
75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright © 2024 by Politecnico di Milano. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-24-C1.4.5

Integrated Optical Terrain Relative Navigation for Autonomous Lunar Landing

Giovanni Pio Parracino a,∗, Michele Ceresoli a, Stefano Silvestrini a, Michèle Lavagna a

a Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa, 34, Milano, 20134, MI, Italy,
* Corresponding author, giovannipio.parracino@mail.polimi.it

Abstract
Spacecraft landing on celestial bodies is a very challenging phase for the Guidance, Navigation, and Control system.

Due to the very fast dynamics, autonomous navigation to properly manage the whole landing phase in real-time is
mandatory. A beneficial strategy in terms of both cost and complexity leverages vision-based navigation, as it only
requires an on-board monocular camera.

In this regard, two main navigation strategies are leveraged: Relative Navigation (RN), which relies on features with
unknown coordinates, but can only compute the relative pose with respect to the previous frame, and Absolute Naviga-
tion (AN), which instead allows determining the spacecraft pose with respect to a planetocentric reference frame exploit-
ing features with known location, though asking for at least partial knowledge of the landing environment. Nonetheless,
both methods have inherent limitations. AN experiences a decreasing number of known observable landmarks through-
out descent, preventing state estimation during crucial final phases (altitudes below 15-20 km), while RN accumulates
error over time, leading to a drift in the state estimation process.

This paper presents a novel navigation configuration to solve those limitations for pinpoint landing applied to the
lunar specific scenario. An Integrated Navigation, based on the fusion of both information from Relative and Absolute
Navigation, is adopted. In particular, the work focuses on the development of a suitable image processing pipeline for
this integrated approach. Relative Navigation is here performed through Visual Odometry techniques. The features are
extracted adopting an ORB detector with adaptive threshold and then tracked over multiple frames. Absolute Navigation
adopts as landmarks craters which are located in the image using YOLOv7, an efficient state-of-the-art Object Detection
Network. A method based on standard image processing techniques is developed to retrieve the elliptical crater rims
from the detected bounding boxes, along with a robust crater matching strategy.

The algorithm performance and robustness under various illumination, camera pointing, and terrain conditions
are evaluated through numerical simulations with synthetic lunar calibrated image. Benefits of the proposed image
processing pipeline on the Integrated Navigation are discussed, together with the limits of the current implementation.

Acronyms
1NNS 1 Nearest-Neighbor Search.
AN Absolute Navigation.
AT-ORB Adaptive Threshold ORB.
CDMA Crater Detection and Matching Algorithm.
CIoU Complete IoU.
CNN Convolutional Neural Network.
DEM Digital Elevation Model.
FOV Field Of View.
IEKF Implicit Extended Kalman Filter.
IoU Intersection over Union.
ML Machine Learning.
MSAC M-estimator Sample Consensus.
NMS Non-Maximum Suppression.
ODN Object Detection Network.
RN Relative Navigation.
SSD Single Shot Detector.

VO Visual Odometry.

1. Introduction
Spacecraft landing on celestial bodies, being these

planets, asteroids, or comets, represents the next frontier
of space exploration and has gained renewed interest in re-
cent years, with several missions being developed by agen-
cies and private companies all over the world. Neverthe-
less, it represents a very challenging phase for the Guid-
ance, Navigation, and Control system. In fact, the delay
in telecommunications between the ground segment and
the spacecraft landing on a distant celestial body inhibits
the feasibility of real-time controlled operations. More-
over, during landing, a change of the target landing site
may be needed, for example due to a failure of one of the
spacecraft subsystems or because of the detection of haz-
ards near the originally selected landing site. For some
missions, the target landing site or even the surface char-
acteristics of the celestial body may be unknown at the
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mission design phase. In all these cases, an autonomous
navigation system able to manage the entire landing phase
in real-time becomes an essential tool, if not the only way
to ensure operational safety and provide the necessary flex-
ibility for the mission. Vision-based navigation accom-
plished with a monocular camera represents a possible ap-
proach, beneficial in terms of cost and system complexity
containment compared to active ranging techniques (i.e.
LIDAR and RADAR). Additionally, cameras are easy to
accommodate on the lander, due to their low power, mass
and volume. According to [1], two different navigation
functions can be identified: Relative Navigation (RN) and
Absolute Navigation (AN).

The former is primarily used when the spacecraft is
flying above unknown terrain, meaning that only features
with unknown coordinates can be used. Depending on the
application, only the relative position and orientation with
respect to the previous frame or with respect to a map
of the landing site, constructed during landing using im-
ages acquired by the camera sensor, can be computed [1].
An interesting preliminary design of a Relative Naviga-
tion algorithm is presented in [2]. The algorithm is de-
signed to work without prior knowledge of the landing en-
vironment, whether this is a planet or a smaller celestial
body. The proposed formulation adopts a Visual Odome-
try (VO) approach, using point features as navigation land-
marks. Such features are detected from images using the
ORB detector and tracked in consecutive frames. Sub-
sequently, the relative pose is derived directly using the
epipolar constraint. Pose refinement using Bundle Adjust-
ment together with the development of a mapping thread
are suggested, but not implemented. Tests with synthetic
Moon images show robustness under varying illumination
and camera pointing conditions, but the accuracy remains
insufficient for autonomous navigation. Despite this, the
approach offers a valid preliminary architecture that relies
solely on camera measurements.

AN, instead, is used to establish position and orienta-
tion of the spacecraft with respect to a planetocentric ref-
erence frame. Features with known location are exploited
for this application, requiring at least a partial knowledge
of the landing environment. Specifically, feature locations
are stored in a database, constructed from orbital recon-
naissance acquired before landing. This highlights how
employed landmarks shall be visible from orbit. The Ab-
solute Navigation process involves detecting the selected
navigation landmarks in images and then matching them
with the constructed database. This information is then
used to retrieve the absolute camera pose. Craters are pro-
posed as a viable landmark for Absolute Navigation for
different celestial bodies, including the Moon, due to their
abundance. Based on this, several crater-based navigation

algorithms have been developed over the years [3–6]. [3]
and [4] propose a navigation algorithm for a generic inter-
planetary body which relies on a very efficient Crater De-
tection and Matching Algorithm (CDMA) based on stan-
dard image processing techniques. Craters detection con-
sists of five steps: Edge detection, Rim Edge Grouping, El-
lipse Fitting, Ellipse Refinement, Crater Confidence Eval-
uation. Subsequently, the detected craters are matched
with a database exploiting conic invariants. Despite sub-
pixel crater localization accuracy, the algorithm lacks of
adaptability and robustness to different imaging condi-
tions, limiting heavily its operability in a real-landing sce-
nario. To overcome such limitations of traditional crater
detection methods, Machine Learning-based alternatives
have been developed in the last years. One of the most
common solutions is to rely on Convolutional Neural Net-
work (CNN) for image segmentation. [5] builds its algo-
rithm based on this idea, combining a U-Net with stan-
dard image processing techniques for the edge detection
task. The extracted edges are fitted using low eccentric-
ity ellipses and then paired with craters in the database.
Tests with real Moon images from the Lunar Reconnais-
sance Orbiter Camera show that the alternative proposed
is robust to noise and brightness variations, with good de-
tection and matching performances. The main drawback
is represented by the computational time (about 4 s per im-
age), too high for a real-time application [7]. [6] tackles
this issue, renouncing to extract the crater edges but de-
tecting only the bounding boxes around craters. For this
scope, an Object Detection Network (ODN) is used, and
the extracted landmarks are matched with the database us-
ing a traditional 1-Nearest Neighbor routine. The Implicit
Extended Kalman Filter (IEKF) developed in [8] is em-
ployed for pose estimation, fusing visual-based measure-
ments with altimeter ones. The developed solution pro-
vides good detection and matching performances, good lo-
calization accuracy and low computational time on flight-
proven hardware. However, its application is specific to
Nadir-pointing cameras. This represents a significant lim-
itation for a landing scenario, where multiple and different
pointing conditions are experienced throughout all phases.

Nevertheless, independently of the performance of spe-
cific implementations, both Absolute and Relative Navi-
gation have some inherent limitations. For Absolute Nav-
igation, as discussed previously, database landmarks are
the ones detectable from orbit imagery. Consequently,
the number of observable known landmarks decreases
throughout descent, preventing state estimation during
crucial final phases (altitudes below 15-20 km). Instead,
for Relative Navigation, due to error accumulation, after
some time only a poor estimate of the state is available.
Combining information from both Relative and Absolute
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Navigation could solve these problems, with the latter cor-
recting the accumulated drift and the former extending
the robustness and flexibility of the navigation algorithm.
This solution is called Integrated Navigation [9].

There has been limited research on the effectiveness
of this alternative, especially for the Moon environment.
Although the results presented in [9] and [10] suggest that
Integrated Navigation could represent a viable option for
planetary landing, additional analyses are required to bet-
ter assess the performance of this approach and to un-
derstand if it can effectively address the issues of single
navigation, especially in the context of a lunar landing.
The Moon is selected as a development scenario due to
its high importance for space exploration in future years.
Specifically, this paper focuses on the design of the image
processing block for both Absolute and Relative Naviga-
tion threads. The selection arises from the fact that exist-
ing image processing algorithms fail to meet the accuracy
and time requirements for a real-time landing application,
or lack of robustness to the wide spectrum of conditions
that could be encountered during a mission. Moreover, a
specific pipeline for the Integrated Navigation approach
needs to be developed to efficiently perform fusion be-
tween known and unknown landmark information.

The primary objective of this work is to develop im-
age processing algorithms able to provide high-quality in-
formation under various environmental conditions while
maintaining real-time performance. Known and unknown
landmarks suitable for the discussed application need to be
identified, along with developing an efficient strategy for
their detection in images. Additionally, the performance
of both algorithms shall be evaluated by extensively test-
ing them using images simulating a representative landing
scenario. In the second place, using the results of the de-
sign, the aim is to investigate the potential in the exploita-
tion of fusion between information from both known and
unknown landmarks to enhance Optical Terrain Relative
Navigation on the Moon.

The following sections are structured as follows. In
Section 2, the reference Moon landing scenario is pre-
sented, detailing also the camera model used, and the nav-
igation threads frequency requirements. In Section 3 and
Section 4, the proposed architecture for both the Relative
and Absolute Navigation image processing blocks is de-
tailed, from the adopted navigation landmarks to their de-
tection and matching process. Simulations results and
achieved performance are discussed in Section 5, while
conclusions are drawn in Section 6, with highlights for
planned future steps.

2. Moon landing: scenario definition
The mission scenario considered is the same as [6],

consisting of a spacecraft descent from an altitude of 100
km down to 3 km, targeting the Lunar South Pole area.
The reference trajectory is generated using optimal guid-
ance considering the same target location and thrust con-
straints of [6]. For this preliminary analysis, only a por-
tion of this trajectory is considered, with the camera still
undergoing roto-translational motion with respect to the
surface. Despite focusing on just part of the trajectory, the
employed scenario is representative of a complete landing.
The navigation algorithm will, in fact, face critical illumi-
nation and shadowing conditions due to the selected land-
ing location. During the coasting phase, the lander travels
half of the transfer orbit, covering 180◦ in true anomaly.
This results in a highly variable ground illumination, with
the Sun just above the horizon in polar regions to an ele-
vation of approximately 90◦ near the Lunar Equator. The
selected trajectory also covers different terrain textures to
assess the performance of the developed algorithm when
applied to low-texture environments.

2.1 Camera model and processing time requirements
A pinhole camera with 40◦ Field Of View (FOV) and

a 1024 × 1024 pixels resolution is assumed as the main
navigation sensor.

It is known that the entire navigation system is effective
only with a minimum frequency of the trajectory update of
0.2 Hz (5 s) [6]. Taking some margin, a minimum required
frequency of 1 Hz is assumed for the RN block. On the
other hand, considering the AN block working slower than
the RN one, it is required to process an image in no more
than 5 s. Lower computational times would be beneficial.

3. Relative Navigation image processing architecture
For the Relative Navigation thread, a VO approach is

adopted due to the nature of a landing trajectory, which,
regardless of the celestial body, is open. Consequently,
the same scene is not revisited more than once, preventing
the exploitation of loop closure to reduce drift.

In order to estimate camera position and orientation,
key information must be extracted from images. For this
scope, feature-based methods, which use image features
such as corners and edges, are preferred over appearance-
based (direct) methods due to their superior speed, accu-
racy [2], and robustness to noise [11] and their good in-
variance to viewpoint and illumination changes [12]. This
makes them particularly suitable for lunar landing and
space applications in general. Point features are chosen
as navigation landmarks due to their uniqueness, high re-
peatability and availability anywhere on the Moon. How-
ever, the performance of such methods for terrains with
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low-texture needs to be assessed.
Feature detection is the first processing step of the

images, providing the locations of the identified features.
The goal is to consistently detect the same features across
images, enabling the use of multiple view geometry to de-
duce information about the camera position and orienta-
tion. In real-case scenarios such as a landing descent, fea-
tures experience scale variations due to decreasing altitude
and changes in appearance due to different illumination
conditions and viewpoints. Consequently, invariance to
these factors is essential for a detector to work properly.
Considering all these aspects, the detector selection is per-
formed considering that it shall detect repeatable features,
and exhibit both scale and rotation invariance and resis-
tance to illumination changes, while also being computa-
tionally efficient for real-time applications. Different alter-
natives are considered and compared: FAST, SIFT, SURF,
ORB, BRISK [13–18]. Among these, ORB outperforms
all the other detectors across all considered metrics.

However, simulations show an insufficient number of
features detected in low-texture scenes (i.e. images from
6 to 8 in Fig. 1). This limitation is inherent in the selected
ORB implementation, specifically the MATLAB built-in
one. In particular, the oFAST threshold, which is the min-
imum contrast of a point with respect to its surroundings
to be classified as a corner, cannot be tuned, limiting the
algorithm flexibility and operability.

1 5 10 15 20
102

103

104

Fig. 1. Mean number of ORB and AT-ORB detections
for representative frames of the landing trajectories de-
scribed in Section 5.1 (mean over all trajectories).

To address this issue and enhance algorithm robust-
ness, a customized detector is developed based on the
original ORB implementation. Specifically, an adaptive
oFAST threshold is employed instead of a fixed one. Fol-
lowing the approach in [19], the threshold th is computed

based on a measure of the maximum contrast in the input
image, as shown in Eq. 1:

th = α∆Īmax (1)

where α ∈ (0, 1) is the scale factor and ∆Īmax is the
mean maximum contrast over the image. This is computed
by dividing the image into cells and averaging the maxi-
mum contrast values from each cell, as shown in Eq. 2:

∆Īmax =

Ncell∑
i=1

Imax,i − Imin,i

Ncell
(2)

where Imax,i and Imin,i are the maximum and the
minimum intensity over the i-th cell, respectively. In this
work, 64 cells are employed. If the number of detected
features is lower than the prescribed one, the threshold is
halved iteratively by the algorithm until enough features
are detected. An α initial value of 0.35 is considered.
The developed implementation of ORB is called Adaptive
Threshold ORB (AT-ORB).
Using the presented formulation, the detector is able to
efficiently cope with different environmental conditions,
as shown in Fig. 1. In scenes characterized by high-
frequency terrain textures (i.e. images from 15 to 20), re-
sulting in a high number of potential corners due to higher
contrast, a higher threshold is applied to limit the number
of detections. Conversely, in low-contrast images, a lower
threshold is used (i.e. need a lower threshold to detect the
same number of features). This adaptive approach ensures
consistent performance across varying conditions.

The number of detections is limited to 300, which
represents the upper limit for state-of-the-art CPU for
space systems for the studied application [2]. Once key-
points have been extracted from an image, as already dis-
cussed, the aim is to find them in consecutive images
to establish correspondences between features seen from
different views. Feature tracking using the Pyramidal
Lukas-Kanade algorithm [20] is selected for this purpose,
showing higher performance compared to feature match-
ing, providing more correct features correspondences per
frame at a lower computational cost. However, extracting
only the best 300 features, these will concentrate in corner-
rich zones only, leaving areas of the image uncovered, as
shown in Fig. 2. This can be considered as a loss of infor-
mation for the motion estimation.
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Fig. 2. Features detected by AT-ORB.

To solve this issue, the image is split into subwindows.
Features are detected in each subwindow using the devel-
oped AT-ORB, and then the results are merged. Using
subwindows gives better uniformity of the feature distri-
bution, positively impacting on the whole navigation al-
gorithm performance, leading to a higher quality motion
estimate. 4, 16, 64 and 256 subwindows configurations
are compared considering spatial homogeneity of the de-
tected features, achieved features repeatability and compu-
tational time. A sliding-window within a cycle is used to
move through subwindows. From tests, the 16 subwindow
configuration is selected as it provides the best balance be-
tween computational time and feature homogeneity, while
also ensuring good feature repeatability. Results of the
Adaptive Threshold ORB detector in the 16 subwindows
configuration are shown in Fig. 3.

The output of the Relative Navigation image process-
ing thread is represented by 2D-2D correspondences be-
tween consecutive images. In fact, the algorithm is in-
tended for use in conjunction with the IEKF developed in
[8]. The filter will also be responsible for the fusion with
Absolute Navigation thread measurements. Essential ma-
trix is selected as model for the outlier rejection. Specifi-
cally, the 5-Point Algorithm [21] with MSAC [22] is used
to retrieve only inliers correspondences, achieving good
performance independently of the scene structure and with
a low computational time. When the number of tracked or
inliers features becomes lower than a threshold (50), detec-
tion is performed on the previous frame and found features
are tracked at current time to achieve correspondences.

Fig. 3. Features detected by AT-ORB with 16 subwin-
dows.

4. Absolute Navigation image processing architecture
Before delving into the design of the Absolute Navi-

gation image processing thread, suitable navigation land-
marks shall be identified. Considering that the objective
is to develop a navigation algorithm capable of operating
anywhere on the Moon, a landmark is suitable only if it is
present everywhere. Craters represent viable landmarks
for Absolute Navigation during lunar landing due to their
abundance on the lunar surface [6]. However, only a low
number of craters is present in the Lunar Maria, which are
instead characterized by a high concentration of rilles and
wrinkled ridges, as shown in Fig. 4 and Fig. 5. The utiliza-
tion of such features, referred to as line features, as navi-
gation landmarks has been demonstrated for Mars landing
by [9]. The idea is to exploit the same strategy for naviga-
tion on Lunar Maria, given their similarities to the Martian
surface. Therefore, a combined approach using craters
along with rilles and ridges as navigation landmarks is pro-
posed for achieving global coverage of the lunar surface,
as shown in Fig. 6.

4.1 Proposed Absolute Navigation architecture
Both craters and line features shall be detected and

then matched with a database. To reduce processing time,
it is proposed to initiate line features detection and match-
ing only when the number of detected or matched craters
falls below a fixed threshold, for which poor Absolute Nav-
igation information are available.

This paper focuses only on the implementation of the
crater-based Absolute Navigation algorithm, as existing
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Fig. 4. Craters with diameter >5 km. In blue craters from 5 to 20 km; in orange craters >20 km. As highlighted, few
craters are present in Lunar Maria. Image taken from [23].

Fig. 5. Line features distribution. In the figure, only wrinkled ridges are represented. Image taken from [23].

Fig. 6. Craters with diameter >5 km and wrinkled ridges distribution. Global coverage of the Moon surface is achieved.
Image taken from [23].

crater-based algorithms, although capable of achieving
sufficiently accurate navigation performance, are devel-
oped exclusively for Nadir-pointing cameras and either are
computationally intensive (e.g. [5]) or lack of robustness
to environmental conditions (e.g. [3]), making them un-
suitable for real-time operations. It shall also be consid-
ered that the crater-based navigation remains the baseline
for the Absolute Navigation, being craters available on the
majority of the lunar surface. Line features navigation, al-

though fundamental, serves as a backup to increase the
robustness of the whole navigation algorithm.

The objective is thus to design a Crater Detection and
Matching Algorithm (CDMA) able to achieve a level of
navigation accuracy comparable to the best state-of-the-
art algorithms while ensuring sufficiently low computa-
tional time and robustness to various scenarios, including
different environmental conditions and viewing angles of
the lunar surface.
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4.2 Crater detection
Crater detection is the process of identifying and ex-

tracting the rims of craters in an image. For this purpose,
ML-based methods are considered due to their high robust-
ness compared to traditional techniques, still being able to
achieve real-time performance [6]. A generic ML-based
crater detection algorithm can be subdivided into two sub-
sequent steps, namely crater localization and crater fit-
ting. Crater localization involves identifying the crater
rims in the image using a CNN dependent on the specific
approach. However, the rim is usually only partially re-
covered, or only its bounding box is extracted. To obtain
the complete curve of these rims, whose information will
be used for the matching process, crater fitting is subse-
quently performed.

4.2.1 CNN architecture selection
Different CNN-based detector architectures exist de-

pending on how the crater problem is approached. The
majority of previous works, such as LunaNet [7] and Deep-
Moon [24], address the crater localization as a segmenta-
tion problem. Indeed, detecting crater rims is inherently a
semantic segmentation task, as it involves extracting fine-
grained information (i.e. need to extract the rim pixels)
[5]. However, semantic segmentation, despite its high ac-
curacy, has a high computational cost, which limits the al-
gorithm capability for real-time performance, as pointed
out in [6]. For this reason, the approach proposed by [6]
is followed in this work, utilizing an Object Detection Net-
work to locate craters. Specifically, a YOLOv7 network
[25] is used to identify the bounding boxes surrounding
each crater, being one of the fastest and most accurate
state-of-the-art ODN.

4.2.2 Training dataset definition
A Digital Elevation Model (DEM) of the Moon has

been exploited to generate simulated images taken by
the lander navigation camera in order to create the train-
ing dataset. Specifically, two subdatasets are created.
The first one, called “spherical-moon”, is based on SL-
DEM2015, a real Moon DEM derived by combining
the DEMs from the LRO and SELENE missions [26].
The constructed subdataset, although it represents a high-
fidelity terrain scenario of the Moon surface, is suitable
only for simulating images taken from high altitude due
to the limited resolution of the DEM. For this reason, a
second fully synthetic subdataset, called “flat-moon”, is
constructed upon real Moon features distribution. A flat
DEM is created, perturbed with fractal noise and enriched
with the other relevant terrain features, i.e. craters. The lu-
nar impact crater size and distribution have been extracted
from [27]. For both cases, the portion of the Moon used

for generating the images is modelled in PANGU, a high-
fidelity rendering software meant for space applications
and realistic rendering of natural celestial bodies [28]. The
crater distribution characteristics for the synthetic genera-
tion performed in PANGU are reported in Table 1.

Table 1. Environmental variables and their range of varia-
tion for the dataset generation.

Variable Range

Synthetic crater frequency 1.8e6 - 3e6
Synthetic craters dimension 6 - 500 m
Altitude 3 - 100 km
Attitude pitch (wrt vertical) 0◦ - 20◦
Sun illumination angle - Elevation 0◦ - 90◦
Sun illumination angle - Azimuth 0◦ - 360◦

To create a rich and representative dataset, the environ-
mental variables in Table 1 are randomly varied within the
reported ranges. In this way, the dataset can cover the wide
variety of environmental conditions that are expected in
the operational scenario. These different conditions can
also be experienced during the same landing trajectory,
since the lander travels half of the transfer orbit during the
coasting phase. In particular, the inclination of the Sun
over the terrain may change significantly, from the Sun
slightly above the horizon in polar regions to potentially
straight illumination with 90◦ of Sun elevation close to
the Lunar Equator. A range between 0◦ to 360◦ is consid-
ered for the Sun Azimuth angle, although this is applicable
only for high latitudes close to the Poles.

For the dataset, 1024×1024 grayscale images are gen-
erated according to the camera model described in Sec-
tion 2.1. Specifically, 5000 images have been created for
the “spherical-moon” subdataset and 10000 for the “flat-
moon” one. For each image of both subdatasets, the list of
visible craters with the corresponding centre coordinates
and radii is available. The origin of the reference system
is placed in the upper-left corner of the image.

The actual training dataset consists of all the 5000
“spherical-moon” images and only 5000 “flat-moon” se-
lected images, ensuring equal representation of condi-
tions from the two subdatasets. The combination of high-
fidelity simulated images from “spherical-moon” and syn-
thetically generated images from “flat-moon”, together
with the presence of various ground illumination con-
ditions and textures, provides a representative and rich
dataset for training the object detection model success-
fully. Some examples of images stored in the dataset are
reported in Fig. 7a, with the ground truth craters present
in the images highlighted Fig. 7b.
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(a) Images.

(b) Ground truth craters.

Fig. 7. Training dataset examples.

Given the selected 10000 images, an additional step is
needed to create the actual training dataset. First, the im-
ages are downsampled to 640×640 px resolution and then
converted to a 3-channel image, resulting in a final size of
640×640×3 px, which matches the original input size of
the YOLOv7 network. The conversion from a single chan-
nel to RGB is computationally negligible, as the informa-
tion from the original channel is simply replicated across
the three channels. The downscaling is chosen for two
main reasons: firstly, it maintains the input size consistent
with the original requirements of the YOLOv7 network;
secondly, increasing the input size would impact the infer-
ence time, which is critical for the algorithm implementa-
tion on real hardware [6]. For each image, also the avail-
able annotations (i.e. centre coordinates and radii) shall
be converted into the correct YOLOv7 format, consisting
of the bounding boxes attributes: class, centre coordinates,
width, and height. A unique detection class (i.e. “crater”)
is considered for this work. The conversion from the orig-
inal annotations to the requested ones is quite straightfor-
ward. Considering a square bounding box bordering each
crater, both width and height are computed as the double
of the radius, while the centre coordinates coincide with
those of the crater. All box quantities are then normalized
by the image size, constraining their interval between zero
and one.

After all these steps, the whole dataset is set up for
YOLOv7 training, and it is composed as follows:

• The set of images of the lunar terrain with resolution
640× 640× 3 px;

• The list of the visible craters in each image, with an-
notations containing the normalized bounding boxes
centre coordinates, width, and height for the 640 ×
640 resolution. For each crater, annotations are in
form [0 xc yc w h].

4.2.3 YOLOv7 training
From the official YOLOv7 repository [29], a pre-

trained model on the MS COCO dataset is available. Uti-
lizing this pretrained model enables the application of
transfer learning to accelerate the training process, achiev-
ing high performance with a relatively small dataset like
the one presented in the previous section. The adopted
loss function is the one from the original implementation
contained in [29], and it is composed of three contribu-
tions:

L(cl, pred, gt) =
1

N
[λboxLbox(pred, gt)

+ λclsLcls(cl) + λobjLobj(cl)] (3)

Here, Lbox represents the regression loss for bounding
box coordinates, expressed as the Complete IoU (CIoU)
loss [30] between a predicted bounding box pred and the
ground truth one gt. Lcls is instead the classification loss,
which represents the confidence level that the image con-
tained in the predicted box corresponds to a particular
class cl, while Lobj is the objectness loss, representing the
confidence that an object is present within the predicted
bounding box pred.

The training is performed using the SGD optimizer
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with an initial learning rate of 0.01 for 300 epochs, using
a batch size of 32. The optimal training configuration is
found performing faster preliminary training runs. To en-
hance network robustness, data augmentation techniques
are applied, significantly altering the appearance of craters
within the dataset. The dataset is split into training, valida-
tion, and test sets, in 70-10-20% percentages, respectively.

4.2.4 Crater localization post-processing
The output of the YOLOv7 network is a matrix of di-

mensions n× 6 reporting the list of craters located in the
image. Each row corresponds to a single detected object
and is a 6-element vector: [xmin ymin xmax ymax cl α].
The first four elements are the coordinates of the bounding
box enclosing the crater, expressed in pixels with values
ranging from zero to the input image size. The attribute cl
represents instead the object class associated to the bound-
ing box, which is 0 for all detections, as the network is
trained to detect exclusively the “crater” class. Last, the
index α ∈ [0, 1] is a score representing the network con-
fidence in the crater identification: a low score translates
to little confidence that the output coordinates correspond
to the bounding box of a crater. Only craters detected
with high confidence α ≥ α are considered for the sub-
sequent crater fitting step. Moreover, the Intersection over
Union threshold IoU is used in Non-Maximum Suppres-
sion (NMS) to remove multiple boxes that surround the
same object, selecting the one with the highest confidence.
Both α and IoU are adjustable parameters of the naviga-
tion system: in the remainder of the work, α = 0.6 and
IoU = 0.65 are assumed. The number of detections is
limited to 70 for computational purposes.

4.2.5 Crater fitting
Given the detected bounding boxes, crater fitting is

needed to approximate crater rims and retrieve crater at-
tributes. In the literature, detected craters are usually fit-
ted using circles (or ellipses with low eccentricity). While
this approach is suitable for Nadir-pointing cameras, it
imposes a significant limitation on the algorithm’s oper-
ational flexibility. In fact, although the majority of craters
are circular when viewed from above, they appear as el-
lipses, generally oblique and often with high eccentricity,
due to viewing angle and camera relative position. For this
reason, in the detector implemented in this work, craters
are fitted with ellipses, without limitations on eccentric-
ity, thereby extending algorithm operability to any camera
pointing condition and filling a gap in the existing litera-
ture.

A method to fit an oblique ellipse into each bound-
ing box is thus developed, generalizing the procedure pre-
sented in [6]. The proposed approach assumes that all

craters appear as circles to a Nadir-pointing camera and
transform into ellipses, all inclined at the same angle, con-
sidering a change in viewing angle. First, the crater incli-
nation angle, equal for all craters under the previous as-
sumption, is estimated using standard image processing
techniques applied to a limited set of detected bounding
boxes. The obtained information is then used to solve,
for each bounding box, the non-linear system of equations
that defines the inscribed ellipse problem. As output, the
parameters of the ellipse approximating the crater rim are
obtained for each bounding box. Results of the proposed
crater detection strategy are shown in Fig. 8.

4.3 Crater matching
The next task in the crater-based Absolute Navigation

pipeline involves matching the detected craters, expressed
in image frame coordinates, to real database craters, which
are instead expressed in a Moon-fixed frame. In this way,
the absolute location of identified landmarks can be deter-
mined and later used to retrieve useful information about
the camera pose. The terms catalog and database are used
interchangeably in the literature and also here.

Generally speaking, a match can be found by compar-
ing certain parameters of the detected crater to those of
the craters in the database. However, the global crater cat-
alog considered for this work [31] is massive, containing
more than 2 million elements. Without any additional con-
straints, the search for a match would be exceedingly time-
consuming. To restrict the search space, the a-priori pose
estimate coming from the navigation filter is utilised fol-
lowing the procedure employed in [6]. Specifically, the
available estimated pose is considered as the true one, and
the FOV of the camera is projected onto the Moon surface
using spherical projection. The output of the projection
is a set of corners, representing the boundaries of the pro-
jected FOV, with each corner expressed in latitude and lon-
gitude coordinates. Only the database craters belonging to
this box are considered for the matching procedure.

The extracted database craters coordinates are then
projected into the image frame using the pose knowledge
coming from the navigation filter. Although this approach
results in a loss of computational efficiency, as the num-
ber of extracted database craters will still be higher than
that of the detected ones, it enhances the descriptiveness
of the crater parameters due to their elliptical appearance.

Next, craters are matched by proximity and similarity
using the 1 Nearest-Neighbor Search (1NNS) algorithm,
comparing ellipse parameters of both detected and pro-
jected catalog craters. To enhance search efficiency and
facilitate the matching procedure, crater catalog data are
organised in a KD-tree [6]. The Euclidean distance is em-
ployed as dissimilarity metric, with a multiplicative cor-
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(a) Crater localization. (b) Crater fitting.

Fig. 8. Example of crater localization and fitting. Bounding boxes are converted into ellipses approximating crater rims.

rection to consider different order of magnitude among
ellipse attributes. However, unsatisfactory performance
are exhibited by this implementation if a very poor pose
estimate is available. An iterative outlier rejection and
rematch strategy is thus designed to enhance matching
performance and robustness, reducing uncertainty on the
available pose knowledge. This strategy iteratively refines
pose estimates and reprojects catalog craters using the re-
fined poses to improve match accuracy, as suggested in
[32]. In fact, being the refined pose estimate more accu-
rate than the a-priori one, additional correct matches are
expected to be found. This iterative procedure, referred to
as the Matching Loop, is stopped when a sufficient number
of correct matches is achieved or the maximum number of
iterations is reached.

5. Algorithm Testing and Performance
Simulations, unless differently stated, are performed

on MATLAB on an Intel® Core™ i7-7820HQ CPU pro-
cessor.

5.1 Relative Navigation image processing
The performance of the algorithm are assessed using

a dataset composed of synthetic images of five lunar land-
ing trajectories. These trajectories are generated starting
from the reference one presented in Section 2 using the
high-fidelity dynamics simulator implemented in [6]. This
block takes the presented nominal guidance profile and
simulates the overall landing manoeuvre in a high-fidelity

scenario. To account the Moon gravitational pull in the
translational dynamics, the LP165P spherical harmonics
model up to the 165th order [33] is adopted. Disturbances
in both direction and magnitude of thrust are included.
Specifically, the thrust vector is rotated by a random angle
represented by a normal distribution with zero mean and
standard deviation σ = 1◦, while the thrust magnitude
is perturbed by a Gaussian noise with standard deviation
23 N (1% of the assumed throttleable thrust). The nav-
igation camera is assumed to maintain a nominal Nadir
pointing, with a Gaussian noise with standard deviation
σ = 1◦ added to the three Euler Angles to represent at-
titude determination errors [6]. For each trajectory, set-
ting the camera sampling frequency equal to 1 Hz, a se-
quence of 1000 consecutive images is generated using the
same DEM employed for the “spherical-moon” subdataset
in Section 4.2.2. To construct a dataset representative of
the possible environmental conditions that the algorithm
may face, different Sun illumination directions are consid-
ered for each trajectory. Each sequence simulates what the
lander camera observes during the corresponding landing
manoeuvre. The testing dataset, referred to as trajectories
dataset, is formed by the union of these five sequences.
The such composed dataset encompasses a variety of crit-
ical scenarios, not only from illumination and terrain con-
ditions but also due to motion. The objective is to stress
the navigation algorithm to understand not only its perfor-
mance, but also its robustness to all conditions that can
be encountered during a landing. This is the same dataset

IAC-24-C1.4.5 Page 10 of 15



75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright © 2024 by Politecnico di Milano. Published by the IAF, with permission and released to the IAF to publish in all forms.

used for the thread design presented in Section 3.
The whole Relative Navigation block is tested using

sequences of images derived from the constructed trajec-
tories dataset. The developed AT-ORB detector in the
16 subwindows configuration successfully detects the pre-
scribed number of features (300) in all images, with an av-
erage computational time of 42.5 ms. Moreover, the Pyra-
midal Lukas-Kanade algorithm effectively tracks 91.8%
of the detections. Of these tracked features, the 93.3% are
correct correspondences, efficiently retrieved by the pro-
posed outlier rejection strategy. Specifically, the 5-Point
Algorithm with MSAC takes 68.7 ms on average. In the
worst-case scenario, where redetection is triggered due to
an insufficient number of inliers (i.e. perform detection
once and both tracking and outlier rejection twice), the
whole Relative Navigation thread takes about 214.1 ms on
average to process an image. This corresponds to a fre-
quency well above the required minimum of 1 Hz, making
the algorithm suitable for a real-time application.

5.2 Crater-based Absolute Navigation image processing
The performance and robustness of the algorithm are

assessed using three different synthetic datasets:

1. the trajectories dataset described in Section 5.1;

2. the test set of the YOLOv7 training dataset;

3. the matching dataset, built by applying an affine
transformation to 500 training dataset images to sim-
ulate different perspective views. For each image,
available crater annotations are used as a prefiltered
catalog, while the affine transform also serves as
ground truth pose.

Crater localization is tested on both the test set and the
trajectories dataset, with the latter included to evaluate the
detector in an entirely different environment from the one
used for training. Both matching and fitting, on the other
hand, are tested on the third dataset, which incorporates
all the aspects that add complexity to the fitting process.
For the matching, noise is introduced into the affine trans-
form parameters to assess the algorithm robustness under
various levels of accuracy in the available pose knowledge.
Two noise levels, high and low, are considered to test the
algorithm robustness and performance under different con-
ditions. The perturbed affine transform is then used as the
a-priori estimate of the camera pose provided by the filter.

5.2.1 Crater localization
Performance metrics of the crater localization evalu-

ated on the test set are reported in Table 2.

Table 2. Crater localization performance metrics on the
test set.

Metric Value

Precision 0.994
Recall 0.493
F1 score 0.659
mAP0.5 0.498
mAP0.5:0.95 0.297
Mean IoU 0.772

On average, the network is able to retrieve only ap-
proximately 50% of annotated craters. However, all de-
tections are practically correct, with only a minimal per-
centage (less than 1%) of false positives. Compared to
other state-of-the-art CNN-based crater detectors, the im-
plemented network achieves slightly lower performance.
Specifically, this is due to the developed network’s recall,
which is approximately 40% points lower than that of both
the SSD with MobileNetV2 used in [6] and DeepMoon
[24], resulting in a lower F1 score. Despite this, higher de-
tection capacity of the network is indeed observed. In fact,
looking at the state-of-the-art alternatives, the [6] SSD is
able to detect nearly 50 craters per image, while LunaNet
[7] only 20. The trained YOLO network, instead, is able
to detect almost 200 craters on the test set and 70 on the
trajectories dataset. The lower detection count for the lat-
ter subdataset is not linked to any issues in the detection
framework or lack of generalization, but rather to a lower
number of craters effectively present in the image, as con-
firmed by visual inspection. Additionally, the YOLO net-
work achieves a higher mean IoU compared to [6]. Being
the mean IoU linked to localization accuracy, the devel-
oped detector is expected to achieve a lower crater local-
ization error. Inference time, instead, is suitable for a real-
time application, taking 16.3 ms on the test set and only
12.7 ms on the trajectories one ‡.

Examining the images relative to the test set, such as
Fig. 8a, one issue can be noted: large craters in the im-
ages are not detected. This limitation is inherently linked
to the YOLOv7 network, which struggles to detect an ob-
ject if it appears in different dimensions or aspect than the
training data. The undetected craters were, in fact, non
annotated and, most importantly, show a different appear-
ance (e.g. fuzzier rim, different shading) with respect to
the smaller annotated ones. Adding annotations for large
craters may solve this issue. Another potential solution is
to use anchor-free detectors, which do not rely on predeter-

‡Inference time is evaluated in Python on a 13th Gen Intel® Core™
i7-13800H CPU processor.
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(b) Semi-major and semi-minor axes.

Fig. 9. Crater fitting errors over images.

mined anchor boxes. Consequently, they are expected to
provide higher generalization capability and provide more
accurate bounding boxes in size and aspect ratio. It is rel-
evant to note that the presented issue is present only in
the test set images, while the trajectories dataset includes
detections of large craters. Nonetheless, this lack of gen-
eralization results in a significant problem for a real au-
tonomous navigation application of a spacecraft using the
YOLOv7 network in the considered configuration, repre-
senting a loss of robustness for the entire navigation al-
gorithm. While this loss can be mitigated for the Moon
due to the high availability of imagery data to build a suf-
ficiently representative training dataset, it poses a relevant
limitation to the network applicability to other celestial
bodies for which data may not be available until arrival.

Despite this, the number of detections retrieved is
more than sufficient for a navigation application. Addi-
tionally, smaller craters are detected, showing an improve-
ment compared to other methods, both CNN-based and
traditional. This capability is independent of the altitude
of the images, being the size of the craters intended in pix-
els. The detector can thus provide a sufficient number of
detections throughout the whole landing descent.

5.2.2 Crater fitting
Crater detection achieves an average localization er-

ror of approximately 1 px, with errors consistently below
3 px, as shown in Fig. 9a. This performance is linked
to the high mean IoU achieved by the trained YOLOv7

model. The average errors for the semi-major and the
semi-minor axes, shown in Fig. 9b, are approximately
7% and −2%, respectively, with a 3σ error band of about
30% around the mean values. The proposed implementa-
tion exhibits significantly superior localization accuracy
compared to other state-of-the-art algorithms, providing
the highest accuracy among developed CNN-based meth-
ods. It achieves levels of accuracy comparable to edge-
based detectors, while being more robust to environmental
conditions and detecting a much higher number of craters.
However, the main criticality of the developed crater fit-
ting algorithm is its computational time, equal to 512.2
ms on average but with peaks exceeding 1 s. Moreover,
the procedure fails for a limited number of images (22 out
of the 500 images of the matching dataset across multiple
simulations, representing the 4.4% of occurrence), all de-
picting a dark scene with the presence of a high-frequency
terrain texture. This inefficiency is primarily due to the
employed implementation for the lighting source direction
estimation procedure in the crater inclination estimation
routine.

5.2.3 Crater matching
The Matching Loop, instead, works robustly across all

dataset images, even considering high noise on the pose
knowledge, correctly matching practically all detections in
an average time of 61.3 ms. This efficiency is attributed
to the powerful outlier rejection strategy, which reliably
identifies and discards all outliers.
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Overall, the entire crater-based Absolute Navigation
thread processes an image in approximately 573.5 ms on
average. Considering also peaks in computational time
across images, the current configuration can manage one
image every 2 s. Lower times may be achieved by improv-
ing the crater fitting strategy. Examples of crater detection
and matching results are shown in Fig. 10 and Fig. 11.

Fig. 10. Detected craters and projected database craters.

Fig. 11. Correctly matched pairs retrieved by the Match-
ing Loop algorithm.

5.3 Integrated navigation
The impact of the developed image processing algo-

rithms on navigation performance is assessed through

comparisons with existing literature.
For the Relative Navigation, [8] is used as reference

given the similar problem formulation and simulation sce-
nario. The algorithm presented in [8] achieves a mean
horizontal error of ∼200 m and a mean vertical error
of ∼100 m, with 3σ bounds of approximately 1000 m
and 250 m, respectively. Considering the implementation
presented in this work, due to the higher number of fea-
tures employed, a lower position estimate covariance is
expected. In fact, increasing the number of available fea-
tures reduces uncertainty on the pose [8]. Higher landing
performance are thus anticipated from an uncertainty per-
spective. Moreover, a mean tracking error of 1.88 px is
achieved, being this the error between tracked features and
their true position in the image. This high feature localiza-
tion accuracy, coupled with high feature homogeneity in
the image, is anticipated to impact positively on the navi-
gation algorithm, reducing the drift introduced by the RN
thread and improving navigation accuracy performance
compared to [8]. Low drift is fundamental, as it results
in lower navigation errors when information from the Ab-
solute Navigation are not available.

Talking about the Absolute Navigation, instead, the
high localization accuracy achieved by the implemented
CDMA, superior to other state-of-the-art crater detectors,
together with the higher number of craters matched, is
expected to have a positive impact on the overall naviga-
tion performance. Specifically, higher localization accu-
racy directly enhances navigation precision, while having
more available features further reduces estimation covari-
ance, as discussed for the Relative Navigation. To estimate
the navigation accuracy, a comparison can be made with
the results reported in [6], which uses the same filter and
dataset. Based on previous considerations, the developed
algorithm is anticipated to outperform this benchmark in
both accuracy and covariance. Specifically, an estimation
error along the trajectory lower than 200 m for both verti-
cal and horizontal positions, with a 3σ uncertainty below
250 m, is expected with the proposed configuration. Com-
paring quality of camera measurements with state-of-the
art attitude sensors, a pointing accuracy in the order of 1◦
is instead anticipated using only the camera for attitude es-
timation. Independently, thanks to image processing high
robustness, the algorithm is expected to be suitable for a
large variety of landing scenarios.

Individually, each thread of the developed navigation
architecture is expected to deliver sufficiently good per-
formance. Therefore, theoretically, integrated navigation
is expected to enhance the overall performance of Optical
Terrain Relative Navigation across diverse scenarios, in-
cluding varying illumination conditions, camera pointing
accuracy, and terrain morphology.
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6. Conclusions
This paper presents a preliminary design of image pro-

cessing algorithms for both Relative and Absolute Naviga-
tion to enable Integrated Optical Terrain Relative Naviga-
tion during a lunar landing.

For the RN thread, a new feature detector, called Adap-
tive Threshold ORB (AT-ORB), has been developed based
on ORB. Thanks to its adaptive oFAST threshold, the de-
tector is able to achieve the same number of detections
independently of the scene observed, enhancing detec-
tion robustness while maintaining a low computational
time. Moreover, the integration of the detector with the
subwindows improves feature homogeneity across the im-
age, leading to a more accurate pose reconstruction. The
thread achieves good computational efficiency, success-
fully meeting the 1 Hz time requirement for the Relative
Navigation.

For the Absolute Navigation, on the other hand, craters,
rilles and wrinkled ridges are selected as navigation land-
marks to achieve global lunar coverage. In this work, only
the crater-based part of the thread is developed. The em-
ployed YOLOv7 network successfully retrieves the Moon
craters in an image, delivering excellent centre localiza-
tion accuracy (about 1 px error on average). However, a
lack of generalization is observed for the selected ODN,
failing to detect large non annotated craters, posing an
issue for real autonomous navigation applications. Us-
ing anchor-free ODN may address this limitation. Once
craters are detected, the Crater Fitting algorithm recon-
structs the detected crater rims solely from bounding
boxes, assuming an elliptical crater shape. While the semi-
axes estimation is highly accurate, with mean errors be-
low 10%, the process is slow, with time peaks exceeding
1 s. Additionally, the fitting routine struggles in the case
of dark images with high-frequency terrain texture due to
the too simple procedure for the illumination source direc-
tion estimation. Further modifications are thus needed to
improve speed and robustness. For the matching, a robust
method is developed and tested: simulations demonstrate
the robustness of such a strategy even in the case of very
high errors on the pose knowledge, where the 1NNS alone
would fail. The algorithm successfully matches nearly all
detections to the corresponding database elements, with a
false match rate below 1%. The overall thread computa-
tional time is suitable for a real-time application, process-
ing one image in less than 2 s, fulfilling the prescribed
requirement.

Comparing achieved results with existing literature
and assessing the impact of the proposed image processing
algorithms on the navigation performance, integrated nav-
igation is deemed as a promising strategy to enhance Op-
tical Terrain Relative Navigation for lunar landing. How-

ever, further detailed analysis and validation are required
to ensure that the proposed integrated navigation approach
reliably meets all navigation requirements. This will in-
volve rigorous testing of the navigation system under dif-
ferent environmental conditions to ensure both robustness
and accuracy in real-world applications and to thoroughly
assess the performance of the proposed implementation.
Additionally, a suitable filter shall be developed to fuse
information coming from the two navigation threads, ac-
counting for processing delays, and to estimate the lander
pose. For future developments, the design and integration
of the line feature-based Absolute Navigation represents a
crucial step to achieve the desired robustness and reliabil-
ity of the whole navigation algorithm.
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