
Leveraging laziness, Browsing-Pattern Aware Stacked Models
for Sequential Accommodation Learning to Rank

Edoardo D’Amico
Politecnico di Milano

edoardo1.damico@mail.polimi.it

Giovanni Gabbolini
Politecnico di Milano

giovanni.gabbolini@mail.polimi.it

Daniele Montesi
Politecnico di Milano

daniele.montesi@mail.polimi.it

Matteo Moreschini
Politecnico di Milano

matteo1.moreschini@mail.polimi.it

Federico Parroni
Politecnico di Milano

federico.parroni@mail.polimi.it

Federico Piccinini
Politecnico di Milano

federico1.piccinini@mail.polimi.it

Alberto Rossettini
Politecnico di Milano

alberto.rossettini@mail.polimi.it

Alessio Russo Introito
Politecnico di Milano

alessio2.russo@mail.polimi.it

Cesare Bernardis
Politecnico di Milano
cesare.bernardis@polimi.it

Maurizio Ferrari
Dacrema

Politecnico di Milano
maurizio.ferrari@polimi.it

ABSTRACT
In this paper we provide an overview of the approach we used as
team PoliCloud8 for the ACM RecSys Challenge 2019. The competi-
tion, organized by Trivago, focuses on the problem of session-based
and context-aware accommodation recommendation in a travel
domain. The goal is to suggest suitable accommodations fitting the
needs of the traveller to maximise the chance of a redirect (click-
out) to a booking site, relying on explicit and implicit user signals
within a session (clicks, search refinement, filter usage) to detect
the users intent. Our team proposes a solution based on several new
features, designed to capture specific types of information as well
as some well-known models: gradient boosting, neural networks
and a stacking-based ensemble.

CCS CONCEPTS
• Information systems → Recommender systems; Learning
to rank.

KEYWORDS
ACM RecSys Challenge 2019, Recommender Systems, Feature Engi-
neering, Stacking Ensemble, Learning To Rank
ACM Reference Format:
Edoardo D’Amico, Giovanni Gabbolini, Daniele Montesi, Matteo Mores-
chini, Federico Parroni, Federico Piccinini, Alberto Rossettini, Alessio Russo
Introito, Cesare Bernardis, and Maurizio Ferrari Dacrema. 2019. Leverag-
ing laziness, Browsing-Pattern Aware Stacked Models for Sequential Ac-
commodation Learning to Rank. In Proceedings of the ACM Recommender
Systems Challenge 2019 Workshop (RecSys Challenge ’19), September 20,
2019, Copenhagen, Denmark. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3359555.3359563

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys Challenge ’19, September 20, 2019, Copenhagen, Denmark
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7667-9/19/09. . . $15.00
https://doi.org/10.1145/3359555.3359563

1 INTRODUCTION
Recommender systems have become a widespread tool designed to
offer personalised and relevant content to users in many different
sectors, like e-commerce or entertainment, in such a way to help
them identifying relevant content in a wide database. The ACM
RecSys Challenge 2019 [8]1 focuses on developing a session-based
and context-aware recommender system [1] able to provide a list
of accommodations that will match the needs of the user. The task
of the competition is to predict, among the search result, which
accommodations the user will click during the last part of a session.

The paper is organized as follows. In Section 2 we outline the
problem formulation, the dataset structure and the evaluation met-
rics. We build our solution using two categories of models, first
in Section 3.1 we describe our ranking models (which are tasked
to predict the clickout position among all), then in Section 3.2 the
binary classification models (aimed at solving a simpler classifica-
tion sub-problem). In Section 3.3 we explain how the individual
predictions are combined together via an ensemble. In Section 4 we
describe our feature engineering proposals and a selection of the
most significant features. In Section 5 we present the results we ob-
tained, along with a set of related experiments. We publicly release
our source code with additional documentation and information
on our solution.2

2 PROBLEM FORMULATION
Trivago provided the participants with a log of the interactions. Any
record log is identified by user_id, session_id, step and timestamp.
The step identifies the relative number of the interaction inside a
continuous sequence. From now on we will refer to a sample as
a session (i.e. an ordered series of steps characterised by the same
user_id and session_id). A clickout is the interaction in which the
user picks one of the accommodations that are displayed to him/her.
The clickout we aim to predict is the last occurring in the session
steps. Our task is to predict which of the shown accommodations the
user will select. The evaluation metric is MRR. The dataset provided
to the participants is gathered from Trivago results webpage and,

1http://www.recsyschallenge.com/2019/
2https://github.com/MaurizioFD/recsys-challenge-2019-trivago

https://doi.org/10.1145/3359555.3359563
https://doi.org/10.1145/3359555.3359563
https://doi.org/10.1145/3359555.3359563
http://www.recsyschallenge.com/2019/
https://github.com/MaurizioFD/recsys-challenge-2019-trivago
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3359555.3359563&domain=pdf&date_stamp=2019-09-20


RecSys Challenge ’19, September 20, 2019, Copenhagen, Denmark Ferrari Dacrema et al.

as a probable consequence of their own recommendation system
and the user’s navigation pattern, is heavily unbalanced towards
the accommodations in the first positions. Moreover, the company
provided us an item metadata file, containing all the information
about the accommodations (or items) characteristics (rating, stars,
comforts...). In the following, item and accommodation are used as
synonyms.

3 MODELS
The clicked-impression distribution is very unbalanced towards
the first positions, with the first two accounting for around 50% of
the clicked impressions. To address this, we relied on two sets of
models: ranking models, tasked to predict the clicked impression
among all 25, and binary classification models, tasked with a simpler
binary classification problem, i.e. whether the clicked impression is
in the first position or not, see Section 3.2.

3.1 Ranking models
3.1.1 Boosted Trees. We strongly rely on Gradient Boosting for
decision trees and combine different variations of it.

XGBoost: [3] with Rank Pairwise loss. We perform one-hot
encoding of the categorical features.

CatBoost: [10] is a recent library effective in handling cate-
gorical features. We use as loss YetiRank [6].

LightGBM: [7] which is effective in handling categorical fea-
tures and can optimise the LambdaRank loss.

We trained the models using all the hand-crafted features available,
but without the item metadata. The metadata alone is used to train
another version of XGBoost, that we call XGBoost impressions tags.

3.1.2 Recurrent Neural Networks (RNN). In order to exploit the
sequential structure of the problem we adopt a recurrent neural net-
work. Each session is represented by a fixed number of interactions
and fed to the network. Since ranking metrics are not yet available
in Tensorflow/Keras, we chose to optimize the binary crossentropy
loss with target vectors of 25 (maximum possible length of the
impressions list). We tried with both LSTM and GRU cells and we
found that the most performing architecture is the following: 2 re-
current layers (GRU, hidden size 64, dropout and recurrent dropout
rate of 0.2) and 2 dense layer (with 64 and 25 neurons, relu and
softmax activation functions, respectively), each of them followed
by a dropout layer (with rate 0.1). We trained three versions of the
network: one with sample weights designed to balance the distri-
bution of the 25 classes, one without any weighting, and one using
a training set without the first class (in order to completely ignore
the majority of the samples with the first class).

3.1.3 Tensorflow Ranking (TFranking). Tensorflow ranking[9] is a
ranking algorithm released by Google and is capable to optimise
list-wise losses for ranking. We use a feed-forward neural network
with the following structure: two dense hidden layers with 256
and 128 neurons respectively, each of them is followed by a batch
normalisation layer. Batch normalisation is applied to the input
data as well. A dropout layer with rate equal to 0.5 is applied to
the last hidden layer. The output layer is dense with a number of
neurons equal to the number of items to score. We tried various loss
functions described in [9]: Sigmoid cross-entropy loss (pointwise),

Figure 1: Creation of the stacking ensemble training set using 3-fold
cross-validation and out-of-fold prediction

logistic and hinge losses (pairwise) and SoftmaxCross-Entropy loss
(listwise). The latter one achieved the best result with a ∆MRR =
+0.002 w.r.t the best pairwise loss (pairwise hinge loss).

3.2 Binary classification
In order to mitigate the effects of a highly unbalanced dataset, we de-
cided to introduce simpler and more balanced sub-problems. Their
goal is to perform a binary classification to distinguish whether
the clickout occurs on the first impression of the list or not. The
results reported in Table 2 support our hypothesis of the resulting
task to be easier. We used two models: XGBoost and RNN similarly
to what described in Section 3.

3.3 Ensemble
We ensemble all the models previously described with stacking
ensemble. The key idea is to use the predictions/classifications of
all models and treat them as features to build another higher-level
model. Due to its high accuracy, we choose XGBoost as ensemble
algorithm. In particular we use our handcrafted features in com-
bination with the scores coming from the algorithms. We have
to apply a k-fold cross-validation on training data and out-of-fold
prediction to retrieve the scores of each fold, as shown in Figure 1.

4 FEATURES
Feature engineering proved to be crucial to achieve good results.
We overall developed about two hundred features among which
we describe the most important or peculiar ones.

4.1 Context Features
The Context Features exploit the interactions with accommodations
occurring within a single session.

4.1.1 Lazy User. The goal of this feature is to model the navigation
pattern of the user along the displayed impressions. The underlying
idea is that, since the clickout happens on an accommodation which
is displayed by the Trivago interface (i.e. on user’s monitor), it is
more likely that a user will click on an impression which is near
to his browsing position which can be deduced from his previous
interactions, when available. In all the other cases, we assume that
the user is at the top of the page when the clickout happens. As
shown in Figure 2, the effect of using the Lazy User representation
for the position of the clicked accommodation is that the problem
becomes even more unbalanced towards the nearest accommoda-
tion with respect to the assumed position of the user. In addition,
it is interesting to notice that it almost never happens that a user
performs a clickout over an impression which is in a position above
his inferred position (i.e. there are a negligible number of times in



Leveraging laziness, Browsing-Pattern Aware Stacked Models for Accommodation Learning to Rank RecSys Challenge ’19, September 20, 2019, Copenhagen, Denmark

Figure 2: Comparison between original distribution of clickouts and
the one represented by the Lazy User feature. It shows the percent-
age of clickout per accommodation position in the list. Negative po-
sitions, related to the Lazy User representation, mean that the click-
out happens on an accommodation which is above the inferred po-
sition of the user (using that position as index zero).

which the user "scrolls up" the page before the clickout). Finally,
another unexpected result shown by the plot is that the distribution
given by the Lazy User representation is almost identical to the one
of the sessions in which the clickouts happen as the first known
interaction with the user (i.e. clickout at step one).

4.1.2 User2Item. This feature represents a user as a vector of the
accommodation properties we estimate to be the most relevant for
him/her. The feature builds, for each user/session pair, a vector
containing the number of occurrences of each item metadata in
the interacted items. For each impression, the final feature value
is the similarity between the session feature value and the impres-
sion metadata, computed via both cosine similarity and Manhattan
distance.

4.2 Content Features
The Content Features take into account interactions spanning
across multiple sessions or other non-session related information.

4.2.1 User Features. Since around 20% of the users has more than
one session, we add some feature to represent this global user
navigation behaviour. Among those there are: number of user inter-
actions with the item, seconds before closest interaction, action type of
closest interaction, number of times the item appeared in impressions
list, average price interacted items, average position of clicked items in
impressions list, and many others. Since a user could have searched
more than one city along his/her history, we compute those fea-
tures only including sessions associated to the city referenced in
the last clickout. Moreover, it was extremely useful the separation
between past sessions and future sessions. Features were crafted
distinguishing both the case of past sessions and future sessions
occurrences.

4.2.2 Popularity Features. The following features are some of those
built around the concept of popularity:

Session Clickout/Interaction Count: number of occurrences
of an item (clicked or interacted) within that session;

Platform Popularity: percentage of the number of times that
an item has been clicked over the total number of clicks,
within a specific platform. The idea is that there can be

Table 1: Best performing models evaluated on our private split

XGBoost LightGBM CatBoost TFranking RNN

MRR 0.6791 0.668 0.673 0.667 0.654

Table 2: Evaluation of our two classifiers in the binary classification
scenario (clickout in first impression or not) and XGBoost ranker.

Algorithm Precision Recall F1 Score

XGBoost ranker 0.51 0.91 0.65
XGboost classifier 0.74 0.74 0.74
RNN classifier 0.68 0.78 0.73

items with a small overall popularity that exhibit significant
variance across platform.

City Location Popularity: highlights the most popular ac-
commodations for each city, it is computed in the same way
of the Platform Popularity, but for cities;

Percentage Clicked / Appeared: the percentage of impres-
sions of that item that resulted in clicks, as a measure of the
user interest in that impression.

4.2.3 Platform Characterising Features. This group of features at-
tempts to model the different relevance that users browsing the
accommodations from different platforms may attribute to different
metadata. Among them, the most important is PlatformFeatures-
Similarity. The feature builds a vector containing the number of
occurrences of each metadata in the clicked accommodations for
each platform. The vector is then normalised and the feature value
is thecosine similarity computed with each impression metadata.

4.2.4 Price Quality. This feature models how an impression is
cost-effective in terms of stars. It is computed as the weighted sum-
mation of the impression rating (weight 1.5) and the impression
stars (weight 1.0), divided by the impression price. In case of missing
values, we use the average of all the current impressions.

4.2.5 Filters satisfaction. Due to their different semantics, we dis-
tinguish the filters in two categories:

Change of sort order filters: they sort the impressions based
on 7 criteria (price, distance, rating, price and recommended,
rating and recommended, distance and recommended, our
recommendations).

Tags filters: they filter on the impressions tags (metadata).
The change-of-sort-order filters have been one-hotted and used di-
rectly as features. The tag filters, instead, have been considered
calculating, for each impression, the fraction of tags that are present
in both the impression tags and the filters.

5 EXPERIMENTAL EVALUATION
For each model we report in Table 1 the best MRR achieved on the
private validation dataset. The hyperparameters tuning is done via
Random and Bayesian search [2, 4, 5].

5.1 Cluster-wise analysis
In order to provide a more in-depth analysis of our solution we
also evaluate the algorithms on subsets of sessions, we refer to as
clusters. Since all the ranking models have similar performance on
each cluster, the following evaluation refers to the final ensemble.



RecSys Challenge ’19, September 20, 2019, Copenhagen, Denmark Ferrari Dacrema et al.

Table 3: Evaluation based on the presence of interactionswith items.
The clusters in italic represent the union of the previous clusters

Id Cluster Name Size MRR

1.1 Item Interaction one step before clickout 59% 0.7282
1.2 Item Interaction more steps before clickout 5% 0.5452

1 At least one item interaction 64% 0.7137

2.1 One step 21% 0.6712
2.2 More than one step 15% 0.5034

2 No item interactions 36% 0.6018

Table 4: Evaluation based on number of actions in session

Cluster Name Size MRR

One action 21% 0.6712
Two actions 14% 0.6283

From Three to Ten actions 37% 0.6814
More than ten actions 28% 0.7153

5.1.1 Device. Sessions associated to the same device used by the
user are clustered together. The quota of sessions associated to
each device and the corresponding MRR are the following: Mo-
bile, 55%, 0.6899; Desktop, 37%, 0.6739; Tablet, 8%, 0.6564. These
results highlight very good performance in case of mobile devices.
Our hypothesis is that on mobile devices the navigation is more
constrained resulting in less flexibility to compare several options,
therefore users pay attention mainly to the first items in the page
or closely follow the results ordering. It is also interesting to notice
how different are the performances when a tablet is used.

5.1.2 Presence of interactions with items. Sessions can be divided
in those having at least one interaction with an item, and those
which do not. We notice from Table 3 that interactions with items
are a very rich source of information. The MRR is high in case such
interaction is right before the last clickout (Id 1.1). In the opposite
case (Id 1.2), the performance drops, most likely because the item
interactions are not meaningful for the clickout that we have to
predict. When there is a lack of item interactions due to sessions
composed of just the last clickout (Id 2.1), the performance does not
degrade much. In the former cluster almost half of the clickouts are
on the first impression, as shown in Figure 2. We believe this to be
the reason of the good performance the model manages to achieve,
even without having any information on the interacted items.

5.1.3 Number of actions. As shown in Table 4, we cluster the ses-
sions based on how many interactions they are composed by. We
observe that in very long sessions (i.e. more than ten interactions)
the results are very good. This further confirms the importance of
interactions in understanding the user’s interest. We also observe
that in sessions with exactly two actions the results are much worse.

5.1.4 Clusters analysis. From Table 3 we identify sets of sessions
that heavily penalise the final score. In particular, we struggle to
model sessions where the user has not interacted with any accom-
modation (Id 1.2) and where the interactions are not meaningful for
the clickout that we have to predict (Id 2.2). Content Features help
in those cases: with the XGBoost model described in Section 3.1.1,
we obtain an MRR increment of 0.035 on those clusters against an
increase of only 0.011 on the others.

Table 5: Permutation importance for the top 15 features of the en-
semble model, we report mean and standard deviation on 5 shuffle

Feature name Average ∆ MRR Standard ∆ MRR

XGBoost 0.4177 0.0013
TFRranking (softmax loss) 0.0029 0.0003
RNN (balanced) 0.0027 0.0002

RNN classifier 0.0025 0.0003
XGBoost impressions tags 0.0009 0.0003
No. of past clickouts on impression 0.0009 0.0002

Personalised popularity 0.0008 0.0003
Length of impressions list 0.0005 0.0002
Last position interacted 0.0004 0.0002

TFRranking (pairwise hinge loss) 0.0003 0.0001
Number of clickouts 0.0003 0.0000
Session duration (seconds) 0.0003 0.0003

Past time from last interaction impression 0.0003 0.0002
RNN (without first class) 0.0002 0.0002
Impression position 0.0002 0.0001

5.2 Ranking Performance analysis
We discuss the result of the stacking ensemble, by comparing the
distribution of the positions of the correct clickouts before and after
the ranking algorithm has been applied. A full diagram is available
in the online material. We can observe that from position 3 to posi-
tion 25 the difference is negative on average i.e. the total percentage
of correct clickouts in this positions have been reduced. The mean
of the decrement is µ = −0.0085 and the standard deviation is
σ = 0.0018. In contrast we can see that the only two positions with
a positive increment are the first and the second with an increment
of ∆1 = +0.19 and ∆2 = +0.01 respectively. From the analysis it
turns out that the final ranking algorithm was able to detect, with
equal effort, correct clickouts from position 3 to 25.

6 CONCLUSION
The final ensemble contained the followingmodels: XGBoost Ranker
(Section 3.1.1), TensorflowRanking, (Section 3.1.3), RNN, (Section
3.1.2), RNN Classifier (Section 3.2) and XGBoost Impression Tags
(Section 3.1.1). In addition, the features adopted to train the models
were all added again to the ensemble. To have an idea of the contri-
bution each feature we report the permutation importance3 of the
top 15 features on the final ensemble, see Table 5. The permutation
importance is computed as the difference between the ensemble
score and the score obtained by randomly shuffling a single feature
in the dataset at a time, in order to see how much the model relies
on that feature and is therefore sensitive to its changes. Finally,
note that not all the algorithms described in the previous sections
were used due to the lack of time for the cross-validation dataset
creation (Section 3.3). However, experiments suggest that the per-
formance could have been further improved. Overall the ensemble
succeeded in improving the overall performance as confirmed by
the final MRR of 0.6765 in the private leaderboard and 0.6813 in our
private validation split, guaranteeing us the tenth position in the
final leaderbord, with a ∆MRR of 0.0033 from the fifth position and
0.0091 from the first.

ACKNOWLEDGEMENT
We would like to thank Prof. Paolo Cremonesi for his support.

3https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html

https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html


Leveraging laziness, Browsing-Pattern Aware Stacked Models for Accommodation Learning to Rank RecSys Challenge ’19, September 20, 2019, Copenhagen, Denmark

REFERENCES
[1] Jens Adamczak, Gerard-Paul Leyson, Peter Knees, Yashar Deldjoo, Farshad

Bakhshandegan Moghaddam, Julia Neidhardt, Wolfgang Wörndl, and Philipp
Monreal. 2019. Session-Based Hotel Recommendations: Challenges and Future
Directions. arXiv:arXiv:1908.00071

[2] S. Antenucci, S. Boglio, E. Chioso, E. Dervishaj, K. Shuwen, T. Scarlatti, and
M. Ferrari Dacrema. 2018. Artist-driven layering and user’s behaviour impact
on recommendations in a playlist continuation scenario. In Proceedings of the
ACM Recommender Systems Challenge 2018 (RecSys 2018). https://doi.org/10.
1145/3267471.3267475 Source: https://github.com/MaurizioFD/spotify-
recsys-challenge.

[3] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
785–794. https://doi.org/10.1145/2939672.2939785

[4] Yashar Deldjoo, Maurizio Ferrari Dacrema, Mihai Gabriel Constantin, Hamid
Eghbal-zadeh, Stefano Cereda, Markus Schedl, Bogdan Ionescu, and Paolo
Cremonesi. 2019. Movie genome: alleviating new item cold start in movie
recommendation. User Modeling and User-Adapted Interaction (26 Feb 2019).
https://doi.org/10.1007/s11257-019-09221-y Source: https://github.com/
MaurizioFD/CFeCBF.

[5] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are
We Really Making Much Progress? A Worrying Analysis of Recent Neural Rec-
ommendation Approaches. Proceedings of the 13th ACM Conference on Rec-
ommender Systems (RecSys 2019) (2019). https://doi.org/10.1145/3298689.

3347058 arXiv:arXiv:1907.06902 Source: https://github.com/MaurizioFD/
RecSys2019_DeepLearning_Evaluation.

[6] Andrey Gulin, Igor Kuralenok, and Dimitry Pavlov. 2011. Winning The Trans-
fer Learning Track of Yahoo!’s Learning To Rank Challenge with YetiRank. In
Proceedings of the Learning to Rank Challenge.

[7] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and T. M. Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In NIPS.

[8] Peter Knees, Yashar Deldjoo, Farshad Bakhshandegan Moghaddam, Jens Adam-
czak, Gerard-Paul Leyson, and Philipp Monreal. 2019. RecSys Challenge 2019:
Session-based Hotel Recommendations. In Proceedings of the Thirteenth ACM
Conference on Recommender Systems (RecSys ’19). ACM, New York, NY, USA, 2.
https://doi.org/10.1145/3298689.3346974

[9] Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael
Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan
Wolf. 2019. TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. (to appear).

[10] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Doro-
gush, and Andrey Gulin. 2018. CatBoost: Unbiased Boosting with Categorical
Features. In Proceedings of the 32Nd International Conference on Neural Information
Processing Systems.

http://arxiv.org/abs/arXiv:1908.00071
https://doi.org/10.1145/3267471.3267475
https://doi.org/10.1145/3267471.3267475
https://github.com/MaurizioFD/spotify-recsys-challenge
https://github.com/MaurizioFD/spotify-recsys-challenge
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s11257-019-09221-y
https://github.com/MaurizioFD/CFeCBF
https://github.com/MaurizioFD/CFeCBF
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
http://arxiv.org/abs/arXiv:1907.06902
https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation
https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation
https://doi.org/10.1145/3298689.3346974

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Models
	3.1 Ranking models
	3.2 Binary classification
	3.3 Ensemble

	4 Features
	4.1 Context Features
	4.2 Content Features

	5 Experimental Evaluation
	5.1 Cluster-wise analysis
	5.2 Ranking Performance analysis

	6 Conclusion
	References

