

𝑻 𝑔 𝑷̇ 𝑚 = 𝑷 𝑚eq
− 𝑷 𝑚 − 𝒌𝑔𝑹−1(𝝎 − 𝜔0) ,

(1)

where the meaning of the symbols in (1) is as follows2:

– 𝛺: the base synchronous frequency in rad∕s;
– 𝝎(𝑡) ∈ R𝑁 : the per-unit (pu) rotor speeds of the machines;
– 𝜔0 ∈ R: the pu reference synchronous frequency;
– 𝜹(𝑡) ∈ R𝑁 : the rotor angles of the machines;
–  ∈ R𝑁×𝑁 : a diagonal matrix whose 𝑗th element is twice the

product of the inertia constant 𝐻𝑗 [s] and the pu rated power 𝑆𝐵𝑗
of the 𝑗th machine: 𝑗𝑗 = 2𝐻𝑗𝑆𝐵𝑗

for 𝑗 = 1,… , 𝑁 . The global
inertia of an electrical power system is given by 𝑀 =

∑𝑁
𝑗=1 𝑗𝑗 =

11,𝑁1𝑁,1 and is expressed in seconds.3

–  ∈ R𝑁×𝑁 : a diagonal matrix whose 𝑗th element is the product
of the load damping factor 𝐷𝑗 and the pu rated power 𝑆𝐵𝑗

of the
𝑗th machine: 𝑗𝑗 = 𝐷𝑗𝑆𝐵𝑗

for 𝑗 = 1,… , 𝑁 ;
– 𝑷 𝑒(𝜹) ∈ R𝑁 : the pu electrical active power exchanged by the ma-

chines. A feature of interest of 𝑷 𝑒(𝜹) is that, given a common shift
of the 𝜹 rotor angles written as 𝜹(𝑡) + 𝛼(𝑡) (where 𝛼(𝑡) is a scalar
function), the machines react so that 𝑷 𝑒(𝜹(𝑡) + 𝛼(𝑡)) = 𝑷 𝑒(𝜹(𝑡)). In
other words, power flows are only influenced by the difference
among rotor angles, and not their individual values per se.

– 𝑷 𝑚 ∈ R𝑁 : the pu mechanical power of the machines, governed
by their prime mover;

– 𝑷 𝑚eq
∈ R𝑁 : the pu mechanical power setpoint of the machines

corresponding to the power flow solution;

1 In this work, as done in [29], we model GF CIG by resorting to the swing
equation (see Section 5.1). Hence, the extension to the case in which GF CIGs
are present is straightforward.

2 The last two equations in (1) are derived introducing a proper power-base
quantity 𝑆base shared by the overall power system.

3 In the following 1𝑘 is the 𝑘 × 𝑘 identity matrix, O𝑘 is a 𝑘 × 𝑘 matrix of

ero elements, and 1𝑘,ℎ and O𝑘,ℎ are 𝑘 × ℎ matrices of 1 or 0, respectively.
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– 𝑻 𝑔 , 𝒌𝑔 , 𝑹 ∈ R𝑁×𝑁 : diagonal matrices whose elements model
the time constant, gain constant, and droop gain of the primary
frequency controls, respectively.4

It is worth noticing that the first set of 𝑁 ODEs in (1) should be
written as 𝜹̇ = 𝛺𝝎 if one wanted to completely retain the formulation in
polar coordinates of the synchronous-generator dynamical equations, in
which the rotor angle grows unbounded since the rotor keeps rotating.
Nevertheless, (1) is usually adopted to identify an equilibrium point
of the system, say [𝜹Teq,𝝎

T
eq,𝑷

T
𝑚eq

]T, neglecting the common shifting
evolution of the 𝜹 rotor angles.

By considering the linearization of (1), we have

⎡

⎢

⎢

⎣

𝛥𝜹̇
𝛥𝝎̇
𝛥𝑷̇ 𝑚

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

O𝑁 𝛺1𝑁 O𝑁
−−1𝜫 −−1 −1

O𝑁 −𝑻 −1
𝑔 𝒌𝑔𝑹−1 −𝑻 −1

𝑔

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑨

⎡

⎢

⎢

⎣

𝛥𝜹
𝛥𝝎
𝛥𝑷 𝑚

⎤

⎥

⎥

⎦

, (2)

where the 𝜫 = 𝜕𝑷 𝑒∕𝜕𝜹 matrix is the grid interconnection Laplacian
singular matrix [38] and 𝜫 = 𝜫T. The null space of 𝜫 is spanned by
ker(𝜫) = 1𝑁,1. The 𝑨 matrix is thus singular too and ker(𝑨) ≡ 𝒖1 =
[11,𝑁 ,O1,2𝑁 ]T.

When a small signal 𝒃(𝑡) ∈ R𝑁 is added to 𝑷 𝑒(𝜹(𝑡)), thus emulating
the injection of (stochastic) disturbances or probing signals, the 𝑁
DEs in (1) governing 𝝎̇ become

𝝎̇ = 𝑷 𝑚 − 𝑷 𝑒(𝜹) −(𝝎 − 𝜔0) + 𝒃(𝑡) . (3)

Since 𝑨 is singular, it is not possible to exploit (2) to obtain an
approximate solution of (3) in the neighborhood of [𝜹Teq,𝝎

T
eq,𝑷

T
𝑚eq

]T.
Nevertheless, in this case, the singularity of 𝜫 is a key aspect to
allow resorting to the small-signal formulation to study the perturbed
evolution of 𝝎(𝑡) = 𝝎eq + 𝛥𝝎(𝑡). To explore this aspect, let us define
𝒖𝑘 and 𝒗𝑘 as the 3𝑁 right and left eigenvectors of 𝑨, respectively (𝒖1
and 𝒗1 are associated to the 𝜆1 = 0 eigenvalue). So doing we are
assuming that 𝑨 has distinct eigenvalues (their values are related to
the eigenvalues of 𝜫 [38] and to the primary frequency control time
constants) and is diagonalizable.

Because of the bi-orthogonality property of eigenvectors (i.e., 𝒗T𝑘𝒖𝑗
≠ 0 only if 𝑘 ≠ 𝑗), it is always possible to write5

⎡

⎢

⎢

⎣

O𝑁,1
−1𝒃(𝑡)
O𝑁,1

⎤

⎥

⎥

⎦

= 𝒗T1
⎡

⎢

⎢

⎣

O𝑁,1
−1𝒃(𝑡)
O𝑁,1

⎤

⎥

⎥

⎦

𝒖1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒃𝛿 (𝑡)

+
3𝑁
∑

𝑘=2
𝒗T𝑘

⎡

⎢

⎢

⎣

O𝑁,1
−1𝒃(𝑡)
O𝑁,1

⎤

⎥

⎥

⎦

𝒖𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒃𝛿𝜔(𝑡)

. (4)

Since, as derived in Appendix A,

𝒗1 = ker(𝑨T) = 𝛺
11,𝑁𝜣1𝑁,1

⎡

⎢

⎢

⎣

1𝑁,1𝜣𝛺−1

1𝑁,1
𝑻 𝑔1𝑁,1

⎤

⎥

⎥

⎦

, (5)

one obtains

𝒃𝛿(𝑡) =
𝛺

11,𝑁𝜣1𝑁,1

[

11,𝑁𝒃(𝑡)1𝑁,1
O2𝑁,1

]

, (6)

and

𝒃𝛿𝜔(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

−𝛺11,𝑁 𝒃(𝑡)1𝑁,1
11,𝑁𝜣1𝑁,1

−1𝒃(𝑡)

O𝑁,1

⎤

⎥

⎥

⎥

⎥

⎦

, (7)

here 𝜣 =  + 𝒌𝑔𝑹−1.

4 For the sake of simplicity, we assume that all the 𝑁 synchronous gen-
erators are equipped with primary frequency control. The less generic case
in which only a subset of them shares this property can be straightforwardly
formalized.

5 In general, for 𝑘 = 1…3𝑁 , 𝒗T𝑘𝒖𝑘 ≠ 1 but it is always possible to scale each
𝒗𝑘 w.r.t. 𝒗T𝑘𝒖𝑘, thus obtaining a new vector 𝒗̂𝑘 such that 𝒗̂T𝑘𝒖𝑘 = 1. This is done
3

in the following but omitting the ̂ symbol to keep notation terse. s
The effect of 𝒃𝛿(𝑡) is thus to synchronously shift all the components
of 𝜹 of the same time-varying quantity

𝛼(𝑡) = 𝛺 ∫

𝑡

0

11,𝑁𝒃(𝜏)
11,𝑁𝜣1𝑁,1

𝑑𝜏 , (8)

without altering the 𝝎(𝑡) vector since 𝑷 𝑒(𝜹(𝑡) + 𝛼(𝑡)) = 𝑷 𝑒(𝜹(𝑡)). If 11,𝑁
𝒃(𝜏) has a nonzero mean value 𝛼(𝑡), would increase unbounded. This
would be true even if 𝒃(𝜏) were a vector of random variables with zero
mean and finite variance as the Ornstein-Uhlenbeck (OU) processes
typically used to model stochastic variability of power loads [39–42].
As a matter of fact, 𝛼(𝑡) would exhibit unbounded variance [43] and
hus the effect of 𝒃𝛿(𝑡) cannot be treated as that of a small signal, even being
𝛿(𝑡) actually small. In the literature, this is known as phase noise [35].

On the contrary, it is possible to compute the effect of 𝒃𝛿𝜔(𝑡) by
esorting to the small-signal approach since it is easy to verify that
T
1𝒃𝛿𝜔(𝑡)𝒖1 = 0. This implies that 𝒃𝛿𝜔(𝑡) does not produce any effect
imilar to 𝛼(𝑡). That is, it is not responsible for coherent phase shifting
n the entire power system but produces small fluctuations that are
ifferent for all the components of 𝜹(𝑡). The main implication of this
esult is that, in the presence of a small signal 𝒃𝛿𝜔(𝑡), the power system
oes not remain synchronized. In other words, it is possible to prove
hat, in the presence of the small signal 𝒃𝛿𝜔(𝑡), the assumption that the
ower system remains synchronized, viz. 𝛥𝜔𝑘(𝑡) ≡ 𝛥𝜔(𝑡) for 𝑘 = 1,… , 𝑁
or, equivalently, 𝜟𝝎(𝑡) = 𝛥𝜔(𝑡)1𝑁,1) is inconsistent with the equations
overning the power system itself. This can be derived by focusing on
he ODEs governing the dynamics of 𝛥𝝎. We can write

𝛥𝝎̇ = 𝛥𝑷 𝑚 −𝜫(𝛼(𝑡)1𝑁,1 + 𝛥𝜹(𝑡)) −𝛥𝝎 + 𝒃(𝑡)
= 𝛥𝑷 𝑚 −𝜫𝛥𝜹(𝑡) −𝛥𝝎 + 𝒃(𝑡)
= 𝛥𝑷 𝑚 −𝜫 ∫ 𝛺𝛥𝝎(𝑡)𝑑𝑡 −𝛥𝝎 + 𝒃(𝑡) ,

(9)

ith 𝛥𝝎 evolving in the neighborhood of 𝝎eq, i.e., of the frequency at
he equilibrium point. It is worth noticing that, thanks to the singularity
f 𝜫 , the possibly unbounded contribution of 𝛼(𝑡)1𝑁,1 does not affect
𝝎̇.

Assuming 𝛥𝝎(𝑡) = 𝛥𝜔(𝑡)1𝑁,1, 𝛥𝜔(0) = 0, and 𝛥𝑷 𝑚(0) = O𝑁,1, Eq. (9)
an be transformed in the 𝑠-domain as
𝛥𝜔(𝑠)1𝑁,1 = 𝛥𝑷 𝑚(𝑠) −𝛺 𝛥𝜔(𝑠)

𝑠 𝜫1𝑁,1
⏟⏟⏟
O𝑁,1

−𝛥𝜔(𝑠)1𝑁,1 + 𝒃(𝑠)

= 𝛥𝑷 𝑚(𝑠) − 𝛥𝜔(𝑠)1𝑁,1 + 𝒃(𝑠) .

ince 𝛥𝑷 𝑚(𝑠) = −
(

𝑠𝑻 𝑔 + 1𝑁
)−1 𝒌𝑔𝑹−11𝑁,1𝛥𝜔(𝑠), we obtain

1𝑁,1𝛥𝜔(𝑠) = 𝒃(𝑠) , (10)

here 𝜩 = 𝑠 + +
(

𝑠𝑻 𝑔 + 1𝑁
)−1 𝒌𝑔𝑹−1. It is worth noting that the

bove equality is not verified in general. Indeed, 𝜩 is a diagonal matrix
hat generically does not contain identical elements in its diagonal,
hile the right-hand side of Eq. (10) leads to a column vector of possi-
ly different elements. As a consequence, it is not possible to generally
nsure that 𝛥𝝎(𝑡) = 𝛥𝜔(𝑡)1𝑁,1, thus violating the initial hypothesis that
enerators remain synchronized in the presence of a small signal 𝒃𝛿𝜔(𝑡).

How is it possible to reconcile this result with the well-known exper-
mental evidence that, in properly connected power systems, the com-
onents of 𝛥𝝎(𝑡) share almost the same spectrum at low frequency?6

To answer this question, let us consider the small perturbation of the
o-called principal frequency system dynamics, viz. the frequency that can
e defined for the center of inertia (COI) of the system [44], i.e.,

𝜔coi(𝑡) =
∑𝑁

𝑘=1 𝑆𝐵𝑘
𝐻𝑘𝛥𝜔𝑘(𝑡)

∑𝑁
𝑘=1 𝑆𝐵𝑘

𝐻𝑘
, (11)

which can also be recast as

𝛥𝜔coi(𝑡) = 11,𝑁𝛥𝝎(𝑡), (12)

6 The interested reader can find in Appendix B an exemplification of this
tatement.
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Fig. 1. The schematic of the power test system. 𝑅𝐿 is a resistive load, 𝑏1(𝑡) and 𝑏2(𝑡)
are small-signal (stochastic) perturbations that vary the active power absorbed by the
grid at the power flow solution and which are neglected in the large-signal model of
the power system. For the sake of simplicity, the internal impedance of both 𝐺1 and 𝐺2
is assumed to be zero, and only the 𝐺1 generator is equipped with a turbine governor.

where  = 11,𝑁1𝑁,1 is the power system global inertia already
defined in the previous section. The ODE governing the evolution of
𝛥𝜔coi(𝑡) is

𝛥𝜔̇coi(𝑡) = 11,𝑁𝛥𝝎̇(𝑡)
= 11,𝑁

(

𝛥𝑷 𝑚 − 𝛥𝑷 𝑒 −𝛥𝝎 + 𝒃(𝑡)
)

.
(13)

If we write 𝒃 = 𝒃lf + 𝒃hf , where lf and hf stand for low- and high-
frequency, respectively, and 𝒃lf is assumed to generate 𝛥𝝎(𝑡) ≈ 𝛥𝜔(𝑡)1𝑁,1,
we obtain 𝛥𝜔coi(𝑡) ≈ 𝛥𝜔(𝑡). Based on the properties derived so far, it is
possible to express the dynamics of 𝛥𝜔(𝑡) in the Laplace domain at low
frequency as

𝛥𝜔(𝑠) =
11,𝑁𝒃lf (𝑠)

𝑠 + 11,𝑁

(

 +
(

𝑠𝑻 𝑔 + 1𝑁
)−1 𝒌𝑔𝑹−1

)

1𝑁,1

. (14)

In particular, Eq. (14) provides the expression of the frequency spec-
trum almost shared by all the 𝛥𝜔𝑘(𝑡) variables at low frequency.

As it is shown in Appendix C, by assuming that each of the 𝑁̃ ≤ 𝑁
primary frequency-controller block is characterized by a different time
constant, the denominator of (14) is an (𝑁̃ +1)-order polynomial in the
𝑠 variable, hence (14) can be recast as

𝛥𝜔(𝑠) = 𝜂(𝑠)
𝑁̃+1
∑

𝑘=1

𝑐𝑘
𝑠 − 𝑎𝑘

,

where 𝑎𝑘 (𝑘 = 1,… 𝑁̃ + 1) are the poles, 𝑐𝑘 (𝑘 = 1,… 𝑁̃ + 1) are the
residues, and 𝜂(𝑠) = 11,𝑁𝒃lf (𝑠). Furthermore, it can be derived that
−1 =

∑𝑁̃+1
𝑘=1 𝑐𝑘.

3. Global inertia estimation: an insight

Our aim is exploiting (14) to systematically derive the global inertia
 of a given power system. To give an example-driven insight into the
approach we are proposing, we present a simple case-study whose first
goal is to show how Eq. (14) can be derived.

3.1. Low-frequency characterization

The large-signal model of the system in Fig. 1, in which the 𝑏1(𝑡) and
𝑏2(𝑡) small-signals are neglected, is given by the following equations:

𝛿̇1 = 𝛺
(

𝜔1 − 𝜔0
)

𝛿̇2 = 𝛺
(

𝜔2 − 𝜔0
)

1𝜔̇1 = 𝑃𝑚1
− 𝑃𝑒1 (𝛿1, 𝛿2) −1

(

𝜔1 − 𝜔0
)

2𝜔̇2 = 𝑃𝑚2
− 𝑃𝑒2 (𝛿1, 𝛿2) −2

(

𝜔2 − 𝜔0
)

𝑇𝑔1 𝑃̇𝑚1
= 𝑃𝑚eq1

− 𝑃𝑚1
− 𝑘𝑔1𝑅

−1
1

(

𝜔1 − 𝜔0
)

, (15)

where

𝑃𝑒1 (𝛿1, 𝛿2) =
1

𝑅2 +𝑋2

[

𝑅𝜌21 − 𝑅𝜌1𝜌2 cos(𝛿1 − 𝛿2) +𝑋𝜌1𝜌2 sin(𝛿1 − 𝛿2)
]
𝜌21
𝑅𝐿

,

and

𝑃 (𝛿 , 𝛿 ) = 1 [

𝑅𝜌2 − 𝑅𝜌 𝜌 cos(𝛿 − 𝛿 ) +𝑋𝜌 𝜌 sin(𝛿 − 𝛿 )
]

.

4

𝑒2 1 2 𝑅2 +𝑋2 2 1 2 2 1 1 2 2 1
Table 1
Parameters for the case study in Fig. 1.
𝑆𝐵1

1 pu 𝑆𝐵2
1pu 𝑉base 100 kV

𝐷1 1 𝐷2 1 𝑍base 100Ω
𝐻1 4 s 𝐻2 2.5 s 𝑅𝐿 10∕9 pu
𝑇𝑔1 50 s 𝑘𝑔1𝑅

−1
1 50 𝑅=𝑋 10−3 pu

𝑃𝑚eq 1
0.4pu 𝑃𝑚eq 2

0.6pu 𝑆base 100MVA

The last equation in (15) models the turbine governor connected to
the 𝐺1 generator.7 The power system is assumed to be at steady state,
with 𝜔𝑘 = 𝜔eq𝑘 = 𝜔0 = 1, 𝛿𝑘 = 𝛿eq𝑘 , and 𝑃𝑚𝑘

= 𝑃𝑚eq𝑘
= 𝑃𝑒𝑘 (𝛿eq1 , 𝛿eq2 ) for

𝑘 ∈ {1, 2}. The small-signal equivalent model of (15), including now
the small-signal additive perturbations projected according to (4), is

𝛥𝛿̇1 = 𝛺𝛥𝜔1
𝛥𝛿̇2 = 𝛺𝛥𝜔2

1𝛥𝜔̇1 = 𝜉(𝛥𝛿2 − 𝛥𝛿1) −1𝛥𝜔1 + 𝛥𝑃𝑚1
+ 𝑏1(𝑡)

2𝛥𝜔̇2 = 𝜈𝜉(𝛥𝛿1 − 𝛥𝛿2) −2𝛥𝜔2 + 𝑏2(𝑡)
𝑇𝑔1𝛥𝑃̇𝑚1

= −𝛥𝑃𝑚1
− 𝑘𝑔1𝑅1

−1𝛥𝜔1

(16)

where

𝜉 =
𝜌1𝜌2

𝑅2 +𝑋2

(

𝑅 sin(𝛿eq1 − 𝛿eq2 ) +𝑋 cos(𝛿eq1 − 𝛿eq2 )
)

,

and

𝜈 =
1 − 𝑅

𝑋 tan(𝛿eq1 − 𝛿eq2 )

1 + 𝑅
𝑋 tan(𝛿eq1 − 𝛿eq2 )

.

By transforming (16) in the Laplace domain, the 𝛥𝜔1(𝑠) and 𝛥𝜔2(𝑠)
small-signal variations of the rotor speeds of the two synchronous
generators can be written as

𝛥𝜔1(𝑠) =
𝛽13 (𝑠)𝑠

3 + 𝛽12 (𝑠)𝑠
2 + 𝛽11 (𝑠)𝑠 + 𝛽10 (𝑠)

𝛼4𝑠4 + 𝛼3𝑠3 + 𝛼2𝑠2 + 𝛼1𝑠 + 𝛼0

𝛥𝜔2(𝑠) =
𝛽23 (𝑠)𝑠

3 + 𝛽22 (𝑠)𝑠
2 + 𝛽21 (𝑠)𝑠 + 𝛽20 (𝑠)

𝛼4𝑠4 + 𝛼3𝑠3 + 𝛼2𝑠2 + 𝛼1𝑠 + 𝛼0

, (17)

where the 𝛼𝑘 and 𝛽𝑗𝑘 coefficients are reported in Appendix D. For
sufficiently small values of 𝑠 (i.e., at low frequency), in (17) we can
neglect 𝛼𝑘𝑠𝑘 for 𝑘 ∈ {3, 4} and 𝛽𝑗𝑘𝑠

𝑘 for 𝑘 ∈ {2, 3}, 𝑗 ∈ {1, 2}.
Furthermore, in the coefficients reported in Appendix D we neglect all
the terms divided by 𝜉𝛺, since we assume 𝜉𝛺 ≫ 1 and 𝜈 ≈ 1. So doing,
both 𝛥𝜔1(𝑠) and 𝛥𝜔2(𝑠) reduce to

𝛥𝜔(𝑠)

=
(𝑠𝑇𝑔1+1)(𝑏

lf
1 (𝑠)+𝑏

lf
2 (𝑠))

𝑠2
(

1+2
)

𝑇𝑔1+𝑠
((

1+2
)

𝑇𝑔1+1+2
)

+
((

1+2
)

+𝑘𝑔1𝑅
−1
1

) .

(18)

The same expression can be derived from the most generic one in (14).
Fig. 2 shows the plots corresponding to the (17) and (18) expres-

sions. As it can be noticed, the approximation is extremely good for
𝑓 < 10 Hz. The expressions of 𝛥𝜔1(𝑠) and 𝛥𝜔2(𝑠) at low frequencies turn
out to be identical; this means that the 𝛥𝛿1 and 𝛥𝛿2 corresponding angles
vary in a synchronized way.

7 We modeled turbine governors with a dominant pole transfer function, as
done for example in [22]. Some turbine governors may require a more complex
transfer function consisting of a zero and a pair of higher frequency poles.
To keep notation simple, we adopted in this example the former modeling.
Nonetheless, the proposed methodology is compatible with any governor
model.
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Fig. 2. The modulus and the phase of 𝛥𝜔1 (in magenta, see (17)), 𝛥𝜔2 (in green, see
17)), and 𝛥𝜔 (in black, see (18)) are shown in the upper and lower panel, respectively.
hese curves are derived for the power system in Fig. 1 with 𝜈 = 1.002 and by assuming
he parameters’ value reported in Table 1. 𝑏1(𝑡) and 𝑏2(𝑡) are sinusoidal functions whose
hase is zero and whose amplitude is fixed at 100 kW and 500 kW, respectively, for each
alue of 𝑓 .

.2. Global inertia estimation

As we did for (14), since in this case 𝑁̃ = 1, we can recast (18) as

𝜔(𝑠) =
(

𝑐1
𝑠−𝑎1

+ 𝑐2
𝑠−𝑎2

)

𝜂(𝑠)

= (𝑐1+𝑐2)𝑠−𝑐1𝑎2−𝑐2𝑎1
𝑠2−𝑠(𝑎1+𝑎2)+𝑎1𝑎2

𝜂(𝑠)

=

(

1
1+2

𝑠+ 1
(1+2)𝑇𝑔1

)

𝜂(𝑠)

𝑠2+
(

1
𝑇𝑔1

+ 1+2
1+2

)

𝑠+
1+2+𝑘𝑔1𝑅

−1
1

(1+2)𝑇𝑔1

(19)

here 𝑎1 and 𝑎2 are the poles, 𝑐1 and 𝑐2 are the residues, and 𝜂(𝑠) =
lf
1 (𝑠) + 𝑏lf2 (𝑠). From (19) we see that 𝑀 = 1 + 2 can be derived
hrough the 𝑐1 + 𝑐2 term by performing an experiment.8 Let us assume
o vary 1 of a known constant value 𝛥 (varying 2 is totally
quivalent). This variation does not alter the power flow solution of
he system but how the rotor speed of the 𝐺1 generator reacts to power
mbalances. Before the experiment, we have 𝑐1+𝑐2 = (1+2)−1 (see
he coefficient of the 𝑠 term at the numerator of the second and third
xpressions of (19)) and after the experiment 𝑐1 + 𝑐2 = (1 + 2 +
)−1, from which we derive

𝑀 =
𝑐1 + 𝑐2

𝑐1 + 𝑐2 − 𝑐1 − 𝑐2
𝛥 . (20)

t first we perform a proper frequency scan of the system (limited to a
ow frequency range, where generators are synchronized) by acting on
ither 𝑏1(𝑡) or 𝑏2(𝑡) (or both) to numerically derive (18). Then, we use
he VF technique [30–32] to fit (19) and determine the pairs of 𝑐1, 𝑐2
nd 𝑐1 and 𝑐2 coefficients (i.e., before and after the experiment) and,
hus, 𝑀 .

This approach presents several drawbacks. First and foremost, in
ractice it is typically not possible to act on the inertia constant of
he synchronous machines. Secondly, a complete frequency scan is
lso unfeasible. Lastly, the rotor speed of the synchronous machines
s unlikely to be available. In the following, we show how to overcome
hese issues.

8 Even this very simple power system is governed by a set of nonlinear
DEs (see (15)). The small-signal equivalent model of (15) can be written in
losed form, but Eq. (18) can be derived only by approximating the coefficients
f Eq. (17), as we described in Section 3.1. This means that, even if we were
ble to control 𝑏1(𝑠) and 𝑏2(𝑠), the 𝜂(𝑠) input in (19) is not directly controlled

since we should be able to derive how 𝑏1(𝑠) and 𝑏2(𝑠) split to 𝑏lf1 (𝑠) and 𝑏lf2 (𝑠).
As a consequence, the 𝜂(𝑠) cannot be separated out in the overall coefficient
5

of 𝑠 in the last equation of (19), and the experiment is needed.
4. Global inertia estimation: a method

The experiment described in Section 3.2 can be implemented by
resorting to a grid-forming (GF) converter-interfaced generator (CIG)
(see 1⃝ in Fig. 3). This device may already be present in the power
system or can alternatively be inserted with the specific purpose of
allowing the estimation of the power system global inertia. As shown in
Section 5, the state equations governing the dynamics of this device are
similar to those reported in (1). Hence its equivalent rotor speed 𝜔gf
ecomes one of the entries of the 𝝎 vector and its equivalent inertia

constant one of the diagonal elements of the  matrix. Proper low-
frequency small-signal tones injected through the GF CIG itself can
contribute to the 11,𝑁𝒃lf (𝑠) term in Eq. (14). By observing the frequency
esponse of the equivalent rotor speed of the GF CIG, once those tones
re injected, we can obtain a proper set of samples of (14). We recall
hat (14) provides the expression in the Laplace domain shared (at low
requency) by all the components of 𝝎 and hence of 𝜔gf . By varying
he GF CIG equivalent inertia constant and fitting the samples of (14)
efore and after this variation, it is possible to derive the global inertia
f the entire power system.

We underline that the reader must not be confused at this point:
y injecting small-signal power perturbations through the CIG and
easuring its virtual rotor speed, we do not estimate the CIG virtual
ontribution to the overall system inertia, as it is done in several papers
n the literature. On the contrary, we estimate the global inertia of the
ntire power system (CIG included). In other words, the CIG can be
iewed as a probing-signal source, whose virtual inertia is known and
an be modified during the experiment needed to obtain 𝑀 .

The method we developed gives a continuous estimate of the global
nertia and is summarized in the flowchart of Fig. 3. Since we use the
F algorithm [30–32] to estimate the residues and the poles of (14),
e need frequency samples of both its modulus and phase. This forbids

esorting to the power spectral density of 𝜔gf when its fluctuation is
olely given by the noisy generated/absorbed powers. We thus opted
o modulate the power injected by the CIG by a discrete set of 
eterministic and coherent small-signal sinusoidal tones 𝑠𝑤(𝑡) (𝑤 =
,… , ). The choices of  and of the 𝑓𝑤 frequency of each tone
epend on the bandwidth that has to be explored to fit (14) (see 2⃝
n Fig. 3). It is worth mentioning that  must be fixed in excess
ith respect to the residues and poles number of (14). The 𝑠𝑤(𝑡) tones
re very slowly varying and of modest magnitude [45–47], therefore
hey do not impact the stability of the power system. Such tones
ere designed by exploiting the Crest Factor Minimization approach
resented in [45–47].

The equivalent inertia constant of the CIG varies as a square wave-
orm of amplitude 𝛥, period 𝑇𝛥, and duty cycle 50%. The power
ystem is stimulated by injecting the 𝑠𝑤(𝑡) waveforms and the time
amples of 𝜔gf are collected (see 3⃝ in Fig. 3). We computed the 𝛾𝑤𝑐
nd 𝛾𝑤𝑠

direct and quadrature components of the Fourier integrals of
gf at each 𝑓𝑞 frequency as (see 4⃝ in Fig. 3)

𝛾𝑤𝑐
=

𝑓𝑤
𝜇 ∫

𝑡0+
𝜇
𝑓𝑤

𝑡0
𝜔gf (𝑡) cos(2𝜋𝑓𝑤𝑡)𝑑𝑡

𝛾𝑤𝑠
=

𝑓𝑤
𝜇 ∫

𝑡0+
𝜇
𝑓𝑤

𝑡0
𝜔gf (𝑡) sin(2𝜋𝑓𝑤𝑡)𝑑𝑡 .

(21)

The 𝛾𝑤𝑐
and 𝛾𝑤𝑠

terms constitute the frequency samples that feed the
VF algorithm (see 5⃝ in Fig. 3). Note that if it is necessary to reduce
the effects of noise to increase the signal-to-noise ratio, the integrals in
(21) can be computed over a time interval 𝜇∕𝑓𝑤 which is a multiple of
the period of the corresponding tone 𝑠𝑤(𝑡). The 𝑡0 time instant in (21)
coincides with the rising and falling edges of the square waveform used
to periodically change the virtual inertia of the CIG. Assuming 𝑠1(𝑡) as
the tone with the lowest frequency, 𝑓1 suggests how to choose 𝑇𝛥,
i.e., 𝑇 ∕2 > 𝜇∕𝑓 .
𝛥 1
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Fig. 3. The flow chart of the proposed method. Steps from 3⃝ to 6⃝ are periodically
repeated.

As shown in the next section, the proposed estimation method can
be applied to bigger power systems than that shown in Fig. 1 by
resorting to (14). Indeed, also (14) can be recast through a partial
fraction decomposition analogous to (19). Thus, even in more complex
cases, the process to estimate the global inertia still relies on (20) (see
6⃝ in Fig. 3) and vector fitting.

5. Numerical examples

5.1. Virtual synchronous generator

A grid-forming (GF) converter-interfaced generator (CIG) imple-
ments a control scheme that simulates the mechanical dynamical be-
havior of a synchronous machine (swing equation) by means of a
power converter. Among others, this implementation can provide in-
ertia, damping, and primary frequency control — features that are
particularly useful in grids with a significant penetration of renewable
energy sources and therefore reduced inertia.

The proposed approach to estimate the 𝑀 global inertia exploits
the GF CIG model described in [29]. By adopting an average inverter
model equipped with an LC filter and vector current control, it provides
virtual inertia by implementing the swing equation with frequency
droop control and replicates the stator impedance of the synchronous
generator. Importantly, the vast majority of CIGs that provide synthetic
inertia reproduce the mechanical behavior of a synchronous machine
(i.e., the swing equation), but also add the dynamics of the electronic
converters, given by its controls and filters: so doing, they fail to
replicate the full electro-mechanical behavior of synchronous machines
due to windings, including dampers. The CIG model in [29] belongs
to this category and therefore implements only the swing equation,
leading to a different spectral footprint at high frequencies with respect
to a real synchronous generator. In our simulations, we implemented
and used the full model detailed in [29]. For the sake of brevity,
hereafter we report only its implementation of the swing equation

𝛿̇gf = 𝛺
(

𝜔gf − 𝜔0
)

2𝑇𝑎𝜔̇gf =
(

1 + 𝜂gf
)

𝑃𝑔 − 𝑃𝑒 −𝐾𝑑
(

𝜔pll − 𝜔gf
)

− 𝐾𝑤
(

𝜔gf − 𝜔0
)

𝑃𝑒 = (𝑉𝑑𝐼𝑑 + 𝑉𝑞𝐼𝑞)𝑆−1
ref

, (22)

where 𝑉𝑑 , 𝐼𝑑 , 𝑉𝑞 , and 𝐼𝑞 are the voltages and currents of the generator
in the dq-frame that lead to the 𝑃 electrical active power (pu), 𝑆
6

𝑒 ref
is the power rating of the CIG, 𝑇𝑎 is the (virtual) inertia constant, 𝑃𝑔
is the generated power setpoint at system frequency 𝜔0 (pu), 𝐾𝑤 is
the load damping, 𝛿gf is the angle deviation of the virtual rotor, 𝜔gf
is the virtual rotor angular speed (pu), 𝜔pll is the electrical angular
frequency of the voltage at the connection bus (pu), 𝐾𝑑 regulates the
virtual rotor speed according to the electrical angular frequency of the
bus to which the CIG is connected, thus emulating frequency slip (in
our case, 𝐾𝑑 = 0). 𝜂gf is the small signal used to perturb the power
system, which modulates the active power setpoint of the CIG.

5.2. Load models

The 𝑙th load model (for 𝑙 = 1,… , 𝐿) is

L𝑙 =
(

1 + 𝜂𝑙(𝑡)
)

𝑃L0𝑙

(

|

|

𝑉𝑙||
𝑉0𝑙

)𝛾

, (23)

where 𝑃L0𝑙 is the nominal active power of the load, 𝑉0𝑙 is the load
voltage rating, 𝑉𝑙 is the bus voltage at which the load is connected,
and 𝛾 governs the dependence of the load on bus voltage (hereafter
assumed to be null). By applying the 𝜂𝑙(𝑡) small signal, we can perturb
the load power.

In the time domain simulations of stochastic load fluctuations, we
assume that 𝜂𝑙(𝑡) is an Ornstein-Uhlenbeck (OU) process [40]. The OU
processes (one for each load) are defined through the set of stochastic
differential equations (SDEs)

𝑑𝜼 = −𝜰𝜼 𝑑𝑡 +𝜮 𝑑𝑾 𝑡 , (24)

where the drift 𝜰 ∈ R𝐿×𝐿 and diffusion 𝜮 ∈ R𝐿×𝐿 are diagonal matrices
with positive entries, 𝑾 𝑡 ∈ R𝐿 is a vector of Wiener processes, and
the differentials rather than time derivatives are utilized to account
for the idiosyncrasies of SDEs. The 𝐿 OU processes are characterized
by a mean-reversion property and exhibit bounded standard deviation
that can be written as 𝜎2𝑙 ∕(2𝜐𝑙), for 𝑙 = 1,… , 𝐿, where 𝜎𝑙 and 𝜐𝑙 are
the diagonal elements of 𝜮 and 𝜰 , respectively [48]. Moreover, these
processes show a spectrum that is an accurate model of the stochastic
variability of power loads [40,42,49,50].

To carry out the simulations discussed below, the numerical in-
tegration of the multi-dimensional OU process in (24) was based on
the numerical scheme proposed by Gillespie in [51]. Furthermore, the
second-order trapezoidal implicit weak scheme for stochastic differen-
tial equations with colored noise [52], available in the simulator PAN
[53–55], was adopted.

5.3. The IEEE 39-BUS test system

We used as first benchmark a modified version the IEEE 39-BUS
system [56]. The grid contains 10 generators and 46 lines and is a
simplified model of the New England power system. Its schematic is
reported in Fig. 4. The 𝐺1 generator models the aggregate behavior of
a large number of generators. This is reflected in its inertia value, which
is one order of magnitude larger than that of the other generators in the
grid (see Table 2). The IEEE 39-BUS system version we started from is
that in the distribution of POWERFACTORY by DIGSILENT.

We also inserted three CIGs at bus8, bus14 and bus27 (highlighted
in red in Fig. 4), which respectively model an aggregated wind power
plant, and two battery storage systems. Each CIG is characterized by
a 50 s inertia constant, with 𝑃𝑔 = 1pu and 𝑆ref = 100MVA (see (22)).
In particular, the CIG used for the experiment is the one connected
at bus14. It is worth pointing out that there is not a preferred bus to
which one should connect the CIG used for this purpose. In any case,
the proposed estimation algorithm takes into account every component
affecting the global inertia (including the synthetic inertia contributed
by CIGs). In this case study, 𝑀 = 186.4GVAs, 30GVAs of which are
contributed by the three GF CIGs as a whole.
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Table 2
Synchronous generators 𝐻 and 𝑆𝐵 (𝑆base = 100MVA).

Gen. 𝐻 [s] 𝑆𝐵 [pu] Gen. 𝐻 [s] 𝑆𝐵 [pu]

𝐺1 5.00 100 𝐺6 4.35 8
𝐺2 4.33 7 𝐺7 3.77 7
𝐺3 4.47 8 𝐺8 3.47 7
𝐺4 3.57 8 𝐺9 3.45 10
𝐺5 4.33 6 𝐺10 4.20 10

Firstly, we performed an (ideal) frequency scan9 assuming 𝜂gf (𝑡)
s a small-signal sinusoidal source and by turning off the stochastic
ariations of the loads. So doing, we computed all the transfer functions
etween 𝜂gf (𝑡) and the rotor speed of each synchronous machine and
IG. Fig. 5 (upper panel) reports these transfer functions. We can notice
hat they almost perfectly overlap at frequencies below 0.1Hz while
hey sensibly differ for higher frequency values. This result carries
imilar information as that in Fig. 2. Note that these transfer functions
how how rotor speeds deviate from 𝜔0 under the assumption of small-
ignal behavior (linear behavior in the neighborhood of the equilibrium
oint, i.e., power-flow). These spectra show that if we think of a step
erturbation, during the first time interval after its application, say

9 In the conventional frequency scan, the power system is linearized at
ts power flow solution and, by resorting to the Jacobian matrices of the
ifferential algebraic equations (DAEs) governing the dynamics of the power
ystem model, the frequency response of the (linearized) system to a pure
inusoidal-tone injection is computed. This implements the well known AC

small-signal analysis technique. If one considers the simpler case in which
the power system is governed by a set of ODEs, starting from (1) and its
linearization reported in (2), the injection through the CIG of 𝜂gf (𝑡) yields the
formulation reported in (9). By transforming the latter in the Laplace domain,
similarly to what was explicitly done for 𝜟𝝎(𝑡) = 𝛥𝜔(𝑡)1𝑁,1 (see (10)), the
ransfer functions between any element of 𝒃 and any element of 𝛥𝝎 can be

derived.
7

Fig. 5. Upper panel: the magnitude squared of the transfer functions between 𝜂gf (𝑡) and
he rotor speed of each synchronous machine and CIG of the (modified) IEEE 39-BUS
ystem. Lower panel: power spectral densities of the rotor speed of each synchronous
achine and CIG of the (modified) IEEE 39-BUS system when the stochastic noise in

he loads is turned on. In both panels the red curve refers to the CIG connected at
bus14.

0.1 s → 10Hz, the synchronous generators lose synchrony and counter-
act power imbalance in a non-coordinated way. This behavior persists
up to 2 s → 0.5Hz, at which point the synchronous generators and CIGs
o toward re-synchronization (low frequency behavior). By observing
he low frequency overlapping of all the curves in Fig. 5, the global
nertia can be determined through (14) by fitting only the curve related
o the CIG connected at bus14 in the [6, 33]mHz frequency interval,
ince all rotor speeds are described by the same behavior in this
requency interval (principal frequency system dynamics), as predicted
y our analysis. The frequency behavior in this band is exclusively due
o the mechanical characteristics of the power system contributed by
ynchronous generators and prime movers (swing equation) and by
IGs that implement virtual inertia.
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Fig. 6. Inertia estimation results obtained by applying the proposed method to the
IEEE 39-BUS test system. Panel (a). The 𝑉1 violin plot (𝜇 = 0.019, 𝜇dn = 0.026, and
QR = 0.232) refers to the results obtained by exploiting an ideal frequency scan
ssuming 𝜂gf (𝑡) as a small-signal sinusoidal source. The 𝑉2 violin plot (𝜇 = 0.105,
dn = 0.062, and IQR = 0.302) refers to the results obtained by injecting a set of  = 10
eterministic and coherent small signal sinusoidal tones through the CIG connected at
us14. Both 𝑉1 and 𝑉2 were obtained by assuming all the loads as noiseless.
anel (b). Contrary to 𝑉2, the 𝑉3 violin plot (𝜇 = 0.074, 𝜇dn = −0.104, and IQR = 5.48)
as derived by turning on the stochastic noise in the loads.

We exploited this frequency scan to estimate the global inertia of the
EEE 39-BUS system. We performed 500 independent frequency scans
nd for each of those the inertia constant of each generator was uni-
ormly randomly varied by ±30% with respect to its nominal value. This
as done to test the method on a large set of inertia configurations.10

t each run, we used the VF method to fit the frequency behavior of
he CIG virtual rotor angular frequency before and after the experiment
nd estimated the 𝑀 global inertia. The left violin plot in Fig. 6(a)
ummarizes the performance of the proposed approach, in terms of the

% = 100
𝑀−act

𝑀
act
𝑀

percent relative error, in estimating 𝑀 for each one of
the 500 random configurations w.r.t. its actual value act

𝑀 . In Fig. 6(a),
as in all the violin plots reported in the sequel, the horizontal cyan
segments and the black solid circle markers correspond to the mean
𝜇 and the median 𝜇dn of the results, respectively. The magenta bars
represent the IQR, viz. the spread difference between the 75th and 25th
percentiles of the data. The green solid circle markers represent the
upper adjacent value (i.e., the largest observation that is less than or
equal to the third quartile plus 1.5× IQR) and the lower adjacent value
(i.e., the smallest observation that is greater than or equal to the first
quartile minus 1.5 × IQR).

As mentioned before, given that this ideal frequency scan is not
practical, we turned on the injection of the discrete set of  = 10
deterministic and coherent small-signal sinusoidal tones by the CIG
connected at bus14. We performed 500 time domain analyses again
by randomly varying the inertia configuration and performed the ex-
periment (as well as all the steps detailed in Section 4 and Fig. 3)
to compute the global inertia. As previously stated, by considering
the 𝑠1(𝑡) tone with the lowest frequency 𝑓1, the time window of the
estimation method should be such that 𝑇𝛥∕2 > 𝜇∕𝑓1 (see Fig. 7). Since
the frequency11 of the slowest injected-tone was 6mHz (i.e., the lower
bound of the frequency range over which we fit the virtual rotor speed
spectrum of the CIG connected at bus14), a time window 𝑇𝛥∕2 of at
least 𝜇∕𝑓1 ≈ 340 s is needed to compute the Fourier integrals in (21) with
𝜇 = 2. This time interval is necessary for both 𝛥 = 0 and 𝛥 > 0
(see Fig. 3). To perform a more reliable estimation, we extended this
interval of 𝛥𝑇tr = 110 s to account for possible transients after the 𝛥
step (thus leading to 𝑇𝛥∕2 = 450 s ≈ 7.5 min). The estimation procedure
(i.e., the application of the VF and (20)) requires 𝛥𝑇𝑀 < 10 s. Overall,
each simulation was carried out for an up rounded time window of

10 Some of these configurations can lead to (almost) identical global inertia
alues but with different partitions among each synchronous generator and
IG.
11 The fundamental frequencies of the 10 deterministic and coherent small-
ignal sinusoidal tones injected both in the (modified) IEEE 39-BUS and in the
8

EEE 118-BUS system are {6, 9, 12, 15, 18, 21, 24, 27, 30, 33}mHz.
𝑇𝛥 = 2
(

𝜇∕𝑓1 + 𝑇tr
)

≈ 15min. It is worth noticing that, after the first
two estimations, which represent some sort of ‘‘start-up’’ phase, one
could use the procedure in Fig. 3 to estimate global inertia by exploiting
also the transition from 𝛥 > 0 to 𝛥 = 0. So doing, the algorithm
provides an estimate every 𝑇𝛥∕2 of the power system evolution. This
is sketched in Fig. 7 where the 𝛥𝑇𝑀 narrow shaded windows refer to
the estimation phase performed after a step in the inertia of the GF CIG
used to probe the grid, while the 𝛥𝑇tr wide shaded windows, partially
overlapping to the former, refer to the dead-time used to account for
transients. Each time the estimation phase begins, we only collect the
data associated with non-shaded windows of the previous 𝑇𝛥 period
that are necessary to compute the Fourier integrals and, thus, estimate
inertia. Note that probing signals must be continuously injected during
the time interval in which one is interested in estimating 𝑀 .

The information of the 𝜖% percent relative error in estimating the
global inertia are shown by the right violin plot in Fig. 6(a). We can
notice that the overall performance is worsened even if it remains very
good since the relative error in determining the global inertia is in any
case lower than 1.0%.

Finally we turned on the stochastic noise in the loads. In the lower
panel of Fig. 5, we report the frequency behavior of the rotor speed of
all the synchronous machines and CIGs when all the loads of the grid
are perturbed as described in Section 5.2.

We used 𝐿 = 19 independent 𝜂𝑙 small-signal stochastic noise sources,
one for each power load. We choose 𝜐𝑙 = 0.5 and set 𝜎𝑙 (see (24) and
related text) in such a way that the standard deviation of 𝜂𝑙(𝑡) is 0.5%
of 𝑃𝐿0𝑙 (nominal load active power) in (23). The zero mean implies that
on average the stochastic loads power fluctuations do not perturb the
operating point of the system. By observing the spectral densities in
Fig. 5 (lower panel), we notice a different behavior of the rotor speed
deviations at frequency above 100mHz but once more spectra almost
perfectly overlap at lower frequencies. This means that the effect of the
stochastic noise sources will be superimposed to that of the T tones
injected by the CIG.

We ran 500 time-domain large-signal simulations with the nominal
inertia configuration and with a magnitude of the injected tones that
cause a peak power variation less than 2.5% of the nominal power
of the IEEE 39-BUS system. The violin plot giving information about
the relative error in the global inertia estimation is shown in Fig. 6(b).
We see that the relative error is further increased with respect to the
previous cases. This is due to the decreased signal-to-noise-ratio (SNR)
that makes more difficult the fitting of Eq. (14) with the VF method.
Nonetheless, the mean and median estimation error are respectively
𝜇 = 0.074 and 𝜇dn = −0.104, which proves that the method is quite
robust with respect to noise.

5.4. The IEEE 118-BUS test system

As a second benchmark, we used the IEEE 118-BUS system. It
represents an approximation of the American Electric Power system (in
the U.S. Midwest) as of December 1962. It contains 19 generators, 35
synchronous condensers, 177 lines, 9 transformers, and 91 loads. The
original model is available in the distribution of MATPOWER [57],
but it does not contain any dynamic model. There are several versions
enhanced with dynamic models; guidelines can be found in [58].

The only GF CIG connected to the grid is the one used to generate
the perturbing power tones and perform the experiment. It is connected
at bus38 and is characterized by a 25 s inertia constant, with 𝑃𝑔 = 1pu
and 𝑆ref = 300MVA. As already said for the IEEE 39-BUS, there is not
a preferred bus to which the CIG used for the experiment should be
connected. Some more comments on this aspect, as well as others
related to the implementation of the proposed method, are given in
Section 6.

The result of the (ideal) frequency scan obtained by assuming 𝜂gf (𝑡)
as a small-signal sinusoidal source is shown in Fig. 8. We see that as

for the IEEE 39-BUS system all the angular frequencies of synchronous
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Fig. 7. Two full periods 𝑇𝛥 of the GF CIG inertia constant modulation are sketched assuming the estimation procedure starting at 𝑡 = 0. The 𝛥𝑇tr wide shaded windows refer to
the dead-time used to account for transients. The estimation procedure is carried out during the 𝛥𝑇𝑀

narrow shaded windows that overlap the 𝛥𝑇tr ones. The whole estimation
procedure is at steady state after 𝑇𝛥: after that, new estimates are provided every 𝛥𝑇𝛥

2
seconds.
Fig. 8. The magnitude squared of the transfer functions between 𝜂gf (𝑡) injected through
the GF CIG connected at bus38 and the rotor speed of each synchronous machine and
CIG of the (modified) IEEE 118-BUS system. The red curve refers to the (virtual) rotor
speed of the CIG connected at bus38.

machine rotors and CIG overlap almost perfectly at low frequency
(<100mHz).

In this case study, 𝑀 = 116.4GVAs (7.5GVAs of which is con-
tributed by the GF CIG. We thus repeated the same simulations of the
IEEE39 system: for each of the 500 runs we carried out, we estimated
the global inertia by a frequency scan, then also in the time domain
with noiseless loads and, lastly, with noisy loads. As before, in the first
and second case, the inertia of each generator was uniformly randomly
varied of ±30% with respect to its nominal value, while in the third
case the nominal inertia configuration was considered.

The results are summarized by the violin plots in Fig. 9 and have
the same meaning of those in Fig. 6. We see that very good estimation
results of global inertia are obtained also for the IEEE 118-BUS system.

6. Discussion and conclusion

We highlight hereafter key differences between some inertia esti-
mation methods proposed in the literature and our proposed method,
which should better clarify the points of strength and novel features of
the latter.

Among others, the works in [7,59] rely on active power and fre-
quency measurements coming from the pmus installed at each genera-
tion bus to estimate the inertia of an area. They require knowing in
advance where and if synchronous generators (and GF CIGs providing
virtual inertia) are connected. This has limited utility in practice, since
the TSO/DSO usually knows if a synchronous generator is connected
— and, if so, its inertia, too. At best, these methods can be useful if
9

Fig. 9. Inertia estimation results obtained by applying the proposed method to the
IEEE 118-BUS test system. The simulation setup for the 𝑉𝑘 violin plot (𝑘 ∈ {1, 2, 3})
is the same one of the 𝑘th violin plot in Fig. 6. Thus, for each violin plot, only the
values of mean 𝜇, median 𝜇dn, and IQR are briefly reported. Panel (a). 𝑉1 violin plot:
𝜇 = 0.115, 𝜇dn = 0.117, and IQR = 0.055. 𝑉2 violin plot: 𝜇 = −0.002, 𝜇dn = 0.170, and
IQR = 0.680. Panel (b). 𝑉3 violin plot: 𝜇 = 0.675, 𝜇dn = 0.592, and IQR = 7.01.

there are (small) generators of unknown characteristics (e.g., whose
inertia has to be identified for the first time) or, in case of GF CIGs, if
the ancillary services related to frequency support need to be rewarded
based on the effective value of virtual inertia provided at a given time.

A few methods [59,60] estimate the total inertia of an area but often
need measurements of the instantaneous active power flowing to/from
the area. In particular, area power exchange is usually required to
flow through a single connection (line) to ensure a reliable estimation.
Moreover, these solutions need to estimate the rotor speed of each
synchronous generator and GF CIG, which implies that generation unit
location must still be known in advance.

In [61], convolutional neural networks (CNNs) are used to esti-
mate the power system momentum. However, as with most machine-
learning-based methods, this requires a large dataset used for training
the method and ensure adequate estimation capabilities (i.e., a low
prediction error), which in general may not be easily available. More-
over, if CNNs have to estimate the inertia of a power system which
includes new elements that were not included in the dataset and, most
importantly, whose frequency response following power mismatches
has a different footprint from the other generation units, estimation
results may be inaccurate.

On the contrary, our method needs no information as to the point
of connection of synchronous generators and GF CIGs. In other words,
the proposed method is agnostic with respect to the system, and can



International Journal of Electrical Power and Energy Systems 160 (2024) 110135A.M. Brambilla et al.

i
s
t
t
t
i
s
c
f
s
s

o
h
t
f
(
s
t
s
a
c
t
p
f
f
a
m
i
a
a
c
t

r
a
p
s
v
d
e
s
e
a
t

n
M
o
e
n
o
o
l
C
d

C

o
C
W
m
e
t
–
I

D

l

a

o
m

D

A

𝑨

a
t

⎧

⎪

⎨

⎪

⎩

F 1.
H
o

𝒗

estimate the global momentum of the grid, which is given by sum-
ming up all the contribution in terms of inertia given by synchronous
generators/motors, synchronous condensers, and grid-forming or grid-
following CIGs providing virtual inertia of any capacity. The proposed
solution collects only the virtual rotor speed measurements of one GF
CIG. This GF CIG has to be under control of the user, since it has
to inject probing tones in the electric grid and alter the amount of
virtual inertia it provides. In view of a practical implementation, we do
think that these requirements are largely feasible. In case one tried to
extend the estimation procedure to work with the electrical frequencies
measured at the power system buses (e.g., by exploiting PMUs), the
source of the input data could be an issue that one should properly take
into account. In any case, since the frequency band of interest is at low
frequency, we do not expect measurement equipment to be a bottleneck
of the proposed approach. For what concerns probing of (virtual) rotor
speed of generators, it is not an issue since as already underlined we
get the low frequency behavior which is shared by the entire power
system.

Throughout this work, we specified that there is not a preferred bus
to which one should connect the GF CIG used for signal probing and
nertia modulation. To validate this statement, we performed several
imulations of the systems under study (and also others) to investigate
he impact of the probing GF CIG position in the grid on inertia estima-
ion. These preliminary analyses neither let us derive any specific rule
o choose the position of this device nor revealed a particular criticality
n applying the proposed approach. From a theoretical standpoint, as
oon as the power system model behaves as a synchronized power-
ontrolled oscillator, the location of the probing GF CIG is not an issue
or what concerns the principal frequency dynamics, viz. in term of
ynchronization at low frequency, since the low frequency behavior is
hared by all the synchronous generators/motors and GF CIGs.

However, it is the concept itself of total amount of inertia or better
f global power system momentum, if used as a ‘‘stability index’’, that
as to be put under the spotlight. As it can be seen from Figs. 5 and 8,
he spectra split at high frequency and almost perfectly overlap at low
requency. In the time domain this means that right after a disturbance
e.g., a consistent local power imbalance at a bus) occurs, frequency
upport is first locally given by generators/condensers and GF CIGs
hat are electrically near the point where the disturbance occurs. Since
ynchronization is not achieved immediately, synchronous machines
nd CIGs may react differently to the disturbance. Thus, their response
an be uncoordinated with one another at first. Indeed, only with time
he frequency support slowly propagates by spreading to the entire
ower system, whose generation units eventually re-synchronize (low
requency portion of the spectrum in Figs. 5 and 8). As a result, the
ast ‘‘local’’ support following a power imbalance can be inadequate to
void intervention of under-frequency relays, even though the global
omentum of the grid is more than satisfactory. This suggests that

n a large power grid with several areas that are ‘‘electrically’’ far, an
dequate level of ‘‘local’’ inertia has to be ensured in each area to obtain
corresponding adequate frequency support [62]. We believe that this

oncept is novel and its determination is still an open issue, but out of
he scope of this paper.

In the simulation results we showed that the proposed method is
obust to noise. In general, the tones injected by the GF CIG must have
n adequate amplitude, otherwise the intrinsic noise due to random
ower fluctuations by loads and generations may lead to a too low
ignal-to-noise ratio. As a matter of fact, the effects of the 𝛥 step
ariation of the virtual inertia of the GF CIGs must be accurately
etected by revealing its effects on the injected tones. These tones are
xtracted from the noise floor by exploiting the Fourier integrals on a
uitable time window. Since the noise has a zero mean value, undesired
ffects that noise may yield on inertia estimates can be mitigated by
cting on the time window 𝑇𝛥: the longer it is, the higher the signal-
10

o-noise ratio and the more robust the inertia estimates. However, this
egatively affects the update rate of global momentum estimation.
oreover, longer time windows can potentially suffer of fluctuations

f (virtual) inertia over an half of a time window and worsen the
stimation. As suggested above, another solution to reduce the effects of
oise consists in using probing signals of higher amplitude. To this aim,
ne could rely on a single large GF CIG or the synchronized injection
f probing tones through multiple GF CIGs of smaller capacity. The
atter solution may be more reliable and allows exploiting existing GF
IG scattered in the power system. Future research work is going to be
evoted to these aspects.

RediT authorship contribution statement

Angelo Maurizio Brambilla: Writing – review & editing, Writing –
riginal draft, Software, Methodology, Investigation, Formal analysis,
onceptualization. Davide del Giudice: Writing – review & editing,
riting – original draft, Software, Methodology, Investigation, For-
al analysis, Conceptualization. Daniele Linaro: Writing – review &

diting, Writing – original draft, Software, Methodology, Investiga-
ion, Formal analysis, Conceptualization. Federico Bizzarri: Writing

review & editing, Writing – original draft, Software, Methodology,
nvestigation, Formal analysis, Conceptualization.

eclaration of competing interest

All authors have participated in
(1) conception and design, or analysis and interpretation of the data;
(2) drafting the article or revising it critically for important intel-

ectual content;
(3) approval of the final version.
This manuscript has not been submitted to, nor is under review at,

nother journal or other publishing venue.
The authors have no affiliation with any organization with a direct

r indirect financial interest in the subject matter discussed in the
anuscript.

ata availability

Data will be made available on request.

ppendix A

To derive the 𝒗1 left-eigenvector reported in (5) we write

T =

⎡

⎢

⎢

⎢

⎣

O𝑁 −𝜫−1 O𝑁
𝛺1𝑁 −−1 −𝑻 −1

𝑔 𝒌𝑔𝑹−1

O𝑁 −1 −𝑻 −1
𝑔

⎤

⎥

⎥

⎥

⎦

(A.1)

nd we have to solve 𝑨T𝒗1 = O3𝑁,1. By choosing 𝒗1 = (𝒗T𝛿 , 𝒗
T
𝜔, 𝒗

T
𝑃𝑚

)T,
his implies

−𝜫−1𝒗𝜔 = O𝑁,1
𝛺𝒗𝛿 −−1𝒗𝜔 − 𝑻 −1

𝑔 𝒌𝑔𝑹−1𝒗𝑃𝑚 = O𝑁,1
−1𝒗𝜔 − 𝑻 −1

𝑔 𝒗𝑃𝑚 = O𝑁,1

.

rom the first equation above, being ker(𝜫) = 1𝑁,1, we find 𝒗𝜔 = 1𝑁,
ence, from the third equation, 𝒗𝑃𝑚 = 𝑻 𝑔1𝑁,1, and, from the second
ne, 𝒗𝛿 = 𝛺−1( + 𝒌𝑔𝑹−1)1𝑁,1. Since 𝒖1 = [11,𝑁 ,O1,2𝑁 ]T, then

T𝒖 = 𝛺−11
(

 + 𝒌 𝑹−1)1 ,
1 1 1,𝑁 𝑔 𝑁,1
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c

i
b

Fig. B.10. At 𝑡 = 1 s, we applied a power imbalance in the Klein–Rogers–Kundur two-area system, by modifying the active and reactive power absorbed by the load connected at
bus 7. This imbalance was removed after 0.1 s. The time evolution of the angular-speed deviation of the 𝐺1 and 𝐺2 generators in the Area 1 are reported in red, whereas the rotor
speed deviation of the 𝐺3 and 𝐺4 generators in the Area 2 are reported in green. The 𝛥𝜔coi angular-speed deviation of the center-of-inertia is shown in black. The same color
ode is adopted in the last panel for the frequency responses computed by applying a sinusoidal disturbance at bus 7 and sweeping frequency in [1mHz, 10Hz].
and it is possible to normalize 𝒗T1 in such a way that 𝒗T1𝒖1 = 1 thus
obtaining Eq. (5).

Appendix B

‘‘How is it possible to reconcile the statement that it is not possible to
generally ensure that in properly connected power systems subject to random
noise, the components of 𝛥𝝎(𝑡) share almost the same spectrum at low
frequency?’’ To explain and support this statement, we would like to
show some results concerning the Klein–Rogers–Kundur two-area, four
machine system [44]. At 𝑡 = 1 s, we applied a power imbalance by mod-
fying the active and reactive power absorbed by the load connected at
us 7. This imbalance was removed after 0.1 s. The time evolution of

the angular-speed deviations of the four generators are reported in the
upper panel of Fig. B.10. It can be noticed that, after almost 30 s, the
angular-speed deviation of the four generators evolve synchronously.
This synchronization is expected and desired in properly connected and
designed power systems as explained, for instance, in [22].

The 𝛥𝜔coi angular-speed deviation of the center-of-inertia is shown
in black. It can be noticed that, once the four generators evolve syn-
chronously, their angular-speed deviations become identical to 𝛥𝜔coi.

In the second panel, we see the slow-coherence phenomenon as it
is described in [63]. In particular, we can see relevant slow dynamics
which are the low-frequency oscillations between coherent groups of
stiffly connected machines (i.e., the ones in Area 1 and the ones in
Area 2). In the third panel, we can observe the presence of individual
behaviors for few seconds after the power imbalance removal, viz. fast
dynamics which are the higher frequency oscillations between ma-
chines within the same individual coherent group. These three different
types of evolution reflect in the frequency response computed by apply-
ing a sinusoidal disturbance at bus 7 and sweeping its frequency in the
[1mHz, 10Hz] interval. The result of this frequency scan is reported in
11
the last panel of Fig. B.10. We can observe that at ‘‘high’’ frequency the
spectra of the angular-speed deviations are different, but at frequencies
less than 0.7Hz they start grouping in two groups and those in each
group become closer and closer. The two groups become an ensemble at
frequencies below almost 0.1Hz. Then, for still lower frequency values,
all the spectra almost perfectly overlap.

Note that, once the angular-speed deviations share almost the same
spectrum, this spectrum is the one of the 𝛥𝜔coi angular-speed deviation
(black trace).

Appendix C

𝛥𝜔(𝑠) =
11,𝑁𝒃lf (𝑠)

𝑠 +11,𝑁

(

 +
(

𝑠𝑻 𝑔 +1𝑁
)−1 𝒌𝑔𝑹−1

)

1𝑁,1

=

𝜂(𝑠)
⏞⏞⏞⏞⏞
𝑁
∑

𝑗=1
𝑏lf𝑗 (𝑠)

𝑠 +11,𝑁

(

diag
(

11 +
𝑘𝑔11

𝑅11 (𝑠𝑇𝑔11 +1)
,… ,𝑁𝑁 +

𝑘𝑔𝑁𝑁

𝑅𝑁𝑁 (𝑠𝑇𝑔𝑁𝑁
+1)

))

1𝑁,1

=
𝜂(𝑠)

𝑠 +
∑𝑁

𝑗=1 𝑗𝑗 +
𝑘𝑔𝑗𝑗

𝑅𝑗𝑗

(

𝑠𝑇𝑔𝑗𝑗 +1
)

=
𝜂(𝑠)

𝑠 +
∑𝑁

𝑗=1 𝑗𝑗 +
𝑘𝑔𝑗𝑗

𝑅𝑗𝑗 𝑇𝑔𝑗𝑗

𝑠+ 1
𝑇𝑔𝑗𝑗

=
𝜂(𝑠)

𝑠 +
∑𝑁

𝑗=1

𝑗𝑗

(

𝑠+ 1
𝑇𝑔𝑗𝑗

)

+
𝑘𝑔𝑗𝑗

𝑅𝑗𝑗 𝑇𝑔𝑗𝑗

𝑠+ 1
𝑇𝑔𝑗𝑗

.

Assuming that only 𝑁̃ ≤ 𝑁 of the 𝑇𝑔𝑗𝑗 constants are different, it is
possible to define the {𝑇 } set containing them and such that {𝑇 } ⊆
𝑔𝑖𝑖 𝑔𝑖𝑖
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{𝑇𝑔𝑗𝑗 }. Hence,

𝛥𝜔(𝑠) =
𝜂(𝑠)

∏𝑁̃
𝑖=1

(

𝑠 + 1
𝑇𝑔𝑖𝑖

)

𝑠𝑁̃+1 +
∑𝑁̃

𝑖=0 𝑑𝑖𝑠𝑖

=
𝜂(𝑠)

(

−1𝑠𝑁̃ +
∑𝑁̃−1

𝑖=0 𝑛𝑖𝑠𝑖
)

𝑠𝑁̃+1 +
∑𝑁̃

𝑖=0 𝑑𝑖𝑠𝑖

= 𝜂(𝑠)
𝑁̃+1
∑

𝑘=1

𝑐𝑘
𝑠 − 𝑎𝑘

.

It is then easy to derive that −1 =
∑𝑁̃+1

𝑘=1 𝑐𝑘

Appendix D

The coefficients that appear in Eq. (17) are:

𝛽13 (𝑠) =2𝑅1𝑇𝑔1𝑏1(𝑠)

𝛽12 (𝑠) =
(

2𝑇𝑔1 +2

)

𝑅1𝑏1(𝑠)

𝛽11 (𝑠) =
(

(𝑏1(𝑠)𝜈 + 𝑏2(𝑠))𝑇𝑔1 +
𝑏1(𝑠)2
𝜉𝛺

)

𝜉𝛺𝑅1

𝛽10 (𝑠) =
(

𝑏1(𝑠)𝜈 + 𝑏2(𝑠)
)

𝜉𝛺𝑅1

𝛽23 (𝑠) =2𝑅1𝑇𝑔1𝑏2(𝑠)

𝛽22 (𝑠) =
(

1𝑇𝑔1 +1

)

𝑅1𝑏2(𝑠)

𝛽21 (𝑠) =

(

(𝑏1(𝑠)𝜈 + 𝑏2(𝑠))𝑇𝑔1 +
𝑏2(𝑠)(1 + 𝑘𝑔1𝑅

−1
1 )

𝜉𝛺

)

𝜉𝛺𝑅1

𝛽20 (𝑠) =𝛽
1
0 (𝑠)

𝛼4 =12𝑅1𝑇𝑔1
𝛼3 =𝑅1(𝑇𝑔1 (𝐷2𝑀1 +𝐷1𝑀2) +𝑀1𝑀2)

𝛼2 =

⎛

⎜

⎜

⎜

⎝

2

(

1𝑇𝑔1 +1

)

+12

𝜉𝛺
+
(

1𝜈 +2
)

𝑇𝑔1 +
𝑘1𝑅−1

1 2

𝜉𝛺

⎞

⎟

⎟

⎟

⎠

× 𝜉𝛺𝑅1

𝛼1 =

⎛

⎜

⎜

⎜

⎝

(1𝜈 +2)𝑇𝑔1 +1𝜈 +2 +
2

(

1 + 𝑘𝑔1𝑅
−1
1

)

𝜉𝛺

⎞

⎟

⎟

⎟

⎠

𝜉𝛺𝑅1

𝛼0 =(𝐷1𝜈 +𝐷2 + 𝑘𝑔1𝑅
−1
1 𝜈)𝜉𝛺𝑅1
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