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‡‡INFN, Sezione di Padova, Italy [name].[surname]@pd.infn.it
x
Institute for Complex Quantum Systems, Ulm University, Germany

xi
Padua Quantum Technologies Research Center, Italy

xii
Centro Interuniversitario Nazionale per l’Informatica (CINI), Italy

xiii
National Research Council (CNR), Italy

xiv
Università ”Sapienza” di Roma, Italy

xv
INFN, CNAF, Italy

xvi
University of Torino, Italy [name].[surname]@unito.it

Abstract—The TEXTAROSSA project aims to bridge the
technology gaps that exascale computing systems will face in the
near future in order to overcome their performance and energy
efficiency challenges. This project provides solutions for improved
energy efficiency and thermal control, seamless integration of
heterogeneous accelerators in HPC multi-node platforms, and
new arithmetic methods. Challenges are tacked through a co-
design approach to heterogeneous HPC solutions, supported by
the integration and extension of HW and SW IPs, programming
models, and tools derived from European research.

Index Terms—High-performance computing, heterogeneous
computing, FPGA, GPU, thermal management, power manage-
ment, hardware accelerators, programming models

I. INTRODUCTION

High-Performance Computing (HPC) technologies are key
to support several applications in domains such as compu-
tational fluid dynamics, weather forecasting, bioinformatics
and Artificial Intelligence (AI). With the recent explosion
in HPC for Artificial Intelligence (HPC-AI), the trend in
the design of HPC infrastructures is leaning more and more
toward heterogeneous HW architectures in response to larger
performance demands as well as the need to improve energy
efficiency to achieve ”Green HPC”. We address the challenge

of increased performance while remaining within power and
energy bounds with a holistic approach taking into account
multiple factors across the HPC HW/SW stack. This includes
analysis and redesign of applications to use more efficient
reconfigurable application-specific accelerators, development
of such accelerators, management of resources, design of
the underlying infrastructure and cooling and management
of such infrastructure. By approaching the whole HW/SW
stack, higher-level SW components can affect how HW and
infrastructure are designed while infrastructure can also affect
application design to reach energy efficiency and performance
targets. TEXTAROSSA is a three-year project co-funded by
the European High Performance Computing (EuroHPC) JU.1

The project is led by ENEA (Italy) and aggregates 17 Eu-
ropean partners.2 The paper is organized as follows. Section
II describes the HW platforms designed during the project.
Section III describe project contributions to the HW/SW stack.
Section IV presents evaluation of the contributions across
different use cases. Finally, section V draws some conclusions.

1https://eurohpc-ju.europa.eu/
2https://www.textarossa.eu
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II. HARDWARE PLATFORMS

During the project, we developed two different experimental
HW platforms known as Integrated Development Vehicles
(IDVs). Both prototypes, named IDV-A and IDV-E, incorpo-
rate commercially available components, the descriptions of
which are provided in sections II-A and II-B, respectively.
All of these platforms utilize the project-designed two-phase
cooling technology described in Section III-A.

A. IDV-A

The IDV-A prototype is based on Atos Sequana3 platform.
It consists of one Nvidia Redstone-Next GPU board equipped
with four Nvidia H100 GPUs. These GPUs are attached to
the host system using PCIe 4.0 x16. Moreover, each GPU is
connected with all other GPUs using 4x NVLink providing
GPU-to-GPU transfers up to 200 GB/s between each pair of
GPUs. The motherboard is an Atos C4E CPU board equipped
with two Intel Xeon 8470 CPUs. The total Thermal Design
Power (TDP) dissipated by a single node can reach more than
3500 W. Each of the CPUs dissipates up to 350 W while each
of the H100 GPUs can dissipate up to 700 W.

B. IDV-E

The IDV-E prototype, developed by E4, is based on the
Ampere Mt.Collins 2u system. It is equipped with two Ampere
Altra Max ARMv8 processors and two AMD Alveo U280
FPGA accelerator cards that are attached via PCIe 4.0 x8 or
PCIe 3.0 x16. Both FPGAs are connected via two QSFP+ links
that are capable of providing up to 100 Gb/s in full duplex
mode between FPGAs each. Each of the CPUs can dissipate
up to 250 W while each of the FPGA cards can dissipate up
to 225 W for a total of 950 W per node.

III. PROJECT CONTRIBUTIONS

A. Evaporative cooling and thermal management

Availability, cost, and performance of current HPC plat-
forms are constrained by thermal considerations, necessitating
optimized heat dissipation solutions with runtime thermal
modeling and control policies for reliable and efficient opera-
tion [1]. In terms of heat dissipation improvements, InQuattro
has developed and patented an innovative thermal management
solution based on two-phase mechanically pumped loops. This
solution utilizes flow boiling heat transfer to cool electronics
more efficiently. By harnessing the latent heat of vaporization,
this approach significantly reduces flow rates, maintains small
temperature gradients, and increases heat transfer coefficients
compared to both air cooling and traditional liquid cooling
systems. Two-phase cooling systems using evaporation and
condensation are recognized as the best way to meet demand-
ing cooling requirements in terms of compactness, weight, and
energy consumption [2]. One of the main achievements of
TEXTAROSSA with IDV-A and IDV-E has been demonstrat-
ing the feasibility of integrating server-level two-phase cooling
solutions for heterogeneous computing. The installation on
IDV-E showcased how it is possible to seamlessly integrate
the evaporative cooling on top of existing platforms. Similarly,

on IDV-A, it was demonstrated that a hierarchical thermal
control approach is feasible, where control over the Dynamic
Voltage and Frequency Scaling (DVFS) of the CPU effectively
cooperates with outer control of the evaporative cooling to
achieve efficient global thermal management. fig. 1 depicts
the installation on the IDV-A Sequana3 server platform as
described in Section II.

Fig. 1: Evaporative Cooling installed on IDV-A.

Concerning the thermal modeling, which is the cornerstone
of any control policy, POLIMI developed a transient model
using Equation-Based Object-Oriented Modeling (EB-OOM)
technology, and capable of performing co-simulation with the
3D-ICE chip thermal simulation [3]. The goal of a thermal
model is the accurate reproduction of the chip temperature
profile when subject to a given power dissipation stimulus,
and under prescribed boundary conditions, which include the
heat dissipation solution surrounding the chip as well as its
connection to the ambient. When modeling a closed cooling
cycle, the boundary conditions include all the parts that com-
pose the cycle, thus pipes, tanks, the condenser/heat exchanger,
and pumps. However, these components can be modeled with
a coarser level of detail, preferring lumped modeling rather
than detailed models including spatial discretization. The chip
model is connected to the EB-OOM model of the evaporator
and coolant cycle with a fixed coolant flow rate. The spatial
discretization of the chip is 320 x 320 x 2 finite volumes, the
evaporator base plate is 12 x 12 finite volumes, and the coolant
flow within the evaporator is discretized in 9 finite volumes.
This level of resolution allows to create fine grain thermal
maps of the surface of the chip, enabling fine-grain control
over the parameters steering the maintaining of the status of
phase change of the coolant, that is not a trivial task: optimal
performance occurs when both the flow rate and the dissipated
power are either high or low simultaneously.

A hierarchical thermal controller has been developed by
POLIMI to limit the operating temperatures of computational
devices while taking advantage of the evaporative cooling
technology to also limit the performance degradation due
to frequency reduction. For massively multicore architectures
CPUs, such as the Intel Xeon Platinum in IDV-A with 52
cores, each core is equipped with one temperature sensor
and one frequency actuator. This setup enables fine-grained
thermal control at the core level. Differently, Nvidia H100
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GPUs only provide a single temperature sensor and frequency
actuator per GPU. Therefore, in this case, thermal control
is implemented at the level of the entire GPU. Additionally,
the thermal control strategy needs to take into account the
presence of an evaporative cooling system. It has additional
actuators (pumps) to set the evaporative coolant liquid flow
rate and additional sensors to monitor coolant temperatures
and measure flow rate. The flow rate can differ from the
prescribed one due to head losses in the system that largely
depend on the coolant vapor quality. Due to the involved
thermal inertia, the evaporative cooling system is considerably
slower compared to the on-chip phenomena. For the above-
mentioned reasons, namely, the presence of multiple sensors
and actuators operating at different timescales, a single global
control loop is an unfeasible option to solve the thermal
control problem. The implemented solution thus hierarchically
splits the control problem into one fast inner control loop
per controlled device (CPU core/GPU), plus one evaporative
controller per cooling cycle, each having an additional inner
control loop to actuate the pump while compensating for
variable head losses. The fast inner control loop design is
based on an event-based thermal control policy that is patented
by POLIMI [4].

For the CPU we used Model-Specific Registers (MSRs) for
sensing temperature and computational load, and to drive the
DVFS actuator. For what concerns controlling the operations
of the GPUs, we exploited the Nvidia Management Library
(NVML). Interfacing with the flow meter sensors and pump
actuators was instead performed through custom code written
in cooperation with InQuattro. The inner control loops are
placed just above the HW driver layer. For the CPUs and
GPUs, we developed a C++ implementation of the event-
based controller. A different number of those controllers can be
instantiated to accommodate the number of CPUs and GPUs
present in the computing architecture. The CPU and GPU
controllers have been tuned separately based on dedicated
identification experiments, due to the different thermal dynam-
ics between the two types of HW. The controller, validated
under stress conditions, has been capable of maintaining the
GPU temperature within 1°C of the target set point, and for
all 104 CPU cores within less than 2°C of the target set point.

B. Hardware IPs for task scheduling

One source of inefficiencies in heterogeneous systems is
task management. The overhead of keeping track of task data
dependencies and sending tasks to accelerators in some cases
can negate all improvements achieved by using application
accelerators. To solve this issue, BSC in collaboration with
UPC developed a HW Intellectual Property core (IP) that takes
care of scheduling tasks into different cores or accelerators.
This serves two purposes. On one hand, management jobs
such as keeping track of the accelerator state are offloaded
to an external IP, freeing host resources. On the other hand,
it reduces the amount of communication and synchronization
points between the different processing elements in a given
system. One of the use cases for this IP is to manage execution

in multiple FPGA accelerators. In this case, the scheduler IP
is placed in the FPGA, close to the accelerators. This allows
for fast and efficient management of accelerators, furthermore,
it also allows accelerators to spawn tasks to be executed in
other accelerators without host intervention, allowing efficient
management of a large number of fine-grained tasks as most
host-device synchronization is removed. In this scenario, the
host does not interact directly with accelerators, but with the
task scheduler, which manages the accelerators.

We also have integrated this IP in a Rocket Chip-based
RISC-V multicore system [5]. In this case, the HW task
scheduler is tightly coupled with the cores. More precisely
a new CPU instruction is added so that CPU cores can access
task scheduling HW allowing efficient task scheduling for mul-
ticore systems. In this case, all cores access the HW scheduler
through an arbitration module. This largely removes the need
to use synchronization primitives between cores. Tasks are
scheduled based on their data dependencies automatically by
the HW module.

C. OmpSs@FPGA multi-node task-based programming model
We improved HW implementation quality of results as

well as memory access efficiency in the OmpSs@FPGA
programming model. This results in an overall improvement
in performance and energy efficiency [6]. We also added
support to multiple FPGA devices, which implies managing
groups of accelerators attached to different memory spaces
(i.e. each board memory) for a single node. On top of that,
system SW such as device drivers had to be adapted to
support multiple FPGA devices attached to an ARM-based
CPU. Moreover, we developed a communication mechanism
that allows multi-FPGA execution via message passing in a
similar fashion as the Message Passing Interface (MPI) called
OmpSs MPI for FPGAs (OMPIF) [7]. This not only enables
direct communication between FPGA devices in the same
node, which is critical in a multi-FPGA application but enables
direct communications between FPGAs in different nodes. We
developed a simple API to implement communications inside
the accelerators. Basic API calls are shown in listing 1.

void OMPIF_Send(const void* buf, int count,
OMPIF_Datatype datatype, int dest, int tag,
OMPIF_Comm comm);

void OMPIF_Recv(void* buf, int count,
OMPIF_Datatype datatype, int dest,
int tag, OMPIF_Comm comm);

Listing 1: OMPIF API calls.

Moreover, the APEIRON framework [8] is used as a back-
end to implement low-level data transmission and reception
for the IDV-E platform. Raw 100G Ethernet is also supported
as a communication backend.

D. Hardware IPs for low-latency Inter-FPGA communication
The INFN Communication IP is the main component of

the APEIRON framework, allowing direct communication be-
tween tasks deployed on the same FPGA (intra-node commu-
nication) and on different FPGA (inter-node communication),
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without involving CPU and system bus resources. It is based
on the HPC direct network designs previously developed by
INFN APE Lab, i.e. APEnet [9] and ExaNet [10][11].

As shown in fig. 2, the Communication IP can be split
into a Network IP and a Routing IP block. The Network IP
defines the data encoding scheme for the messages over the
cables; it implements inter-node ports to transfer data between
neighbor FPGAs using AMD Aurora 64B/66B cores and
10G/25G Ethernet supporting UDP/IP transport layer offload-
ing. Meanwhile, Routing IP manages data transfers between
Communication IP ports, applying the dimension-order routing
policy for inter-node communications and solving contentions
between packets reaching the same port.

CPU
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Fig. 2: Block diagram of INFN communication IP showing
intra-node (red) and inter-node (green blue) communications.

In the testbench, the Communication IP featured with 4
intra-node ports and 2 inter-node ports, is implemented as an
RTL-IP kernel connected to the global system/board clock of
150 MHz and to 4 dispatcher/aggregator couples.

In latency tests, a send receive HLS kernel in the initiator
FPGA reads a payload (of max 4096 Bytes) from the memory
(either BRAM or DDR), sends it to a destination (pipe kernel)
and waits for an acknowledge packet from the pipe kernel.
To minimize the host call overhead, one million send receive
operations are launched. The time elapsed from the start of the
first packet sent to the completion of the last packet received is
measured on the host. Based on the destination, we performed
three latency tests: destination task deployed on the same
FPGA and intra-node port of sender (local-loop), different
intra-node port (local trip), and a different FPGA (roundtrip).

In fig. 3a it’s possible to notice the effects of the DDR mem-
ory access latency and synchronization overheads between the
CPU and FPGA. Using the BRAM, the end-to-end latency
remains below 1 µs for packet payload sizes up to 512B.

Bandwidth test is carried out by transferring multiple data
packets with fixed payload size from a sender HLS kernel
and receiving a single ACK packet to confirm the reception.
According to source and destination, we performed Loopback
test (on the same FPGA) and Oneway test (different FPGAs).
As shown in fig. 3b), bandwidth does not saturate at the maxi-
mum message size (4KB). Moreover, DDR latency dominates
the transfer cost as bandwidth is the same regardless if source
and destination being or not in different FPGAs.
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Fig. 3: Measured latency (a) and bandwidth (b) using 256-bit
internal datapath width for communication IPs.

E. The APEIRON multi-FPGA stream-based framework

The APEIRON framework has been developed to offer HW
and SW support for running real-time dataflow applications on
a multi-FPGA system. It implements the following features:

1) Automatic project linking and bitstream generation:
Starting from a user-defined YAML configuration file which
describes the attributes of each HLS kernel (number of input
and output channels, its dedicated IntraNode port), APEIRON
framework can create bitstream which implements a design
including the Communication IP and the HLS kernels, kernels,
along with their arguments, must expose a generic AXI4-
Stream interface for each communication channel as shown
in listing 2.

void example_apeiron_task(
[optional kernel-specific list of parameters],
message_stream_t message_data_in[N_IN_CHANNELS],
message_stream_t message_data_out[N_OUT_CHANNELS]);

Listing 2: HLS kernels prototype.

2) HLS Inter-FPGA communication library: The commu-
nication between kernels is expressed via HAPECOM: a
lightweight C++ API, based on non-blocking send() and re-
ceive() operations. This simple API allows the HLS developer
to perform communications between kernels, deployed on the
same or different FPGAs, without knowing the details of the
underlying packet communication protocol.

size_t send(msg, size, dest_node, task_id, ch_id);
size_t receive(ch_id);

Listing 3: HAPECOM API pseudocode.

A sample of the API calls is shown in listing 3 where:
• dest_node is the n-Dim coordinate of the destination

node (FPGA) in an n-Dim torus network;
• task_id is the local-to-node receiving task (kernel)

identifier (0-3);
• ch_id is the local-to-task receiving FIFO (channel)

identifier (0-127).
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The Communication Library uses AXI4-Stream Side Channels
to encode all the information needed to build the packet header.
Then, an Aggregator IP receives outgoing packets from the
task and builds the packet header and a Dispatcher IP receives
incoming packets from the Routing IP and forwards them to
the right kernel input channel.

3) Runtime host sw stack and monitoring tools: The host
SW stack provides runtime support for the multi-FPGA execu-
tion model. It is based on AMD xocl and XCLMGMT drivers
used in combination with Xilinx Runtime library (XRT), an
open-source SW stack that facilitates the management and
usage of FPGA/ACAP devices.

The SW stack is composed of different modules. The
Apeironlib module provides user access to low-level XRT
functionality. It also manages access from different processes
to the same FPGA board. Apeirond is a network-exposed
server used to manage multiple (local or remote) access
requests from user apps to an FPGA. It has a persistent handler
over the FPGA board which is an instance of the Apeironlib
module. It operates on the client/server principle: it listens for
user application requests over the network.

The Apeirons, component is responsible for the connection
handling and the request parsing, exposing Apeironlib com-
mands over the network. The communication protocol uses
JSON messages over TCP/IP sockets. The Monitoring tools
are used to monitor the status of the nodes in the network from
a single node running the Supervisor module. They provide a
graphical view of the status of all nodes in the cluster. The
Supervisor module operates remotely on the target nodes by
flashing bitstreams, running kernels and writing and reading
registers and execution logs. Information such as kernel state
(running, stopped, idle, etc.), power consumption, and thermal
information is gathered for each board in each node.

F. Precision Tuning

Precision tuning is an approximate computing technique
that trades off the accuracy of the result for improvements in
performance and latency [12]. Several tools and techniques
have been studied in the literature, employing either static
analysis or code profiling to understand the trade-offs, and
then, compiler transformations to effectively alter the precision
of the computation by replacing instructions and data types.
It is worth noting that switching between different precision
levels, particularly when they are achieved through different
number systems representations for real numbers (e.g., fixed
point and floating point), has a non-negligible cost that must
be accounted for in the trade-off [12]. In TEXTAROSSA, pre-
cision tuning has been explored through the TAFFO [13], [14]
tool, a set of plugins for the LLVM compiler framework [15].

In particular, TEXTAROSSA proposes three extensions to
TAFFO: (i) support for GPGPU architectures; (ii) support
for High-Level Synthesis tools; (iii) support for the Posit
number system. The latter extension broadens the support
of TAFFO for different number systems. Posit number sys-
tem support was added on top of fixed and floating point.
This can be useful since Posit has variable precision, that

allows more accurate representations at a lower bit size [16].
The first two extensions, on the other hand, help target the
IDVs of the TEXTAROSSA project. In the GPGPU case,
the key extension is the support for heterogeneous computing
platforms, enabling the separate but coherent compilation of
host- and device-side code. It can be proven experimentally
that supporting precision tuning without keeping aligned the
data types across the heterogeneous platform, results in a
massive overhead due to undue type conversions, as the two
architectures very likely have different optimal types when
considered in isolation [17]. Finally, the main difficulty of
integrating high-level synthesis tools is related to the lack
of support from VitisHLS, which composes the backbone of
the TEXTAROSSA reconfigurable computing toolchain, of
a recent version of the LLVM compiler framework. Due to
the rapid evolution of the compiler infrastructure, to which
VitisHLS does not keep aligned (it is based on version 8 of
LLVM, whereas the latest LLVM major release is version 18)
there was a need to backport TAFFO to the earlier major
version of LLVM, compatible with VitisHLS.

IV. EVALUATION AND ACHIEVEMENTS

A. Multi-node FPGA support

We used the n-body simulation application to evaluate the
OmpSs@FPGA multi-node task-based programming model,
task scheduling IP, and the APEIRON communications infras-
tructure. We run this benchmark using the IDV-E platform as
well as the Meep machine, to further evaluate the scalability
of the proposed solution. The Meep system [18] is composed
of 12 nodes with 8 AMD Alveo U55c FPGAs in each node.
FPGAs are AMD Alveo U55c, which feature the same FPGA
chip as the IDV-E but with a different memory topology. Fig. 4
shows a summary of the performance obtained for the n-body
application in different scenarios.

1 2 8 16 32 48 64
FPGA number

37

74
100

1000

2000

Pe
rfo

rm
an

ce
 (G

pp
s)

IDV-E host-cp
IDV-E ape-cp

Meep
Ideal

Fig. 4: N-body performance vs. number of FPGAs.

The inter-accelerator interconnect allows accelerators to
exchange data without host intervention. This allows the
application to scale beyond a single FPGA device as shown
for the case of IDV-E ape-cp line in fig. 4, otherwise, data
copies between the host and accelerators quickly become a
bottleneck causing performance degradation as shown in the
IDV-E host-cp line. Moreover, by using a HW module to
schedule tasks, we can manage a large number of accelerators
as shown in the Meep line of fig. 4, which is very close to the
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ideal performance even for 64 FPGAs. All in all, we can reach
74.7 Gpps (billions of particle pairs processed per second) in
the IDV-E system and 2322.98 Gpps in the larger meep system.
Regarding energy efficiency, we reach 0.39 Gpps/W in the 2-
phase cooled IDV-E, 0.35 Gpps/W in the air-cooled IDV-E
, and 0.36 Gpps/W in the air-cooled Meep. This highlights
that cooling technology has a non-negligible effect on power
efficiency.

B. The RAIDER Multi-FPGA Inference Application

RAIDER is a high-throughput online streaming processing
application implemented on FPGA. Its task is to perform
Particle IDentification (PID) on the stream of events generated
by the RICH (Ring Imaging CHerenkov) detector in the
CERN NA62 experiment, using Convolutional Neural Net-
works (CNN). This CNN model has been tested and trained
offline using Tensorflow/Keras and then deployed on FPGA
with the HLS4ML [19] tool. The CNN input data is a 16x16
image for each RICH physics event and produces, as output
prediction, an estimate for the number of charged particles in a
single event by doing a classification between 4 output classes:
0, 1, 2, or 3+ rings. Since this implementation has to cope with
the 10 MHz event rate of the NA62 L0 trigger, sustaining an
adequate processing throughput is the main challenge for such
a system. However, the initiation interval of the CNN obtained
from HLS4ML increases with the size of the image, reducing
the processing timing performance. Thus, to improve the
throughput, the RAIDER application has been designed using
the APEIRON framework with multiple processing kernels
placed in different nodes, capable of receiving events coming
from the network via the HAPECOM communication APIs.
In this setup, the interconnected boards are used as nodes of
a RAIDER deployment via the APEIRON framework with
distinct roles:

• Preprocessing node: data is loaded from Host mem-
ory and sent through the network via an HLS kernel
(krnl sender). Data is then processed by 3 Imagifier
HLS kernels which convert the PMT hitlist information
into a 256-bit word (16x16 B&W image) that is sent
to the Computing node through the internode ports of
the INFN Communication IP. As a second task, this
node is in charge of receiving the output of the CNN
computation and storing it on Host memory via an HLS
kernel (krnl receiver).

• Computing node: images coming from external nodes
are taken as input and dispatched to various CNN HLS
kernels (each of them connected to a different INFN
Communication IP intranode port) to compute the pre-
dictions. Results are then sent back to the preprocessing
node.

Fig. 5 shows how these components are laid out across
multiple nodes and their interconnection paths between them.

RAIDER clustering quality measured as sensitivity (% data
points correctly classified) and precision (% of correct data
points in a class) are reported in Table I They were measured
by taking 2.7M events, extracted from the NA62 database,

Fig. 5: Test setup of 4 AMD Alveo U280 boards installed on
IDV-E nodes.

Class Sensitivity Precision
0 92% 83%
1 79% 88%
2 75% 70%

3+ 76% 80%

TABLE I: Efficiency and purity values obtained from FPGA
implemented CNN model trained on NA62 physical events
number of rings classification.

as neural network input. To test the peak throughput and
energy efficiency values of the application, we decided to
work with a subset of events (sent through the network for
2.7M times) loaded from the BRAM instead of working with
the whole NA62 dataset loaded on the DDR FPGA memory.
This is due to a limit in the sender HLS kernel, which needs
∼ 160 clock cycles to load events from DDR memory, limiting
maximum throughput to 1.278 MHz. We run this application
on two different setups:four interconnected AMD Alveo U280
installed on the IDV-E node in a ring topology, 2 FPGAs for
each of the two IDV-E nodes, and four interconnected AMD
Alveo U200 installed in the INFN Roma APE Lab in a ring
topology, one FPGA for each of the four single Intel Xeon
Silver 4410T CPU nodes. All tests performed in both testbeds
have been done using a 200 MHz global clock in the HW
setups and by scaling the number of CNN HLS processing
kernels starting from tests on 2 nodes (one preprocessing and
one computing) up to 4 nodes (adding 2 more computing
nodes).

To evaluate RAIDER processing throughput, we tested the
system scaling from 2 FPGAs (one preprocessing and one
computing) up to 4 (adding 2 more computing FPGAs).
However, since the resources available on the Alveo U280s are
larger than the Alveo U200 FPGAs of the previous testbed, we
implemented 3 CNNs HLS kernels on each computing FPGA.
Both throughput and number of CNN kernels are reported in
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table II. To compare and visualize the trends of the throughput

APE (U200) IDV-E (U280)

#CNN Throughput
(Mevents/s) #CNN Throughput

(Mevents/s)
2 1.163 3 1.813
4 2.325 6 3.409
6 2.692 9 4.874

TABLE II: Processing throughput with an increasing number
of CNN HLS kernels on Xilinx Ulveo 200 APE Lab testbed
and IDV-E Alveo U280

values reported in the Table II under APE and IDV-E for the
APEIRON setup and the IDV-E setups respectively, we choose
to picture them in fig. 6. In detail, from the linear regression
curve obtained from the different sets of results, we can notice
that the RAIDER application tends to scale better on the U280-
based IDV-E testbed, since in these computing nodes more
CNN HLS kernels can be implemented, more precisely, 3
CNN kernels can be placed in each FPGA instead of the 2
that fit in the U200 device increasing the global computing
performance of the HW.
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Fig. 6: RAIDER Throughput scaling trends for the IDV-E
Alveo U280 setup (blue) and Xilinx U200 (orange).

C. Simulating quantum systems on IDV-A

Quantum TEA is among the applications studied within
Testarossa. Simulations of quantum systems face an exponen-
tial scaling of resources when adding more particles; tensor
network methods avoid this by compressing quantum corre-
lations in a tunable parameter χ. The Quantum TEA library
implemented flexible precisions and GPU support during the
TEXTAROSSA project. As a benchmark problem on IDV-A,
we cool a one-dimensional quantum Ising model all the way
down to the ground state via a variational tree tensor network
algorithm. We choose 64 qubits, χ = 64, and four sweeps of
patterns like SSSD (Z=double complex, D=double, S=single).
Errors are available via an analytic solution. The ”mixed
precision” approach increases the precision during the sweeps
with significant speedup at equal error: 272s → 117s → 39s
for ZZZZ (only option at project start), DDDD, SSSD sweep
patterns, respectively (qtealeaves-numpy). At this moderate
bond dimension, one can already see a benefit of GPUs for
complex arithmetic with 36s → 13s for switching from the
fastest CPU code to the best GPU while decreasing the error

by two orders of magnitude (qgreentea-fortran → qtealeaves-
torch-gpu). These improvements have an actual impact on how
this type of simulation is approached in the future.

D. UrbanAir HPC application

UrbanAir is a multiscale HPC application to predict air
quality in urban environments. Detailed prediction at city
or street level requires running over a domain with 10m
horizontal resolution, starting from a 50M gridpoints domain.
This is a challenge to solve such problems at this fine-grain
scale on traditional HPC systems in a reasonable amount
of time. Another aspect being considered is to maximize
energy efficiency while shortening time-to-solution . Another
limitation comes from the memory available for GPUs, pre-
venting to solve problems on very large domains on a single
GPU. Therefore, implementation on multi-GPU is required
which exploits IDV-A most efficiently. In TEXTAROSSA,
focus is given to the GCRK routine of UrbanAir, which
is a preconditioner with an iterative solver. The toolchains
used by UrbanAir include the C++ compiler, the CUDA
toolkit, OpenMP for shared-memory parallelization (single
node), and MPI for data exchange between GPUs, all available
at the IDV-A platform. To monitor the energy consumption of
kernels running on GPUS, GPowerU project tool was used,
also available on the IDV-A TEXTAROSSA platform. Fig. 7
presents energy usage when all GPUs available at the node
are taken into consideration, i.e. for a single GPU run, energy
usage of all 4 GPUs available is summed. Dibona is the
former IDV-A system, while on final IDV-A, three different
configurations are compared: IDV-A with traditional cooling
system (wo-2phase), IDV-A with two-phase cooling system
installed (w-2phase), IDV-A with two-phase cooling system on
which optimized version of UrbanAir-gcrk was run (w-2phase-
opt). The most energy-efficient execution is when all available
GPUs are used for computations. The installation of 2-phase
cooling systems has a small impact on application performance
(see fig. 8) and energy efficiency. Both are improved with the
introduced optimizations.
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Fig. 7: UrbanAir-gcrk energy consumption for 59M grid
points, unused GPUs accounted.

E. Math Library

Some modules of a mathematical library for GPU-
accelerated heterogeneous architectures, such as IDV-A, have
been developed and tested during the project. They include
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Fig. 8: UrbanAir-gcrk iterations/s for 59M grid points.

computational kernels required in sparse matrix computations
and iterative linear solvers, which are widely used in HPC and
HPDA/AI domains, and, as well known, are memory/commu-
nication bound modules. Main efforts were put on GPU-kernel
efficiency and scalability in multiple GPUs. Multiple GPUs
are often needed because dimensions exceed the memory
resources of a single GPU. Therefore, on IDV-A, the library
stressed the GPU operation capabilities and memory/commu-
nication channel bandwidth at the node level. The library
development toolchain includes C compilers, the Cuda Toolkit,
and the MPI library available as the basic environment of
the TEXTAROSSA platform. These tools allow reusing very
efficient GPU kernels for single Nvidia GPUs previously
developed and focus on algorithms that enable scalability on
a large number of GPUs. Moreover, extensive use of the
GPowerU project tool, developed by INFN, has been made
for monitoring GPU kernel energy consumption. Details on
the algorithms and parallel design patterns implemented for
all kernels of the library are widely discussed in [20].

For the main solver, BCMGX, we can reach a performance
2.17 × 106 DoFs/s (degrees-of-freedom per second) using 4
GPUs for a problem size of 244M DoFs in IDV-A. Two-phase
cooling reduces energy to solution by reaching a maximum
efficiency of 19.5× 104 DoFs/J.

V. CONCLUSIONS

The project serves as a prime example of successful co-
operation among the various partners, with many of its out-
comes positioned for further use in other research avenues
and industrial applications. Notably, a commercial comput-
ing system utilizing evaporative cooling and featuring blades
manufactured by E4, with a design akin to IDV-A, has been
successfully installed as of March 2024 within the computing
center hosted by the University of Turin. The impact of
such cooling techniques has proven to be relevant to achieve
high energy efficiency. Moreover, applications, tools, and HW
accelerators have been successfully adapted to support het-
erogeneous multi-node systems, providing scalability across
clusters with a large number of nodes.
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