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ABSTRACT: Strengthening is a natural step following a failed bridge assessment. Referring 
to masonry bridges, a numerical tool is presented to find the optimal distribution of reinforce-
ment to be externally bonded to two-dimensional elastic no-tension structural elements, with 
the aim of maximizing their overall stiffness. Notwithstanding the non-linearity of the adopted 
material model, no incremental procedure is needed to prescribe equilibrium of the strength-
ened element. Indeed, the same minimization procedure handles both the energy-based solu-
tion of the no-tension elastic body and the topology optimization problem that distributes the 
optimal reinforcement. A few numerical simulations are presented to assess the capabilities of 
the proposed procedure in defining the optimal reinforcement layouts for masonry arches and 
arch bridges, subjected to gravity loads and resting on fixed or elastic foundations. Designers 
can exploit the tool to sketch a preliminary layout of the FRP strengthening, which should be 
subsequently detailed according to technical codes.

1 INTRODUCTION

Externally bonded Fiber Reinforced Polymers (FRPs) are nowadays widely used to strengthen, 
upgrade, or retrofit deteriorated masonry structural elements (Foraboschi 2001, Grande et al. 
2008). FRPs have several positive properties, including resistance to wear and corrosion, flexibil-
ity, high strength-to-weight ratio, etc. Unlike other materials (e.g., reinforced concrete and steel) 
that were widely used in the past to strengthen existing buildings, FRPs do not significantly 
increase the weight of the of the building and, as such, are extremely appropriate in seismic 
regions (Shrive 2006). FRPs compensate the limited tensile strength of masonry, and increase 
the load-carrying capacity and ductility of the repaired structural element, as experimentally 
and numerically shown by several authors (see e.g. Caporale & Luciano 2012).

Drawbacks related to the use of FRPs as retrofitting materials for masonry structures are 
the possibility of debonding, which can nullify the effectiveness of the reinforcement (see e.g. 
Capozucca 2010, 2011), or worsening in crack diffusion in the unreinforced regions (Angelillo 
et al. 2014). Debonding can be avoided by appropriate surface treatments, using fasteners, or 
applying carbon FRP plates at the intrados of masonry arches, rather than strips or sheets, as 
suggested by Borri et al. (2011).

According to these remarks, the interest in obtaining methodologies suitable to identify effect-
ive reinforcing layouts for masonry constructions under given load conditions is apparent. Some 
authors basically propose to arrange the reinforcement according to a strut-and-tie scheme, either 
in such a way as to heal the cracks formed in the unreinforced element (Li et al. 2013), or using 
optimization procedures (Krevaikas & Triantafillou 2005). A simple strut-and-tie scheme, how-
ever, might not be the most appropriate one to retrofit elements of complex geometry, or sub-
jected to nontrivial load conditions. Accordingly, Bruggi & Taliercio (2013) and Bruggi et al. 
(2013) proposed a general approach based on Topology Optimization (TO - see e.g. Bendsøe & 
Kikuchi 1988) for 2D, in-plane loaded structural elements, to obtain reinforcing layouts that 
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minimize a suitable maximum equivalent stress for a prescribed amount of reinforcement. 
A similar approach was later proposed by Cunha & Chaves (2014) and Bruggi & Taliercio 
(2015a) for transversely loaded 2D structural elements. In these papers, the optimal reinforcing 
layout maximizes the elastic stiffness of the reinforced element for a given amount of fiber 
reinforcement; in the latter paper, the anisotropic and unsymmetric behavior in tension and com-
pression of the reinforcing layers is also taken into account.

Recently, Bruggi & Taliercio (2017) proposed an approach to define the optimal fiber- 
reinforcement of 2D structural elements made of no–tension materials (e.g. plain concrete or 
masonry). Here, this approach is specialized to masonry arches and arch bridges that have to 
be retrofitted by externally bonded FRP strips. The reinforcement is supposed to be unable to 
carry compressive stresses. A TO formulation is presented to distribute a prescribed amount 
of fiber-reinforcement at either the intrados or the extrados of the arch, or at both sides, to 
maximize the overall elastic stiffness of the strengthened element. Unlike the papers quoted 
above, where the structural elements to be reinforced are linearly elastic, a no-tension model is 
used to account for the negligible tensile strength of the material. The stress analysis of the 
no-tension element is itself reduced to a TO problem, according to the approach recently pro-
posed by Bruggi (2014). Indeed, following Del Piero (1989), masonry is supposed to be 
a hyperelastic, no-tension material. The possible anisotropy associated with the brickwork 
bond is neglected, and masonry behaves isotropically if all the principal stresses are strictly 
negative (compressive). The occurrence of positive (tensile) principal stresses is prevented by 
replacing the isotropic material by an equivalent, orthotropic material whose elastic constants 
depend on the principal stresses and on the orientation of the principal stress directions. 
Hyperelasticity allows the equilibrium of the body to be enforced by solving a topology opti-
mization problem, i.e. finding the distribution of the equivalent orthotropic material that min-
imizes the overall strain energy of the no–tension body.

The main advantage of the approach proposed here is that both the analysis of the no–tension 
solid and the definition of the layout of the optimal no-compression reinforcement are embed-
ded within the same minimization procedure.

Following Amir & Sigmund (2013) and Gaynor et al. (2013), a combined truss–continuum 
approach is adopted to model the strengthened element.

2 EQUILIBRIUM OF NO-TENSION BODIES AS A TOPOLOGY OPTIMIZATION 
PROBLEM

Consider a 2D no-tension isotropic solid, occupying a volume O. Typically, the solid can be 
made of plain concrete or masonry: in the latter case, the macroscopic anisotropy of the 
material is neglected, as the tensile strength of masonry is actually negligible only perpendicu-
larly to the joints. Mathematical formulations aimed at analyzing no-tension materials were 
proposed by several authors since the ‘80s of last century (see e.g. Giaquinta & Giusti 1985, 
Del Piero 1989, Cuomo & Ventura 2000). More recently, Angelillo et al. (2010) proposed to 
analyze no-tension solids by replacing the real material by an ‘equivalent’ orthotropic material 
that exhibits negligible stiffness in any direction along which the principal stresses in the real 
medium are non-negative. This idea was later exploited by Bruggi (2014) to re-formulate the 
analysis of 2D no-tension solids as a TO problem: the distribution of the equivalent material 
is obtained by minimizing the strain energy of the solid. This non-incremental approach pro-
vides the solution under given loads through a one-shot energy-based optimization procedure, 
provided that the applied loads are compatible with the no-tension constraint. The collapse 
load of no-tension 2D solids can also be determined by an algorithm based on the approach 
outlined above (Bruggi & Taliercio 2015b).

The problem formulation is only briefly recalled hereafter; further details can be found in the 
papers referred above. Let t0 denote tractions prescribed over the free boundary of the solid, � t, 
whereas u0 denote displacements prescribed over the constrained boundary, � u. Also, let (z1, z2) 
be the symmetry axes of the equivalent orthotropic material. These axes are assumed to be 
locally aligned with the directions (zI, zII) of the principal stresses (σI, σII) at any point of the real 
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solid, to maximize the material stiffness (Pedersen 1989). Let θ denote the angle between (zI, zII) 
and the axes of a given Cartesian reference system. In weak form, the problem solution can be 
sought as follows:

where u denotes the (infinitesimal) displacement field, εðuÞ is the (infinitesimal) strain tensor, 
D is the fourth-order elasticity tensor of the equivalent orthotropic material, and ρ1, ρ2 are 
nondimensional parameters defined hereafter. In plane stress conditions, and using Voigt’s 
notation, the matrix of the elastic stiffness constants in the material reference frame (z1,z2) can 
be expressed as

where eEi (i = 1, 2) are the Young’s moduli of the orthotropic equivalent material, eG12 its shear 
modulus, e�12; e�21 its Poisson’s ratios (with e�12=eE1 ¼ e�21=eE2). To prevent the principal stresses 
from being positive in the equivalent solid, the stiffness of the orthotropic material is pre-
scribed to vanish along the direction(s) of the tensile principal stress(es) in the real solid. To 
avoid numerical instabilities, the elastic constants of the equivalent material are related to 
those (Em, vm) of the real isotropic material according to a generalization of the so-called 
SIMP model (Bendsøe & Sigmund, 1999), which reads

for i, j = 1, 2. The parameters ρi (i = 1, 2) range from a strictly positive value ρmin to 1 (see Eq. 
(1)), the extreme values corresponding to a negligible stiffness or a non-penalized stiffness 
along zi, respectively, depending on the sign of the relevant principal stress; these parameters 
can be interpreted as ‘nondimensional material densities’ along the symmetry axes of the 
orthotropic solid. A strictly positive lower bound is prescribed, to avoid singularity of the stiff-
ness matrix in a finite-element formulation. p is a penalization parameter, usually taken equal 
to 3 (Bendsøe & Sigmund, 1999).

The expressions of the equivalent constants in Eq. (3) are similar to those proposed by Cor-
debois & Sidoroff (1982) for anisotropic damaged materials, thus considering the penalization 
of the elastic constants as a form of tensile damage.

3 OPTIMAL FIBER-REINFORCEMENT OF 2D NO-TENSION BODIES

Assume now that the no-tension solid has to be retrofitted by unidirectional FRP layers. 
These layers are assumed to withstand only tensile stresses along the fibers. A given 
amount of reinforcement, Vf, normalized to the maximum amount that can be bonded 
over the entire free boundary of the body, is prescribed. A minimization problem is for-
mulated to find the optimal distribution of reinforcement that maximizes the stiffness of 
the strengthened body. The no-compression constraint is enforced using a SIMP-type 
approach similarly to Eq. (3).
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The solution of the nonlinear equilibrium problem for the reinforced body is sought by 
embedding the minimization procedure within the energy-based approach presented in the 
previous Section: the discretized FE form of the procedure is presented hereafter. A mesh 
made of N truss elements for the reinforcement layers, and M four-node plane elements for 
the underlying no-tension solid, is used. The non-dimensional densities used to enforce the no- 
tension constraint in the original solid and the no-compression constraint in the reinforcement 
are assumed to be element-wise constant. In the j-th truss-like element the density of the 
reinforcement is denoted by xj, whereas in the i-th plane element the densities that govern the 
stiffness of the ‘equivalent material’ along its symmetry axes are denoted by x1i, x2i. The orien-
tation of the material symmetry axes of the i–th FE with respect to the global Cartesian refer-
ence frame is denoted by θi.

The stiffness matrix of the j-th truss element can be expressed as xp
j K0j, where K0j is the stiff-

ness matrix if the element undergoes tensile stresses (so that xj = 1). The stiffness matrix of the 
i-th plane element will be denoted by Ki(x1i, x2i, θi). The implemented discrete form of the 
problem formulated above reads:

where Ui, Uj are the arrays of the d.o.f.s of the 2D and the truss-like finite elements, respect-
ively; F is the array of the equivalent nodal loads.

In Eq. (4), the objective function is the structural compliance C, i.e. the work of the external 
loads at equilibrium. The overall strain energy (half of the structural compliance C) is the sum 
of that stored in the underlying no–tension material and in the fiber–reinforcement to be opti-
mized. Note that the adopted objective function is the same suggested by building codes (EN 
1992-1-1, 2004) to derive optimal reinforcement layouts for r.c. members.

In Eq. (4), the constraints in Eq. (1) are reported in discretized form. Additionally, the third 
last constraint avoids the presence of any strengthening material carrying compressive stresses. 
The second-last constraint concerns the reinforcement density in any truss element, which is 
allowed to vanish if the element undergoes compressive stresses. Finally, the last constraint 
enforces an upper bound on the volume of reinforcement, depending on the area of each truss 
element, Aj, and the relevant density.

The constrained minimum compliance problem stated in Eq. (4) can be numerically solved 
by the so–called Method of Moving Asymptotes (MMA – see e.g. Svanberg, 1987). This gra-
dient-based method uses sequential convex programming and the analytical computation of 
the sensitivities of the objective function. At each iteration, the MMA solves a sequence of 
simpler approximate sub-problems, which are separable, convex and constructed according to 
the sensitivity information at the current step, as well as to the iteration history. This approach 
has been found to be effective in solving large-scale TO problems, giving results in agreement 
with those achieved through optimality criteria, see e.g. Bendsøe & Sigmund (2003).

The stress constraints in Eq. (4) are enforced by implementing the penalization approach 
proposed by Ananiev (2005), with the main aim of reducing the computational effort related 
to the implementation of clusters of local stress constraints. Whenever a principal stress is 
found to be positive in any element i of the no-tension material, or the stress is found to be 
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negative in any element j of the reinforcing layer, the corresponding design variables are pen-
alized, and a modified compliance bC is computed. The penalized densities are defined as

where k < 1 is a penalization factor (herein k = 0.5). This heuristic approach was shown to be 
effective in the treatment of stress constraints (Ananiev, 2005).

Providing the MMA with the reduced objective function bC and the relevant sensitivities, the gradi-
ent–based minimizer updates the design variables x1i, x2i (i = 1. . . M) and xj (j = 1. . .N), and pre-
vents any stiff material to exist along the weak direction(s) of the no-tension body, as well as any 
compressed reinforcement element. Computing the sensitivities of the reduced objective function bC
with respect to the minimization unknowns is straightforward (see Bruggi & Taliercio, 2017).

4 NUMERICAL APPLICATIONS

In the numerical applications shown hereafter, attention is focused on the reinforcement of arch-like 
structural elements. The elastic properties of the no-tension isotropic material are Em = 4,500 MPa 

Figure 1.  Optimal fiber-reinforcement of a single arch made of linear elastic NT material: the principal 
compressive stresses in the strengthened element are also shown.

Figure 2.  Optimal fiber-reinforcement of a three-span arch bridge made of linear elastic NT material 
resting on rigid supports: the principal compressive stresses in the strengthened element are also shown.
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and vm = 0.2. The thickness of the FRP layer is thr = 1.40 mm, whereas the elastic modulus of the 
reinforcement is Er = 205,000 MPa.

First of all, a single semi-circular arch, with an external radius of Rem = 4.75 m, an internal 
radius of Rem = 4.00 m, and an out–of–plane thickness of thm = 1 m, is considered. The arch 
undergoes its self-weight, being γm = 18 kN/m3 the unit weight, and the weight of an infill up 
to the top of the extrados of the arch, being γi = γm the unit weight of the added material.

The optimal layout of two tension-only reinforcing layers, which can be located along the 
intrados and/or the extrados of the arch, is sought. To make the fiber-reinforcement at the 
intrados effective, tension-resistant fasteners must be provided to connect the reinforcement 
to the inner (compressed) part of the body. Otherwise, radial tensile stresses would occur and 
nullify adhesion. A maximum volume fraction of reinforcement Vf = 0.5 is prescribed.

Figure 1 shows the optimal reinforcement, along with the principal compressive stresses in 
the strengthened specimen. The FRP layers are located at the crown, where a cracked area is 
found, at the intrados of the abutments, and at the extrados of the haunches. Note the pres-
ence of fasteners around the crown, to fulfil equilibrium of the reinforcing curved layer. Fas-
teners also help the flow of the compressive stresses deviate towards the bulk of the no-tension 
body, as shown by the orientation of the principal stesses at the abutments. It must be noticed 
that the overall amount of distributed reinforcement is less than Vf. The need to consider 
a volume fraction stems from the use of a topology optimization formulation, having the aim 
of limiting the amount of reinforcement to be used. In this example and those that follow, the 
no-compression requirement for the FRP layers prevents the optimizer from exploiting any 
compressive reinforcement to improve the overall stiffness. Hence, the upper bound becomes 
active depending on the values of Vf.

Then, a three-span arch bridge is considered, assuming that each span has the same geom-
etry as the arch investigated above and that the same loads (gravity and fill) are applied. 
Symmetry is exploited, and only the left part of the bridge (including an arch, half of the 
central span, and the supporting pier) is analyzed. The rectangular pier has a base 
1.50 m wide and is 4.00 m high. In Figure 2 the layout of the optimal fiber-reinforcement 
and the principal compressive stresses in the strengthened element are shown, assuming the 
supports to be fixed. The optimal reinforcement of the central arch is quite similar to that of 
the single arch, see Figure 1. However, both the location and the extension of the reinforcing 
layers of the outer arch are remarkably different. Thus, modeling the entire bridge is an 
essential task to achieve an effective strengthening.

Figure 3.  Optimal fiber-reinforcement of a three-span arch bridge made of linear elastic NT material 
assuming the pier to rest on an elastic support: the principal compressive stresses in the strengthened 
element are also shown.
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As a peculiar feature of the adopted linear elastic no-tension model, elastic supports may be 
straightforwardly introduced in the numerical simulations. In Figure 3, the optimal layout of 
the fiber-reinforcement in the same three-span arch is presented, along with the principal com-
pressive stresses in the strengthened element, assuming now the base of the pier to rest on an 
elastic foundation, with a modulus of subgrade reaction kP = 0.1 N/mm3. This accounts for the 
deformability of the supporting foundation and the underlying soil. Compared to the case of 
fixed support shown in Figure 2, a more homogeneous stress distribution is found at the base of 
the pier. Concerning the optimal layout of the reinforcing layers, minor modifications are found 
in the outer arch, whereas a larger amount of reinforcement is used in the central one.

5 CONCLUSIONS

A theoretical formulation based on Topology Optimization has been proposed to define the 
optimal layout of a given amount of reinforcement to be applied on 2D masonry arch-like 
structural elements to maximize their stiffness. Assuming masonry to be an elastic, isotropic, 
no–tension material and FRPs to resist only tensile stresses, the formulation simultaneously 
avoids principal tensile stresses in the arch and compressive stresses in the reinforcement.

The main advantage of the proposed approach is that no incremental procedure is needed 
to compute the objective function, notwithstanding the inherent non–linearity of the adopted 
material model. The same minimization procedure deals with both the energy–based analysis 
of the no–tension elastic body, and the topology optimization problem that distributes the 
optimal reinforcement.

The examples presented in Section 4 show that when FRP strips are used to retrofit no- 
tension arches, fasteners are required at the intrados: otherwise, any reinforcement would be 
simply blown out, owing to the inability of the material to withstand radial tensile stresses. 
In all the applications, smooth convergence of the objective function was found in 
a reasonable number of iterations. Also, soil deformability was found to affect the optimal 
reinforcing layout (compare Figures 2 and 3).

The implementation described in this contribution considers a single load case, meaning that 
it is directly applicable to long span masonry arch bridges, where live loads are small in com-
parison to dead loads. When small and medium-span bridges are addressed, multiple load cases 
must be considered. This may be done by optimizing separately for each one of the relevant 
load cases and, then, looking at the envelope of the achieved solutions as the effective reinforce-
ment to be used. However, this procedure does not guarantee that the amount of reinforcement 
is less than the prescribed volume fraction. To overcome this issue, a single optimization proced-
ure may be implemented adopting as objective function a weighted sum of the strain energy for 
each one of the load cases, while taking into full account the volume constraint.

In the continuation of the research, an extension of the formulation to 3D no-tension solids is 
planned. The aim is to propose optimal reinforcing layouts for masonry vaults of any geometry, 
typically groin, rib, and domical vaults, possibly including lunettes. Refined finite element meshes, 
or higher-order finite elements, are expected to be required to obtain meaningful solutions, with 
a dramatic increase in computational cost compared to 2D problems. On the other hand, the pos-
sibility of avoiding incremental solutions is expected to make the proposed numerical approach 
more robust and less expensive than ‘classical’ optimization procedures for nonlinear bodies.
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