ADAPTIVE ANGULAR TRACK ESTIMATION FOR RESIDENT SPACE OBJECT ORBIT DETERMINATION

M. Montaruli, **P. Di Lizia**, L. Facchini, M. Massari, G. Pupillo, G. Naldi, G. Bianchi

OUTLINE

01

02

03

 $\mathbf{04}$

BIRALES data processing

From multibeam to adaptive beamforming with MATER algorithm

MATER: Catalogued object

MATER pipeline for the observation of catalogued objects

MATER: Uncatalogued object MATER pipeline for the observation of uncatalogued objects

Conclusions Conclusions and future developments

01 BIRALES DATA PROCESSING

POLITECNICO MILANO 1863

Blstatic Radar for Leo Survey (BIRALES)

BIRALES: MULTIBEAM APPROACH

[1] M. Losacco et al., Acta Astronautica, 2020

BIRALES: MULTIBEAM APPROACH

Static beamforming ^[1]

BIRALES: MULTIBEAM APPROACH

Static beamforming ^[1]

BIRALES: ADAPTIVE BEAMFORMING APPROACH

Static beamforming ^[1] NORTHERN RFT CROSS Medicina Salto di Quirra (Sardinia) (Bologna)

Adaptive beamforming

BIRALES: ADAPTIVE BEAMFORMING APPROACH

MUSIC - MUltiple SIgnal Classification ^[2]

[2] R. Schmidt et al., IEEE Transactions on Antennas and Propagation, 1986

BIRALES: ADAPTIVE BEAMFORMING APPROACH

MUSIC - MUltiple SIgnal Classification ^[2]

[2] R. Schmidt et al., IEEE Transactions on Antennas and Propagation, 1986

S⁴U

DOA AMBIGUITY PROBLEM

DOA solution is unique if distance between antennas is less than $\lambda/2$

Presence of multiple DOA estimates

O MATER CATALOGUED OBJECT

2

MATER: PERFORMANCE

Synthetic Data:

- 899 NORAD LEO passages, Entire FoV involved
- Transitted power: 10 kW
- Noise levels:
 - Slant range (SR) ~*N*[0, 30 m]
 - Doppler Shift (DS) ~N[0, 10 Hz]
 - SNR ~*N*[0, 0.5 dB]

Success rate: 100%

Percentile: 25%	50%	75%
$\Delta\gamma_1$ RMSE [deg]: 0.0033	0.0056	0.0110
$\Delta\gamma_2$ RMSE [deg]: 0.0060	0.0119	0.0129

O MATER UNCATALOGUED OBJECT

3

Uncatalogued case

Signal Estimate DOAs for each covariance matrix epoch Clustering based on RANSAC Ambiguity solving criterion

Uncatalogued case

Proposed approach:

For each candidate track, use measured DS and SR to perform an initial orbit determination (IOD)

Compute all predicted SNR profiles and compare with measured SNR

[3] J. Siminski, 6th International Conference on Astrodynamics Tools and Techniques (ICATT), Darmstadt, Germany, 2016, 14-17 March

[4] C. Yanez et al, 7th European Conference on Space Debris, 2017

Candidate tracks

6

6

Real track MATER track

Synthetic Data:

- 899 NORAD LEO passages
- Entire FoV involved

Success rate	100%	
Accuracy (RMSE)	10 ⁻³ – 10 ⁻² deg	

MATER PERFORMANCE: SENSITY ANALYSIS

Sensitivity analysis on the uncatalogued case:

REAL OBSERVATIONS

ISS passage (April 28, 2021)

Current signal processing chain not suitable:

- Still designed for a multibeam logics
- Very noisy covariance matrices

Only large objects with small SR

REAL OBSERVATIONS

Long March reentry (May 9, 2021)

Challenging conditions:

- No reliable passage prediction
- Weak signal
 - Transit was low on the horizon
 - No proper signal processing chain

Compliant source angular positions

04 CONCLUSIONS

POLITECNICO MILANO 1863

CONCLUSIONS

Promising results from the new BIRALES data processing pipeline

- Excellent performance of MATER on synthetic data
- Good results on real data
- Current back-end not suitable for MATER 🖒 Much room for improvement

Ongoing activities:

- Extension to simultaneous passages of multiple sources (just completed)
- BIRALES backend upgrade

ADAPTIVE ANGULAR TRACK ESTIMATION FOR RESIDENT SPACE OBJECT ORBIT DETERMINATION

M. Montaruli, L. Facchini, P. Di Lizia, M. Massari, G. Pupillo, G. Bianchi, G. Naldi

Adaptive track estimation on a radar array system for space surveillance

Acta Astronautica, 198, 2022, 111-123

POLITECNICO MILANO 1863

THANK YOU FOR THE ATTENTION!

ANY QUESTION?

Acknowledgments

Research performed within the **European Commission** Framework Programme H2020 and Copernicus "SST Space Surveillance and Tracking" contracts N. 952852 (2-3SST2018-20) and N. 237/G/GRO/COPE/16/8935 (1SST2018-20) with further support from the **Italian Space Agency** through the grant agreement n. 2020-6-HH.0

Florence, candidate city to host the

Sustainable space research for the planet

