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Mobility edges, separating localized from extended states, are known to arise in the single-
particle energy spectrum of certain one-dimensional models with quasiperiodic disorder. Recently,
some works claimed rather unexpectedly that mobility edges can exist even in disorder-free one-
dimensional models, suggesting as an example the so-called mosaic Wannier-Stark lattice, where a
Stark potential is applied on every M sites of the lattice. Here we present an exact spectral analysis
of the mosaic Wannier-Stark Hamiltonian and prove that strictly speaking there are not mobility
edges, separating extended and localized states. Specifically, we prove that the energy spectrum
is almost pure point, with all the wave functions displaying a higher than exponential localization,
with the exception of (M −1) isolated extended states at energies around which a countably infinite
number of localized states, with a diverging localization size, condense.

I. INTRODUCTION

Anderson localization1–4, i.e. the inhibition of wave
diffusion in disordered media via destructive interference
of multiply scattered waves, is a universal phenomenon
observed in a variety of classical and quantum systems,
with experimental demonstrations reported in different
areas of physics ranging from photonics5–7, acoustics8,
matter waves9–13 and quantum matter14, to mention a
few. The kind of disorder and the spatial dimension of the
system are pivotal to Anderson localization, since they
strongly affect the appearance of localization transitions
and the existence of mobility edges2–4,15–17, i.e. critical
energies separating extended and localized states in the
spectrum. In low-dimensional systems with uncorrelated
disorder, localization transitions and mobility edges are
prevented4,15. Conversely, quasi-periodic systems, i.e.
quasicrystals, can show localization transitions and mo-
bility edges even in one-spatial dimension (see e.g.18–32

and references therein). Quasiperiodic models displaying
mobility edges include special incommensurate potentials
displaying a generalized Aubry-André self-duality20–22,
slowly varying incommensurate potentials18,23–28, flat-
band lattices29, and quasiperiodic mosaic lattices30, to
mention a few. A different form of mobility edges, sepa-
rating localized and critical (rather than extended) wave
functions, has been also predicted and experimentally ob-
served in certain quasiperiodic potentials33–40.
Recently, some works suggested that mobility edges can
exist in models without disorder nor incommensurate
potentials, i.e. in disorder-free systems41–43. Specifi-
cally, they considered the so-called mosaic Wannier-Stark
lattice, i.e. a lattice in which a Stark (linear gradi-
ent) potential is applied at every M sites in the lat-
tice. For M = 1 the Hamiltonian shows a pure point
spectrum, the Wannier-Stark ladder energy spectrum,
with localized wave functions and a corresponding pe-
riodic dynamics in the time domain (the famous Bloch
oscillations)44–47. However, when M ≥ 2 mobility edges
are claimed to arise, with the coexistence of extended

states and Wannier-Stark localized states in the energy
spectrum.
In this work we present an exact analytical solution to
the mosaic Wannier-Stark Hamiltonian and show that
the energy spectrum is almost pure point and thus,
strictly speaking, there are not mobility edges. Specif-
ically, we show that all eigenfunctions are localized with
a higher than exponential localization, with the excep-
tion of (M − 1) isolated extended states. The localized
eigenfunctions can be classified into two sets: high-energy
wave functions, with energies outside the lattice band,
and low-energy wave functions, with energies inside the
lattice band. The eigenenergies of the low-energy wave
functions condensate toward the energies of the isolated
extended states, while the energies of the high-energy
wave functions are unbounded and approximate the usual
Wannier-Stark ladder in the high-energy limit. While the
high-energy wave functions are tightly localized in very
few sites of the lattice, the low-energy wave functions can
extend over a large size w of the lattice, however asymp-
totically they decay faster than any exponential and thus
they are normalizable wave functions belonging to the
point spectrum of the Hamiltonian. However, as the en-
ergy E of the localized wave function approaches one of
the (M −1) isolated energies of thee extended states, the
localization size w diverges.

II. MOSAIC WANNIER-STARK
HAMILTONIAN: MODEL AND ENERGY

SPECTRUM

The spectral properties of the disorder-free mosaic
Wannier-Stark lattice41–43 are defined by the eigenvalue
equation

Eψn = κ(ψn+1 + ψn−1) + Vnψn ≡ Hψn, (1)

where κ is the hopping amplitude between adjacent sites
in the lattice and Vn is the Stark potential, applied at
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FIG. 1: Geometric solution to Eqs.(7) and (9) for the calcu-

lation of the energy spectra E
(I)
α and E

(II)
α . (a) Behavior of

the function f(φ) = ± sinhφ cosh(Mφ)/ sinh(Mφ) (solid blue
curves) for M = 4 and energies E = ±2κ coshφ (dashed red
curves). The horizontal solid line yields the quantized value
αF/(2κ), with α integer. The bold circle corresponds to the
simple positive root φ to Eq.(7). (b) Same as (a), but with
f(θ) = sin θ cos(Mθ)/ sin(Mθ). The three bold red circles
correspond to the (M − 1) = 3 positive roots θ to Eq.(9) in
the range (0, π), which are denoted by the additional index
ρ = 1, 2, ...,M − 1. The solid black circles in (b), at which
f(θ) is singular, correspond to the (M − 1) energies Eσ of
extended states. The shaded light areas in (a) and (b) denote
the energy interval (−2κ, 2κ) of the tight-binding lattice in
the absence of the potential. Note that in (a) any energy be-

longing to E
(I)
α falls outside the shaded area, whereas in (b)

any energy belonging to E
(II)
α falls inside the shaded area.

every M sites of the lattice, i.e.

Vn =

{
Fn n = 0,±M,±2M,±3M, ...
0 otherwise

(2)

and F is the force.
For M = 1 one recovers the famous Wannier-Stark

problem of a quantum particle hopping on a one-
dimensional lattice subjected to a dc force F . This prob-
lem is exactly solvable and the Hamiltonian H displays a
pure point energy spectrum with equally-spaced energies,
Eα = αF (α = 0,±1,±2,±3, ...) forming the Wannier-
Stark ladder and yielding in the time domain a peri-
odic motion of the wave packet (Bloch oscillations44–47).
The corresponding wave functions are the well-known
Wannier-Stark states, which are given in terms of Bessel
functions of first kind,

ψ(α)
n = (−1)n−αJn−α(2κ/F ) (3)

and show a higher than exponential localization, i.e.

limn→±∞ ψ
(α)
n exp(R|n|) = 0 for any R ≥ 0.

Here we provide exact analytical results on the energy
spectrum and corresponding eigenfunctions for the mo-
saic Wannier-Stark Hamiltonian whenM ≥ 2. According
to the Simon-Spencer theorem48, since the potential Vn
is unbounded at infinity the absolutely continuous part
of the energy spectrum of H is empty, i.e. the energy
spectrum comprises pure point and/or singular contin-
uous parts. The Simon-Spencer theorem basically ex-
cludes the existence of bands of extended states for the
mosaic Wannier-Stark Hamiltonian, and the correspond-
ing eigenfunctions therefore should be either normaliz-
able (localized) states or critical states. However, the
Simon-Spencer theorem does not exclude the existence
of isolated extended states, with zero spectral measure
of the corresponding energies. This means that, if mobil-
ity edges would exist, they should separate localized and
critical states. The main result of the present work is
that the energy spectrum is almost pure point and there
are not mobility edges. The results are summarized by
the following theorem:
1) The energy spectrum of H on the infinitely-extended
lattice and for M ≥ 2 is pure point, with corresponding
eigenfunctions displaying a higher than exponential local-
ization, with the exception of (M − 1) isolated energies,
given by

Eσ = 2κ cos
(πσ
M

)
(4)

(σ = 1, 2, ..,M − 1), at which the corresponding eigen-
functions are the following non-normalizable (improper)
extended states

ψ(σ)
n = sin(nπσ/M). (5)

2) The eigenenergies of the localized wave functions can
be grouped into two sets: the high-energy wave functions
(set I) and the low-energy wave functions (set II), with
corresponding eigenenergies E which fall outside and in-
side the range (−2κ, 2κ), respectively. Note that this
range defines the energy band of the tight-binding lattice
in the absence of the Stark potential.

3) The spectrum E
(I)
α of the high-energy wave functions

is given by

E(I)
α = ±2κ coshφα (6)

where φα > 0 is the root of the trascendental equation
[Fig.1(a)]

sinhφα cosh(φαM)

sinh(Mφα)
= ±αFM

2κ
(7)

and α = 0,±1,±2,±3, ... is an arbitrary integer.

4) The spectrum E
(II)
α,ρ of the low-energy wave functions

is given by

E(II)
α,ρ = 2κ cos θα,ρ (8)
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where 0 ≤ θα,ρ ≤ π are the (M − 1) roots of the trascen-
dental equation [Fig.1(b)]

sin θα,ρ cos(θα,ρM)

sin(Mθα,ρ)
=
αFM

2κ
, (9)

α = 0,±1,±2,±3, ... is an arbitrary integer and ρ =
1, 2, ..,M −1 labels the root number of Eq.(9) for a given
value of α [see Fig.1(b)].
5) At the lattice sites nM = 0,±M,±2M,±3M, ..., i.e.
where the potential is non-vanishing, the localized wave
functions, for both low-energy and high-energy branches,
are given in terms of Bessel functions of first kind, namely

ψ
(α)
nM = (−1)n−αJn−α(Γ) (10)

where we have set

Γ = Γα =
2κ

FM

sinhφα
sinh(Mφα)

(11)

for the high-energy wave functions, and

Γ = Γα,ρ =
2κ

FM

sin θα,ρ
sin(Mθα,ρ)

(12)

for the low-energy wave functions (α = 0,±1,±2, ..., ρ =
1, 2, ...,M−1). The wave functions at the sites (nM+1),
i.e. where the potential does not vanish, are given by

ψ
(α)
nM+1 = (−1)n−α

sin[(M − 1)ω]Jn−α(Γ)− sinωJn+1−α(Γ)

sin(Mω)
(13)

with ω = iφα, iφα+π for the high-energy wave functions
and ω = θα,ρ for the low-energy wave functions.

Comments.
(i) The infinitely countable set of energies E

(II)
α,ρ of the

low-energy wave functions are embedded in the interval
(−2κ, 2κ) and condense toward the isolated points
Eσ of extended states [Eq.(4)] as α → ±∞, bacause

sin(Mθα,ρ) ∼ 0. Therefore, set of energies E
(II)
α,ρ form

(M − 1) narrow ’bands’ centered at the around the
energies Eσ.

(ii) As E
(II)
α,ρ approaches the isolated points Eσ of

extended states, from Eqs.(10) and (13) one has

|ψ(α)
Mn/ψ

(α)
nM+1| � 1, i.e. the wave functions with energies

close to the isolated points of extended states have negli-
gible excitation at the lattices sites 0,±M,±2M,±3M, ...
where the potential is nonvanishing.
(iii) Owing to the properties of Bessel functions, the
spatial size w of the wave function can be estimated
from the relation w ∼ 2ΓM , and thus from Eq.(12) it
follows that w diverges for the low-energy wave functions

as α → ±∞, i.e. when the eigenergy E
(II)
α,ρ approaches

one of the points Eσ of the energy spectrum.

(iv) The energies E
(I)
α of the high-energy wave func-

tions fall outside the range (−2κ, 2κ), and in the limit

α → ±∞ one has E
(I)
α ' αFM and the corresponding

wave function is tightly confined at the lattice site

n = α. This means that the set of energies E
(I)
α forms

an almost equally-spaced Wannier-Stark ladder.
(v) A corollary of the theorem is that the mosaic
Wannier-Stark Hamiltonian does not show strictly
speaking any mobility edge, though the low-energy
localized eigenstates become more and more extended
in space as their energy approaches the accumulation
points Eσ defined by Eq.(4).

Proof. To prove the main theorem, let us write Eq.(1)
in the dynamical system form(

ψn+1

ψn

)
=

(
E−Vn

κ −1
1 0

)(
ψn
ψn−1

)
(14)

from which by iteration one obtains

(
ψnM+1

ψnM

)
=

(
E−nMF

κ −1
1 0

)(
E
κ −1
1 0

)M−1
×
(
ψ(n−1)M+1

ψ(n−1)M

)
. (15)

Unlike previous works41,43, we do not use Lyapunov ex-
ponent analysis and Avila’s global theory to determine
the localization properties of the wave functions. In
fact, while Lyapunov exponent analysis can be safely ap-
plied to quasiperiodic or disordered models displaying
Anderson-like localization, where the existence of Lya-
punov exponent L(E) ≥ 0 can be proven for any eigen-
state (either extended, critical or localized with an expo-
nential localization), it cannot be applied to wave func-
tions with a higher than exponential localization, which
is the case of the Wannier-Stark localization. Rather, we
provide exact analytical solution to the dynamical sys-
tem Eq.(15).
For the properties of 2× 2 unimodular matrices, one can
write

(
E
κ −1
1 0

)M−1
=

(
sin(Mω)
sinω − sin[(M−1)ω)]

sinω
sin[(M−1)ω)]

sinω − sin[(M−2)ω)]
sinω

)
(16)

where the complex angle ω is defined by the relation

cosω =
E

2κ
. (17)

After letting

ϕn ≡ ψnM , ξn ≡ ψnM+1 (18)

from Eqs.(15) and (16) one obtains

ξn = S11ξn−1 + S12ϕn−1 (19)

ϕn = S21ξn−1 + S22ϕn−1 (20)
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where we have set

S11 =
sin(Mω)

sinω

(
E

κ
− FM

κ
n

)
− sin[(M − 1)ω]

sinω

S12 = − sin[(M − 1)ω]

sinω

(
E

κ
− FM

κ
n

)
+

sin[(M − 2)ω]

sinω

S21 =
sin(Mω)

sinω
(21)

S22 = − sin[(M − 1)ω]

sinω
.

Taking into account that detS = S11S22 − S12S21 = 1,
eliminating form Eqs.(19) and (20) the variables ξn one
obtains the following second-order difference equation for
the amplitudes ϕn

ϕn+1 + ϕn−1 = (A−Bn)ϕn (22)

where we have set

A ≡ 2 cos(Mω) (23)

B ≡ FM

κ

sin(Mω)

sinω
. (24)

The spectral problem on the infinite lattice defined
by Eq.(22) is the usual Wannier-Stark problem on a
tight-binding lattice but with energy-dependent dc force,
which is solved in terms of Jn Bessel functions of first
kind. Here we give a direct solution to the spectral prob-
lem exploiting a recursive identity of Bessel functions Jn;
a different approach based on a spectral method could be
also used.
Let us first assume B 6= 0, i.e. sin(Mω)/ sinω 6= 0. Using
the recursive relation of Jn(x) Bessel functions

Jn+1(x) + Jn−1(x) =
2n

x
Jn(x) (25)

the set of solutions to Eq.(22), which do diverge as n→
±∞, is given by

ϕ(α)
n = (−1)n−αJn−α(Γ) (26)

where α = 0,±1,±2,±3 ... is an arbitrary integer num-
ber,

Γ =
2κ

FM

sinω

sin(Mω)
, (27)

and ω is any root of the trascendental equation

sinω
cos(Mω)

sin(Mω)
= α

FM

2κ
. (28)

Since the energy E is real and it is related to the complex
angle ω by the relation E = 2κ cosω [Eq.(17)], Eq.(28)
can be satisfied by letting either ω = iφ, ω = iφ + π,
or ω = θ, with θ and φ real numbers. The first two
cases, ω = iφ or ω = iφ + π, yield the high-energy wave

functions with energies E
(I)
α defined by Eqs.(6) and (7),

with the + and - signs in the equations corresponding
to ω = iφ and ω = iφ + π, respectively. On the other
hand, the last case ω = θ yields the low-energy wave

functions with energies E
(II)
α defined by Eqs.(8) and (9).

In all cases, the corresponding wave functions are given
in terms of Bessel functions as in Eqs.(10-12). Finally,

using Eq.(20) the wave functions ψ
(α)
nM+1 at sites nM + 1

are obtained from the relation

ψ
(α)
nM+1 = ξn =

ϕn+1 − S22ϕn
S21

, (29)

which yields Eq.(13). For M ≥ 3, the wave function

amplitudes ψ
(α)
n at the other lattice sites Mn + l with

l = 2, 3, ..M − 1, if needed, can be obtained by the recur-
sive relation (14).
Let us finally assume B = 0 in Eq.(22), i.e. sin(Mω) = 0
with ω 6= 0, π, which is satisfied by letting ω = σπ/M
for σ = 1, 2, ...,M − 1. Correspondingly, the eigenener-
gies are Eσ = 2κ cos(πσ/M). In this case S21 = 0 while
S11, S12 6= 0, so that to avoid divergences ss n → ±∞
of the solution to Eqs.(19) and (20) one necessarily must
have ϕn = 0, i.e. the wave function ψl vanishes identi-
cally at the lattice sites l = nM = 0,±M,±2M,±3M, ...
where the potential Vl is nonvanishing. This means that
the wave function ψl is also an eigenfunction of the tight-
binding lattice without any potential, with eigenenergy
Eσ. Such solutions are the well-known Bloch waves given
by Eq.(5), which identically vanish at the lattice sites
0,±M,±2M,±3M, .... This concludes the proof of state-
ments 1)-5) given above. The comments (i-v) are simple
corollaries of the main theorem.

III. NUMERICAL RESULTS AND COMMENTS

To illustrate and support the analytical results given
in the previous section, we present some numerical re-
sults of energy spectra and localization properties of cor-
responding wave functions. The results are obtained by
diagonalization of the matrix Hamiltonian H assuming
a finite lattice of large size L with open boundary con-
ditions. We also comment on the pseudo mobility edges
that have been introduced in previous work, where the
inverse participation ratio (IPR) was used to discrim-
inate between ’localized’ and ’extended’ states. For a
wave function normalized such that

∑L
n=1 |ψ

(α)
n |2 = 1,

the IPR is defined by the relation

IPRα =

L∑
n=1

∣∣∣ψ(α)
n

∣∣∣4 . (30)

The IPR of an extended state takes a small value and
scales as L−1, hence vanishing in the thermodynamic
limit L → ∞, while it remains finite for a localized
state. Figure 2(a) shows the numerically-computed en-
ergy spectrum for M = 4 and for F/κ = 0.5 in a lat-
tice of size L = 1000. The corresponding IPR of the
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FIG. 2: (a) Numerically-computed energy in a lattice of size L = 1000 with open boundary conditions for parameter values

M = 4 and F/κ = 0.5. The inset shows an enlargement of the energy spectrum corresponding to the low-energy branch E
(II)
α ,

clearly showing that the eigenenergies condensate toward the (M − 1) = 3 values 0,±
√

2κ, corresponding to the energies of the
isolated extended states (horizontal red curves). (b) The IPR of the corresponding wave functions. Note that the IPR of the
high-energy wave functions is very close to one, indicating strong localization, whereas the IPR of the low-energy wave functions
is small, indicating a low degree of localization. (c) Behavior of log(IPR) versus log(1/L) for four low-energy wave functions
with energies E1,2,3,4 that approach the zero energy of the extended state ( E1 = 0.020κ, E2 = 0.0067κ, E3 = 0.0040κ, and
E4 = 0.0032κ). The slopes of the curves at L→∞ give the fractal dimension β of the wave functions, with β = 1 for extended
states, 0 < β < 1 for critical states and β = 0 for localized states. Note that all wave functions are localized, even though the
IPR is very small. A weakly-localized state differs from a critical or a fully extended state because the IPR settles down to a
constant (albeit small) value as L→∞, and the fractal dimension β correspondingly vanishes. (d) Shape of the wave function
amplitudes |ψn| corresponding to the four energies in a lattice of size L = 3000. Note that the wave functions are very weakly
localized, extending over several hundreds of lattice sites.

wave functions is shown in Fig.2(b). The energy spec-
trum in Fig.2(a) clearly shows that, besides high-energy
eigenstates, a large fraction of the wave functions, namely
∼ L(1− 1/M) wave functions, have their energy in three
narrow regions [see the insets in Fig.2(a)] that conden-

sate toward the (M − 1) = 3 energies Eσ = 0,±
√

2κ of
extended states. As shown in Fig.2(b), the IPR of the
high-energy wave functions is very close to one, indicat-
ing a tight localization of the wave functions. On the
other hand, the IPR of the low-energy wave functions
is small, reaching a value down to ∼ 0.005 close to the
three energies Eσ. However, a small value of the IPR
alone does not necessarily mean that the wave function
is an extended or critical state, it just tells us that the
excitation spreads over several sites of the lattice. The

nature of the function ψ
(α)
n is at best captured by look-

ing at its fractal dimension βα, which is defined by (see
e.g.35,36,49)

βα = lim
L→∞

ln IPRα
ln(1/L)

(31)

For a localized wave function one has βα = 0, for an
extended wave function one has βα = 1, whereas for

a critical wave function one has 0 < βα < 1. In our
example, the energy spectrum contains (M − 1) = 3

fully extended states, at the energies Eσ = 0,±
√

2κ,
and for such states one clearly has β = 1. In Fig.2(c)
we show the numerically-computed behavior of log(IPR)
versus log(1/L) for four wave functions with energies
E1 = 0.020κ, E2 = 0.0067κ, E3 = 0.0040κ, E4 = 0.0032κ
that approach the zero energy value of one of the three
extended states. The figure clearly shows that, for a
fixed energy (albeit very close to zero) the behavior
of log(IPR) becomes independent of log(1/L) for large
enough system size L, indicating that the slope β van-
ishes and the wave function is not strictly an extended
state, although the excitation can spread over many sites
of the lattice. As an example, in Fig.2(d) we plot the
wave function amplitudes for the four energies in a lat-
tice of size L = 3000, clearly showing that, even though
the excitation spreads over several hundreds of sites in
the lattice, with a very small IPR, the wave function
asymptotically decays toward zero and thus belongs to
the point spectrum of the Hamiltonian in the L → ∞
limit.
In systems with a finite size L, a relevant number of eigen-
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states, with energies very close to the (M − 1) values
Eσ, are nevertheless extended over the entire lattice and
can be thus considered as ’extended’ states in a broad
sense. The mobility edges, i.e. the energies separating
such wave functions extended over the entire size L of
the lattice from localized wave functions, clearly shrink
toward the (M − 1) energies Eσ in a system of large size
L, indicating that the spectral extent (but not the num-
ber of wave functions) of such ’extended’ states shrink
to zero in the L → ∞ limit, according to the Simon-
Spencer theorem48. This result is clearly at odd with the
results presented in Ref.41. However, one can retrieve the
results of Ref.41, and in particular the form of pseudo mo-
bility edges, introducing the notion of an ’extended state’
in a weaker sense, by classifying a wave function as an
’extended’ state whenever its IPR is smaller than an as-
signed (small) number ε, and a ’localized’ state when its
IPR is larger than ε. Using the property of Bessel func-
tions that Jn(Γ) extends over ∼ 2|Γ| sites of the lattice,
we can roughly estimate the size w of a narrow-energy
wave function using Eq.(27), i.e.

w ∼ 2M |Γ| =
∣∣∣∣4κF sin θ

sin(Mθ)

∣∣∣∣ , (32)

where the angle θ is related to the energy E via the re-
lation E = 2κ cos θ. For a wave function with excitation
uniformly distributed over w sites of the lattice, the IPR
is clearly estimated by the relation

IPR ∼ 1/w (33)

and thus from Eqs.(32) and (33) one obtains

IPR ∼
∣∣∣∣ F4κ sin(Mθ)

sin θ

∣∣∣∣ . (34)

The pseudo mobility edges are thus obtained from the
relation IPR = ε, i.e.∣∣∣∣ F4κ sin(Mθ)

sin θ

∣∣∣∣ = ε. (35)

If we assume ε = 1/2 and let aM ≡ sin(Mθ)/ sin θ, the
pseudo-mobility edges are thus defined by the relation∣∣∣∣Fκ aM

∣∣∣∣ = 2 (36)

which is precisely the result obtained in Ref.41 for the
mobility edges [see Eq.(11) of this reference].

IV. CONCLUSIONS

In summary, we reported on the exact analytical solu-
tion of the spectral problem of the mosaic Wannier-Stark
Hamiltonian, a tight-binding model which has been intro-
duced in recent works41–43 as an example of a disorder-
free system displaying mobility edges, separating local-
ized and extended states. This result looks quite surpris-
ing since so far all known one-dimensional models dis-
playing mobility edges require some kind of (incommen-
surate) disorder. Our results indicate that for the mo-
saic Wannier-Stark Hamiltonian strictly speaking there
are not mobility edges, separating extended and localized
states. Specifically, we proved that the energy spectrum
is almost pure point, with all the wave functions dis-
playing a higher than exponential localization, typical of
Wannier-Stark localization, with the exception of (M−1)
isolated extended states. The energy spectrum comprises
two sets of countably infinite number of localized states,
the low-energy and high-energy wave functions. While
the high-energy wave functions are tightly localized, the
low-energy wave functions are weakly localized, and they
become more and more extended as their energies ap-
proach the energies of the isolated extended states.
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André self-duality and Mobility edges in non-Hermitian
quasiperiodic lattices, Phys. Rev. B 102, 024205 (2020).

23 S. Das Sarma, Song He, and X. C. Xie, Localization, mobil-
ity edges, and metal-insulator transition in a class of one-
dimensional slowly varying deterministic potentials, Phys.
Rev. B 41, 5544 (1990).

24 H. Yao, H. Khouldi, L. Bresque, and L. Sanchez-Palencia,
Critical behavior and fractality in shallow one-dimensional
quasiperiodic potentials, Phys. Rev. Lett. 123, 070405
(2019).

25 H. Yao, T. Giamarchi, and L. Sanchez-Palencia, Lieb-
Liniger bosons in a shallow quasiperiodic potential: Bose
glass phase and fractal Mott Lobes, Phys. Rev. Lett. 125,
060401 (2020).

26 D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus,
Mobility edges in bichromatic optical lattices, Phys. Rev.
A 75, 063404 (2007).
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