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a b s t r a c t

Motivated by the goal of having a building block in the design of direct data-driven controllers for
nonlinear systems, we show how, for an unknown discrete-time bilinear system, the data collected in
an offline open-loop experiment enable us to design a feedback controller and provide a guaranteed
underapproximation of its basin of attraction. Both can be obtained by solving a linear matrix inequality
for a fixed scalar parameter, and possibly iterating on different values of that parameter. The results
of this data-based approach are compared with the ideal case when the model is known perfectly.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Direct data-driven control aims at learning control laws thro-
gh input–output data collected from on-line or off-line exper-
ments on the system, avoiding the explicit identification of a
odel. Most of the research works in this area focused on linear
ystems, including the design of model-reference controllers [1,2]
nd, more recently, robust and optimal control design [3–6]. An
verview of early accounts on this topic is in [7]. In contrast,
irect data-driven control for nonlinear systems has been much
ess explored, but is gaining more and more attention also thanks
o many impressive experimental results achieved by machine
earning algorithms in, e.g., self-driving cars [8]. Contributions to
ata-driven control for nonlinear systems can be found in the
ontext of intelligent-PID design [9], finite-gain stabilization for
ipschitz continuous nonlinear systems [10], feedback lineariza-
ion [11], safety control [12], and predictive control [13]. Our
aper contributes to this research area with data-driven design
f stabilizing controllers for bilinear systems.
Direct data-driven control has the potential to overcome the

ifficulties related to learning an accurate model of the system
o control. However, stability guarantees are more difficult to
btain. To address the intrinsic difficulty of dealing with the
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control design of unknown nonlinear systems, a natural approach
is to reduce their complexity by considering the system evolution
along a given Lyapunov function. This classical control theo-
retic analysis is enhanced by nonparametric regression methods
from machine learning to cope with the large uncertainty in the
model [14] and is performed using a sufficiently dense set of
samples taken from the system. Analytical guarantees of stability
and safety are then obtained relying on additional tools from
robust control and optimization [12]. The approach of [9,11] to
reduce the complexity of controlling unknown nonlinear systems
consists of considering systems with a well-defined relative de-
gree, in such a way that the uncertainty only appears in the
form of two Lie derivatives of the output function along the
system vector fields. Once the dynamics has been discretized, the
key observation from sampled-data control theory is that these
uncertain functions are constant between sampling times for a
sufficiently high sampling rate.

A different approach to data-driven control of nonlinear sys-
tems has been recently taken in a series of works that use the
nonparametric representation of dynamical systems via Hankel
matrices of finite-size input–output data proposed in [15]. On one
hand, this representation has given rise to data-enabled predic-
tive controllers where the effect of the nonlinearity is taken into
account by a regularized optimization problem [13,16]. On the
other hand, it inspired a data-dependent parametrization of the
closed-loop system that reduces the control design to semidefi-
nite programs where the nonlinearity is dealt with as a process
disturbance [17]. Further results along this research thread have
been proposed in [18]. While these results make possible to deal
with nonlinear systems, they provide local stability results. Very
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ecently, within the research thread of [15, Thm. 1], there have
een efforts to go beyond the local nature of the results for
pecial classes of nonlinear systems, studying data-driven control
f second-order discrete Volterra systems [19] and polynomial
ystems [20].
The goal of this paper is to characterize another notable class

f nonlinear systems for which nonlocal data-driven control re-
ults can be established, namely bilinear systems. The reason
or focusing on bilinear systems is threefold. In spite of their
imple nonlinear structure, applying Carleman linearization to a
eneric continuous-time input-affine nonlinear system yields a
ontinuous-time bilinear system with a larger state plus a re-
ainder (see [21,22]), so bilinear systems can be used as univer-
al approximators of input-affine nonlinear systems [23, p. 110].
his last consideration specifically motivates the proposed data-
riven control scheme for bilinear systems, which is envisioned
o be a building block in future work on direct data-driven con-
rol of input-affine nonlinear systems (see also the discussion in
emark 3). A second motivation is to provide a method alter-
ative to sum-of-squares programming for polynomial control
ystems [20] to directly design data-driven controllers of bi-
inear systems. Finally, bilinear systems are interesting per se
as meaningful models for a number of relevant applications in
engineering, biology and ecology [24,25].

Many model-based approaches have been proposed for control
of bilinear systems such as [26–29], and we refer the reader
to [29, §1] for a thorough overview. Such model-based approaches
assume the knowledge of the parameters of the bilinear system.
When these are not known from first-principles considerations,
one can resort to system identification techniques tailored for
bilinear systems, and then apply one of the model-based ap-
proaches above. Some of these indirect data-driven methods
for system identification are [30–32], see also [33, Part II] for
an overview. Although combining the aforementioned system
identification techniques with model-based design constitutes
a natural and valid way to control a bilinear system, we aim
here at exploring the less-investigated direct control design of
a bilinear system based on data (avoiding altogether a system
identification step generally nontrivial in a nonlinear setting).
We show that under mild assumptions (see Assumption 1), it is
indeed possible to design stabilizing control policies directly from
data. We also show via simulations that our approach compares
well with a model-based design that has perfect knowledge of the
parameters of the system, regardless of whether this knowledge
derives from first-principles considerations or from a preliminary
system identification step.

In the case of data generated by an underlying linear system,
the fundamental result [15, Thm. 1] has been shown in [17]
to allow direct data-driven design of feedback controllers (with
robustness to noise) for linear systems through linear matrix
inequalities (LMI) [34] and the local stabilization of nonlinear
systems through semidefinite programs. In the case of data gen-
erated by an underlying bilinear system, the arguments in [17]
need substantial modifications to counteract the nonlinear term
appearing in the bilinear system and to explicitly provide an
estimate of the region of attraction. Thus, we need to resort to
tools from robust control (such as [29,35], see Fact 1) besides
more standard ones from linear matrix inequalities. Some conser-
vatism is introduced in these steps compared to a model-based
approach, as illustrated in Section 4.

Similar to the model-based approaches [27,29] and, partially,
to [26,28], we also adopt a linear state feedback and a quadratic
Lyapunov function in the design of the closed-loop system. Al-
ternatives are based on rational polynomial controllers and sum-
of-squares programming [36]. The choice of linear controllers is

restrictive compared to nonlinear state feedback (and the actual

2

basin of attraction has not an ellipsoidal shape), but are dictated
by the desire of obtaining a computationally tractable result in
the form of linear matrix inequalities (after fixing a scalar pa-
rameter). However, the main difference with those model-based
approaches is that we design here the linear state feedback and
the quadratic Lyapunov function without relying on the knowl-
edge of the bilinear system matrices, which we aim to substitute
instead through data collected from the bilinear system.

Tuning a feedback controller based only on a limited number
of open-loop data, which gives a guaranteed subset of the basin
of attraction for a bilinear system, is the main contribution of this
paper.

Structure. The considered problem is formulated in Section 2.
In Section 3 we provide our data-based controller for the un-
known bilinear system with a guaranteed underapproximation of
its basin of attraction, as a main result. Section 4 compares this
solution with a model-based one on a numerical example.

Notation. For a matrix A, ∥A∥ denotes the induced 2-norm. For
a symmetric matrix

[ A B
B⊤ C

]
, we may use the shorthand writing[

A B
⋆ C

]
. I denotes an identity matrix of appropriate dimensions.

2. System description and problem formulation

Consider the discrete-time bilinear system

x+
= Ax + Bu + Dxu (1)

where x ∈ Rn is the state, u ∈ R is the input, and the system
matrices have dimensions A ∈ Rn×n, B ∈ Rn, D ∈ Rn×n. Our choice
to consider a scalar input in (1) is motivated in Remark 2 after we
have outlined our approach. The matrices A, B, D are completely
unknown apart from a bound on the matrix norm of D as follows.

Assumption 1. For some known δ > 0, the matrix D satisfies
∥D∥ ≤ δ (equivalently, D⊤D ⪯ δ2I).

Assumption 1 amounts to having prior information on the
strength of the nonlinear coupling. An upper bound on ∥D∥ can
be obtained, e.g., from the knowledge of a Lipschitz constant for
the system on some compact set [10]. Clearly, as exemplified
numerically in Section 4, such prior information influences the
solution in the sense that looser bounds on ∥D∥ lead to less
performing control laws.

Our objective is to design a controller u = Kx for the bilinear
system in (1) based only on data collected from an off-line ex-
periment (namely, without identifying the matrices A, B, D) and
give a guaranteed underapproximation of the basin of attraction
of the origin for the closed-loop system. The off-line experiment
of duration T (with T > 0) collects the input and state sequences
u(0), u(1), . . . , u(T −1) and x(0), x(1), . . . , x(T ). These are organized
as

U0,T :=
[
u(0) u(1) . . . u(T − 1)

]
(2a)

X0,T :=
[
x(0) x(1) . . . x(T − 1)

]
(2b)

X1,T :=
[
x(1) x(2) . . . x(T )

]
, (2c)

and allow computing the auxiliary quantity

V0,T :=
[
x(0)u(0) x(1)u(1) . . . x(T − 1)u(T − 1)

]
. (2d)

Following [17], we reparametrize the gain K by a matrix GK and
give in the next lemma an equivalent representation of (1) in
closed loop with u = Kx, which depends on data, except for the
matrix D.
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emma 1. Let GK ∈ RT×n satisfy

= X0,TGK . (3)

hen, system (1) with state feedback u = Kx and K = U0,TGK has
the equivalent representation

x+
= (X1,T − DV0,T + DxU0,T )GK x =: gD(x)x. (4)

Proof. (1) with state feedback u = Kx becomes x+
= (A + BK +

DxK )x. This closed-loop matrix is, by (3),

A + BK + DxK = A · I + BK + DxK
= AX0,TGK + BU0,TGK + DxU0,TGK

= (AX0,T + BU0,T + DxU0,T )GK

= (X1,T − DV0,T + DxU0,T )GK ,

since the data in (2) satisfy X1,T = AX0,T + BU0,T +DV0,T , and this
roves the statement. □

The reparametrization GK is a decision variable that we tune to
chieve our control objective. Based on GK and on data, we define
or compactness

c := X1,TGK , F := I, H := −V0,TGK , K := U0,TGK , (5)

o that the closed-loop representation in (4) becomes
+

= (Ac + FDH + DxK)x = gD(x)x, (6)

where D is highlighted and its presence will be removed in
Section 3 thanks to Assumption 1. We aim at giving a guaranteed
underapproximation of the basin of attraction of the closed-loop
system in (6). We do so by considering a quadratic Lyapunov
function

V (x) = x⊤Qx (7)

with Q = Q⊤
≻ 0 and imposing the strict decrease of V

(
gD(x)x

)
−

(x) for the dynamics in (6). The last quantity is easily computed
s in the next lemma.

emma 2. We have that V
(
gD(x)x

)
−V (x) = x⊤ND(x)x with ND(x)

defined as

ND(x) := (Ac + FDH)⊤Q (Ac + FDH) − Q

+ (Ac + FDH)⊤QDxK + K⊤x⊤D⊤Q (Ac + FDH)

+ K⊤x⊤D⊤QDxK. (8)

Proof. The expression for ND(x) is immediate by substituting (6)
in V

(
gD(x)x

)
− V (x). □

Note that for D = 0, (1) becomes linear and (8) reduces to
ND(x) = A⊤

c QAc − Q , corresponding to the classical Lyapunov
condition for discrete-time linear systems. We impose V

(
gD(x)x

)
− V (x) < 0 for all x ̸= 0 in the ellipsoid

EQ := {x ∈ Rn: x⊤Qx ≤ 1}, (9)

by designing the decision variables GK , which determines K =

U0,TGK , and Q , which will be optimized to maximize the volume
of the ellipsoid EQ . The design will be based only on data, and
return the ellipsoid EQ as a guaranteed underapproximation of
the basin of attraction. With the outlined method using decision
variables GK and Q , the problem we address is stated as follows:

Problem 1. Based only on the data in (2) collected from an
off-line experiment and the bound δ in Assumption 1, obtain a
controller u = Kx for (1) such that for the closed-loop system,
the origin has a guaranteed basin of attraction.

Some remarks are in order.
3

Remark 1 (Quality of Data). The existence of a matrix GK satisfy-
ing (3) is related to the ‘‘quality" of the experimental data. In fact,
condition (3) expresses the property that the data are sufficiently
rich so that the system dynamics can be parametrized directly in
terms of the matrices in (2). A key property established in [15]
is that, for linear systems, X0,T is full-row rank (thus, a solution
GK to (3) exists) when the experiment is carried out using a
sufficiently exciting input signal. An extension of this property
to nonlinear systems is discussed in [37] where it is shown that
under prior knowledge of an upper bound on the nonlinearity (in
fact, on D in the present case of bilinear systems) one can always
design experiments so that (3) is feasible.

Remark 2 (Multi-Input Bilinear Systems). The present analysis can
be extended to bilinear systems with input u ∈ Rm and m ≥ 2.
For m = 2, (1) can be written for u =

[ u1
u2

]
as

x+
= Ax + B1u1 + B2u2 + D1xu1 + D2xu2. (10)

e can define U (1)
0,T and U (2)

0,T as in (2a), but considering respec-
tively the components u1 and u2. Similarly, we can define V (1)

0,T and
V (2)
0,T as in (2d). Based on the very same steps as in Lemma 1, we

can obtain for U0,T =

[
U (1)
0,T

U (2)
0,T

]
the next equivalent representation

f (10)
+

= (X1,T − D1V
(1)
0,T − D2V

(2)
0,T + D1xU

(1)
0,T + D2xU

(2)
0,T )GK x.

This expression shows by comparison with (4) that the case for
m = 2 can be treated using the same procedure we develop in
the presence of a single unknown D, and this consideration easily
generalizes to m larger than 2. For this reason we focus on the
essential case with input u ∈ R.

Remark 3 (Continuous Time). The universal approximation prop-
erty of bilinear systems mentioned in Section 1 holds with respect
to continuous-time nonlinear systems. We focus here on discrete-
time bilinear systems since the data in (2) are samples obtained
from experiments. However, analogous results can be obtained
for continuous-time bilinear systems if X1,T in (2c) is replaced
by samples of the state derivative. These results would then
lend themselves to the analysis of a bilinear approximation of
continuous-time nonlinear systems (provided disturbances are
accounted for, e.g., using the result in Section 3.1).

3. Data-based solution with guaranteed basin of attraction

In Section 2, we showed that data allow expressing (1) in
closed loop with u = Kx as (6) (by introducing the reparametriza-
tion GK of K ). Data, however, did not allow us to completely
remove the matrices of model (1). In particular, gD(x) in (6) still
contains two instances of the matrix D (namely, DxK and FDH),
which can both be interpreted as a perturbation of the matrix
Ac . In this section we first address the former, which is more
standard and occurs analogously for model-based design of a
bilinear system (see, e.g., [29]), and then the latter, which is
motivated by our desire to solve Problem 1 based only on data
and calls for the matrix norm bound in Assumption 1.

Before presenting the developments of this section, we recall
an auxiliary result from [35], which has been reported in a con-
venient form as [29, Lemma 1] and is related to the S-procedure
[34, §2.6.3]. In particular, [29, Lemma 1] implies the next fact.

Fact 1 ([29, Lemma 1]). Let G = G⊤
∈ Rn×n, M ∈ Rn×p, N ∈ Rn×q.

G + MDN⊤
+ ND⊤M⊤

≺ 0
p×q (11)
for all D ∈ R with ∥D∥ ≤ 1
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f there exists a scalar e such that[
G + eMM⊤ N

N⊤
−eI

]
≺ 0. (12)

With Fact 1 we are in a position to develop this section. The
ext lemma addresses the term DxK in gD(x) in (6). Specifically,
t shows that as long as we restrict the analysis to a sublevel set
Q (defined in (9)) of the Lyapunov function V in (7) (where Q
tself is a decision variable determining the size of this sublevel
et), strict decrease of V along solutions is guaranteed (ND(x) ≺ 0)
ince ND(x) determines V

(
gD(x)x

)
− V (x) as in Lemma 2.

emma 3. If there exist τ ∈ R and Q = Q⊤
∈ Rn×n such that⎡⎢⎣−Q 0 K⊤ (Ac + FDH)⊤

⋆ −τQ 0 D⊤

⋆ ⋆ −
1
τ
I 0

⋆ ⋆ ⋆ −Q−1

⎤⎥⎦ ≺ 0, (13)

hen ND(x) ≺ 0 for all x ∈ EQ .

roof. The proof follows closely [29], but is reported for self-
ontainedness. Define for compactness

:= −Q + (Ac + FDH)⊤Q (Ac + FDH) (14)

and note for the following that (13) implies Q ≻ 0 and τ > 0. By
Schur’s complement (with respect to lowest block −Q−1), (13) is
equivalent, by (14), to⎡⎣R (Ac + FDH)⊤QD K⊤

⋆ −τQ + D⊤QD 0
⋆ ⋆ −

1
τ
I

⎤⎦ ≺ 0.

y Schur’s complement, this inequality is equivalent to

R (Ac + FDH)⊤QD K⊤ 0
⋆ −τQ 0 D⊤Q
⋆ ⋆ −

1
τ
I 0

⋆ ⋆ ⋆ −Q

⎤⎥⎦ ≺ 0.

earranging rows and columns of this inequality gives

R 0 (Ac + FDH)⊤QD K⊤

⋆ −Q QD 0
⋆ ⋆ −τQ 0
⋆ ⋆ ⋆ −

1
τ
I

⎤⎥⎦ ≺ 0,

hich is equivalent to (13). We want to put this inequality in a
orm where we can apply Fact 1. Then, we pre- and post-multiply
he previous inequality by the block diagonal matrix with entries
, I , (Q 1/2)−1, I (where Q 1/2 is the unique symmetric, positive
efinite square root matrix for Q = Q⊤

≻ 0 [38, Thm. 7.2.6], so
hat Q = Q 1/2Q 1/2) and apply Schur’s complement (with respect
o the lowest block −

1
τ
I) to obtain with some computations⎡⎣[

R 0
0 −Q

]
+τ

[
K⊤

0

][
K 0

] [
(Ac+FDH)⊤QD(Q 1/2)−1

QD(Q 1/2)−1

]
⋆ −τ I

⎤⎦ ≺ 0.

ote that x⊤Qx = (x⊤Q 1/2)(Q 1/2x), hence for all x such that
⊤Qx ≤ 1, ∥x⊤Q 1/2

∥ ≤ 1. With this observation and by Fact 1
e conclude, after some simplifications, that[
R 0
0 −Q

]
+

[
K⊤

0

]
x⊤

[
D⊤Q (Ac + FDH) D⊤Q

]
+

[
(Ac + FDH)⊤QD

QD

]
x
[
K 0

]
≺ 0 (15)

or all x such that x⊤Qx ≤ 1. We show now that this is equivalent
o the conclusion of the lemma. Define for compactness

:= R + (A + FDH)⊤QDxK + K⊤x⊤D⊤Q (A + FDH),
c c

4

o that (15) is equivalent, after some computations, to

P K⊤x⊤D⊤Q
QDxK −Q

]
≺ 0.

y Schur’s complement, we obtain that

+ K⊤x⊤D⊤QDxK ≺ 0 for all x such that x⊤Qx ≤ 1,

hich is equivalent, by (8), to ND(x) ≺ 0 for all x ∈ EQ . □

The next lemma addresses the term FDH in gD(x) in (6).
Specifically, it shows that as long as the matrix D is bounded in
norm by δ as in Assumption 1, we can obtain a matrix inequality
depending only on δ and guarantee that Lemma 3 and its conclu-
sions hold for all such D, which is key to obtain a fully data-based
solution to our problem.

Lemma 4. Let Assumption 1 hold. If there exist τ ∈ R, ϵ2 ∈ R and
Q = Q⊤

∈ Rn×n such that⎡⎢⎢⎢⎣
−Q 0 K⊤ A⊤

c δH⊤

⋆ −τQ 0 0 δI
⋆ ⋆ −

1
τ
I 0 0

⋆ ⋆ ⋆ −Q−1
+ ϵ2I 0

⋆ ⋆ ⋆ ⋆ −ϵ2I

⎤⎥⎥⎥⎦ ≺ 0, (16)

then (13) holds.

Proof. Note that from F = I in (5), (13) is equivalent to⎡⎢⎣−Q 0 K⊤ A⊤
c

0 −τQ 0 0
K 0 −

1
τ
I 0

Ac 0 0 −Q−1

⎤⎥⎦ +

⎡⎢⎣0
0
0
F

⎤⎥⎦ D
δ

[
δH δI 0 0

]

+

⎡⎢⎣δH⊤

δI
0
0

⎤⎥⎦ D⊤

δ

[
0 0 0 F⊤

]
≺ 0

and this equation has the same structure as G + MDN⊤
+ ND⊤

⊤
≺ 0 in Fact 1, since ∥D∥ ≤ δ (δ > 0) by Assumption 1.

ndeed, by making the suitable correspondences between the
uantities of this lemma and those of Fact 1, the existence of ϵ2
uch that (16) holds (corresponding to (12) of Fact 1) guarantees
hat (13) (corresponding to (11) of Fact 1) holds for D as in
Assumption 1. □

Lemma 4 enables us to generalize the conclusions of Lemma 3
for all D with ∥D∥ ≤ δ, so that we do not need to rely on
the knowledge of D (as it would be the case in a model-based
scheme), but just on its (possibly loose) norm bound δ. The matrix
inequality (16) of Lemma 4 (where only δ appears), however,
contains products of decision variables and inverses of decision
variables. We address this in the next proposition, which obtains
a matrix inequality that is as close as possible to an LMI (hence
efficient to solve) and expresses explicitly the matrix inequality
in terms of the available data. This proposition is the main result
of this paper.

Proposition 1 (Stabilization with Guaranteed Basin of Attraction).
Under Assumption 1, suppose there exist ϵ1 ∈ R, ϵ2 ∈ R, Y ∈ Rn×T

nd P = P⊤
∈ Rn×n such that⎡⎢⎢⎢⎣

−P 0 YU⊤

0,T YX⊤

1,T −δYV⊤

0,T
⋆ −ϵ1P 0 0 δϵ1P
⋆ ⋆ −ϵ1I 0 0
⋆ ⋆ ⋆ −P + ϵ2I 0
⋆ ⋆ ⋆ ⋆ −ϵ2I

⎤⎥⎥⎥⎦ ≺ 0 (17a)

= X0,TY⊤, (17b)

nd set Q = P−1, G = Y⊤P−1. Then,
K
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i) for the dynamics in (6) corresponding to D, the Lyapunov function
(x) = x⊤Qx = x⊤(X0,TY⊤)−1x satisfies

V (gD(x)x) − V (x) < 0 for all x ∈ EQ \{0};

(ii) the origin is asymptotically stable for (1) with controller u =

x = U0,TGK x = U0,TY⊤(X0,TY⊤)−1x and its basin of attraction
contains the set EQ .

Proof. We begin showing that inequalities (16) and (17a) are
equivalent, noting for the following that (17a) implies P ≻ 0.
With the definitions in (5), (16) is equivalent to⎡⎢⎢⎢⎣

−Q 0 G⊤

K U
⊤

0,T G⊤

K X
⊤

1,T −δG⊤

K V
⊤

0,T
⋆ −τQ 0 0 δI
⋆ ⋆ −

1
τ
I 0 0

⋆ ⋆ ⋆ −Q−1
+ ϵ2I 0

⋆ ⋆ ⋆ ⋆ −ϵ2I

⎤⎥⎥⎥⎦ ≺ 0.

y pre- and post-multiplying this inequality by the block diagonal
atrix with entries Q−1, Q−1, I , I , I and by setting Q = P−1,

GK = Y⊤P−1 as in the statement of the proposition, the last
inequality is equivalent to⎡⎢⎢⎢⎣

−P 0 YU⊤

0,T YX⊤

1,T −δYV⊤

0,T
⋆ −τP 0 0 δP
⋆ ⋆ −

1
τ
I 0 0

⋆ ⋆ ⋆ −P + ϵ2I 0
⋆ ⋆ ⋆ ⋆ −ϵ2I

⎤⎥⎥⎥⎦ ≺ 0.

o avoid the simultaneous presence of τ and 1/τ , this inequality
s equivalent to the next one by pre- and post-multiplying by
he block diagonal matrix with entries I , 1

τ
I , I , I , I and setting

1 = 1/τ :

−P 0 YU⊤

0,T YX⊤

1,T −δYV⊤

0,T
⋆ −ϵ1P 0 0 δϵ1P
⋆ ⋆ −ϵ1I 0 0
⋆ ⋆ ⋆ −P + ϵ2I 0
⋆ ⋆ ⋆ ⋆ −ϵ2I

⎤⎥⎥⎥⎦ ≺ 0,

which is exactly (17a). After these manipulations, the conclusions
of the proposition follow readily. Indeed, the fact that (17a) holds,
implies that (16) holds, and then, by Lemmas 3 and 4, that D
as in Assumption 1 satisfies ND(x) ≺ 0 for all x ∈ EQ . By
emma 2, (i) follows. (17b), which is equivalent to I = X0,TGK , and
emma 1 ensure that (4) or, equivalently, (6) are an equivalent
epresentation of (1) with controller u = Kx = U0,TGK x. Standard
Lyapunov theorems give then (ii). □

Proposition 1 effectively solves Problem 1. Indeed, if a solution
to (17) is found (which is based on data from an off-line exper-
iment), then we have a controller K and a guaranteed basin of
attraction in terms of the set EQ .

The matrix inequality (17a) in Proposition 1 is convenient
because, after fixing the scalar ϵ1, it is an LMI in the decision
ariables ϵ2, Y , P . A line search with respect to ϵ1 on top of
olving this LMI is typically preferable than solving directly the
ilinear matrix inequality in (17a). Note that also model-based
pproaches for controlling bilinear systems encounter such a
ituation, and fix one of the parameters directly [29] or in an
terative way [27].

A conclusion of Proposition 1 is that the basin of attraction
f the origin contains the set EQ = EP−1 . It is quite natural to
aximize the volume of this ellipsoid, which is proportional to

he square root of det(P), as is done in the model-based setting
f [29]. (Other size criteria can be optimized, see the discussion
n [39, §2.2.5.1].) This leads to the next immediate corollary.
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Corollary 1 (Ellipsoid Maximization). Let Assumption 1 hold. If there
exist a solution to the next optimization problem in the decision
variables ϵ1 ∈ R, ϵ2 ∈ R, Y ∈ Rn×T and P = P⊤

∈ Rn×n

minimize − log det(P)
subject to (17a), (17b),

then the conclusion of Proposition 1 holds.

Finally, since we are considering a quadratic Lyapunov func-
tion and as is done in the model-based solutions [27,29], the
very same arguments leading to Proposition 1 yield exponential
(instead of asymptotic) stability by strengthening a little the
matrix inequality in (17a). This is stated in the next corollary,
whose proof is thus omitted.

Corollary 2 (Exponential Convergence). For µ ∈ (0, 1), suppose that
the assumptions of Proposition 1 can be satisfied after replacing the
element (1, 1) of the matrix in (17a) (i.e., −P) with −µP. Then,

(i) for the dynamics in (6) corresponding to D, the Lyapunov function
V (x) = x⊤Qx = x⊤(X0,TY⊤)−1x satisfies

V (gD(x)x) < µV (x) for all x ∈ EQ \{0};

(ii) the origin is exponentially stable for (1) with controller u =

Kx = U0,TGK x = U0,TY⊤(X0,TY⊤)−1x and its basin of attraction
contains the set EQ .

3.1. Noisy data

In this section we show how the design in Proposition 1 can
be made robust with noisy data. To this end, we consider that
for all t = 0, . . . , T , the state x(t) is perturbed by the noise n(t)
resulting in a measured state x̃(t), i.e.,

x̃(t) = x(t) + n(t).

In other words, we still consider (1) as underlying system and
u(0), u(1), . . . , u(T −1) as input sequence, but we can only rely on
the noisy state sequence x̃(0), x̃(1), . . . , x̃(T ) for the design of the
controller. Instead of (2), we then employ the noisy data

X̃0,T :=
[
x̃(0) x̃(1) . . . x̃(T − 1)

]
X̃1,T :=

[
x̃(1) x̃(2) . . . x̃(T )

]
,

Ṽ0,T :=
[
x̃(0)u(0) x̃(1)u(1) . . . x̃(T − 1)u(T − 1)

] (18)

and define also the unknown quantities

N0,T :=
[
n(0) n(1) . . . n(T − 1)

]
N1,T :=

[
n(1) n(2) . . . n(T )

]
W0,T :=

[
n(0)u(0) n(1)u(1) . . . n(T − 1)u(T − 1)

]
.

(19)

By assuming now I = X̃0,TGK , we can reproduce the parametriza-
tion of Lemma 1 for the noisy data as

x+
= (X̃1,T − N1,T + AN0,T + DW0,T

− DṼ0,T + DxU0,T )GK x =: g̃D(x)x,
(20)

which boils down to (4) for n(0) = · · · = n(T ) = 0. With

Âc := X̃1,TGK , F̂ := I, Ĥ := −Ṽ0,TGK ,

D̃ := −N1,T + AN0,T + DW0,T , F̃ := I, H̃ := GK ,
(21)

(20) can be written as

x+
= (Âc + F̃D̃H̃ + F̂DĤ + DxK)x. (22)

By comparison with (6), this expression reveals that noisy data
result in an additional perturbation of the known Âc through the
unknown D̃ in (21). Similarly to D, we thus consider the next
assumption for D̃.
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ssumption 2. For some known δ̃ > 0, the matrix D̃ in (21)
atisfies ∥D̃∥ ≤ δ̃.

We give next a result with noisy data, which we then discuss
ogether with Assumption 2.

roposition 2 (Stabilization with Guaranteed Basin of Attraction
rom Noisy Data). Under Assumptions 1 and 2, suppose there exist
1 ∈ R, ϵ2 ∈ R, ϵ3 ∈ R, Y ∈ Rn×T and P = P⊤

∈ Rn×n such that⎡⎢⎢⎢⎢⎢⎣
−P 0 YU⊤

0,T Y X̃⊤

1,T −δY Ṽ⊤

0,T δ̃Y
⋆ −ϵ1P 0 0 δϵ1P 0
⋆ ⋆ −ϵ1I 0 0 0
⋆ ⋆ ⋆ −P + (ϵ2 + ϵ3)I 0 0
⋆ ⋆ ⋆ ⋆ −ϵ2I 0
⋆ ⋆ ⋆ ⋆ ⋆ −ϵ3I

⎤⎥⎥⎥⎥⎥⎦ ≺ 0 (23a)

P = X̃0,TY⊤, (23b)

and set Q = P−1, GK = Y⊤P−1. Then,

(i) for the dynamics in (20) corresponding to D and noisy data, the
Lyapunov function V(x)=x⊤Qx=x⊤(X̃0,TY⊤)−1x satisfies

V (g̃D(x)x) − V (x) < 0 for all x ∈ EQ \{0};

(ii) the origin is asymptotically stable for (1) with controller u =

Kx = U0,TGK x = U0,TY⊤(X̃0,TY⊤)−1x and its basin of attraction
contains the set EQ .

Proof. Due to space constraints and the close similarity to the de-
velopments leading to Proposition 1, we summarize only the key
steps. Since the ideal data generated by (1) still satisfy X1,T =

AX0,T + BU0,T + DV0,T , substituting in it (18) and (19) yields (20)
for I = X̃0,TGK , as in Lemma 1. By clear correspondences between
the matrices in (6) and (22), lemmas analogous to Lemmas 2
and 3 are obtained. By applying Fact 1, the term F̃D̃H̃ is ad-
dressed for the unknown D̃. Finally, the same steps as in the
proof of Proposition 1 yield (23a), and (23b) is equivalent to
I = X̃0,TGK . □

By comparing (17a) and (23a), one can see by continuity
arguments that if (17a) is feasible then also (23a) is feasible
provided that the noise has sufficiently small magnitude (corre-
sponding to a sufficiently small δ̃). This shows that our method
is intrinsically robust to sufficiently small noise. On the other
hand, Proposition 2 does not provide an explicit quantification
of admissible signal-to-noise levels, as is done for instance in
[17, §V-A] for linear systems. We believe that this analysis is
possible also in this context and we leave it as future work.

We note that obtaining nonconservative values for δ̃ clearly
depends on the possibility of having nonconservative estimates
on the noise level and on ∥A∥. Upper bounds on ∥A∥ can be ob-
tained from the knowledge of a Lipschitz constant of the function
[ x
u ] ↦→ Ax + Bu + Dxu on compact sets, as we commented for

Assumption 1.

4. Numerical example

We consider for (1) the matrices

A =

[
0.8 0.5
0.4 1.2

]
, B =

[
1
2

]
,D =

[
0.45 0.45
0.3 −0.3

]
, (24)

which are taken from [26, §5]. Our design does not rely on
their knowledge, but simply on the data generated according
to them and a bound δ of ∥D∥. In particular, we consider δ =

0.7637, which overapproximates by 20% the actual ∥D∥ = 0.6364
(δ/∥D∥ = 1.2), and we illustrate in Section 4.1 the effect of
different δ. Moreover, we will use the matrices in (24) to compare
6

Fig. 1. Input and state sequences giving the quantities in (2).

ur data-based design with a model-based design in Section 4.2.
e note that the comparison is made with a model-based design

hat has perfect knowledge of the parameters of the system.
etting to perfectly know the parameters would correspond to
he ideal case even for a preliminary system identification step.
e show in this section that our designed controller performs

omparably to such a model-based design, in spite of being tuned
nly on an offline experiment.
We consider T = 10. In Fig. 1, we show the input and state

equences giving (2) and generated according to the matrices
n (24). We note that A being unstable is challenging because a
suitable control action has to be designed to modify by feedback
the system evolution in a neighborhood of the origin (without
the ‘‘help’’ of a stable linear part), and the diverging data pose a
practical limit on the length of the open loop experiment, besides
possibly impacting the numerical accuracy of the procedure.

4.1. Data-based solution

In the following implementation, we present Corollary 1 be-
cause the size criterion of the determinant allows quantitative
comparisons (as opposed to Proposition 1), and (as opposed to
Corollary 2) the benefits of guaranteed exponential convergence
are outweighed by the reduction of the size of the guaranteed
basin of attraction in the present example, despite the theoret-
ical interest of Corollary 2. By using Corollary 1, the data-based
solution implemented in this section is as follows, where we opt
for fixing the scalar variable ϵ1, solve an LMI, and perform a line
search on ϵ1.

1. We fix ϵ1 > 0.
2. We solve the next optimization problem in the decision vari-

ables ϵ2 ∈ R, Y ∈ Rn×T and P = P⊤
∈ Rn×n

minimize − log det(P)
subject to (17a), (17b)

which corresponds to an LMI. By denoting the solution P =:

PDB, we then obtain GK = Y⊤P−1
DB and the controller gain as

KDB := U0,TGK .
3. We iterate on the selection of ϵ1 in case of, e.g., infeasibility.

We implement this scheme (and the others in this section)
through the toolbox YALMIP [40] and the solver MOSEK. For a
value of ϵ1 = 0.8, we obtain

PDB =

[
3.2827 −0.9642

−0.9642 2.4388

]
, KDB =

[
−0.3175 −0.5649

]
.

The evolution of x when u = KDBx is used in (1) is given in Fig. 2
in the top plot as a phase portrait (solid colored lines) and in the
middle plot as a time evolution.
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Fig. 2. Evolution of the data-based and model-based solutions of Sections 4.1
and 4.2, corresponding to the selected value of ϵ1 . The same color corresponds
o solutions with the same initial condition. Solid and dotted lines correspond
espectively to the data-based and model-based solutions. (Top) Phase portrait.
he area within the ellipsoids is guaranteed to be in the basin of attraction of the
rigin, by the existence of the Lyapunov functions corresponding to the matrices
DB and PMB . (Middle) Time evolutions of the state x for the data-based solution,
here traces with squares and diamonds identify respectively the components

1 and x2 . (Bottom) Time evolutions of the state x for the model-based solution.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 3. Effect of δ on the size of the guaranteed basin of attraction.

We illustrate the effect of different bounds δ on ∥D∥ using the
ame parameters and data as before, and report the correspond-
ng det(PDB) in Fig. 3. The guaranteed basin of attraction shrinks
hen δ/∥D∥ increases, which is the price to pay for not knowing
and having only an upper bound on its norm. However, the

igure shows that this deterioration is tolerable for δ/∥D∥ as loose
s 1.4.

emark 4 (Practical Considerations on Number of Data and Compu-
ation Times). Our method manages to provide stability guaran-
ees with small datasets. This feature is very appealing in contexts
7

Fig. 4. Execution times as a function of the number T of data.

ike the one just considered where the system is open-loop unsta-
le and collecting large datasets can be problematic. The method,
owever, can handle datasets of larger size, which can instead
e convenient when the system to control is open-loop sta-
le or mildly unstable. We exemplify this point by considering
he same parameters as before, except for substituting A with
/1.485, which is only mildly unstable. We generate the data
n (2) according to the new A, and consider different values of
. For each of them, we measure the wall-clock time for solving
he previous optimization problem using the MATLAB R⃝ function
timeit (MATLAB R⃝ R2018a on a machine with processor Intel R⃝

CoreTM i7 with 4 cores and 1.80 GHz). The resulting wall-clock
imes in Fig. 4 from T = 10 up to T = 1000 data points, are at
ost 1.2 s.

.2. Model-based solution

For (1) with matrices in (24), we use the model-based solution
n [29] for comparison. This model-based solution is also not an
MI, unless the scalar parameter ϵ1 is fixed (as in the data-based
olution) and a line search is performed.

1. We fix ϵ1 > 0.
2. We solve the next optimization problem in the decision vari-

ables y ∈ Rn and P = P⊤
∈ Rn×n

minimize − log det(P)
subject to P ≻ 0⎡⎢⎣ −P 0 y PA⊤

+ yB⊤

0 −ϵ1P 0 PD⊤

y⊤ 0 −ϵ1I 0
AP + By⊤ DP 0 −P

⎤⎥⎦ ≺ 0,

which corresponds to an LMI. By denoting the solution P =:

PMB, we then obtain the controller gain as KMB := y⊤P−1
MB .

3. We iterate on the selection of ϵ1 in case of, e.g., infeasibility.

For ϵ1 = 0.8 as in Section 4.1, we obtain

PMB =

[
8.5623 −4.7253

−4.7253 6.3616

]
, KMB =

[
−0.3572 −0.5738

]
.

The evolution of x when u = KMBx is used in (1) is given in Fig. 2
in the top plot as a phase portrait (dotted colored lines) and in
the bottom plot as a time evolution.

4.3. Comparison of data-based and model-based solutions

We compare the performance of the data-based solution
against the model-based solution by performing a thorough line
search on the parameter ϵ1, which we fixed before in order to
be able to solve an LMI. The result is in Fig. 5. Only values of ϵ1
where an optimal solution was returned by YALMIP, are displayed
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Fig. 5. Characterization of the determinants of matrices PDB and PMB (top) and
their logarithms (bottom) as a function of the parameter ϵ1 .

(in particular, this did not happen for the model-based solution
with values of ϵ1 between 0.2 and 0.4).

The top plot represents the determinants of the matrices PDB
nd PMB, which was considered since its square root is propor-
ional to the volume of the ellipsoids guaranteed to be in the
asin of attraction of the closed-loop system. In the bottom plot,
he logarithms of these determinants are also provided since they
re the actual objective functions in the optimization problems of
ections 4.1–4.2.
As expected, the model-based solution provides ellipsoids

ith larger sizes (e.g., det(PMB) = 60.03 for ϵ1 = 0.4). For the
iven example, it appears from Fig. 5 that the data-based solution
erforms better for small ϵ1, whereas it performs worse than the
odel-based solution for large ϵ1. We note that log det is actually
ore representative of the actual difference between the two
olutions. Indeed, for values of ϵ1 around 1, the two solutions
re not so distant, as is confirmed by the illustration of Fig. 2
here the corresponding ellipsoids are also depicted in the top
lot (solid and dotted black curves).
In summary, our designed controller presents in these simu-

ations a similar performance to the model-based design, where
he former relies on an offline experiment and the latter on the
erfect knowledge of system parameters.

.4. Data-based solution with noisy data

Finally, we briefly illustrate the robust design of Proposition 2
n the presence noisy data. As in Section 4.1, we take an input
ignal (uniformly) distributed in [−1, 1] but we now assume
hat the data are corrupted by a measurement noise with all
omponents (uniformly) distributed in [−n̄, n̄]. For D̃ in (21), we
ave

D̃∥ ≤ ∥N1,T∥ + ∥A∥∥N0,T∥ + ∥D∥∥W0,T∥. (25)

ccordingly, we overapproximate ∥D̃∥ using

δ̃ := n̄
(√

nT + α
√
nT + δ

√
n∥U0,T∥

)
(26)

where the scalar n is the system order (n = 2 in this example), T
is the number of samples, α is an upper bound on ∥A∥ and δ is the
upper bound on ∥D∥. Here, we consider δ = 0.7637 and T = 10
as in Section 4.1, and α = 2.9874, which overapproximates by
100% the actual ∥A∥ = 1.4937. We solve (23) still using ϵ1 = 0.8
for different values of n̄. Fig. 6 reports the behavior of det(PDB) as
a function of n̄.

As discussed in Section 3.1, the numerical results show that
the performance is close to the ideal one for small values of noise
despite the overapproximation on ∥D̃∥.
8

Fig. 6. Effect of the amplitude of noise on the size of the guaranteed basin of
attraction.

5. Conclusions

We proposed a direct data-driven design for bilinear systems,
which comes with a guaranteed subset of the basin of attraction.
This design is best suited for a limited number of open-loop
data, and numerical experiments show its applicability for a large
number of data. As a proof of concept, we show how to make the
design robust in the presence of noisy data.

The main goal of future work is applying this scheme as a
building block for data-driven control of input-affine nonlinear
systems (by approximating the latter through Carleman lineariza-
tion). A closely related topic of future work is a study of the
tradeoffs with schemes based on sum-of-squares programming
for bilinear systems.
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