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Abstract 39 
Photonic gauge potentials, including scalar and vector ones, play fundamental roles in emulating photonic 40 
topological effects and for enabling intriguing light transport dynamics. While previous studies mainly 41 
focus on manipulating light propagation in uniformly distributed gauge potentials, here we create a series 42 
of gauge-potential interfaces with different orientations in a nonuniform discrete-time quantum walk and 43 
demonstrate various reconfigurable temporal-refraction effects. We show that for a lattice-site interface 44 
with the potential step along the lattice direction, the scalar potentials can yield total internal reflection 45 
(TIR) or Klein tunneling while vector potentials manifest direction-invariant refractions. We also reveal the 46 
existence of penetration depth for the temporal TIR by demonstrating frustrated TIR with a double lattice-47 
site interface structure. By contrast, for an interface emerging in the time-evolution direction, the scalar 48 
potentials have no effect on the packet propagation while the vector potentials can enable birefringence, 49 
through which we further create a “temporal superlens” to achieve time-reversal operations. Finally, we 50 
experimentally demonstrate electric and magnetic Aharonov-Bohm effects using combined lattice-site and 51 
evolution-step interfaces of either scalar or vector potential. Our work initiates the creation of artificial 52 
heterointerfaces in synthetic time dimension by employing nonuniformly and reconfigurable distributed 53 
gauge potentials. This paradigm may find applications in optical pulse reshaping, fiber-optic 54 
communications and quantum simulations. 55 
 56 
 57 
Significance Statement 58 
Describing electromagnetic field using scalar and vector gauge-potentials represents one of the 59 
fundamental breakthroughs in classical electrodynamics, which is also at the heart of the celebrated 60 
Aharonov-Bohm (AB) effect. Realizing the refraction at gauge-potential interfaces can be harnessed to 61 
emulate quantum tunneling effects for photons and to mold the flowing of light in a predetermined way. 62 
Here, we create a series of gauge-potential interfaces in the temporal lattices and reveal distinct 63 
mechanisms for refraction at scalar- and vector-potential interfaces with different orientations. The 64 
demonstration of reconfigurable refractions at various gauge-potential interfaces fundamentally expands 65 
our capability of manipulating light propagation in synthetic dimensions, which may also find potential 66 
applications in the scenarios of optical pulse reshaping, fiber communications, and quantum simulations. 67 
 68 
 69 
Main Text 70 
Introduction 71 
Gauge potentials including scalar and vector ones can endow charged particles with a phase shift even 72 
without external fields, which is at the heart of the celebrated Aharonov–Bohm (AB) effect (1). Neutral 73 
particles such as photons cannot be directly influenced by the gauge potentials. Nevertheless, artificial 74 
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gauge potentials introduced by creating photonic analogues of AB phases could manipulate the propagation 75 
of photons in a similar manner of charged particles. For instance, bended or index-varying waveguide 76 
arrays provide a spatially-distributed scalar potential, which can yield an effective electric field for enabling 77 
various control over wave diffraction (2-10). On the other hand, electro-optic modulations imposed into 78 
resonators or waveguides can give rise to vector potentials by introducing non-reciprocal phase shifts (11-79 
17). These artificial gauge potentials, either for spatially-inhomogeneous scalar potentials or time-varying 80 
vector potentials, provide powerful tools for emulating the coherent transport dynamics of photons, ranging 81 
from Bloch oscillations (2-4), dynamic localization (5-7, 15) to Landau-Zener tunneling (8-10). By 82 
judiciously designing the spatial distribution of gauge potentials, artificial magnetic field will also emerge, 83 
with which one can create topological edge states and emulate the quantum Hall effect of photons (12, 13). 84 
In practical applications, the creation of gauge potentials can also lead to a variety of intriguing light 85 
control strategies, such as for realizing negative refraction (14), one-way light propagation (16), as well as 86 
for developing nonreciprocal devices of optical isolators (11), circulators (14), and routers (17). 87 

Recently, vector gauge potentials have been shown to provide a new mechanism of light guiding and 88 
localization (18-21), suggesting fresh new ideas in the design of integrated photonic structures with 89 
emerging novel functionalities, such as broadband optical switching (22) and dispersionless waveguide 90 
coupling (23). Generalized laws of refraction and reflection for discretized light at interfaces between 91 
different photonic artificial gauge fields, based on tilted waveguide arrays, have been investigated in (24), 92 
whereas demonstration of negative refraction by vector gauge potentials has been reported for sound waves 93 
in (25). However, the simultaneous exploitation and the ability to distinguish scalar and vector potentials 94 
for strategic manipulation of light refraction have remained elusive in previous studies, where the main 95 
limitations arose from the lack of reconfigurability. Furthermore, some more advanced refraction-related 96 
effects like tunneling and interference occurring at more complex gauge potential interfaces remain largely 97 
unexplored. 98 

As a recently emerging field, the photonic lattice in synthetic dimension provides a fertile playground 99 
to conveniently tailor the distribution of scalar and vector potentials therein and therefore can serve as a 100 
versatile platform to investigate the refraction phenomena with a high degree of reconfigurability. These 101 
synthetic lattices can be created by exploiting the internal degrees of freedom of photons, such as frequency 102 
(26-33), time (34-39), and orbital angular momentum (40-42). Compared to spatial lattices with fixed 103 
potential distributions (43), artificial gauge potentials are more convenient to introduce into synthetic 104 
dimensions and, most importantly, they can be reconfigured on demand. For example, artificial vector 105 
potentials can be readily introduced into frequency lattices by controlling the phase of dynamic modulation, 106 
leading to the advanced control of spectrum evolution, ranging from frequency diffraction, Bloch 107 
oscillations (27), refraction (28), time-reversal operation (30) and even for emulating non-Hermitian 108 
topological braiding effects (33). These effects can also be implemented in synthetic temporal lattices 109 
constructed by two coupled fiber loops. Thanks to the feasibility in controlling the lattice’s features such as 110 
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the on-site energy, coupling phase, and strength, the temporal lattices possess remarkable advantages in 111 
generating scalar and vector potentials, which benefits the demonstration of a variety of classical and 112 
quantum effects ranging from parity-time symmetry (34), non-Hermitian skin effect (37) to the topological 113 
phase transition (38). 114 

In this work, by creating a synthetic interface of scalar or vector potential in the synthetic temporal 115 
lattice, we propose and experimentally demonstrate a series of discrete refraction phenomena in a single 116 
and fully reconfigurable setup. It is found that the refraction can be diversely tuned by the orientation of 117 
potential interface. As typical examples, we obtain the temporal total internal reflection (TIR) or Klein 118 
tunneling at a scalar-potential lattice-site interface and refraction-free propagation at the vector-potential 119 
lattice-site interface. This temporal TIR manifests a noneligible penetration depth, which is verified by the 120 
frustrated TIR experiment. For an evolution-step interface, we find scalar potential has no effect on the 121 
refraction while vector potential can enable the temporal birefringence effect. Based on this, we further 122 
design a “temporal superlens” and achieve perfect time-reversal operations both for single-site and wave-123 
packet inputs. Finally, we construct a temporal Mach–Zehnder interferometer by utilizing combined lattice-124 
evolution scalar- or vector-potential interfaces and demonstrate the prototypes of electric and magnetic AB 125 
effects. The demonstration of reconfigurable refraction at the gauge-potential interfaces fundamentally 126 
expands the capability of manipulating wave packet propagation in synthetic dimensions, with potential 127 
applications in optical pulse shaping, fiber communications, and quantum simulation. 128 
 129 
 130 
Results 131 
Constructions of scalar and vector potentials in the temporal lattices. We start from the theoretical 132 
model of introducing artificial gauge potentials into synthetic temporal lattices. Consider a coupled fiber-133 
loop circuit, as shown in Fig. 1A, where an incident pulse traveling in the longer and shorter loops can be 134 
mapped conceptually into a “node-link” model of synthetic temporal lattice, as displayed in Fig. 1B. Details 135 
of experimental setup and related theoretical model are given in SI, sections 1 and 2. The circulating 136 
number of the pulses in the fiber loops corresponds to the time evolution step m in the lattice, and the 137 
relative positions of the pulses within one step is denoted by the lattice site n. A pulse hops from step m and 138 
position n to step m+1 and n−1(n+1) in the lattice after finishing a circulation in the short (long) loop. To 139 
introduce a synthetic vector potential, we apply opposite phase modulations ϕv = ϕ and ϕu = −ϕ in long and 140 
short loops (21). The pulses then acquire phase shifts of ϕ and −ϕ during rightward and leftward hopping. 141 
Such a direction-dependent phase shift accompanying light hopping is analogous to a Peierls’ phase and 142 
corresponds to a vector potential of A = (ϕv−ϕu)/2 = ϕ. On the contrary, when the modulations applied in the 143 
two loops are in phase, i.e., ϕv = ϕu = ϕ, the pulse will then acquire identical phase shift during leftward and 144 
rightward hopping. Consequently, a synthetic scalar potential φ = (ϕv+ϕu)/2 = ϕ can also be constructed in 145 
the lattice. It is worth noting that the construction of vector potentials here is reminiscent of previous 146 
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studies on creating vector potentials in synthetic frequency dimension (26-32), both requiring direction-147 
dependent phase shifts. However, the construction of scalar potentials using direction-independent phase 148 
shift cannot find counterpart in frequency dimension, which is unique to our synthetic temporal lattice. 149 
Accordingly, the refractions relying on scalar-potential interfaces cannot be achieved using synthetic 150 
frequency lattices. 151 

The pulse evolution in the lattice under scalar and vector potentials is governed by the following 152 
evolution equation (sec.2 in SI) 153 
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where um 
n  and vm 

n  denote the pulse amplitudes in the short and long loops at step m and position n, and β is 155 
the coupling angle of the coupler. For uniform potentials ϕv and ϕu, the lattice displays discretized 156 
translational symmetries both along the evolution time axis (m axis) and the lattice extending direction (n 157 
axis), so that the eigenstates are of Floquet-Bloch form: (um 

n , vm 
n )T = (U, V)Teikneimθ, where k and θ are the 158 

transverse Bloch momentum and longitudinal propagation constant, respectively. Note that (k, θ) 159 
constitutes the two axes in the reciprocal momentum space of the temporal lattice denoted by (n, m). 160 
Substituting the eigen mode into Eq. (1), we can obtain the lattice band structure (SI Appendix, sec. 2) 161 

 ,cos( ) arccos[ o( )c s( )]k k Aθ β ϕ± = ± − +   (2) 162 

where θ+(k) and θ−(k) denote the upper and lower branches of the band. According to Eq. (2), one can find 163 
that the physical effect of the scalar potential is to induce a propagation constant shift for an eigen Bloch 164 
mode while the vector potential is to induce a Bloch momentum shift. As a consequence, the scalar and 165 
vector potentials could induce the total band structure shifts along vertical (quasi-energy) and horizontal 166 
(Bloch momentum) directions, as displayed in Figs. 1C and 1D. In the following, we will construct 167 
heterointerfaces in the temporal lattice by applying nonuniformly-distributed scalar and vector potentials. 168 
In terms of interface orientation, we consider two basic types of interfaces: the lattice and evolution ones, 169 
which are constructed by introducing an abrupt change of scalar or vector potential along the lattice 170 
extending direction “n” and the time evolution direction “m”, respectively. Note that although the lattice-171 
site index n resembles a spatial coordinate, it is physically a time slot index denoting the relative delay or 172 
advance between the pulses within one step (see sec. 2 in SI). In this sense, both the lattice-site and 173 
evolution-step interfaces still belong to temporal interfaces in terms of the physical time variable. As we 174 
will demonstrate below, these two different interfaces can yield a series of distinct refraction effects as light 175 
propagates through them. 176 
 177 
Refraction at lattice-site interfaces 178 
The lattice-site interface can be constructed by introducing a scalar or vector potential step along the lattice 179 
direction “n”. We first consider the interface formed by the scalar potentials, which is φ1 for n ≥ 0 and φ2 180 
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for n < 0, as Fig. 2A displays. The potential difference is given by ∆φ = φ2 – φ1, for which the band 181 
structure undergoes a vertical shift of ∆φ between the two sides of the interface. For a Gaussian-shaped 182 
wave packet incident from the right side (n > 0), it will generally experience a refraction at the interface, 183 
generating both a refraction and a reflection of wave packet, respectively. In direct analogy to the refraction 184 
at a spatial interface obeying Snell’s law, i.e., the conservation of tangential wave vector along the interface 185 
direction, the refraction here along the lattice temporal interface is also governed by the Snell’s law, i.e., 186 
the conservation of longitudinal propagation constant θ. Specially, for a relatively small (or large) potential 187 
difference ∆φ, the upper band of the incident packet at right side will match the upper (or lower) band at 188 
left side, giving rise to the intraband (interband) tunneling at the interface and hence the occurrence of 189 
refraction. Particularly, such an interband tunneling phenomenon provides the temporal analogue of Klein 190 
tunneling, where a particle tunnels through a potential step without quantum decay by turning into its anti-191 
particle (44). Here in our case, the upper and lower bands just play the roles of the particle and its anti-192 
particle. On the contrary, for a moderate potential difference, the band structure at left side falls into the 193 
band gap at the right side, such that the refracted packet vanishes and total internal reflection (TIR) will 194 
occur. In experiments, we choose ∆φ = 0.5π and 0.8π for demonstrating above two cases, where the 195 
refraction processes are shown in Figs. 2A and 2B. For ∆φ = 0.5π, no refracted beam exists, clearly 196 
indicating the occurrence of TIR. While for ∆φ = 0.8π, the Klein tunneling occurs. Also note that the 197 
refracted beam manifests a direction derivation with respect to the incident one, suggesting the abrupt 198 
change of group velocity during the refraction process. Finally, by continuously varying ∆φ from 0 to 2π, 199 
we also obtain the general formula of the power transmission coefficient (44) (SI Appendix, section 3) 200 
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where λ0 = arsinh[cot(β)sin(ki)], λ2 = arsinh[cot(β)sin(kt)] with ki, kt being the Bloch momenta of the 202 
incident and refraction packets. “+(−)” denotes that the refracted packet appears in the upper and lower 203 
bands, corresponding to the intraband and interband tunneling cases. The reflection is then given by R = 204 
1−T. The transmission/reflection coefficients are determined by the incident Bloch momentum and the 205 
relative scalar potentials at two sides. The results here are also similar to spatial refractions described by 206 
Fresnel’s equations, where the transmission/reflection coefficients are determined by the incident angle and 207 
the relative refraction indices at both sides of the interface. The measured transmission and refraction 208 
coefficients are also shown by the red and blue dots in Fig. 2C, which can coincide well with the theoretical 209 
curves. Specially, the TIR occurs in the regions of 0.25π <∆φ < 0.75π and 1.25π < ∆φ < 1.75π, outside of 210 
which the refraction can take place (SI Appendix, section 4). 211 

On the other hand, the lattice-site interface can also be constructed by substituting φ1 and φ2 with A1 212 
and A2, such that the potential difference becomes ∆A = A2 − A1. The band structure at left side will 213 
undergoes a horizontal shift of ∆A with respect to that at right side. Likewise, by applying Snell’s law, i.e., 214 
the longitudinal propagation constant conservation, one can find that refraction will always exist due to the 215 
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complete band structure overlap at two sides, thus preventing the occurrence of TIR. In experiments, we 216 
choose ∆A = 0.3π and π, where beam refraction and reflection are always observable, as shown in Fig. 3D 217 
and 3E. Moreover, in contrast to above lattice-site interface formed by scalar potentials where the refracted 218 
packet experiences an abrupt group velocity change, the packet here can maintain its propagation direction 219 
at the lattice-site interface formed by vector potentials. The general transmission coefficient is given by (SI 220 
Appendix, section 5) 221 

 0

0

cosh(2 ) 1 .
cosh(2 ) cos( )A

T λ
λ

−
Δ

=
−

 (4) 222 

The transmission and reflection versus ∆A are shown in Fig. 2F. The transmission reaches minimum at ∆A 223 
= π and one can’t observe TIR like that in the interface constructed by scalar potentials. 224 

The TIR in temporal lattice here is reminiscent of its counterpart in real space. A prominent feature of 225 
spatial TIR is the existence of evanescent wave penetrating the reflection interface at a wavelength scale 226 
depth. Here we design a frustrated total internal reflection (FTIR) scenario as a criterion to verify the 227 
existence of evanescent wave accompanying our temporal TIR. We construct a double lattice-site interface 228 
structure composed of a narrow gap with scalar potential φ1 and width ∆n sandwiched by two semi-infinite 229 
regions with scalar potential φ2, as shown in Figs. 3A and 3B. The potential difference is thus ∆φ = φ2 – φ1, 230 
which is fixed at π/2 in our implementation. The incident wave packet is injected from the right side and 231 
experiences TIR at first interface. Similar to the real-space TIR, the packet can partially penetrate to the gap 232 
region. If the gap is narrow enough, the wave can further penetrate to the left side of the gap. The tunneling 233 
process is analogy to the FTIR in real space. As ∆n = 2, the gap is relatively large and there are seldom 234 
waves transmitted. Most of the waves are reflected by the interface. However, if we decrease the gap width 235 
to ∆n = 1, the beam can partially penetrate to the left region. The transmission coefficient versus the gap 236 
width is shown in Fig. 3C, which decreases gradually with the increase of gap width. The experiment 237 
clearly verifies that the penetration depth is at a scale of ∆n ~ 1 for our temporal TIR. 238 
 239 
Refraction at evolution-step interfaces 240 
As another interface orientation, an evolution-step interface can also be constructed by introducing a 241 
potential step along the direction of time evolution. We firstly consider the interface formed by scalar 242 
potentials, which are assumed to be φ1 for m ≤ 60 and φ2 for m > 60, as Fig. 4A displays. The potential 243 
difference is given by ∆φ = φ2 – φ1. As the wave packet is incident from the bottom, its propagation is not 244 
influenced by the interface, as shown in Fig. 4A. Figure 4B depicts the band structure of the top region, 245 
which undergoes a vertical shift of ∆φ = π with respect to the bottom region. For the evolution-step 246 
interface, the Snell’s law is that the transverse Bloch momentum should be conserved. Still considering the 247 
incidence of an upper band mode, it will excite the mode at the same band in the top region. The influence 248 
of ∆φ on the band occupancies in the top region is depicted in Fig. 4C. One sees that the occupancies are 249 
independent on ∆φ and remain the same with that in the bottom region. The output field intensities are 250 
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measured at m = 120 and the profile keeps unchanged as ∆φ varies, experimentally verifying the triviality 251 
of evolution-step interface constituted by scalar potentials, as illustrated in Fig. 4D. 252 

The evolution-step interface can also be constructed by introducing vector potentials. As shown in Fig. 253 
4E, the vector potentials are assumed to be A1 for m ≤ 30 and A2 for m > 30. The potential difference reads 254 
∆A = A2 − A1. For ∆A = π/2, the incident wave packet splits into two branches with opposite propagation 255 
directions. The band structure in the top region undergoes a horizontal shift by ∆A = π/2, as depicted in Fig. 256 
4F. Likewise, the Bloch momentums along the lateral position direction should also be conserved. For the 257 
incidence of an upper band mode, the modes of upper and lower bands in the top region are generated 258 
simultaneously, with their occupancies P+ and P− given by (SI Appendix, section 6) 259 

 0 1

0 1

cosh( ) cos( )
2cosh( )cosh( )

AP λ λ
λ λ±

± ± Δ
= ， (5) 260 

where λ0 = arsinh[cot(β)sin(ki)], λ1 = arsinh[cot(β)sin(ki−∆A)]. As ∆A varies from 0 to 2π, the measured data 261 
of P+ and P− are depicted in Fig. 4G, which can coincide well with the theoretical analysis. For ∆A = ±π/2, 262 
the upper and lower band occupancies are identical, where the incident wave packet splits equally into two 263 
branches. The output field intensity measured at m = 120 undergoes an oscillating transverse motion as ∆A 264 
varies, as illustrated in Fig. 4H. This can be well explained by the opposite periodic variations of the group 265 
velocities of the upper and lower band modes, vg,± = ∂θ±(k−∆A)/∂k as ∆A varies. The beam splitting here is 266 
analogous to the time refraction and reflection at a temporal interface, which is induced by an abrupt 267 
change of refraction index at specific time instant in a spatially-homogeneous medium (45, 46). Here the 268 
splitted wave packet occupying the lower band corresponds to reflected beam while the other one 269 
occupying the upper band corresponds to the refracted beam. Unlike the models of Refs. (45, 46), where 270 
the time dimension is continuous, our temporal lattice is discrete both in the lattice (n) and evolution (m) 271 
directions. Accordingly, the time refraction and reflection in our system act to a discretized pulse train, 272 
rather than to continuous light waves as in Refs. (45,46). The evolution-step interface of gauge potentials in 273 
temporal lattice opens a new avenue to emulate refraction and reflection in a synthetic time dimension with 274 
full reconfigurability, which is hard to implement in continuous spatial systems. 275 

By taking advantage of the evolution-step interface formed by vector potential steps, we can realize 276 
time reversal of pulse evolution. As shown in Fig. 5A, a vector potential of A2 is applied in the time interval 277 
∆m beginning from m = 60 during the pulse evolution and that in the rest is denoted by A1. The potential 278 
difference between adjacent regions is thus ∆A= A2 –A1. In order to manipulate the band structures more 279 
flexibly, the coupling ratio of the fibers is also changed with time, which is set as β2 in the disturbed time 280 
interval ∆m and the rest is set as β1. Here we choose ∆m = 1, ∆A = π/2, β1 = π/4, and β2 = π/2. For the 281 
incidence of a Gaussian shaped wave packet with a Bloch momentum k = π/2 in the upper band, it moves 282 
backward initially and undergoes a mirror reversion after passing through the disturbed time interval, 283 
featuring negative refraction. Note that only a single time step is utilized to vary the vector potential and 284 
coupling ratio while the undisturbed regions on both sides are identical. Therefore, the temporal interface 285 
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mimicked by a single time step behaves as a superlens with infinitesimal thickness in real space. The 286 
temporal superlens is also applicable to the imaging of a point source that contains all Fourier components, 287 
i.e., Bloch modes in the whole Brillouin zone. As shown in Fig. 5B, for a single pulse incidence, i.e., for 288 
excitation of a single lattice site at n = 0, discrete diffraction is observed at first region, with subsequent 289 
refocusing onto a single site after passing through the superlens. Note that there exists perceptible 290 
asymmetry in the imaging pattern along the lattice direction. This is attributed to the unequal excitation of 291 
upper and lower bands from single-loop incidence. Since each Bloch-wave component in upper and lower 292 
bands possesses opposite group velocities, their interference with unequal band occupations gives rise to 293 
this asymmetric evolution pattern. To obtain symmetric evolution patterns, we need to simultaneously 294 
excite from both fiber loops with appropriate relative amplitude and phase. The imaging effect can be 295 
explained by the reversion of Bloch modes. As the wave packet passing through the interface, the Bloch 296 
mode in the upper band converts to the lower one as we change both the gauge potential and the coupling 297 
ratio within a single time step, as illustrated in Fig. 5C. The group velocity undergoes a mirror reversion 298 
after passing through the temporal superlens. The details can be found in the SI Appendix (SI Appendix, 299 
section 7). 300 
 301 
Electric and magnetic AB effects 302 
In above implementations, we apply a scalar or vector potential alone and have experimentally verified 303 
their unique and distinct functionalities in manipulating temporal refractions at a specific interface. In this 304 
section, we show that the combination of lattice and evolution scalar- or vector-potential interfaces can 305 
benefit to the construction of a Mach–Zehnder interferometer (MZI) in time dimension, and hence for 306 
emulating the celebrated electric and magnetic AB effects. As depicted in Fig. 6A and 6B, the electric and 307 
magnetic AB effects can be accomplished by using MZI applied with scalar and vector gauge potentials, 308 
respectively. The gauge potential difference, and hence the phase difference between the two arms 309 
determines the final output intensity. In our setup, we utilize a lattice-site interface at n = 0 formed by 310 
vector potentials to play the role of 50:50 beam splitter and a superlens at m = 60 for the beam reversal 311 
operation, as shown in Fig. 6C. The beam interference at the output end is thus determined by the total 312 
phase difference in the two arms, consisting of the propagation phases accumulating in the two paths and 313 
the abrupt phase jumps acquired at the lattice-site interface at n = 0 and evolution-step interface at m = 60. 314 
Firstly, we consider the MZI without propagation phase. Taking the rightward output beam, along path 1 315 
the packet acquires a phase jump of π for reflection, 0 at the superlens and π for reflection at output end, 316 
giving rise to total phase jump of ϕ1= π+0+π=2π. For path 2, the phase jump is 0 for transmission, π at the 317 
superlens and π for transmission at output end, such that ϕ2= 0+π+π = 2π. So the phase jump difference 318 
between the two paths is ϕ1−ϕ2 = 0, which gives rise to the constructive interference (SI Appendix, section 319 
8). Similar procedure is also applicable to the analysis of the destructive interference for the leftward output 320 
beam. 321 
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Based on this, we then introduce the propagation phase to simulate AB effects. Firstly, a scalar 322 
potential difference is imposed on the interferometer arms. The scalar potentials in the two arms are 323 
denoted by φ1 for n < 0 and φ2 for n > 0. The potential difference is denoted by ∆φ = φ1–φ2. In the 324 
experimental implementation, the scalar potentials are applied at 30 ≤ m < 90 with a time interval ∆m = 60, 325 
as depicted in Fig. 6D. Then the accumulated phase should be ∆ϕ = ∆m⸱∆φ. As ∆ϕ = π, the output 326 
intensities of wave packets undergo a constructive interference and the output intensity reaches maximum 327 
at n < 0. By varying ∆φ, the wave packet will appear at a symmetric position n > 0 and the intensity 328 
experiences a periodic oscillation, as illustrated in Fig. 6E. The magnetic AB effect can also be 329 
implemented by employing MZI applied with vector potentials, as depicted in Fig. 6F. A vector potential 330 
difference is imposed on the interferometer arms. The vector potentials are assumed to be A1 in 30 ≤ m < 60 331 
and A2 in 60 < m ≤ 90, both with a time length ∆m = 30. The potential difference reads ∆A = A1–A2. From 332 
Fig. 6F, one sees that the accumulated phase difference should be ∆ϕ = 2∆n⸱∆A, where ∆n = vg∆m with the 333 

group velocity vg = 2 2 . As ∆ϕ = π, the wave packets also undergo a constructive interference at n < 0 334 

while a deconstructive interference at n > 0, as illustrated in Fig. 6G. When ∆ϕ varies from 0 to 2π, the 335 
output intensities corresponding to the superposed wave packets with backward and forward evolutions are 336 
measured experimentally. The data are depicted in Fig. 6G, where the output intensities vary as a function 337 
of ∆ϕ sinusoidally, evidently verify the interference affected by the vector potentials. 338 
 339 
 340 
Conclusion  341 
In summary, we have experimentally constructed reconfigurable lattice-site and evolution-step interfaces 342 
using inhomogeneous scalar and vector potentials in the temporal lattice, by which the unique features of 343 
refraction processes with respect to these two potentials are demonstrated in a reconfigurable setup. The 344 
TIR and FTIR mediated by scalar potential at the lattice-site interface are achieved, while the transmission 345 
always exists for vector potential. The vector potential redistributes the band occupancies at the evolution-346 
step interface, resulting in wave-packet splitting upon impinging the interface. By abruptly changing the 347 
vector potentials in a single time step, we also construct an evolution superlens and demonstrate perfect 348 
time-reversal operation of pulse evolution. We further emulate the celebrate electric and magnetic AB 349 
effects by virtue of the combined lattice and evolution-step interfaces. Our results reveal the uniqueness of 350 
scalar and vector potentials in controlling the refraction of wave packets at synthetic interfaces and 351 
demonstrate the ability to reconfigure the refraction scenario, realizing different functionalities with the 352 
same device. Moreover, due to the flexibility in designing the interface orientation and configuration, our 353 
system is expected to serve as an ideal platform to emulate various quantum mechanical phenomena such 354 
as quantum tunneling effects. Finally, the fully reconfigurable temporal refraction could lead to many 355 
applications of pulse reshaping, multiplexing, and manipulation used for optical communication and 356 
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quantum information processing, where reconfigurability and functional complexity have become 357 
increasingly demanding. 358 
 359 
 360 
Materials and Methods 361 
Experimental implementation. The experimental setup comprises of two fiber loops which are connected 362 
by a variable fiber optical coupler (VOC), as Fig. 1A displays. The coupling ratio between two loops can be 363 
controlled by applying electrical signal on the VOC via an arbitrary waveform generator (AWG). Each 364 
loop comprises a spool of single mode fiber, corresponding to the average roundtrip time of approximately 365 
25 μs for the two loops. The length difference between the two loops is introduced by inserting an 366 
additional optical fiber patch cord in the long loop, which give rise to time difference of approximately 0.15 367 
μs between the round-trip times in the two loops. To feed the circuit, a 50 ns long pulse is coupled into the 368 
long loop, which is prepared by modulating the output light beam from a 1550 nm distributed-feedback 369 
laser. During the circulation in the loops, the optical loss can be compensated by erbium-doped fiber 370 
amplifiers (EDFAs) in the two loops. To suppress the transient of the EDFA, the signal pulses is mixed 371 
with a high-power 1530 nm pilot light before entering the EDFA. Behind EDFA, the 1530 nm pilot light 372 
and spontaneous emission noise in the amplification process are removed by a band-pass filter. Besides, we 373 
employ the polarization beam splitter and polarization controllers in the loops to monitor and control the 374 
polarization of the light signal. The optical isolators are used to ensure the unidirectional circulation in both 375 
loops. The Mach-Zehnder intensity modulators set in fiber loops serve as the optical switches. The phase of 376 
pulses is controlled by phase modulators in the loops, which are driven by AWGs. Thanks to the flexible 377 
tunability of electrical signal generated by AWGs, the effective gauge potentials deriving from the phase 378 
modulations in two loops can be arbitrarily constructed in the synthetic temporal lattice. In order to detect 379 
and record the pulse evolutions in the two loops, we couple a small portion of light signals from both loops 380 
and detect them with photodetectors. The output voltages of the photodetectors are sampled by an 381 
oscilloscope. A more detailed description of the experimental platform is included in SI Appendix (SI 382 
Appendix, section 1). 383 
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 482 
Figures and Tables 483 
 484 

 485 
Fig. 1. Experimental implementation of effective scalar and vector potentials in synthetic temporal lattice. 486 
(A) Schematic sketch of the experimental setup used for implementing synthetic temporal lattice. Two fiber 487 
loops with slightly different lengths are connected by a variable optical coupler (VOC). Phase modulators 488 
(PMs) in long and short loops control the phase of pulses via ϕv and ϕu, respectively. The arrows represent 489 
the propagation direction of pulses. (B) Synthetic temporal lattice mapping from the pulse evolutions in a. 490 
Red (Blue) arrow indicates rightward (leftward) hopping in the lattice corresponding to a circulation in the 491 
long (short) loop. (C) Identical phase modulations ϕv = ϕu in two loops bring about effective scalar potential 492 
φ in synthetical temporal lattice, by which the band structure is shifted vertically. (D) Effective vector 493 
potential A is mediated by opposite phase modulations ϕv = −ϕu in the loops. The band structure undergoes 494 
a horizontal displacement in presence of effective vector potential. 495 
  496 
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 497 
Fig. 2. Refractions at the lattice-site interfaces. (A) Measured pulse intensity evolution as a wave packet 498 
impinges the lattice-site interface constructed by scalar potentials. The inset shows the distribution of scalar 499 
potentials. The potential difference is given by ∆φ = φ2 – φ1, which is fixed at 0.5π for left panel and 0.8π 500 
for right panel. (B) Band structures in two sides of the interface at ∆φ = 0.5π and 0.8π. Green dashed line 501 
represents the propagation constant conservation. The gray, blue and red arrows indicate propagation 502 
directions of the incident, reflected and transmitted wave packet, respectively. (C) Theoretical (solid line) 503 
and measured (circle) transmission T (red) and reflection R (blue) coefficients as a function of ∆φ. (D) 504 
Measured pulse intensity evolution at lattice-site interface constructed by vector potentials. The potential 505 
difference in left and right panels are ∆A = 0.3π and π. The inset illustrates the distribution of vector 506 
potential. (E) The band structures at ∆A = 0.3π and π. (F) Theoretical (Solid line) and measured (circle) 507 
transmission T (red) and reflection R (blue) coefficients versus ∆A. 508 
  509 
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 510 

Fig. 3. Temporal FTIR. (A and B) The measured pulse intensity evolutions as ∆n = 1 (A) and 2 (B). The 511 
insets show the schematic diagrams of the FTIR. (C) Measured (red bars) and simulated (blue bar) 512 
transmission coefficient as a function of the gap width ∆n. The inset shows the distribution of scalar 513 
potentials.   514 
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 515 
Fig. 4. Refractions at evolution-step interfaces. (A) Measured pulse intensity evolution as ∆φ = 0.5π. The 516 
inset shows the distribution of scalar potentials at the evolution-step interface. (B) The band structures of 517 
the two sides at ∆φ = 0.5π. The Bloch momentum conservation is indicated by green dashed line. (C) 518 
Measured (circle) and theoretical (solid line) upper band (red) and lower band (blue) occupancies versus ∆φ 519 
in the top region. (D) Measured output filed intensity at m = 120 as a function of ∆φ. (E) Measured pulse 520 
intensity evolution for ∆A = 0.5π. (F) The band structures in the top and bottom regions at ∆A = 0.5π. (G) 521 
Measured (circle) and theoretical (solid line) upper band (red) and lower band (blue) occupancies versus 522 
∆A as the wave packet crosses the interface. (H) Measured output field intensity distribution at m = 120 as a 523 
function of ∆A.  524 
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 526 
Fig. 5. Time reversal induced by band occupancies inversion. (A) Measured pulse intensity evolution for a 527 
wave packet incidence. The inset figure shows the distribution of vector potentials and coupling 528 
parameters. Measured intensity profiles at time step m = 0 and m = 120 are displayed on the upper panel. 529 
(B) Measured pulse intensity evolution for a single-site excitation. (C) The abruptly change of vector 530 
potential and coupling parameter at time step m = 60 can be viewed as a superlens for exchange of 531 
eigenstates. 532 
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 534 
Fig. 6. Electric and magnetic Aharonov–Bohm (AB) effects. (A and B) Schematic diagram of the electric 535 
(A) and magnetic (B) AB effects. (C) Temporal Mach-Zehnder interferometer constructed by combined 536 
lattice-evolution-step interfaces. The gray and cyan dashed lines represent vector potentials interface and 537 
superlens, respectively. The gray and red arrows indicate the incident and output wave packets. (D) 538 
Measured pulse intensity evolution for electric AB effect as accumulated phase difference between two 539 
arms is ∆ϕ = π. (E) Measured (circles) and theoretical (solid curves) normalized intensity of outputs on the 540 
left (blue) and right (right) side of the lattice-site interface as a function of ∆ϕφ. (F and G), Same as (D and 541 
E) but for magnetic AB effect. 542 
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