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Abstract—In this paper we present a study of machine learning
(ML) algorithms to simplify the computation of the planar scin-
tillation coordinates in Anger Cameras for emission tomography
applications. Two ML-based techniques for data inference and
one technique for speed-up the training procedure are explored
within the framework of a multimodal SPECT scanner. Firstly,
the use of Principal Component Analysis (PCA), a dimensionality
reduction algorithm, is explored to reduce the computational
complexity of maximum-likelihood statistical estimation method.
The analysis indicates a ∼3-fold reduction of computational
complexity for typical Anger Camera architectures (with 72
channels). Secondly, the estimation of the scintillation coordinates
is formulated as a classification problem, addressed by means of
a Decision Tree (DT) classifier. No degradation of the achievable
intrinsic spatial resolution (∼1.2 mm FWHM) of the detection
module was observed when applying PCA (reducing from 72 to 25
components). The DT classifier was trained on experimental data
obtained using a parallel-hole collimator: again no degradation
of spatial resolution is observed and the computation cost is
reduced by more than two orders of magnitude. Finally, in
order to overcome the limits of a cumbersome training procedure
involving the translation of the collimator, data augmentation was
successfully leveraged for the generation of artificial data.

Index Terms—Medical Imaging, Machine Learning, Scintilla-
tor, SiPM

I. INTRODUCTION

MACHINE learning (ML) is increasingly recognized as
a powerful tool to automatically extract meaningful

information from a large amount of data in many fields,
including the medical imaging domain. In nuclear medical
imaging, ML is widely applied at different levels: starting
from the detection module, where it is used to localize the
position (planar or tridimensional) of the interaction point of
a γ photon in the scintillator or improve the time-of-flight
(ToF) estimation [1], up to tomographic image reconstruction
[2]–[5], and artifact and attenuation correction stages.

This work places itself in the first framework, presenting
the experimental characterization of the position sensitiv-
ity achievable when implementing ML algorithms in Anger
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Cameras at detector level. Our goal is to assess the trade-
off between the deterioration of spatial resolution versus the
reduction of the number of output signals and processing
power when leveraging ML in monolithic crystals. Two ML
techniques were considered: Principal Component Analysis
(PCA), an unsupervised learning technique which aims at
performing a reduction of the dimensionality of the original
feature space, and an ensemble of fast Decision Tree (DT)
classifiers, possibly combined with PCA and easily executed
in embedded digital platforms.

The working principle of scintillation-based γ-ray detectors
in PET and SPECT is the detection of high-energy γ photons
as a consequence of their interaction with the scintillation
crystal. The burst of secondary photons generated in the
visible spectrum is then detected by an array of photodetectors
coupled to the crystal. Today the technology for detector
development is steadily transitioning from conventional Photo-
multiplier Tubes towards solid-state Silicon Photomultipliers
(SiPMs) detectors [6], with evident advantages in terms of
compactness and compatibility with magnetic fields, which is
pivotal for multimodal imaging [7].

There are two major architectures for detectors: pixelated
and monolithic ones. Pixelated architectures have been for
a long time the standard for PET detectors and they are
characterized by independent pixels, each one corresponding
to a single scintillator crystal. The scintillators can be coupled
1:1 with the photodetectors or, more commonly, the scintillator
array can be coupled to a less dense array of photodetectors.
The achievable spatial resolution is therefore roughly deter-
mined by the size of the pixel. The design of high-resolution
pixelated scanners (for preclinical imaging) requires a high 2D
pixel density, at the expense of an increase in fabrication costs
and system complexity.

An alternative solution consists in monolithic detectors, also
known as Anger Cameras [8], [9], where a single monolithic
scintillator crystal is coupled to an array of photodetectors.
These detectors have gained more and more attention during
the last years, for both SPECT and PET applications [1],
[10]–[12]. Besides requiring a smaller number of electronics
channels per unit area, they both facilitate the determination of
the depth-of-interaction (DOI) [10], [12]–[15] and unbind the
minimum spatial resolution from the pixel size. In fact, in this
case the spatial resolution is related to the statistical fluctua-
tions occurring in the physical process of light sharing among



pixels. Consequently, the achievable resolution significantly
depends on the reconstruction algorithm. The main drawback
of a continuous scintillator is that it limits the maximum
thickness of the crystal.

During the years, many techniques have been proposed
for estimating the interaction coordinates of γ photons in
monolithic detectors: the first centroid-based methods [9] have
been replaced by statistical approaches such as the Maximum-
Likelihood Estimation (MLE) algorithm, which was demon-
strated to provide better positioning performances and reduced
edge biases [16].

Different ML-based reconstruction strategies have been
proposed for the estimation of the position of interaction
of high-energy photons in PET monolithic detectors [1].
Artificial Neural Networks (ANNs) have been implemented
for estimating both the 2D and 3D (with DOI information)
interaction coordinates in monolithic detectors [17]–[21]. De-
cision tree-based methods like Gradient Tree Boosting have
been implemented for 2D [22] and 3D reconstruction [23] in
monolithic PET detectors; since they basically implement a
set of binary decisions, they have been observed to provide
a computationally relaxed algorithm for fast event processing,
which is also sustainable by the memory allocation available
in commercial FPGAs.

A common feature of state-of-the-art reconstruction tech-
niques is that the signal information from all the photode-
tectors coupled to the monolithic crystal is required; this can
represent an important limitation in terms of computational
effort, especially since research in the field of PET scanners
is moving towards the design of scanners with a large field of
view (FoV) [24], up to whole body, with a consequent increase
in the number of signals to be acquired and processed.

In this context, different multiplexing techniques have been
proposed throughout the years, in order to reduce the number
of output channels to process [25]–[29]. However, it has
been observed that reducing the number of output signals
from the photodetectors implies a reduction of the amount of
information available to the algorithm, thus being detrimental
for the spatial resolution achieved by the detection module
[28].

In order to overcome this issue, recent studies have proposed
the implementation of PCA-based multiplexing schemes,
which offer the possibility to reduce the number of output
channels, by keeping the original information content almost
unchanged. From a simulation study evaluating the positioning
performances of different multiplexing strategies, the PCA
transformation of the original channels proved to guarantee
the best results in terms of spatial resolution [29].

This work aims at exploring from an experimental point-
of-view the performance of a SiPM-based Anger Camera
implementing PCA feature analysis combined to MLE. Fur-
thermore, the performance of a specifically trained ensemble
of DT classifiers for position estimation is assessed. Finally,
a new technique, based on Data Augmentation (DA), for the
enrichment of the training dataset acquisition is also proposed,
trading-off spatial resolution and complexity of the calibration
procedure.

The paper is organized as follows: Sec. II introduces the
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Fig. 1. Picture of the INSERT clinical instrument. This MRI-compatible
insert is composed of 20 clinical modules, each equipped with 2 ASICs
for signal processing and a DAQ board for digitization. Data are sent to a
central unit via an optical fibers bundle. The INSERT clinical modules couple
a 10 cm×5 cm×8 mm CsI(Tl) scintillation crystal to an array of 72 SiPMs
macro-pixels, each one having an 8 mm×8 mm area.

clinical module used for the experimental measurements, while
Sec. III and Sec. IV introduce, respectively, the Maximum-
Likelihood Estimation algorithm for position sensitivity, and
the implementation of PCA for feature reduction. A discussion
of the results for MLE combined with PCA is presented
in Sec. V. Sec.VI introduces the use of Decision Tree-based
classifiers for position sensitivity in Anger Cameras, while
Sec. VII, Sec. VIII, and Sec. IX describe respectively the ex-
perimental characterization of DTs, the use of DA for training
dataset acquisition, and the related discussion. Conclusions are
drawn in Sec. X.

II. EXPERIMENTAL SETUP: THE INSERT SYSTEM

A single detection module of the INSERT clinical scanner
for SPECT/MRI imaging (Fig. 1) was used in this study to
test the position sensitivity achieved using machine learning
algorithms [30], [31].

The goal of the INSERT project is to develop a custom
stationary SPECT apparatus that can be used as an insert
for commercially available MRI scanners, for simultaneous
structural and functional imaging.

The spatial resolution of the detection module is important
because the INSERT camera is spatially constrained inside
the bore of the MRI scanner (of ∼50 cm diameter). The
minification effect leads to a 10 mm spatial resolution of
the image (comparable to the one of a stand-alone SPECT
system), starting from an intrinsic spatial resolution of the
camera as small as 1 mm.



The SPECT system is composed of 20 modules, each one
coupling a 50 mm×100 mm×8 mm CsI(Tl) scintillator to an
array of 4 mm×4 mm RGB-HD SiPM tiles ( [32], [33]). The
detectors readout scheme merges the SiPMs pixels into groups
of 4, for a total of 72 macro-pixels having 8 mm side each.
This represents a compromise between system complexity and
spatial resolution ( [34], Fig. 1).

The clinical module reaches a spatial resolution of
1.04±0.18 mm full width at half maximum (FWHM) within
a useful field of view (UFOV) of 90 mm×40 mm, using MLE
algorithm [35]. This result will be taken as a benchmark to
compare the performance of the ML-based methods proposed
in this work.

III. MAXIMUM LIKELIHOOD ESTIMATION ALGORITHM
FOR THE INSERT SYSTEM

MLE is a statistical estimation method that uses labeled
data to infer unknown parameters of a process, such as
the γ photon interaction coordinates in the scintillator, or,
equivalently, the generated number of photoelectrons from a
γ photon interaction in the scintillator [29], [36]–[42].

Statistical methods are based on the prior definition of a
mathematical model of the detector. Specifically, the MLE
algorithm requires the knowledge of the average response
of each individual photodetector as a function of the event
position, the so-called Light Response Functions (LRFs).

The MLE algorithm estimates the event coordinates (x, y)
by maximizing the following log-likelihood function:

lnL(x, y,Nph) =

D∑
j=1

[nj ln(LRFj(x, y) ·Nph)+

− LRFj(x, y) ·Nph]

(1)

where Nph is the amount of optical photons produced by the
local energy deposition processes: it is assumed constant in our
application of emission tomography with a single photopeak,
D is the number of photodetectors, and nj is the number of
photons detected by the j-th photodetector.

For the case of the INSERT clinical module, if the logarithm
is implemented as a look-up table (LUT), the likelihood
computation of a single point within the grid where the
LRFs are defined is given by 72 multiply-and-add operations,
followed by a subtraction (for the maximum value search).

It is apparent from (1) how important is an accurate knowl-
edge of the LRFs. The LRF computation method used for
INSERT module is based on an iterative procedure, which
exploits measured scintillation events produced by an uncol-
limated γ source that uniformly illuminates the camera [43]–
[45].

The MLE algorithm implementation led to an intrinsic spa-
tial resolution in the crystal of ∼1.2 mm FWHM considering
a 90 mm×40 mm UFOV. This value is slightly worse than the
one reported in [35] probably due to the aging of the module
in the last four years.

Despite acknowledging its state-of-the-art performance in
terms of position sensitivity, we highlight that the application
of MLE algorithm to data collected from the INSERT clinical

instrument requires the storage of 125×103 LRFs data (a
square grid of LRFs is defined in the 5 cm×10 cm scintillation
crystal plane, having 200 µm pitch in both directions), and
72×125×103 = 9×106 multiply-and-add operations per event
(plus the maximum value search complexity).

In the INSERT module, each LRF, representing the average
response of the 72 macro-pixels for a given scintillation
position, is an entry of the LUT and contains 72 elements.
If real-time processing is targeted, for each event all the LRFs
need to be fetched from the memory at a very demanding
transfer rate above 130 GB/s, for a modest count rate of
10 kcps. If the logarithm is implemented as a look-up table,
this constraint is worsened of a factor 2. Some solutions have
been proposed in literature to reduce the overall number of
operations, such as splitting the MLE search in two rounds
[46], but the number of operations per event would still be as
large as 1.5×105.

IV. PRINCIPAL COMPONENT ANALYSIS FOR
DIMENSIONALITY REDUCTION

One could wonder if, for estimating the position of γ-ray
interaction in monolithic scintillators, the use of all SiPM
signals is strictly necessary.

Since the signals are intrinsically subject to statistical fluc-
tuations (due to multiple sources including: the generated
optical photons collection, their scattering in the crystal, the
SiPM cross-talk and dark counts, the electronics readout noise,
etc. [47]), it might be beneficial to implement an appropriate
transformation of the statistical feature space, in order to
reduce the dimensionality of the problem, and to extract
relevant features from the statistical variables distribution.

Dimensionality reduction techniques are sets of methods
allowing the transformation of high-dimensional data into a
meaningful representation of reduced dimensionality, express-
ing the data in such a way that their similarities and differences
are highlighted.

With this work, we want to find a reduced set of features
that allows us to infer spatial information without (or with
minimum) accuracy loss.

Dimensionality reduction techniques applications are re-
ported in [48]–[50], while a more general discussion is re-
ported in [51], [52]. PCA performs dimensionality reduction
by embedding the data into a linear subspace of lower di-
mensionality. PCA is a consolidated tool for the unsupervised
analysis of data variance, since it allows the identification of
a new, orthonormal reference system which maximizes the
variance of data across a subset of dimensions (the principal
components, PCs).

A. Principal Components Computation

The PC computation is based on an iterative algorithm,
which starts from finding the first component as the one maxi-
mizing the explained variance in the data. At each subsequent
iteration, the next PC is computed as the one which maximizes
the residual variance, adding the constraint of orthogonality
with respect to all the PCs previously found. The estimation of
the optimal number of PCs is usually performed by looking at
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Fig. 2. MLE performance for the reconstruction of single-spot simulated
events (FWHM and FWTM for both x and y coordinates), for varying numbers
of principal components.

a scree plot (percentage of explained variance as a function of
the number of PCs); the number of components corresponding
to the ”elbow” of the scree plot is usually chosen as dimension
of the new feature space [53].
The position of each observation in the new coordinate system
of PCs can be calculated as the linear combination of the
values of the original variables. For a typical Anger Camera
(with less than 100 channels) the cost of this algorithm is
negligible with respect to the MLE computational cost.
In a real scenario, the computation of PCs has to be performed
on a proper calibration dataset containing events interacting all
over the detector surface. An experimental flood irradiation
dataset was used in this work for both the LRF estimation
and the computation of the d PCs as the eigenvectors of the
dataset covariance matrix, where d represents the dimension
of the new feature space and is a tunable parameter.

Once the PCs are computed, they can be used for the
projection of collected data from SiPMs (either in real-time
or in post-processing). If the detector module is affected by
a gain drift during its lifespan or some pixel fails, it will be
necessary to repeat the measurement.
In order to perform MLE after PCA, both the LRFs and the
event to reconstruct have to be projected into the reduced
feature space. While the projection of an event in the principal
components space is obtained by a simple scalar product be-
tween the observation and the set of PCs, obtaining LRFsPCA,
namely the equivalent of the LRFs in the transformed space,
required a different approach.
In order to enable the computation and the allocation of the
LRFs 3D continuous curves, a proper binning of the (x, y)
coordinates is performed; the length of the crystal along the
x and y direction is divided respectively into 506 and 258
discrete bins, with a pixel dimension of 0.2 mm. Consequently,
the LRFs estimation process leads to the definition of 72
different matrices with dimension 258×506.
In order to obtain the LRFsPCA, a new dataset was created,
where rows represented the 258×506 bins, while columns
represented the values assumed by each LRF for a specific
bin; this operation allowed the creation of a 72-dimensional
dataset which could be then projected into the new principal

components space. After the projection in the principal com-
ponents space, the LRFs have been composed again into a
d-dimensional object defined inside the same 258×506 bins
matrix, which finally constitutes the LRFsPCA.

Fig. 2 depicts the position sensitivity expressed as FWHM
and FWTM (full width at tenth maximum) detailing the
MLE algorithm performance with varying numbers of PCs
considered for the computation, for the 8 mm×8 mm SiPM
array of the clinical INSERT module. Training and validation
datasets were acquired from single-spot simulations performed
in ANTS2 environment (a simulation package developed for
Anger Camera type detectors [54]), where data correspond
to the number of photoelectrons generated in each SiPM
pixel of the Anger Camera, event per event. The elaboration
procedure that was adopted is the same as the one explained
in the following subsection (Sec. IV-B) for the experimental
measurements. The simulation results show that ∼25 PCs are
sufficient for our target spatial resolution.
This outcome has been confirmed also by the experimental
measurements: as shown in the following subsection, we found
that a subset of 20-25 components is sufficient to describe the
geometrical feature of light spreading of experimental data
on the SiPM matrix. This reduced set of components allows a
reduction of the LUT size, leading to reduced computation and
bandwidth requirements for the MLE algorithm in the event
reconstruction process (3×106 multiply-and-add operations
per event if 25 PCs are used). The computation of PCs
has a computational complexity corresponding to NPC×Nch
multiply-and-add operations, where NPC is the number of PCs
and Nch is the number of detector channels (original feature
space). If NPC is chosen equal to 25 and the original number
of channels is 72, the number of operations to recall the PCs is
in the order of 103. The increase in computational complexity,
when PCA and MLE are cascaded, is therefore negligible.

B. PCA Experimental Characterization

In order to compare previous experimental results of the
INSERT module (obtained using the SiPM signal values as
statistical variables in MLE) with the ones obtained with
PCA (using the extracted PCs as statistical variables for
MLE), we have evaluated the spatial resolution of an INSERT
clinical module for the two cases. For the examined technique,
experimental results were extracted when using all available
PCs or a finite subset of components.

During the preliminary calibration phase, the LRFs of the
clinical module were experimentally computed by means of
a flood irradiation of the scintillation crystal, and using the
iterative algorithm exploited in [34], [43]. After computing
the LRFs, they were projected into the principal components
space and used to build the new LUT.

Fig. 3 shows the intensity of the first 6 principal compo-
nents over the 72 macro-pixels of the INSERT module. It is
interesting to note that the intensity of these features underlies
a geometrical description of the light distribution (e.g., the
first component indicates the derivative along one axis of the
crystal, while the second component represents the second
order momentum along the same direction).



Fig. 3. Intensity distribution of the first 6 principal components over the 72
pixels of the INSERT module. It is apparent how the PCs express geometrical
features of the light distribution over the detector surface (e.g., the first
component indicates the derivative along one axis of the crystal, while the
second component represents the second order momentum along the same
direction).

To test the accuracy of the MLE algorithm with PCA, a
new dataset was acquired where the gamma photons were
collimated using a 2 mm-pitch parallel holes collimator. The
reconstructed images are shown in Fig. 4 (only a central
FOV of 60 mm×30 mm is here reported), together with the
unidimensional profile of the reconstructed spots. For each
spot, the full widths at half maximum of the Gaussian curves
that fit the histograms of the reconstructed x and y coordinates
were calculated, and the spatial resolution was quoted as the
mean FWHM over the two coordinates, considering a UFOV
of 90 mm×40 mm. When using 25 components, the worsening
of the spatial accuracy is negligible (with an average FWHM
among all points within the UFOV of 1.25 mm±0.1 mm).
Instead, if only 10 components are used, the spatial resolution
is degraded (1.55±0.25 mm).

V. DISCUSSION ON MLE WITH PCA

The implementation of PCA previous to MLE in modern
Anger Cameras allows a reduction of dimensionality and,
consequently, of the required computational complexity. A
number of PCs equal to 25 is sufficient, for the INSERT
clinical module Anger Camera, to achieve the target spatial
resolution FWHM≈1.2 mm.

Since the increase in computational complexity when PCA
and MLE are cascaded is negligible, by applying PCA the
computational complexity of MLE algorithm only scales lin-
early with the dimensionality of the problem (the number of
features), and with the number of LRFs. A 2.9-fold reduction
of the number of operations is foreseen, if the number of
components used for the estimation goes from 72 to 25. The
reduction is even more significant for Anger Cameras with a
larger number of channels.

It is interesting to note that this approach does not de-
crease the Anger Camera hardware architecture complexity.
The number of channels to convert (and therefore the ASIC
front-end channels, the ADC number of channels, etc.) is in
fact not changed. The number of channels to convert might
be reduced with an analog implementation of PCA, using
for example a memristor-based cross-point array for matrix-
vector-multiplication [55].

(a)

(b)

(c)

Fig. 4. Reconstructed images (only a central FOV of 60 mm×30 mm is
here reported), applying MLE with PCA, of a 2 mm-pitch grid, using (a)
all 72 principal components (average spots FWHM=1.22 mm±0.08 mm), (b)
using 25 principal components (average spots FWHM=1.25 mm±0.1 mm),
and (c) using 10 principal components (FWHM=1.55±0.25 mm). FWHM
was determined as the average across the two directions, inside a UFOV
of 90 mm×40 mm. The profiles crossing the centers of a line of collimator
holes (dashed white line) are also reported. Smoothing (a 10-sample moving
average) is applied to the profiles to clean their visualization.

VI. DECISION TREES

Decision Trees can be exploited in the machine learning
framework as classifiers, implementing models used in super-
vised learning problems to generate predictions starting from
data. More specifically, DTs infer data using a sequence of
conditional statements [56].

The problem of reconstructing the 2D position of interaction
in a gamma camera can be addressed as a classification
problem, considering the sampled values from SiPM macro-
pixels as the feature array, and dividing the (x, y) interaction
coordinates in a finite set of possible positions (classification
outcomes, also referred to as classes).

Therefore, in this section therefore we present the use of
DTs as an alternative to MLE as a reconstruction algorithm
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Fig. 5. (a) Scintillation events whose geometrical efficiency is higher for Pix1
(or for Pix2) will tend to have larger value of Pix1 (or Pix2) feature sampled
value. (b) The DT training leads to the definition of a sequence of partitions
of the training dataset in the feature space that opportunely describes the class
distribution of the training dataset, allowing for classification of new data.

for the γ-ray position of interaction in an Anger Camera. The
inputs of the DT are the signals produced by the front-end
electronics during the scintillation event. The outputs of the
classifier are the scintillation coordinates.

A. Decision Tree Training

The training of a decision tree is the process of defin-
ing its nodes (boundary conditions) and leafs (classification
outcomes). In order to fulfill this task, it is essential to
use a reliable training dataset, which is a dataset containing
observations whose target value is known. Given a particular
dataset, the decision tree structure is defined by the training
algorithm.

Since the classification task aims to the identification of
positions of interaction starting from data distribution in the
pixel space, we need to build a dataset where we have
the SiPM macro-pixels signals converted values, for a large
number of scintillation events. Also, we need for each event
the exact information (with an accuracy smaller of 1 mm, our
target resolution) of the (x, y) position of interaction. This
dataset will be used to build the DT classifier that allows for
the inference of new acquired data.

A simplified version of the classification problem for the
Anger Camera is depicted in Fig. 5, showing the relation
between training dataset collection and DT structure. Since it
is not possible to imagine how the variable space is divided for
the 72-dimensional case, we introduced a problem with only 2
pixels (therefore, with a 2D feature space) and 3 classes. Since
only 3 classes are used for training, the position sensitivity
obtained here is limited to the separation of events in the left
side from events in the middle and from events in the right
side of the scintillator.

Any scintillation event whose geometrical efficiency is
higher for Pixel 1 (or for Pixel 2) will tend to have larger
value of Pix1 (or Pix2) feature sampled value, as shown
in Fig. 5a. If we use a collimated gamma photon beam to
build the training dataset, we can then conveniently divide the
feature space in such a way that the DT prediction of new
events (under the hypothesis that the new events to infer are
sufficiently similar to the training dataset in the feature space)
will be correct. During the training phase, while partitioning
the training dataset in the feature space, the algorithm is
identifying a suitable ensemble of node conditions (Fig. 5b),
which will lead to the classification once the leaf is reached.

The training procedure is discussed in the following with
greater detail; anyway, we would like to stress the importance
of building an accurate training dataset, without which it would
impossible to achieve an accurate classification, even with
modern, sophisticated training procedures.

VII. DECISION TREES: EXPERIMENTAL RESULTS

In order to verify the achievable accuracy when using DT
classifiers, we collected a training dataset and a test dataset
using the INSERT clinical module. The a-priori knowledge of
the position of interaction in the scintillator was built using a
parallel hole collimator, as explained in the following. The
sub-mm precision shift of the parallel hole collimator for
building the training dataset might be avoided leveraging Data
Augmentation (DA) (Sec. VIII).

Once the training dataset was built, it was possible to train
a decision tree classifier to be used for inferring test dataset
positions of interaction. The quality of the reconstruction using
the DT was compared to the one of the MLE algorithm
evaluating the average FWHM of the reconstructed spots
within a UFOV of 90 mm×40 mm.

A collimated 57Co dataset was acquired for 16 different
position of the parallel-hole collimator (Fig. 6a). A custom
setup was built where the collimator was moved on the two
axes exploiting a pair of uniaxial translators, in order to fully
automate the training dataset acquisition process. A large
number of dataset blocks was generated (1250 spots × 16
collimator positions = 20×103), each one associated to a single
hole position over the CsI(Tl) crystal through which γ-ray
beams reach the crystal, and therefore to a unique position in
the scintillator. In order to perform the DT training task, every
dataset block was associated to a unique class.

The pitch between the collimator holes is 2 mm (hole
diameter: 0.2 mm), while the distance between adjacent classes
was set to 500 µm (Fig. 6b). Even though the use of the
parallel hole collimator allows to simplify the complexity of
the experimental measurement needed to retrieve the training
dataset (the collimator is only moved 16 times, instead of the
20×103 times that would be needed using a single hole col-
limator), for each position of the parallel hole collimator data
corresponding to multiple classes were collected. Therefore,
it was necessary to separate the classes corresponding to each
collimator aperture from one another.

In order to separate the classes, one preliminary position
estimation was performed by means of the MLE algorithm,



(a)

(b)

Fig. 6. (a) Experimental setup for the automated procedure of training
dataset collection. Two uniaxial translators move the parallel-hole collimator.
Data corresponding to individual spots are identified and labeled with their
irradiation position, in order to use the label as a knowledge a priori over the
training dataset. (b) Collimator holes, distributed on a 2 mm pitch grid, are
translated 16 times in the training phase, on a grid having a 0.5 mm pitch.

where the forward model consists in light response functions
generated from a simple flood field irradiation through an
iterative procedure (Fig. 7) as introduced in Sec. III. Once
the image corresponding to a single position of the grid was
acquired, spots were separated from one another using the k-
means unsupervised learning clustering algorithm [57].

This preliminary procedure, albeit including the computa-
tionally intensive MLE algorithm, allows for the creation of
a DT-based estimator that, after the training, offers several
benefits in terms of effort sustained by the computation unit,
as discussed in Sec. IX. In fact, once the training is completed,
the reconstruction of the scintillation position for any new
test set is performed by the DT classifier with a sequence
of conditional statements.

The training dataset processing, the DT training phase and
its optimization, and the test dataset image reconstruction were
performed in MATLAB environment.
As anticipated, the basic idea of DT training for the recon-
struction of the (x, y) scintillation coordinates of the γ photon
in Anger camera consists in a discrete classification problem,
where each class corresponds to a specific position in the
crystal. The scintillator surface is virtually divided into C
classes, subjecting the achievable spatial resolution to the inter-
class distance and therefore to the number of defined classes.
While the minimum achievable spatial resolution decreases
when decreasing the distance between two adjacent classes,
choosing a too dense pixelation on the other hand unavoidably
leads to an increase in computational complexity and required
memory resources.
The problem of localization of the γ-photon scintillation coor-
dinate was therefore solved by implementing a cascade of DT
classifiers. Specifically, a global DT (GDT) was implemented
to first select a macro-region of the crystal where the target

Calibration dataset

Energy filtering

LRFs estimation

Flood-field irradiation

Maximum likelihood reconstructed images (×16)

1250 spots×16 images ≈ 20×103 classes

Fig. 7. The 16 dataset corresponding to a single position of the parallel-
hole collimator are reconstructed using MLE algorithm. The forward model
consists in light response functions generated from a simple flood field
irradiation through an iterative procedure. The 16 datasets are divided in 1250
spots each, applying k-means clustering algorithm.

class was found, and then a local DT (LDT) for each crystal
macro-region was used to identify the correct position of
interaction of the γ-ray beam. All LDTs were trained with
the same set of hyperparameters. In order to avoid cascading
misclassification errors from the GDT to the LDTs, macro-
regions overlap along the borders, so that if the GDT selects a
wrong region for classes in the proximity of the region border,
correct classification is still viable.
The estimated objective function (misclassification error) for
the LDTs training hyperparameters, obtained in MATLAB
environment during the training procedure, is reported in
Fig. 8. While the LDT leaf size was directly optimized (∼200),
because a larger number of node (or splits) in the tree implies
a larger memory occupation (data latency is not an issue,
being proportional simply to the logarithm of the tree size),
the maximum number of splits was set equal to the minimum
value that allowed accuracy optimization within 1% from the
absolute optimum, (∼3×104). Twoing rule [58] was selected
as splitting criterion for both GDT and LDTs.

To ease the training procedure, PCA, introduced in Sec. IV,
was applied on the training dataset thus obtained. In other
words, before growing the tree, the corresponding input train-
ing dataset underwent feature reduction, resulting in a new
set of features to be used for training procedure. The first 25
principal components were used as training dataset, according
to the elbow method. It was empirically observed by the
authors that when PCA is not applied, the DT classifier
for position sensitivity in the scintillation crystal is prone to
overfitting, leading to the generation of trees having substantial
size, therefore requiring a memory allocation incompatible
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Fig. 8. Misclassification error as a function of the DTs hyperparameters;
the error is minimized in the DT training procedure. The number of splits is
reduced (within 1% from the absolute optimum), in order to reduce the FPGA
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Maximum likelihood Decision Tree
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Decision Tree Pixel: 0.5 mm
FWHM ~ 1.2mm

Maximum Likelihood Pixel: 0.5 mm
FWHM ~ 1.2mm
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Fig. 9. (a) Reconstructed images of a flood irradiation through the collimator
with 2 mm pitch between holes, using the MLE and the DT algorithm, with
a 0.5 mm binning of the image. The FWHM of the reconstructed spot is
similar. (b) Image showing the event distribution over two adjacent parallel
holes positions.

with an FPGA-embedded solution. Fig. 9 shows the compar-
ison between two image reconstruction of the test dataset
(Fig. 9a) and of two individual spots belonging to the grid
(Fig. 9b), using the MLE method and the DT classification
algorithm. In order to compare the experimental results, the
MLE algorithm pixelation is set equal to 500 µm, the same
as the DT reconstructed image pixelation, which is currently
limited by the spatial frequency of the experimentally obtained
classes. The spots are very well separated in both cases and
the experimentally computed mean resolution of ∼1.2 mm
FWHM (reported in Tab. I for (x, y) directions) is comparable
for both algorithms. The DT algorithm seems to introduce a
further correction in the distortion effect with respect to the
MLE method thanks to the training procedure: the deviation of
the reconstructed spot center from the true position, computed
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Fig. 10. Data Augmentation (DA) algorithm. When spots are well separated
one from another in the grid, it can be assumed that normalized local spectra
on each pixel are a good approximation of the pdfs of the value sampled
on each pixel, for a given position of interaction (the spot). The pdf of the
artificial point N is computed from a linear interpolation of the distributions
of the two adjacent spots (N-1) and (N+1). Circled spots are the virtual ones
created by DA.

for experimental data as the RMSE of the Euclidean distance
between the true and the predicted (x,y) positions of the spot
center, shows a 0.84mm error inside a 90 mm×40 mm UFOV
for the MLE algorithm, and a 0.6mm error for DTs.

VIII. DATA AUGMENTATION FOR DECISION TREE
TRAINING

The quality of the training dataset and, in particular, the
carefulness of its acquisition procedure, determine the capa-
bility of the system to correctly infer information from new
data.

The acquisition procedure shown in Sec.VII grants a high
quality of the DT training dataset: since, ideally, the γ photons
interacting with the scintillators can pass the collimator only
from the parallel holes, the interaction position uncertainty is
given, event per event, by the 0.2 mm holes diameter. The
holes position, moved by the mechanical setup, is known with
negligible error. The main drawback of this procedure is that
the duration: for a measurement with a 200 kBq point source,
translating the collimator with a 0.5 mm step requires, as
previously stated, 16 acquisitions for a total of about 4 hours.
Secondly, it is necessary to operate a dedicated experimental
setup, where the collimator motion is automated and controlled
by software. Finally, even if the DT classification algorithm
allows for a reduction of computational complexity, there
is no benefit in terms of spatial resolution when using this
complex training procedure: the spatial resolution obtained
experimentally is approximately equal to 1.2 mm for both the
ML-based and the MLE algorithm (Tab. I). It has to be high-
lighted that the latter only needs a quick flood measurement for
LRFs computation [35], while the former requires a complete
training dataset. However, albeit facing an intensive training
phase with respect to the MLE algorithm, the DT inference
appeared to be less burdensome, with the data latency and
memory bandwidth requirements reported in Sec.IX.

To overcome the limits of the training dataset acquisition,
we introduce here a custom Data Augmentation (DA) algo-
rithm aimed at the interpolation of artificial data corresponding
to intermediate classes between the parallel-hole collimator
positions.

The generation of artificial data ensured a class density,
and therefore an image pixelation density, higher than the one
of the irradiated spots. In order to augment the dataset, the
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Fig. 11. Workflow for the generation of the augmented dataset. Once LRFs
are extracted from a flood-field irradiation, a reconstructed single grid is
used for the computation of the 72-D distributions, each ensemble of 72
pdfs being associated to a single spot. The distributions are then averaged
between adjacent spots, in order to artificially generate events to be used for
training of the DT. For the sake of clarity, in the sample image shown here the
sampling density is augmented of a factor 4, going from 2 mm to 1 mm. This
experimental procedure was applied starting from a 1 mm sampling, obtaining
0.5 mm distance between classes.

measured values distributions for each position of interaction
have to be computed; to this end, we measured the local
spectra associated to individual macro-pixels. For a sufficiently
large number of observations, we can assume that local spectra
are a good approximation of the probability density function
(pdf) of the value sampled on each pixel for a given position
of interaction (the spot). If we compute the local profiles
(i.e. the signal histogram collected by each SiPM) for each
irradiation position, we therefore obtain 72 pdfs for each point
of interaction (Fig. 10).

Under the assumption of smoothness of data distributions
between adjacent spots, we can infer that pdfs in intermediate
positions are the linear interpolation of close-by known distri-
butions (Fig. 10). We used the computed set of pdfs to generate
the artificial part of the training dataset by exploiting an inverse
transform sampling technique [59]. Let us assume that the
characteristic length for variations of the data distribution (in
the 72 SiPM macro-pixels space) is larger than 0.5 mm and
1 mm; the pdf for an arbitrary intermediate position can be
approximated by a linear interpolation of the experimentally
collected data distribution.
In other words, if the characteristic length over which the 72-
D pdfs over macro-pixels change is longer than 1 mm, we can
use the irradiated points as extrapolated samples of the 72-D
pdfs and approximate the distribution in intermediate points
using linear interpolation.
Once the data distribution is known for any arbitrary point of
interaction, the corresponding data can be generated and used
for training a machine learning classifier.

As a first attempt, we generated a training dataset for DT
classifier starting from a grid of experimentally irradiated

TABLE I
SPATIAL RESOLUTION IN TERMS OF FWHM, 90 MM×40 MM UFOV

Reconstruction method FWHMx FWHMy

[mm] [mm]

Maximum Likelihood 1.20 ± 0.17 1.24 ± 0.19
Decision Trees 1.18 ± 0.25 1.27 ± 0.26
DTs + DA (0.25mm step) 1.08 ± 0.28 1.11 ± 0.18
DTs + DA (0.5mm step) 1.36 ± 0.20 1.44 ± 0.22

spots (similar to the one presented in Sec.VII) having a
0.5 mm pitch in order to improve spatial resolution; this was
obtained with 16 acquisitions with the translating collimator.
A denser spatial sampling was obtained by interpolating the
0.5 mm pitch experimental spots, leading to an augmented
dataset comprising of both experimental and intermediate
artificial irradiation spots having 0.25 mm pitch between one
another. This augmented dataset was subsequently used to
train the classifier (Fig. 11), resulting in a mean FWHM equal
to 1.1 mm (x and y values are reported in Tab. I) for the
augmented dataset with 0.25 mm quantization.

A second analysis was then performed with the aim of
easing the training dataset acquisition procedure, rather than
focusing on the improvement of spatial resolution: starting
from a setup similar to the one in Section VI, the 2 mm
pitch collimator was moved with 1 mm steps, covering the
entire detector surface with only 4 acquisitions, instead of 16,
and leveraging DA to generate spots with a 0.5 mm distance
among each other; this leads us to a dataset comparable to the
one obtained experimentally with the procedure presented in
Sec. VII, with the difference of an acquisition time reduced by
75%. The same results could theoretically be achieved with a
1 mm pitch collimator that does not need to be translated,
effectively overcoming the need for a troublesome calibra-
tion and acquisition procedure and still obtaining a dataset
comparable to the one used for the training of the original
decision trees, with negligible error. As before, a DT classifier
capable of identifying the position of interaction with 0.5 mm
pitch between classes was trained. The experimental results,
however, reported a modest spatial resolution loss, with the
average FWHM over both x and y directions increasing from
∼1.2 mm to ∼1.4 mm; detailed results reporting mean FWHM
and uncertainty along both directions are shown in Tab. I.

IX. DISCUSSION ON DECISION TREE AND DATA
AUGMENTATION

The use of ML algorithms for classification and regression is
today an appealing alternative to classical statistical methods
for data inference. As the quality of the outcome is largely
dependent on the training phase of the algorithms, it is
essential to identify robust procedures for data collection. The
simplification of the training procedure is a crucial target
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Fig. 12. Reconstructed grid with DT classifier. (left) The training dataset is
generated using the moving collimator with a 0.5 mm pitch, for a total of 16
acquisitions (FWHM∼1.2 mm). (right) The training dataset is generated start-
ing from 4 grid acquisitions with 1 mm pitch and using DA to obtain a 0.5 mm
quantization between experimental and interpolated spots (FWHM∼1.4 mm).

for a widespread diffusion of ML algorithms for position
reconstruction in Anger cameras.

The experimental results showed that a modest spatial res-
olution loss is present when implementing DT classification.
However, in order to achieve comparable spatial resolution,
a very dense training dataset is necessary. It can achieved by
means of DA, which can be leveraged to speed-up the training
procedure.

The benefits offered by DT with respect to MLE in terms of
computational complexity and memory bandwidth are distinct:
a cascade of only 10-15 subtractions is needed for classifica-
tion with DT, allowing therefore a data latency smaller than
few hundreds of ns with standard FPGAs, while less than 1 kB
of data (the DT predictors) per event have to be fetched from
memory. Assuming that condition values are stored as single
precision floats, predictors are stored within a single byte, and
that children nodes arrays are stored using 2 bytes, for a 105

nodes DT, about 1 MB of memory is sufficient to store a DT
such as the one used here, which is compatible with low-end
commercial FPGAs.

Furthermore, we experimentally demonstrated that the im-
plementation of PCA prior to DT classification is essential to
obtain the reported position sensitivity, in order to keep the
number of required nodes compatible with a simple FPGA or
microcontroller implementation, therefore inferiorly limiting
the gain in terms of computational complexity introduced by
the DT classifier. Even in this case, since the number of
multiply-and-add operations needed to recall the PCs is in
the order of 103 for the INSERT clinical module, the gain in
terms of computational complexity with respect to the MLE
algorithm is larger than 102.

In conclusion, it is interesting to note how the classification
latency might benefit from an analog hardware implementation
of PCA, using for example a memristor-based cross-point
array for matrix-vector-multiplication [55], as suggested in
Sec. V for MLE leveraging PCA algorithm.

X. CONCLUSIONS

We have reported the study of two machine learning tech-
niques, that can be used as mathematical tools for the reduc-
tion of computational complexity, and a linear interpolation
technique for the generation of a training dataset. Firstly, the
PCs scoring leads to a subset of 20-25 features that can be

used as input for a standard statistical reconstruction algorithm,
such as MLE, while retaining the spatial resolution capability
of the system. Secondly, the procedure for collection of a
training dataset was introduced and the data were used to
generate DT classifiers, aiming at real-time inference of the
position of interaction in the scintillation crystal. The DT
classifier did not show performance loss with respect to the
well consolidated MLE implementation. Lastly, the generation
of artificial data was performed thanks to a Data Augmentation
algorithm, leveraging the inverse transform sampling technique
for the generation of interpolated data following the probability
density functions of the values sampled on each pixel of the
SPECT module. While a modest spatial resolution loss is
present for the same quantization step, the training procedure
is made simpler to implement and faster. Furthermore, it can
be operated simultaneously on multiple modules. This work
envisions the possibility to adopt ML-based data inference
algorithms and to move the computational complexity towards
the edge of a γ imaging system, with potential benefits in
terms of relaxation of data bandwidth, reduction of system
complexity, and increase of count rate.
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toring ion beam therapy with a Compton camera: simulation studies of
the clinical feasibility,” IEEE Transactions on Radiation and Plasma
Medical Sciences, vol. 4, no. 2, pp. 218–232, 2019.

[43] V. Solovov, V. Belov, D. Y. Akimov, H. Araujo, E. Barnes, A. Burenkov,
V. Chepel, A. Currie, L. DeViveiros, B. Edwards et al., “Position recon-
struction in a dual phase xenon scintillation detector,” IEEE Transactions
on Nuclear Science, vol. 59, no. 6, pp. 3286–3293, 2012.

[44] A. Morozov, V. Solovov, F. Alves, V. Domingos, R. Martins, F. Neves,
and V. Chepel, “Iterative reconstruction of detector response of an Anger
gamma camera,” Physics in Medicine & Biology, vol. 60, no. 10, pp.
4169–4184, 2015.

[45] A. Morozov, F. Alves, J. Marcos, R. Martins, L. Pereira, V. Solovov, and
V. Chepel, “Iterative reconstruction of SiPM light response functions
in a square-shaped compact gamma camera,” Physics in Medicine and
Biology, vol. 62, no. 9, p. 3619, 2017.

[46] S. Pedemonte, A. Gola, A. Abba, and C. Fiorini, “Optimum real-
time reconstruction of Gamma events for high resolution Anger camera
with the use of GPGPU,” in 2009 IEEE Nuclear Science Symposium
Conference Record (NSS/MIC). IEEE, 2009, pp. 3388–3394.

[47] F. Acerbi and S. Gundacker, “Understanding and simulating sipms,”
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, vol.
926, pp. 16–35, 2019.

[48] M. Ringnér, “What is principal component analysis?” Nature biotech-
nology, vol. 26, no. 3, pp. 303–304, 2008.



[49] B. M. Kandel, D. J. Wang, J. C. Gee, and B. B. Avants, “Eigenanatomy:
Sparse dimensionality reduction for multi-modal medical image analy-
sis,” Methods, vol. 73, pp. 43–53, 2015.

[50] C. Parmar, J. D. Barry, A. Hosny, J. Quackenbush, and H. J. Aerts,
“Data analysis strategies in medical imaging,” Clinical cancer research,
vol. 24, no. 15, pp. 3492–3499, 2018.

[51] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, no. Mar, pp.
1157–1182, 2003.

[52] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, R. Kaluri, D. S. Rajput,
G. Srivastava, and T. Baker, “Analysis of dimensionality reduction
techniques on big data,” IEEE Access, vol. 8, pp. 54 776–54 788, 2020.

[53] R. B. Cattell, “The scree test for the number of factors,” Multivariate
Behavioral Research, vol. 1, no. 2, pp. 245–276, 1966, pMID: 26828106.
[Online]. Available: https://doi.org/10.1207/s15327906mbr0102 10

[54] A. Morozov, V. Solovov, R. Martins, F. Neves, V. Domingos, and V. Che-
pel, “ANTS2 package: simulation and experimental data processing
for Anger camera type detectors,” Journal of Instrumentation, vol. 11,
no. 04, p. P04022, 2016.

[55] Z. Sun, G. Pedretti, E. Ambrosi, A. Bricalli, W. Wang, and D. Ielmini,
“Solving matrix equations in one step with cross-point resistive arrays,”
Proceedings of the National Academy of Sciences, vol. 116, no. 10, pp.
4123–4128, 2019.

[56] L. Rokach and O. Maimon, Decision Trees. Boston, MA: Springer
US, 2005, pp. 165–192. [Online]. Available: https://doi.org/10.1007/
0-387-25465-X 9

[57] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, no. 14. Oakland,
CA, USA, 1967, pp. 281–297.
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