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products of noncommutative modules, and show that the 
trace defined ad hoc in terms of companion matrices, arises 
naturally as part of a canonical trace.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

In this paper we aim to obtain extensions of the Grothendieck-Lidskii trace formula 
to quaternionic (right-linear) p-summable Fredholm operators in locally convex spaces 
(or to trace-class operators in the Hilbert space case). The problem of finding a corre-
sponding formula for the Fredholm determinant, which is often included as part of the 
Grothendieck-Lidskii formula, is also addressed.

Given an operator T belonging to an appropriate class, in the commutative setting, 
these formulae read as

TrT =
∞∑
k=1

λk(T ), det(I + T ) =
∞∏
k=1

(1 + λk(T )), (1)

where {λk(T )} is the sequence of eigenvalues of T and Tr, det denote the trace and the 
determinant of T , respectively, and I denotes the identity operator. We emphasize that 
the operator trace is defined in terms of a chosen basis of the underlying vector space. 
Thus, the above formulae are independent of the choice of the basis, since the sequence 
{λk(T )} is invariant with respect to such a choice.

Recently, some efforts have been made in order to extend the Grothendieck-Lidskii 
trace formula to different settings, such as compact Lie groups [20] and variable exponent 
Lebesgue spaces [22] (without considering the problem of the Fredholm determinant).

Trying to directly extend these formulae to the quaternionic setting leads to intrinsic 
limitations that arise in this context, even for finite-rank operators. A well known issue 
is that if λ ∈ H is a right-eigenvalue of an operator T , then so is s−1λs, for any s ∈ H

with s �= 0. Indeed, the equation Tx = xλ implies

T (xs) = (xλ)s = (xs)(s−1λs). (2)

This means two things. First of all, we have an infinite number of eigenvalues. However, 
there are only n equivalence classes if we make the identification μ ∼ λ if and only if 
there exists s ∈ H with s �= 0 such that μ = s−1λs. Secondly, while λ is an eigenvalue 
with eigenvector x, we have that μ is an eigenvalue associated with the eigenvector xs. 
Thus, the trace of a quaternionic linear operator need not to be equal to the sum of its 
eigenvalues as in (1) (in fact, none of those quantities, nor the Fredholm determinant, 
are well defined).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In order to overcome these issues, I. Gelfand, S. Gelfand, Retakh, and Wilson de-
veloped in [27] the general theory of quasideterminants. Since a functional satisfying 
all the classical axioms of the determinant cannot exist over the quaternions [11], it is 
natural to consider quasideterminants as a natural equivalent. Quasideterminants were 
first introduced in [28] for matrices over free division rings. The main difference with 
the commutative determinant is that the former is the analog of a ratio between the 
determinant of an n × n matrix and that of an (n − 1) × (n − 1) submatrix. This means 
that in such a general setting, quasideterminants are not polynomial functions of the 
matrix entries (as in the commutative case), but rather rational functions.

In this context, the aforementioned authors were able to define in [27] the determinant 
of a linear map A : Rm → Rm, where R is only required to be an algebra with a unit. 
The definition is based on a characteristic equation, whose construction is as follows: a 
vector v ∈ Rm is said to be cyclic if {v, Av, . . . , Am−1v} is a basis of Rm, when viewed 
as a right R-module. In this case, the authors show that, given a cyclic vector v ∈ Rm, 
there exist elements αk = αk(A, v) ∈ R, k = 1, . . . , m, such that

(−1)mvαm + (−1)m−1(Av)αm−1 + · · · −Am−1vα1 + Amv = 0. (3)

This equation plays the role of the characteristic polynomial. In the case where R is a 
commutative algebra, the element αm is the usual determinant of A, i.e. αm := detA. 
Moreover, by the Cayley-Hamilton theorem, the numbers αk are precisely the coefficients 
of the characteristic polynomial of A. In [27] it is also shown that if the determinant αm

is zero, the corresponding map A is not invertible, which is a natural property one would 
expect from any notion of generalized determinant.

However, when R is not commutative, identity (3) presents two limitations that, 
in general, one would like to avoid. First of all, the numbers αk(A, v) depend on the 
choice of the cyclic vector v. This is unavoidable, since, while one has equivalence classes 
of eigenvalues, these do not preserve the eigenspaces. Secondly, in order to compute 
these elements, the formulae given in [27] require a priori knowledge on the eigenvalues 
of A. This is in sharp contrast with the commutative (say, complex) setting, where 
the characteristic polynomial can be computed directly from the entries of the matrix 
representing the map A, and it also contains the information concerning the eigenvalues 
of A.

Therefore, from the abstract point of view (3) is ideal, but it is not suitable for our 
purposes.

The Dieudonné determinant [23] (defined for general skew-fields and denoted by Ddet), 
introduced by Dieudonné himself in 1943, is, to this day, one of the most widely used 
alternatives of the classical determinant in noncommutative settings. The properties of 
such a determinant are close to those of the commutative ones. What is more, in the 
quaternionic case, the quasideterminant as defined in [28] coincides precisely with Ddet
(cf. [30, Section 3]).
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In relation to the Dieudonné determinant, Study [42] introduced a quaternionic de-
terminant, denoted by Sdet, which satisfies

DdetA = (SdetA)2, (4)

for a quaternionic matrix A. This notion was shown to correspond precisely with the 
determinant of the so-called companion matrix of A [4,46].

Another important alternative of the determinant is the so-called Berezinian (or 
also superdeterminant) of a matrix, denoted by Ber, see [6]. Such a concept is de-
fined for matrices with entries in graded algebras that can be decomposed into an 
even and an odd part (as, for instance, Clifford algebras, and in particular the quater-
nions). As the usual determinant, the Berezinian is a multiplicative functional, i.e., 
Ber(AB) = Ber(A) Ber(B), and furthermore, it satisfies a Liouville-type formula, which 
in the classical case reads as det(exp(A)) = exp(TrA). However, if we consider a complex 
matrix defined by square blocks as

A =
(
C1 0
0 C2

)
,

we have that Ber(A) = det(C1) det(C2)−1 (i.e., invertibility of C2 is required). This 
makes the Berezinian not suitable as a replacement of the determinant, for instance, 
when relating the latter with the eigenvalues of A. However, it has been proved very 
useful in problems of noncommutative geometry that are related to physics [19,45].

For further alternative definitions of determinants of quaternionic matrices see the 
survey [4].

All the above considerations imply that there is not a clear notion of what the Fred-
holm determinant of a quaternionic operator should be.

Similar limitations appear when trying to define a trace of a (finite-rank) operator T
over the quaternions. In complex Hilbert spaces H, one has

TrT =
n∑

k=1

〈Tek, ek〉 =
n∑

k=1

λk(T ),

for any orthonormal basis {ek} of H. As observed above, in the quaternionic case none 
of these two sums is well defined and, in principle, the former depends on the choice of 
{ek}. All in all, the concept of trace of a quaternionic operator has similar issues as the 
determinant: no functional Tr satisfying all axioms of the usual trace may exist. In fact, 
the existence of such a functional would imply the existence of a determinant.

Nevertheless, different extensions of the trace that serve different purposes may be 
found in the literature. For instance, the concept of “supertrace” is very useful in the 
context of noncommutative geometry [6] (in fact, the supertrace and the aforementioned 
Berezinian are connected in a similar way as the determinant and the trace are, through 
Liouville’s formula). It is clear, due to the relation between the supertrace and the 
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Berezinian, that such a concept is not suitable for our purposes. For the sake of com-
pleteness, we recall that there is another way to define the trace, due to Dixmier (see 
[24] and [10]), for operators not of trace class, but this is beyond the scope of this paper.

Before describing the approach we take in order to overcome the above mentioned 
difficulties, we observe the following: in view of (2), when speaking about (right-) eigen-
values of quaternionic operators, one should consider equivalence classes [λ]. It is well 
known that these classes of equivalence possess two invariant quantities, namely Re(λ)
and |Im(λ)| (or, alternatively, |λ|). In other words, if λ′, λ′′ ∈ [λ], then Re(λ′) = Re(λ′′)
and |Im(λ′)| = |Im(λ′′)|, i.e., |λ′| = |λ′′|.

In view of this observation, it seems natural to consider an approach based on the 
concept of S-spectrum, whose existence was suggested by the formulation of quaternionic 
quantum mechanics. Despite the fact that quaternionic quantum mechanics was proposed 
by G. Birkhoff and J. von Neumann in 1936 [7], the S-spectrum of a quaternionic linear 
operator T was introduced only in 2006, and is defined as

σS(T ) =
{
λ ∈ H : T 2 − 2Re(λ)T + |λ|2I is not invertible as a bounded operator

}
.

The discovery of S-spectrum and of its related S-functional calculus is well explained 
in the introduction of the book [14] with a complete list of the references and it is also 
described how hypercomplex analysis methods were used to identify the appropriate no-
tion of quaternionic spectrum. For the Clifford setting, see [17]. We mention that the 
spectral theory on the S-spectrum has several applications, for example, to fractional 
diffusion problems [13]. For further applications see [5] and the references therein. More-
over, using the S-spectrum it is possible to define several types of functional calculi, 
based on suitable integral transforms, for functions that include axially harmonic and 
axially polyanalytic functions (see [12] and [21] for the quaternionic setting), while using 
the poly slice monogenic Cauchy formulae, it was possible to define the polyanalytic 
functional calculus in [1].

The S-spectrum can be defined for operators over more general noncommutative struc-
tures, but in the quaternionic case, it has the particularity that the point S-spectrum 
coincides with the right spectrum (which is not true in more general settings). Further-
more, the S-spectrum can be described in terms of the aforementioned invariants of each 
equivalence class [λ], namely Re(λ) and |Im(λ)|. In other words, the S-spectrum contains 
the invariants from all the equivalence classes of eigenvalues [λ] of T . This makes the 
S-spectrum the appropriate tool for studying quaternionic operators.

The notion of S-spectrum has been successfully used in recent research by a num-
ber of authors, showing its potential as the counterpart of the usual spectrum in the 
noncommutative setting, cf., for instance, [2,3,15–18].

In order to study spectral properties of quaternionic operators, we develop a charac-
teristic equation that is connected to the S-spectrum. For practical purposes, such an 
equation corresponds (in finite dimensions) to the characteristic equation of the well-
known companion matrix of a quaternionic matrix [37,46].
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In the finite-dimensional (matrix) setting, the invariants we consider are those arising 
from the companion matrix. In particular, we introduce the first and second order traces 
of A ∈ Mn(H) (more generally, we introduce the k-th order trace TH,k(A), for all k ≥ 0), 
which are well defined and have the properties that

TH,1(A) = 2Re
( n∑

k=1

λk

)
, TH,2(A) =

n∑
�=1

|λ�|2 + 4
n−1∑
�=1

Re(λ�)
( n∑

m=�+1

Re(λm)
)
,

where λ1, . . . , λn are the standard eigenvalues of A (i.e., they are the unique represen-
tative in each equivalence class [λk] with the property that λk ∈ C and Imλk ≥ 0). 
We stress that the first-order trace does not involve all the invariants of the equiva-
lence classes of eigenvalues since only the real parts are involved. Thus, considering the 
second-order trace as a complement to the missing information in TH,1(A) is necessary.

We then relate the definition of these k-th order traces with finite-rank quaternionic 
operators T in Banach spaces. More importantly, we actually prove that these quantities 
do not depend of the choice of the basis in which the corresponding operator is rep-
resented, i.e., they represent invariant quantities associated with those operators. This 
allows us to define a quaternionic Fredholm determinant, and prove that

detH(I + T ) =
2n∑
k=0

TH,k(T ).

The above constructions ultimately allow us to prove a quaternionic Grothendieck-
Lidskii-type formula for trace-class operators in Hilbert spaces, and for 2/3-summable 
Fredholm operators in locally convex spaces (which reduce to 2/3-nuclear operators in 
Banach spaces),

TH,1(T ) = 2Re
( ∞∑

k=1

λk(T )
)
, and

detH(I + T ) =
∞∑
k=0

TH,k(T ) =
∞∏
k=1

(1 + 2Re(λk(T )) + |λk(T )|2),

where {λn(T )} are the standard eigenvalues of the corresponding operator T (compare 
with (1)).

The definition of a quaternionic trace by means of the usual trace of the associated 
companion matrix seems ad hoc, at a first glance. This is because it only involves the 
real parts of the inner products that form the corresponding operator matrix. However, 
as we show in Section 6.2, this definition of the trace is actually the natural one, as it is 
precisely the canonical linear form arising in the tensor product of a quaternionic vector 
space and its dual (similar to the classical trace, which is the canonical linear form in 
the tensor product of a vector space and its dual).
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The outline of the paper is as follows. In Section 2 we briefly introduce the needed ma-
terial concerning quaternionic vector spaces and tensor products of quaternionic spaces, 
as well as some useful facts about entire functions. Section 3 is devoted to introducing 
the invariants that we study in finite-dimensional quaternionic vector spaces, in partic-
ular the first and second order traces, and to finding the desired relations and formulas 
relating those invariants, the standard eigenvalues of quaternionic maps, and the maps 
themselves. In Section 4 we study the quaternionic Fredholm determinant of trace-class 
maps in Hilbert spaces and derive several results that are analogous to those in the 
classical case, as the analyticity of the determinant, or the Grothendieck-Lidskii for-
mula, among others. Although these results are of interest by themselves, they are also 
needed in the subsequent parts. Section 5 is devoted to briefly discussing a simplified 
Grothendieck-Lidskii formula in the quaternionic Banach spaces, which we study in full 
detail in Section 6, in the context of quaternionic locally convex spaces. To this end, we 
develop a parallel theory of tensor products of quaternionic spaces as in [32], which gives 
rise to the identification of the quaternionic trace as the canonical form in the tensor 
product (Subsection 6.2), as described above. After developing such a theory, we give a 
version of the Grothendieck-Lidskii formula for 2

3 -Fredholm operators in locally convex 
spaces. In the end, the reader may find some auxiliary results in the appendix.

It is worth mentioning that in the sequel we will work in the setting of quaternionic 
right/left vector spaces (i.e., with scalar multiplication from the right/left). Formally, 
these are right/left H-modules (we use this fact to construct their tensor products in 
Section 2). The “module” nomenclature is also standard in the literature, although in 
the context of this paper, it seems more natural to use the “space” terminology.

2. Preliminaries

2.1. Quaternionic vector spaces

We denote by H the algebra of quaternions [36], where the imaginary units are denoted 
by i and j (the product of these two gives the independent imaginary unit ij). The 
imaginary units satisfy i2 = j2 = (ij)2 = −1. Any element a ∈ H is therefore written as

a = a0 + iai + jaj + ijaij ,

where all coefficients are real-valued. The real and imaginary parts of a are defined, 
respectively, as

Re(a) = a0, Im(a) = iai + jaj + ijaij .

Conjugation is defined for quaternions similarly as in the complex case. More precisely,

a = a0 − iai − jaj − ijaij ,
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(note that in particular, i = −i, j = −j, and ij = j i = −ij).
The set a ∈ H such that Re(a) = 0 of the so-called purely imaginary quaternions 

contains the subset

S = {a ∈ H : Re(a) = 0, |Im(a)| = 1}.

An element a belongs to S if and only if a2 = −1. Any non real quaternion λ can be 
uniquely written as λ = Re(λ) + J |Im(λ)|, J ∈ S, whereas λ ∈ R can be written as 
λ = λ + J · 0 for any J ∈ S.

In what follows, unless otherwise explicitly stated, the considered quaternionic vec-
tor spaces E will be right vector spaces, i.e., the scalar multiplication by an element 
q ∈ H\{0} will be a right group action of H\{0} on E. The subspaces of E naturally in-
herit this structure. On the other hand, all the spaces will be assumed to have a R-linear 
structure (i.e., multiplication by real scalars is commutative). It is worth mentioning that 
there exist quaternionic vector spaces with both left and right H-linear structure. How-
ever, for our purpose, it is enough to require the more common right H-linear structure.

Finally, all the vector spaces of right-linear operators acting on E will be endowed 
with a R-linear structure (usually, such spaces are endowed with a left H-linear structure, 
but this already forces E to be left H-linear, which we do not require).

In finite dimensions, we denote by Hn the quaternionic vector space of n dimensions 
(note that Hn also has a natural left H-linear structure). Its dual space is the left H-
vector space Hn, where the scalar multiplication is given by a ∗ v = av (and av is 
understood as an element of Hn). The canonical dual pairing of Hn and Hn defines a 
left and right H-linear form 〈·, ·〉 satisfying

〈a ∗ v, w ∗ b〉 = a〈v, w〉b,

where the left H-linearity is with respect to the scalar multiplication in Hn (equivalently, 
we say that 〈·, ·〉 is a sesquilinear form in Hn). Such a sesquilinear form is actually the 
canonical inner product in Hn given by

〈w, v〉 =
n∑

�=1

w�v�,

where v = (v1, . . . , vn) and w = (w1, . . . , wn). As in the complex case, we have 〈v, v〉 ≥ 0
(with equality if and only if v = 0), and 〈v, w〉 = 〈w, v〉.

We call a basis {e1, . . . , en} of Hn (which exists; cf. [9, Ch. I]) orthonormal if 〈e�, em〉 =
δ�m for every �, m, where δ�m is the Kronecker delta.

2.2. Entire functions

We will need some useful facts about entire functions. We start with the following 
result on infinite products.
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Theorem 2.1. [8, Theorem 2.6.5] Let {νn} ⊂ C, and assume that 
{
νn

}
∈ �p for some 

0 < p < ∞. Then the infinite product

P (z) =
∞∏

n=1

(
1 − νnz

)
is an entire function of genus 0 and order p.

Note that the sequence {νn} consists precisely of inverses of the zeros of P (counting 
multiplicity).

The following result relates the order of an entire function and the decay of the 
coefficients of its representing power series.

Theorem 2.2. [8, Theorem 2.2.2] If f is an entire function with f(z) =
∑∞

n=0 anz
n, then 

f is of finite order if and only if

μ = lim sup
n

n logn
log

(
|an|−1

)
is finite. In this case the order of f is equal to μ.

We will need the following corollary of Theorem 2.2.

Corollary 2.3. Let {νn} ∈ �p, and assume that

f(z) =
∞∏

n=1

(
1 + νnz

)
=

∞∑
n=0

anz
n.

Then, the coefficients an satisfy the estimate |an| ≤ Cn−n
q for every q > p.

Proof. The expansion of f in the corresponding power series, together with Theorem 2.2, 
yield

lim sup
n

n logn
log

(
|an|−1

) ≤ p.

This implies that for every q > p, there exists n0 ∈ N such that for every n ≥ n0 one 
has

n log n
log

(
|an|−1

) ≤ q,

or equivalently,

|an| ≤ n−n
q . �
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2.3. Tensor products of H-vector spaces

Due to the noncommutative nature of quaternionic vector spaces, it is not possible to 
define their tensor products as in the classical case. We follow the definition from [35], 
which is given in the context of noncommutative modules, although we adapt it to the 
case of vector spaces (as mentioned above, right and left H-vector spaces can also be 
regarded as left and H-modules, respectively). Given right and left H-vector spaces E
and F , respectively, the tensor product E⊗F is defined as the free Abelian group whose 
generators are x ⊗ y, with x ∈ E and y ∈ F , satisfying the relations

(x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y,

x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2,

(xq) ⊗ y = x⊗ (qy), q ∈ H.

Under these relations, E ⊗ F satisfies the usual universal property of tensor products 
[35, Ch. 3]. Since we are assuming that E and F are R-linear vector spaces, we can (and 
we will) endow E ⊗ F with a R-linear structure via the relations

r(x⊗ y) = (rx) ⊗ y = x⊗ (ry) = (x⊗ y)r, r ∈ R.

Tensor products naturally describe right-linear maps in a right H-vector space E as 
follows: to a tensor x ⊗ x′ ∈ E ⊗ E′ corresponds the map (of rank 1)

v �→ x〈x′, v〉.

A balanced R-bilinear map from E × F into a set M (typically a vector space) is a 
map

Φ : E × F → M,

(x, y) �→ Φ(x, y),

satisfying the properties

(1) Φ(x1+x2, y) = Φ(x1, y) +Φ(x2, y) and Φ(x, y1+y2) = Φ(x, y1) +Φ(x, y2) (additivity),
(2) Φ(xq, y) = Φ(x, qy), q ∈ H (balance property),
(3) rΦ(x, y) = Φ(rx, y) = Φ(x, ry) = Φ(x, y)r, r ∈ R (R-bilinearity).

Note that there is a canonical balanced R-bilinear map E × F → E ⊗ F defined by 
(x, y) �→ x ⊗ y.

A balanced R-bilinear map on E×F with M = R will be called a balanced R-bilinear 
form.
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In the classical case, the trace is the linear form on E ⊗ E′ induced by the canonical 
bilinear form on E × E′. We can characterize in a similar manner the trace in E ⊗ E′

(where the dual E′ naturally carries a left H-linear structure). As many structures are 
built on the real part of a quaternion (for example, the real inner product is the real 
part of a quaternionic bilinear form), we show that this is also the case here.

Theorem 2.4. Any balanced R-bilinear form Φ : E×E′ → R is the real part of a left and 
right H-linear form Ψ : E′ × E → H.

Proof. Given Φ, define

Ψ(x′, x) = Φ(x, x′) − Φ(xi, x′)i− Φ(xj, x′)j − Φ(xij, x′)ij.

Since Φ takes values in R, it is clear that under this definition, Φ(x, x′) = Re(Ψ(x′, x)). 
Further, Ψ is additive in both arguments, since Φ is. Let us now check left and right 
linearity. For q = q0 + q1i + q2j + q3ij ∈ H, we have, by the additivity and R-bilinearity 
of Φ,

Ψ(x′, xq) = Φ(xq, x′) − Φ(xqi, x′)i− Φ(xqj, x′)j − Φ(xqij, x′)ij

= Φ(x, x′)q0 + Φ(xi, x′)q1 + Φ(xj, x′)q2 + Φ(xij, x′)q3
− Φ(xi, x′)q0i + Φ(x, x′)q1i + Φ(xij, x′)q2i− Φ(xj, x′)q3i

− Φ(xj, x′)q0j − Φ(xij, x′)q1j + Φ(x, x′)q2j + Φ(xi, x′)q3j

− Φ(xij, x′)q0ij + Φ(xj, x′)q1ij − Φ(xi, x′)q2ij + Φ(x, x′)q3ij

= Φ(x, x′)q0 + Φ(x, x′)q1i + Φ(x, x′)q2j + Φ(x, x′)q3ij

+ Φ(xi, x′)q1 − Φ(xi, x′)q0i + Φ(xi, x′)q3j − Φ(xi, x′)q2ij

+ Φ(xj, x′)q2 − Φ(xj, x′)q3i− Φ(xj, x′)q0j + Φ(xj, x′)q1ij

+ Φ(xij, x′)q3 + Φ(xij, x′)q2i− Φ(xij, x′)q1j − Φ(xij, x′)q0ij

= Φ(x, x′)q − Φ(xi, x′)iq − Φ(xj, x′)jq − Φ(xij, x′)ijq = Ψ(x′, x)q,

i.e., Ψ is right H-linear. As for left-linearity, we use the balance property of Φ and obtain

Ψ(qx′, x) = Φ(x, qx′) − Φ(x, iqx′)i− Φ(x, jqx′)j − Φ(x, ijqx′)ij

= Φ(x, x′)q − Φ(xi, x′)qi− Φ(xj, x′)qj − Φ(xij, x′)qij = qΨ(x′, x),

where the precise details are analogous to those above. �
In what follows, for a quaternionic vector space E, we denote by L(E) the vector 

space of continuous right-linear operators acting on E (recall that we endow L(E) with 
a R-linear structure).
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3. Finite-rank operators in quaternionic vector spaces

As is natural, in order to study finite-rank operators in arbitrary quaternionic vector 
spaces, it is enough to restrict our attention to quaternionic matrices. Indeed, if A is a 
finite-rank operator (of rank n) on a quaternionic vector space X, with representation

A =
n∑

k=1

xk ⊗ x′
k, xk ∈ X, x′

k = A∗xk ∈ X ′, (5)

then the matrix corresponding to the linear map A is⎛⎜⎜⎝
〈x′

1, x1〉 〈x′
1, x2〉 · · · 〈x′

1, xn〉
〈x′

2, x1〉 〈x′
2, x2〉 · · · 〈x′

2, xn〉
...

...
. . .

...
〈x′

n, x1〉 〈x′
n, x2〉 · · · 〈x′

n, xn〉

⎞⎟⎟⎠ ∈ Mn(H).

We emphasize that the vectors xk in the above representation are such that {x1, . . . , xn}
form a basis for ImA.

Before proceeding further, let us mention some basic facts about complex linear maps 
that will be useful later. Let B ∈ Mn(C). The characteristic polynomial of B is

PB(z) = det(Iz −B) =
n∑

k=0

(−1)kckzk,

where

ck = Tr
(∧n−k

B
)
,

and 
∧� denotes the �-th exterior product (see, e.g., [30, Ch. 1, Theorem 7.1]), which 

satisfies

Tr
(∧k

B
)

= 1
k!

∣∣∣∣∣∣∣∣∣∣

TrB k − 1 0 · · · 0
Tr(B2) TrB k − 2 · · · 0

...
...

. . . . . .
...

Tr(Bk−1) Tr(Bk−2) · · · TrB 1
Tr(Bk) Tr(Bk−1) · · · Tr(B2) Tr(B)

∣∣∣∣∣∣∣∣∣∣
. (6)

On the other hand, if we write B in the form

B =
n∑

k=1

xk ⊗ x′
k,

then, as shown in [31, Ch. I], we have
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Tr
(∧k

B
)

= 1
k!

n∑
i1,...,ik=1

det(〈x′
iα , xiβ 〉)1≤α,β≤n. (7)

3.1. Companion matrices and associated invariants

Let n ≥ 1 and A ∈ Mn(H). We are interested in finding invariant structures such as 
quaternionic versions of the trace and the determinant that contain information of A (or 
more specifically, of its eigenvalues), similar to the usual characteristic polynomial for 
complex-valued matrices.

As already mentioned in the Introduction, several alternative definitions for these 
invariants already exist in the literature, although they usually do not possess desirable 
properties. For instance, the formal extension of the classical determinant (see, e.g., [46, 
Section 8]) does not guarantee the invertibility of a quaternionic matrix A whenever 
detA �= 0 (which already indicates that a characteristic polynomial defined in terms of 
such a determinant will not have desirable properties either). Thus, it is necessary to 
define these invariant structures differently.

Given A ∈ Mn(H), we follow [37,46] in decomposing A = A1 + A2j, where A1, A2 ∈
Mn(C), and defining

χA :=
(

A1 A2
−A2 A1

)
∈ M2n(C),

as the companion matrix of A. Such a matrix captures the noncommutativity nature, as 
well as essential information of A. Indeed, as it is shown in [46, Theorem 8.1], the matrix 
A is invertible if and only if detχA �= 0, and the (quaternionic) eigenvalues of A can be 
obtained through the characteristic polynomial of χA,

PχA
(z) = det(I2nz − χA), z ∈ C.

More precisely, if λ ∈ H is a right eigenvalue of A, then so is s−1λs for any s ∈ H\{0}, 
since, as it is mentioned in (2),

A(vs) = vλs = (vs)(s−1λs).

Thus, as we shall mention later in Remark 4.2, the right-eigenspace associated with λ is 
not well defined if λ �∈ R. If one selects an imaginary unit J ∈ S, by choosing s above 
appropriately, one may see that to every right eigenvalue (class) λ of A, correspond 
two conjugated eigenvalues Re(λ) ± J |Im(λ)|. Thus the class [λ] can be identified with 
two complex conjugate eigenvalues (say, λ+ and λ− = λ+, with positive and negative 
imaginary parts, respectively). In particular, the classes of equivalence of the eigenvalues 
λ of A have the quantities Reλ and |λ| invariant. This pair of complex numbers λ+ and 
λ− are precisely the eigenvalues of χA [46, Corollary 5.1 and Theorem 8.1]. The case 
λ ∈ R obviously fits this description.
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Before proceeding further, we recall that the aforementioned Study determinant Sdet
of a quaternionic matrix A corresponds precisely to the usual determinant of the compan-
ion matrix χA [4]. Thus, by (4), the latter is also related to the Dieudonné determinant, 
and in particular,

detχA = SdetA = (DdetA)2.

Since χA is a complex matrix, its invariants are well described by the characteristic 
polynomial PχA

(z). As already mentioned, the complex eigenvalues of A are precisely 
the eigenvalues of χA. We may go one step further and associate to A some invariant 
quantities that actually come from the matrix χA. Before doing so, one more remark is in 
order. Using (6) and the property that χAB = χAχB for A, B ∈ Mn(H), the coefficients 
of the characteristic polynomial PχA

take the form

Tr
(∧k

χA

)
= 1

k!

∣∣∣∣∣∣∣∣∣∣

TrχA k − 1 0 · · · 0
TrχA2 TrχA k − 2 · · · 0

...
...

. . . . . .
...

TrχAk−1 TrχAk−2 · · · TrχA 1
TrχAk TrχAk−1 · · · TrχA2 TrχA

∣∣∣∣∣∣∣∣∣∣
.

Definition 3.1. Let A =
(
a�m

)n
�,m=1 ∈ Mn(H). We define the quaternionic (first-order) 

trace of A as

TH,1(A) := TrχA = 2Re
( n∑

�=1

a��

)

Further, for k ≥ 2, we define the k-th order trace of A as

TH,k(A) := 1
k!

∣∣∣∣∣∣∣∣∣∣

TH,1(A) k − 1 0 · · · 0
TH,1(A2) TH,1(A) k − 2 · · · 0

...
...

. . . . . .
...

TH,1(Ak−1) TH,1(Ak−2) · · · TH,1(A) 1
TH,1(Ak) TH,1(Ak−1) · · · TH,1(A2) TH,1(A)

∣∣∣∣∣∣∣∣∣∣
,

and the 0-order trace as TH,0(A) = 1. The quaternionic (Fredholm) determinant of A is 
then defined in terms of TH,k(A), k ≥ 0, as

detH(I − zA) :=
2n∑
k=0

(−1)kTH,k(A)zk.

We note that in the above definition one has TH,k(A) = 0 for every k > 2n. This 
definition of the trace of a quaternionic matrix has been considered in previous works, 
see, e.g., [25].
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Remark 3.2. Since the first-order trace TH,1(A) is defined in terms of the companion 
matrix χA, TH,k(A) and detH(I − zA) are also naturally related to χA (since both of 
these quantities are defined in terms of TH,1). For the k-th order traces, we have

TH,k(A) = Tr
(∧k

χA

)
,

whilst for the determinant, there holds

detH(I − zA) = det(I2n − zχA).

We emphasize that, although TH,1(A) is defined as TrχA, the quaternionic Fredholm 
determinant detH(I − zA) is not defined by just the determinant of the corresponding 
companion matrix, namely detχI−zA. Unfortunately, such a simple definition would 
lead to a characteristic polynomial that is not an entire function, since detχI−zA is a 
polynomial both in z and z. However, this is not the case if we consider the alternative 
definition for the Fredholm determinant introduced in Definition 3.1 (which corresponds 
precisely to the associated characteristic polynomial of χA, P̃χA

). Such an associated 
characteristic polynomial vanishes at the inverses of the eigenvalues of χA, and can 
easily be related to PχA

as follows:

P̃χA
(z) = det(I2n − zχA) =

2n∑
k=0

(−1)k Tr
(∧n−k(zχA)

)
=

2n∑
k=0

(−1)k Tr
(∧n−k

χA

)
zn−k

=
2n∑
k=0

(−1)n−k Tr
(∧k

χA

)
zk =

2n∑
k=0

(−1)n−kcn−kz
k,

where ck are the coefficients of PχA
(z), namely PχA

(z) =
∑2n

k=0(−1)kzkck. Summarizing, 
by definition, we have

P̃χA
(z) = detH(I − zA) =

2n∑
k=0

(−1)kTH,k(A)zk.

We have the following properties relating the invariants in Definition 3.1 and the 
(standard) eigenvalues of A (cf. [46]).

Proposition 3.3. Let A ∈ Mn(H). Let λ1, . . . , λn be the standard eigenvalues of A. Then,

TH,1(A) = 2Re
( n∑

k=1

λk

)
.

Furthermore, the quaternionic Fredholm determinant P̃χA
(z) = detH(I − zA) satisfies 

the identity
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detH(I − zA) =
n∏

k=1

(
1 − 2Re(λk)z + |λk|2z2). (8)

Remark 3.4. In the classical case, the trace may be described as the sum of all eigenvalues 
of a given matrix, thus giving complete information about such eigenvalues. However, in 
the quaternionic setting, the first-order trace only gives partial information of the eigen-
values of the corresponding matrix, namely of their real part (thus missing information 
of the imaginary part, or equivalently, of the modulus). The second-order trace contains 
the information concerning the moduli of the eigenvalues. More precisely, we have the 
following.

Proposition 3.5. Let A ∈ Mn(H) with n ≥ 2, and let λ1, . . . , λn be the standard eigen-
values of A. We have

TH,2(A) =
n∑

k=1

|λk|2 + 4
n−1∑
k=1

n∑
m=k+1

Re(λk)Re(λm).

Proof. This follows immediately by inspecting the coefficient of the quadratic term in 
the right side of (8), which is precisely TH,2(A). �

Since the second-order trace TH,2(A) contains the missing information in the first-
order one (TH,1(A)), it is important to express TH,2(A) explicitly in terms of the entries 
of A.

Proposition 3.6. Let A =
(
a�m

)n
�,m=1 ∈ Mn(H). Then

TH,2(A) =
n∑

�=1

|a��|2 + 4
n−1∑
�=1

n∑
m=�+1

Re(a��)Re(amm) − 2
n−1∑
�=1

n∑
m=�+1

Re(am�a�m).

In order to prove this identity, we first need the following lemma.

Lemma 3.7. Let B = {b�m}n�,m=1 ∈ Mn(C), with n ≥ 2. The coefficient of the quadratic 

term of the characteristic polynomial P̃B is

n−1∑
�=1

n∑
m=�+1

b��bmm −
n−1∑
�=1

n∑
m=�+1

b�mbm�.

Proof. We proceed by induction on n. If n = 2, the statement is obviously true. Assume 
that the claim is true for some n ∈ N. Denote, for any 1 ≤ p ≤ n + 1, Bp = {b�m}p�,m=1, 
and by β�m the (m, �)-th minor of the matrix In+1 − Bn+1z. We also note that for 
any matrix C ∈ Mn(C), the constant term in det(I − Cz) equals 1. By the induction 
hypothesis,
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det(In+1 − zBn+1) = (1 − bn+1,n+1z)βn+1,n+1 − z
n∑

�=1

(−1)�+n+1b�,n+1β�,n+1

= (1 − zbn+1,n+1) det(In − zBn) − z

n∑
�=1

(−1)�+n+1b�,n+1β�,n+1

=
( n−1∑

�=1

n∑
m=�+1

b��bmm −
n−1∑
�=1

n∑
m=�+1

b�mbm� + bn+1,n+1

n∑
�=1

b��

)
z2

− z
n+1∑
�=1

b�� + Q(z) − z
n∑

�=1

(−1)�+n+1b�,n+1β�,n+1

=
( n∑

�=1

n+1∑
m=�+1

b��bmm −
n−1∑
�=1

n∑
m=�+1

b�mbm�

)
z2 − z

n+1∑
�=1

b�� + Q(z)

− z
n∑

�=1

(−1)�+n+1b�,n+1β�,n+1, (9)

where Q is a polynomial without linear nor quadratic terms. Note that

β�,n+1 = −(−1)�+nzbn+1,� det(In−1 − zB(�, n)) + zR(z),

where B(�, n) is a submatrix of B depending on � and n, and R(z) = R(n, �, z) is a 
polynomial with constant term equal to zero. Since the constant term of det(In−1 −
zB(�, n)) is equal to 1, we deduce that the linear term in the minor β�,n+1 is precisely

−(−1)�+nzbn+1,�.

Thus, the coefficient of the quadratic term in the expression

−z
n∑

�=1

(−1)�+n+1b�,n+1β�,n+1

is equal to

−
n∑

�=1

b�,n+1bn+1,�,

which implies that the coefficient of the quadratic term in (9) equals

n∑
�=1

n+1∑
m=�+1

b��bmm −
n−1∑
�=1

n∑
m=�+1

b�mbm� −
n∑

�=1

b�,n+1bn+1,�

=
n∑

�=1

n+1∑
m=�+1

b��bmm −
n∑

�=1

n+1∑
m=�+1

b�mbm�,

as desired. �
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Proof of Proposition 3.6. By the definition of χA = {ξ�m}2n
�,m=1 ∈ M2n(C) and 

Lemma 3.7, the coefficient of the quadratic term of P̃χA
(z) = det(I2n − χAz) is

2n−1∑
�=1

2n∑
m=�+1

ξ��ξmm −
2n−1∑
�=1

2n∑
m=�+1

ξ�mξm� (10)

We examine each of these sums separately. For the first sum, noting that ξ�� = ξ�+n,�+n

for 1 ≤ � ≤ n, we obtain

2n−1∑
�=1

2n∑
m=�+1

ξ��ξmm =
n−1∑
�=1

n∑
m=�+1

ξ��ξmm +
n∑

�=1

2n∑
m=n+1

ξ��ξmm +
2n−1∑
�=n

2n∑
m=�+1

ξ��ξmm

=
n−1∑
�=1

n∑
m=�+1

ξ��ξmm +
n∑

�=1

n∑
m=1

ξ��ξmm +
n−1∑
�=1

n∑
m=�+1

ξ��ξmm

= 2Re
( n−1∑

�=1

n∑
m=�+1

ξ��ξmm

)
+

n∑
�=1

n∑
m=1

ξ��ξmm.

Since

n∑
�=1

n∑
m=1

ξ��ξmm =
n∑

�=1

|ξ��|2 +
n∑

�=1

n∑
m=1
m�=�

ξ��ξmm =
n∑

�=1

|ξ��|2 + 2Re
( n−1∑

�=1

n∑
m=�+1

ξ��ξmm

)
,

we have

2n−1∑
�=1

2n∑
m=�+1

ξ��ξmm =
n∑

�=1

|ξ��|2 + 2Re
( n−1∑

�=1

n∑
m=�+1

ξ��ξmm

)
+ 2Re

( n−1∑
�=1

n∑
m=�+1

ξ��ξmm

)

=
n∑

�=1

|ξ��|2 + 4
n−1∑
�=1

n∑
m=�+1

Re(ξ��)Re(ξmm).

For the second sum in (10), we can write

2n−1∑
�=1

2n∑
m=�+1

ξ�mξm� =
n∑

�=1

2n∑
m=�+1

ξ�mξm� +
2n−1∑
�=n+1

2n∑
m=�+1

ξ�mξm�

=
n−1∑
�=1

n∑
m=�+1

ξ�mξm� +
n∑

�=1

2n∑
m=n+1

ξ�mξm� +
2n−1∑
�=n+1

2n∑
m=�+1

ξ�mξm�.

By the construction of the matrix χA, one has ξ�m = ξ�+n,m+n for every 1 ≤ �, m ≤ n. 
Thus,



P. Cerejeiras et al. / Advances in Mathematics 442 (2024) 109558 19
n−1∑
�=1

n∑
m=�+1

ξ�mξm� +
2n−1∑
�=n+1

2n∑
m=�+1

ξ�mξm� = 2Re
( n−1∑

�=1

n∑
m=�+1

ξ�mξm�

)
.

On the other hand, since for 1 ≤ �, m ≤ n there holds ξ�,m+n = −ξ�+n,m, it follows that

n∑
�=1

2n∑
m=n+1

ξ�mξm� =
n∑

�=1

n∑
m=1

ξ�,m+nξm+n,� = −
n∑

�=1

n∑
m=1

ξ�+n,mξm+n,�

= −
n∑

�=1

|ξ�+n,�|2 −
n∑

�=1

n∑
m=1
m�=�

ξ�+n,mξm+n,�

= −
n∑

�=1

|ξ�+n,�|2 − 2Re
( n−1∑

�=1

n∑
m=�+1

ξ�+n,mξm+n,�

)
.

Collecting all the above identities, we finally obtain that the coefficient of the quadratic 
term of det(I2n − χAz) is

n∑
�=1

|ξ��|2 + 4
n−1∑
�=1

n∑
m=�+1

Re(ξ��)Re(ξmm) −
(

2Re
( n−1∑

�=1

n∑
m=�+1

ξ�mξm�

)

−
n∑

�=1

|ξ�+n,�|2 − 2Re
( n−1∑

�=1

n∑
m=�+1

ξ�+n,mξm+n,�

))
.

To conclude, we rewrite the last expression explicitly in terms of the elements of the 
quaternionic matrix A. For each element a�m ∈ H of the matrix A, write

a�m = a
(0)
�m + ia

(i)
�m + ja

(j)
�m + ija

(ij)
�m ,

with each of the coefficients being a real number. We note that, by the definition of χA,

Re(ξ�mξm�) = a
(0)
m�a

(0)
�m − a

(i)
�ma

(i)
m�, Re(ξ�+n,mξm+n,�) = a

(j)
�ma

(j)
m� + a

(ij)
�m a

(ij)
m� ,

for any 1 ≤ m, � ≤ n. Thus,

2Re
( n−1∑

�=1

n∑
m=�+1

ξ�mξm�

)
− 2Re

( n−1∑
�=1

n∑
m=�+1

ξ�+n,mξm+n,�

)

= 2
n−1∑
�=1

n∑
m=�+1

a
(0)
m�a

(0)
�m − a

(i)
�ma

(i)
m� − a

(j)
�ma

(j)
m� − a

(ij)
�m a

(ij)
m� = 2

n−1∑
�=1

n∑
m=�+1

Re(am�a�m).

On the other hand, if 1 ≤ � ≤ n, we have Re ξ�� = Re a��. Finally, noting that for 
1 ≤ � ≤ n there holds
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|a��|2 = |ξ��|2 + |ξ�+n,�|2,

we finally obtain

TH,2(A) =
n∑

�=1

|a��|2 + 4
n−1∑
�=1

n∑
m=�+1

Re(a��)Re(amm) − 2
n−1∑
�=1

n∑
m=�+1

Re(am�a�m). �

We conclude this subsection by giving a simple example and computing TH,1(A) and 
TH,2(A) directly from the matrix entries.

Example 3.8. Consider the matrix

A =
(

3 + i 0
0 ij

)
.

The standard eigenvalues of A are 3 + i and i. On the other hand, the characteristic 
polynomial of A is

P̃χA
(z) = det(I − zχA) = 1 − 6z + 11z2 − 6z3 + 10z4.

We can observe that, indeed, the linear term of such a polynomial carries the coefficient 
−2Re(3 + i + ij) = −6 and TH,1(A) = 6, whilst the quadratic term is

TH,2(A) = |3 + i|2 + |ij|2 + 4Re(3 + i)Re(ij) − 2Re((3 + i)(ij)) = 11.

3.2. Representations of the trace and determinant of a quaternionic finite-rank operator

Given the finite-rank operator F from (5), we aim to obtain representations for the 
quaternionic traces TH,k(F ) and the Fredholm determinant detH(I − zF ) in terms of 
xm and x′

m, m = 1, . . . , n. These representations may be seen as the noncommutative 
analog of (7). Obtaining such representations will allow us to extend the definitions of 
the quaternionic traces and determinant to the infinite-rank case, for operators of the 
form

T =
∞∑

m=1
xm ⊗ x′

m =
∞∑

m=1
xm〈x′

m, ·〉.

We start by showing the commutativity property of the trace.

Proposition 3.9. Let X be a quaternionic vector space and F, G : X → X be finite-rank 
linear operators (of the same rank) of the form

F =
n∑

xm ⊗ x′
m, G =

n∑
y� ⊗ y′�, xm, y� ∈ X, x′

m = F ∗xm, y′� = G∗y� ∈ X ′.

m=1 �=1
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Then

TH,1(FG) = TH,1(GF ) =
n∑

�=1

n∑
m=1

2Re(〈y′�, xm〉〈x′
m, y�〉).

Proof. Note that

FG =
n∑

�=1

( n∑
m=1

xm〈x′
m, y�〉

)
⊗ y′�, GF =

n∑
m=1

( n∑
�=1

y�〈y′�, xm〉
)
⊗ x′

m,

and hence

TH,1(FG) =
n∑

�=1

n∑
m=1

2Re(〈y′�, xm〉〈x′
m, y�〉) =

n∑
m=1

n∑
�=1

2Re(〈x′
m, y�〉〈y′�, xm〉) = TH,1(GF ),

where we have used that Re(ab) = Re(ba) for any a, b ∈ H. �
Corollary 3.10. Let X be a quaternionic vector space and F : X → X be a finite-rank 
linear operator of the form

F =
n∑

m=1
xm ⊗ x′

m, xm ∈ X, x′
m = F ∗xm ∈ X ′.

Then,

TH,1(F ) = 2
n∑

m=1
Re(〈x′

m, xm〉),

and for k ≥ 2,

TH,1(F k) = 2
n∑

m1=1
· · ·

n∑
mk=1

Re(〈x′
m1

, xm2〉〈x′
m2

, xm3〉〈x′
m3

, xm4〉

· · · 〈x′
mk−1

, xmk
〉〈x′

mk
, xm1〉).

Furthermore, for k ≥ 1, TH,1(F k) does not depend on the choice of the vectors xm, x′
m.

Remark 3.11. In view of Proposition 3.10, we observe that the identity

detH(I − zF ) =
2n∑
k=0

(−1)kTH,k(F )zk

does not depend on the choice of the vectors xm and x′
m defining F , since TH,k(F ) can 

be written in terms of the first-order traces TH,1(F �), � = 1, . . . , k.
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Proof of Proposition 3.10. Recall that given F in such a form, the matrix representing 
the linear map is

AF =

⎛⎜⎜⎝
〈x′

1, x1〉 〈x′
1, x2〉 · · · 〈x′

1, xn〉
〈x′

2, x1〉 〈x′
2, x2〉 · · · 〈x′

2, xn〉
...

...
. . .

...
〈x′

n, x1〉 〈x′
n, x2〉 · · · 〈x′

n, xn〉

⎞⎟⎟⎠ ,

in which case,

TH,1(F ) = TH,1(AF ) = 2
n∑

m=1
Re(〈x′

m, xm〉).

The independence with respect to the choice of the basis follows from Proposition 3.3. 
In order to prove the identity concerning TH,1(F k), k ≥ 2, we note that 〈x′

m, xm〉 =
〈xm, Fxm〉. Using this equality with F k in place of F , together with the above identity, 
we get

TH,1(F k) = 2
n∑

m=1
Re(〈xm, F kxm〉). (11)

Now, by the additivity and right-linearity of 〈·, ·〉, we have

n∑
m=1

〈xm, F kxm〉 =
n∑

m=1
〈x′

m, F k−1xm〉 =
n∑

m1=1

〈
x′
m1

,
n∑

m2=1
xm2〈xm2 , F

k−1xm1〉
〉

=
n∑

m1=1

n∑
m2=1

〈x′
m1

, xm2〉〈xm2 , F
k−1xm1〉

=
n∑

m1=1

n∑
m2=1

〈x′
m1

, xm2〉〈x′
m2

, F k−2xm1〉

=
n∑

m1=1

n∑
m2=1

〈x′
m1

, xm2〉
〈
x′
m2

,
n∑

m3=1
xm3〈xm3 , F

k−2xm1〉
〉

=
n∑

m1=1

n∑
m2=1

n∑
m3=1

〈x′
m1

, xm2〉〈x′
m2

, xm3〉〈x′
m3

, F k−3xm1〉 = · · ·

=
n∑

m1=1
· · ·

n∑
mk=1

〈x′
m1

, xm2〉〈x′
m2

, xm3〉〈x′
m3

, xm4〉

· · · 〈x′
mk−1

, xmk
〉〈xmk

, Fxm1〉

=
n∑

· · ·
n∑

〈x′
m1

, xm2〉〈x′
m2

, xm3〉〈x′
m3

, xm4〉

m1=1 mk=1
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· · · 〈x′
mk−1

, xmk
〉〈x′

mk
, xm1〉.

Substituting this equality on the right side of (11) yields the desired result. �
For convenience, we relate the obtained representations for the quaternionic trace and 

determinant of F with its eigenvalues.

Corollary 3.12. Under the hypotheses of Proposition 3.10, if λ1, . . . , λn denote the stan-
dard eigenvalues of F , we have

TH,1(F ) = 2Re
( n∑

k=1

λk

)
,

TH,2(F ) =
n∑

k=1

|λk|2 + 4
n−1∑
k=1

n∑
�=k+1

Re(λk)Re(λ�),

and

detH(I − zF ) =
2n∑
k=0

(−1)kTH,k(F )zk =
n∏

k=1

(
1 − 2Re(λk)z + |λk|2z2).

The proof is based on the fact that if AF denotes the matrix representation of F , then 
the eigenvalues of χAF

are λ1, λ1, . . . , λk, λk. The corresponding identities then follow 
from Propositions 3.3 and 3.5.

4. Singular value decompositions and trace-class operators

4.1. Hilbert spaces over the quaternions

Let H be a separable quaternionic Hilbert space, and let T be a compact operator 
acting on H. As it is well known, T is compact if and only if T ∗T is compact and if and 
only if |T | = (T ∗T )1/2 is compact.

The following proposition follows, since it is true in the normal case as a standard 
consequence of the spectral theorem.

Proposition 4.1. Let T ∈ L(H) be a self-adjoint, compact operator. Then, there exists a 
sequence of real numbers {λn} (tending to 0) and an orthonormal set {en} in H such 
that

Tx =
∞∑

n=1
λnen〈en, x〉, (12)

for all x ∈ H.



24 P. Cerejeiras et al. / Advances in Mathematics 442 (2024) 109558
Remark 4.2. In general, for equivalence classes of (right) eigenvalues of a quaternionic 
linear operator, the notion of (right) eigenspace is not invariant. This is a consequence 
of the fact that if v is an eigenvector related to λ, for any rotation s ∈ H, the vector 
vs is not an eigenvector associated with λ but only with the eigenvalue s−1λs, which 
belongs to the same equivalence class. To get an invariant notion for a given equivalence 
class [λ], one has to consider the pseudo-resolvent operator Qλ(T ) and the equation 
Qλ(T )v = 0 instead of the right eigenvector equation [14]. This results in a subspace, 
called S-eigenspace, which is invariant for the equivalent class. In the case of a self-
adjoint operator T where the eigenvalues are real, the eigenvectors form a vector space 
which coincides with the S-eigenspace. Similarly, an equation of the form (12) is not 
independent of the choice of the basis, in general, although it is if the eigenvalues are 
real.

When the compact operator T is not self-adjoint, then one can consider its polar 
decomposition (see [43] and the recent paper [15] for the more general Clifford module 
case). More precisely, one has

T = V |T |, |T | = (T ∗T )1/2,

where V is a partial isometry, i.e., ‖V x‖ = ‖x‖ for all x ∈ ker(T )⊥ and V x = 0 for all 
x ∈ ker(T ). Note also that V satisfies |T | = V ∗T and V , T are uniquely determined.

The operator |T | is positive. Thus, it is self-adjoint, and, in particular, we have

|T |x =
∞∑

n=1
μnen〈en, x〉 (13)

where the sequence {μn} consists of real nonnegative numbers. As it is well known, the 
numbers μn are precisely the singular values of T , i.e.,

μn = μn(T ) = inf
{
‖T − Tn‖ : Tn is a finite-rank operator with rank Tn < n

}
.

Letting σn = V en, we have that {σn} is an orthonormal set. Moreover, using (13) and 
the right-linearity of V we have:

Tx = V |T |x = V

( ∞∑
n=1

μnen〈en, x〉
)

=
∞∑

n=1
V (μnen〈en, x〉) =

∞∑
n=1

μnσn〈en, x〉,

and the latter is called the canonical decomposition the compact operator T .

Definition 4.3. The space of p-Schatten-von Neumann class operators Sp, 0 < p < ∞, 
consists of those compact operators T ∈ L(H) whose sequence of singular values is in 
�p. For p = 1 we say that S1 is the trace class and for p = 2, we say that S2 is the class 
of Hilbert-Schmidt operators.
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We have the analog of a classical result due to Weyl on estimates of eigenvalues:

Theorem 4.4. Let 1 ≤ p < ∞ and T ∈ Sp acting on a quaternionic Hilbert space H. If 
{λk} is the sequence of standard eigenvalues of T , we have

‖{λk}‖�p ≤ ‖T‖p.

Proof. This result is proved in the same spirit as its commutative counterpart (see, e.g. 
[41, Theorem 2.3]). Instead of giving the full proof, we outline the main steps (with proper 
references), and while doing so, we point out the differences between the commutative 
and noncommutative cases.

First, we note that for any orthonormal sets {fn}, {gn} ⊂ H, we have

∞∑
n=1

|〈fn, T gn〉|p ≤ ‖T‖pp, (14)

(this is a consequence of Lemmas 2.1 and 2.2 in [41], which are valid also in the quater-
nionic case). We now use the fact that a Schur decomposition for the given operator T
exists. More precisely, let us denote by ET the smallest closed linear manifold of H con-
taining all eigenvectors and generalized eigenvectors of T corresponding to each nonzero 
standard eigenvalue (in general eigenspaces of equivalence classes of quaternionic eigen-
values are not well defined, as emphasized in Remark 4.2. However, these eigenspaces are 
well defined if in each equivalence class of eigenvalues a representative is chosen; in this 
case such a representative is the standard eigenvalue). Then, there exists an orthonormal 
basis {ϕn} of ET such that, for every k ∈ N,

Tϕk =
k∑

�=1

a�kϕ�, where a�� = λ�.

In other words, when restricted to ET , the operator T (written in terms of the basis 
{ϕn}) is a triangular operator with the standard eigenvalues in the diagonal. Since {ϕn}
is an orthonormal set, we have, for every k,

〈ϕk, Tϕk〉 = akk = λk,

and therefore, applying (14) with {fn} = {gn} = {ϕn}, we obtain

∞∑
k=1

|λk|p ≤ ‖T‖pp,

as desired. �
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4.2. Trace-class operators and the Grothendieck-Lidskii formula

We now derive some properties for quaternionic trace-class operators (that are well-
known in the commutative case), which eventually allow us to obtain a quaternionic 
Grothendieck-Lidskii formula. We start by proving the independence of the trace with 
respect to any orthonormal basis.

Proposition 4.5. Let H be a quaternionic Hilbert space and T : H → H be a trace-class 
operator with representation

T =
∞∑

m=1
xm〈x′

m, ·〉,

where {xm} is an arbitrary orthonormal basis of H and x′
m = T ∗xm. Then, the quater-

nionic trace

TH,1(T ) = 2Re
( ∞∑

m=1
〈x′

m, xm〉
)

does not depend on the choice of the basis {xm}.

Proof. Consider another orthonormal basis {yk} of H. For any � ≥ 1,

Ty� =
∞∑

m=1
Txm〈xm, y�〉.

Using the additivity and the right-linearity of 〈·, ·〉, together with the above identity, we 
get

∞∑
�=1

〈y′�, y�〉 =
∞∑
�=1

〈y�, T y�〉 =
∞∑
�=1

〈
y�,

∞∑
m=1

Txm〈xm, y�〉
〉

=
∞∑
�=1

∞∑
m=1

〈y�, Txm〉〈xm, y�〉,

and the last series converges absolutely, since

∞∑
�=1

∞∑
m=1

|〈y�, Txm〉〈xm, y�〉| ≤
∞∑
�=1

∞∑
m=1

|〈y�, Txm〉|‖xm‖H‖y�‖H =
∞∑

m=1

∞∑
�=1

|〈y�, Txm〉|

=
∞∑

m=1
‖Txm‖2

H < ∞.

On the other hand, for m ≥ 1, we get

Txm =
∞∑

y�〈y�, Txm〉.

�=1
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Then,

∞∑
m=1

〈x′
m, xm〉 =

∞∑
m=1

〈xm, Txm〉 =
∞∑

m=1

〈
xm,

∞∑
�=1

y�〈y�, Txm〉
〉

=
∞∑

m=1

∞∑
�=1

〈xm, y�〉〈y�, Txm〉.

The last series converges absolutely, which is proved similarly as above. We also note 
that, while the products in the last series do not commute, their real parts do, since 
Re(ab) = Re(ba) for any a, b ∈ H. Therefore,

2Re
( ∞∑

m=1
〈x′

m, xm〉
)

= 2Re
( ∞∑

m=1

∞∑
�=1

〈xm, y�〉〈y�, Txm〉
)

= 2Re
( ∞∑

�=1

∞∑
m=1

〈y�, Txm〉〈xm, y�〉
)

= 2Re
( ∞∑

�=1

〈y′�, y�〉
)
,

i.e., the definition of TH,1(T ) does not depend on the choice of the basis {xk}. �
Remark 4.6. If {Tn} is a sequence of trace-class operators in a quaternionic Hilbert space 
H converging to T ∈ L(H) in the trace-class norm, then

TH,1(T ) = lim
n→∞

TH,1(Tn).

Indeed, this simply follows from the fact that

|TH,1(Tn) − TH,1(T )| = |TH,1(Tn − T )| ≤ 2‖Tn − T‖1 → 0, as n → ∞.

Remark 4.7. We note that, as in the classical case, the trace-class operators on a quater-
nionic Hilbert space H form a Banach algebra. In other words, if T : H → H is a 
trace-class operator, so is T k, for every k ≥ 1, and therefore Proposition 4.5 implies that

TH,1(T k) = 2Re
( ∞∑

m=1
〈xm, T kxm〉

)
,

for every k ≥ 1, and such a quaternionic trace does not depend on the choice of the basis 
{xm}.

The quaternionic Grothendieck-Lidskii formula reads as follows:

Theorem 4.8. Let H be a quaternionic Hilbert space and T : H → H be a trace-class 
operator. Then, the (quaternionic) Grothendieck-Lidskii formula holds, i.e., if {λk(T )}
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is the sequence of standard eigenvalues of T and {xk} is an orthonormal basis of H, we 
have

TH,1(T ) = 2Re
( ∞∑

k=1

〈xk, Txk〉
)

= 2Re
( ∞∑

k=1

λk(T )
)
,

TH,2(T ) = 2Re
( ∞∑

k=1

〈xk, T
2xk〉

)
=

∞∑
k=1

|λk(T )|2 + 4
∞∑
k=1

∞∑
�=k+1

Re(λk(T ))Re(λ�(T )),

and

detH(I + T ) =
∞∏
k=1

(
1 + 2Re(λk(T )) + |λk(T )|2

)
.

Furthermore, the quaternionic Fredholm determinant detH(I +zT ) is an entire function 
of order 1 and genus 0.

Proof. As in the proof of Theorem 4.4, let us denote by ET the smallest closed linear 
manifold of H containing all eigenvectors and generalized eigenvectors of T corresponding 
to each nonzero standard eigenvalue. It is clear that H = ET ⊕ E⊥

T , and that T leaves 
each of these two subspaces invariant. As in the proof of Theorem 4.4, we use the fact 
that there exists an orthonormal basis {ϕn} of ET such that, for every k ∈ N,

Tϕk =
k∑

�=1

a�kϕ�, where a�� = λ�. (15)

Let Pn denote the projection operator onto span{ϕ1, . . . , ϕn}. Let also {ψk} be an or-
thonormal basis of E⊥

T , and denote by Qn the projection operator onto span{ψ1, . . . , ψn}. 
Then (cf. [30, Ch. IV, §11]) (Pn + Qn)T (Pn + Qn) → T in the trace-class norm, and 
hence, by Remark 4.6,

TH,1(T ) = lim
n→∞

TH,1((Pn + Qn)T (Pn + Qn)) = lim
n→∞

TH,1(PnTPn) + lim
n→∞

TH,1(QnTQn)

= lim
n→∞

2Re
( n∑

k=1

〈ϕk, Tϕk〉
)

+ lim
n→∞

2Re
( n∑

k=1

〈ψk, Tψk〉
)
.

By Proposition 3.3, we have, for every n,

2Re
( n∑

k=1

〈ψk, Tψk〉
)

= 0,

since the operator QnTQn does not have any nonzero eigenvalue. Thus, by (15),
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TH,1(T ) = lim
n→∞

2Re
( n∑

k=1

〈ϕk, Tϕk〉
)

= lim
n→∞

2Re
( n∑

k=1

λk

)
= 2Re

( ∞∑
k=1

λk

)
,

and the last series converges absolutely, since T is of trace class and hence, by Theo-
rem 4.4, {λk} ∈ �1. Further, the equality in the statement (for an arbitrary orthonormal 
basis {xk}) holds, by Proposition 4.5. The corresponding identity for TH,2(A) will readily 
follow from the representation of the Fredholm determinant.

Let us now prove the analyticity of the quaternionic Fredholm determinant. Consider 
the sequence {Tn}, where each Tn is the (rank n) truncation of T written in the form 
(15), so that detH(I + zT ) = limn→∞ det(I + zTn) (by Theorem A.5). It is clear that in 
this case, the sequence {λk(Tn)} of (standard) eigenvalues of Tn converges to {λk(T )}
in the �1 norm. Let ε > 0 and let n0 ∈ N be such that

∞∑
k=1

|λk(T ) − λk(Tn)| < ε, for every n ≥ n0.

By (8), for n ≥ n0, since for every k ≤ n we have λk(Tn) = λk(T ) by construction,

|detH(I + zTn)| ≤
n∏

k=1

(1 + 2|λk(Tn)||z| + |λk(Tn)|2|z|2)

=
n∏

k=1

(1 + |λk(T )||z|)2 ≤
n∏

k=1

e2|λk(T )||z| = e
2|z|

n∑
k=1

|λk(T )|

≤ e
2|z|

( ∞∑
k=1

|λk(T )|+ε
)
.

The last inequality is independent of n. Thus,

|detH(I + zT )| = lim
n→∞

|detH(I + zTn)| ≤ ec|z|,

for some c > 0. Equivalently, the power series

detH(I + zT ) =
∞∑
k=0

TH,k(T )zk

defines an entire function of order 1, and therefore the sequence of functions {detH(I +
zTn)} converges uniformly to detH(I + zT ) on every compact set. We now show that 
the sequence of zeros of detH(I + zT ) is precisely

{
− λk(T )−1} ∪

{
− λk(T )

−1}
. (16)

To this end, we need the following result.
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Proposition 4.9. [40, Proposition 6.2.7] Let {fn} be a sequence of analytic functions on 
a region Ω ⊂ C converging uniformly to a function f (different from the zero function) 
on every closed disk of Ω. If γ is a closed curve inside of Ω that passes through no zeros 
of f , then there exists N ∈ N (depending on γ) such that for every n ≥ N , fn and f
have the same number of zeros inside of γ (counting multiplicities).

Since detH(I + zT ) is an analytic function and is not identically zero, its zeros are 
isolated. Thus, for every standard eigenvalue λk(T ), we may find a disk Dk

δ of radius δ > 0
centered at λk(T )−1, where the only zero of f in such a disk is precisely λk(T )−1, and 
similarly for λk(T ) (unless λk(T ) ∈ R, in which case it is clear that such an eigenvalue 
has double multiplicity). By Proposition 4.9, there exists N ∈ N such that for n ≥ N , 
the number of zeros of each function detH(I + zTn) contained in Dk

δ is equal to the 
multiplicity of λk(T )−1 as a zero of detH(I + zT ). Letting δ → 0, we see that (16)
is precisely the sequence of zeros of detH(I + zT ), counting multiplicities. Thus, by 
Hadamard’s representation, we have

h(z) := detH(I + zT ) = eaz
∞∏
k=1

(1 + λk(T )z)e−λk(T )z(1 + λk(T )z)e−λk(T )z

= eaz
∞∏
k=1

(1 + 2Re(λk(T ))z + |λk(T )|2z2)e−2Re(λk)z.

By applying the product differentiation rule to entire functions represented by infinite 
products to the latter expression, we obtain h′(0) = a. On the other hand, since we also 
have

h(z) =
∞∑
k=0

TH,k(T )zk,

we obtain h′(0) = TH,1(T ) = a. Thus,

h(z) =
∞∏
k=1

(1 + 2Re(λk(T ))z + |λk(T )|2z2),

or in other words, the quaternionic Fredholm determinant of T has genus zero. We 
emphasize that the desired identity for TH,2(T ) follows simply by inspecting the quadratic 
term in the power series that defines h(z). �
4.3. Further results for operators in quaternionic Hilbert spaces

To conclude this section, we give two auxiliary results that may be of independent 
interest, and certainly useful for the case of quaternionic locally convex spaces, which we 
investigate in Section 6 below.
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. 
The following will be useful for controlling the norm in Sr of a composition of two 
operators represented by infinite matrices. Its commutative counterpart is Lemma 1 in 
[32, Ch. II, §1], and, although the proof for the quaternionic case is similar, we include 
it here for the sake of completeness.

Lemma 4.10. Let A = {μmdmnνn}∞m,n=1 be an infinite matrix with quaternion entries, 
and such that {μm} ∈ �p, {νn} ∈ �q for some 0 < p, q ≤ 2, and |dmn| ≤ M < ∞. Then 
the matrix A defines a Hilbert-Schmidt operator in �2, and if r is such that

1
r

= 1
p

+ 1
q
− 1

2 ,

then A ∈ Sr, and the inequality

‖A‖r ≤ ‖{μm}‖�p‖{νn}‖�q

holds.

Proof. We define infinite diagonal matrices B = (bmn)∞m,n=1 and C = (cmn)∞n,m=1 with 

diagonal entries bmm = μ
1− p

2
m and cnn = ν

1− q
2

n , respectively. Then, A = BA′C, where

A′ = {a′mn}∞m,n=1, with a′mn = μ
p
2
mdmnν

q
2
n .

The matrix A′ defines a Hilbert-Schmidt operator in �2, and ‖A′‖2
2 ≤ M‖{μm}‖p�p‖{νn}‖

q
�q

Note also that the matrices B and C define operators in Sp∗ and Sq∗ , respectively, where

p∗ = p

1 − p/2 , and q∗ = q

1 − q/2 .

Indeed, this readily follows from the equalities ‖B‖p
∗

p∗ = ‖{μm}‖p�p and ‖C‖q
∗

q∗ = ‖{νn}‖q�q . 
Thus, writing

1
r

= 1
p∗

+ 1
q∗

+ 1
2 = 1

p
+ 1

q
− 1

2 ,

it follows from Hölder’s inequality for operators (see [34] for the complex case; the ex-
tension to the quaternionic case is straightforward) that

‖A‖r ≤ ‖B‖p∗‖A′‖2‖C‖q∗ ≤ M‖{μm}‖p/p
∗

�p (‖{μm}‖p�p‖{νn}‖
q
�q)

1/2‖{νn}‖q/q
∗

�q

= M‖{μm}‖�p‖{νn}‖�q . �
As a corollary of Lemma 4.10, we have the following.
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Corollary 4.11. Under the assumptions of Lemma 4.10, if r ≤ 1 (or equivalently, if 
1/q + 1/p ≤ 3/2), the quaternionic Fredholm determinant of the matrix A is an entire 
function of order r and genus zero. Furthermore, the sequence of its standard eigenvalues 
{λk(A)} belongs to �r. In particular, the inequality

‖{λk(A)}‖�r ≤ C‖{μm}‖�p‖{νn}‖�q ,

holds.

Proof. The statement concerning the quaternionic Fredholm determinant of A follows 
readily from Theorem 4.8 (together with Theorem 2.1). The inequality involving the 
sequence of standard eigenvalues is a combination of the inequalities in Theorem 4.4 and 
Lemma 4.10. �
5. The case of quaternionic Banach spaces

5.1. Nuclear operators in Banach spaces

Let X be a quaternionic Banach space with the approximation property, i.e., such 
that for every compact set K ⊂ X and every ε > 0 there exists an operator F of finite 
rank such that ‖x − Fx‖ < ε for all x ∈ K.

Denote by Dp = Dp(X) (0 < p ≤ 1) the set of all right-linear operators T ∈ L(X)
which allow representations

Tx =
∞∑
k=1

xk〈x′
k, x〉, xk ∈ X, x′

k ∈ X ′, (17)

with
∞∑
k=1

‖xk‖pX‖x′
k‖pX′ < ∞.

We define the semi-norms

‖T‖p = inf
( ∞∑

k=1

‖xk‖pX‖x′
k‖pX′

)1/p

,

where the infimum is taken over all representations (17). In particular, we have that

‖T‖1 = inf
( ∞∑

k=1

‖xk‖X‖x′
k‖X′

)
.

It can easily be proved that the set Dp is a subspace of L(X) with the semi-norm 
‖ · ‖p, called the space of p-nuclear operators. For p = 1, T ∈ D1 is just called a nuclear 
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operator. It is clear that for p ≤ q, one has Dp ⊂ Dq. Also, D1 is a subalgebra of L(X)
and it coincides with the set of trace-class operators whenever X is a Hilbert space. The 
space Dp inherits the approximation property.

We first define the trace and the Fredholm determinant of a quaternionic nuclear 
operator T : X → X in our setting.

Definition 5.1. Let X be a quaternionic Banach space possessing the approximation 
property and T ∈ L(X) be a nuclear operator. For k ∈ N, the k-th order trace of T is 
defined as

TH,k(T ) := 1
k!

∣∣∣∣∣∣∣∣∣∣

TH,1(T ) k − 1 0 · · · 0
TH,1(T 2) TH,1(T ) k − 2 · · · 0

...
...

. . . . . .
...

TH,1(T k−1) TH,1(T k−2) · · · TH,1(T ) 1
TH,1(T k) TH,1(T k−1) · · · TH,1(T 2) TH,1(T )

∣∣∣∣∣∣∣∣∣∣
,

where

TH,1(T ) =
∞∑

m=1
2Re(〈x′

m, xm〉),

and

TH,1(T k) =
∞∑

m1,...,mk=1
2Re

(
〈x′

m1
, xm2〉〈x′

m2
, xm3〉 · · · 〈x′

mk
, xm1〉

)
, k ≥ 2.

We also formally define TH,0(T ) = 1. The (quaternionic) Fredholm determinant of T is 
defined as

detH(I + zT ) :=
∞∑
k=0

TH,k(T )zk, z ∈ C.

In principle, these definitions depend on the choice of the sequences {xk} and {x′
k}. 

However, one may prove the following extension of [30, Ch. V, Theorem 1.2] to the 
quaternionic case.

Theorem 5.2. Let X be a quaternionic Banach space possessing the approximation prop-
erty, and let T ∈ L(X) be a nuclear operator. Then, the quaternionic trace TH,1(T ) from 
Definition 5.1 does not depend on the choice of the sequences {xk} ⊂ X and {x′

k} ⊂ X ′

(in consequence, TH,k(T ), k ≥ 2, and detH(I + zT ) do not depend on such sequences 
either). Furthermore, for any net of finite-rank operators {R�}�∈Λ converging to the iden-
tity (in the operator norm), we have

lim TH,1(TR�) = TH,1(T ), and lim detH(I + TR�) = detH(I + T ).

�∈Λ �∈Λ
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We do not present the proof, as it follows the same lines as the one for the classical 
case from [30]. The conclusion of Theorem 5.2 does not hold if X does not possess the 
approximation property (cf. [26]; see also the discussion in [38]).

As we will see in the general context of locally convex spaces, if T is a 2
3 -nuclear 

operator, then its trace is well defined without any further assumptions on X.

5.2. The Grothendieck-Lidskii formula in quaternionic Banach spaces

In this section we use the above results to obtain a Grothendieck-Lidskii-type formula 
in the context of quaternionic Banach spaces with the approximation property.

We aim to prove that for the class of 2
3 -nuclear operators in quaternionic Banach 

spaces, the trace and Fredholm determinant from Definition 5.1 may be expressed in 
terms of the standard eigenvalues of T , just as in the Hilbert space case (hence, they do 
not depend on the choice of the sequences {xk} and {x′

k} in (17)). We give a simplified 
formula concerning the quaternionic Fredholm determinant (namely, an equality only for 
z = 1), without studying its analyticity properties. We also avoid a treatment through 
tensor products as in [30, Ch. V], which require some appropriate topological remarks. 
These tasks are postponed until the last section, where we give a detailed solution of the 
problem in full generality, in the context of locally convex spaces.

Theorem 5.3 (Grothendieck-Lidskii formula). Let X be a quaternionic Banach space pos-
sessing the approximation property. If T ∈ L(X) is a 2

3 -nuclear operator, and {λk(T )}
is the sequence of standard eigenvalues of T , then

TH,1(T ) = 2Re
( ∞∑

k=1

λk(T )
)
,

TH,2(T ) =
∞∑
k=1

|λk(T )|2 + 4
∞∑
k=1

∞∑
�=k+1

Re(λk(T ))Re(λ�(T )).

Furthermore, the identity

detH(I + T ) =
∞∏
k=1

(1 + 2Re(λk(T )) + |λk(T )|2) =
∞∑
k=0

TH,k(T )

holds.

Proof. Let us consider a net {R�}�∈Λ converging to the identity operator. By Theo-
rem 5.2, TH,1(T ) = lim�∈Λ TH,1(TR�). Now, for each � ∈ Λ, putting

TR� =
n�∑

xk,�〈x′
k,�, ·〉,
k=1
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we have

TH,1(TR�) = 2Re
( n�∑

k=1

〈x′
k,�, xk,�〉

)
.

Now we can consider the matrices

C� = diag
(
β�

1, β
�
2, . . . , β

�
n�

)
,

with β�
k = ‖xk,�‖1/3‖x′

k,�‖1/3 and

B� =
(‖xk,�‖1/3‖x′

m,�‖1/3

‖xm,�‖2/3‖x′
k,�‖2/3 〈x

′
k,�, xm,�〉

)n�

k,m=1

Furthermore, the operators given by the infinite matrices

C = diag(β1, β2, . . .),

with βk = ‖xk‖1/3‖x′
k‖1/3, and

B = (bkm)∞k,m=1 =
(
‖xk‖1/3‖x′

m‖1/3

‖xm‖2/3‖x′
k‖2/3 〈x

′
k, xm〉

)∞

k,m=1

are (quaternionic) Hilbert-Schmidt operators over �2, since 
∑∞

k=1 β
2
k < ∞ and ∑∞

k,m=1 |bkm|2 < ∞. Thus, the operator M = CB is of trace class in �2. Furthermore, 
defining M� = C�B�, we also have, by Theorem 5.2,

TH,1(M) = lim
�∈Λ

TH,1(M�) = lim
�∈Λ

TH,1(TR�) = TH,1(T ).

From the finite-dimensional version of Grothendieck-Lidskii’s theorem (Corollary 3.12), 
we get

TH,1(T ) = lim
�∈Λ

TH,1(TR�) = lim
�∈Λ

TH,1(M�)

= lim
�∈Λ

2Re
( n�∑

k=1

λk(TR�)
)

= 2Re
( ∞∑

k=1

λk(T )
)
.

The equality concerning TH,2(T ) is proved similarly.
Now, since M is a trace-class operator in �2, we have that 

∑
k |λk(T )| < ∞, which of 

course implies that {λk(T )} ∈ �2. Thus, by Theorem 5.2,

detH(I + T ) = lim
�∈Λ

detH(I + TR�) = lim
i∈Λ

n�∏
(1 + 2Re(λk(TR�)) + |λk(TR�)|2)
k=1
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=
∞∏
k=1

(1 + 2Re(λk(T )) + |λk(T )|2).

It remains to check whether the last infinite product converges. Its convergence is equiv-
alent to the convergence of

∞∑
k=1

log(1 + 2Re(λk(T )) + |λk(T )|2).

Since {λk(T )} vanishes at infinity, we have, for all k ≥ k0,

log(1 + 2Re(λk(T )) + |λk(T )|2) ≈ 2Re(λk(T )) + |λk(T )|2.

Hence,

∞∑
k=k0

log(1 + 2Re(λk(T )) + |λk(T )|2) ≈
∞∑

k=k0

(2Re(λk(T )) + |λk(T )|2),

which converges, since 
∑

(2Re(λk(T )) converges and {λk(T )} ∈ �2. From the determinant 
identity it follows that for z small enough, one has

detH(I + zT ) =
∞∏
k=1

(1 + 2Re(λk(T ))z + |λk(T )|2z2),

and, by inspecting the coefficient of z2 in this expression (which is precisely TH,2(T ), by 
definition), we obtain the desired identity for TH,2(T ). �
6. Locally convex spaces over the quaternions and p-summable Fredholm operators

A topological right H-vector space E is said to be locally convex if the origin has a 
neighborhood basis consisting of convex sets. In what follows we will always assume that 
E is also a Hausdorff space. By E′ we denote the left H-vector space that is strongly 
dual to E, and it will be assumed to be locally convex as well.

For a convex bounded set B ⊂ E, EB denotes the normed subspace of E obtained by 
endowing the vector space spanned by B with the norm

‖x‖B = inf
x∈tB

|t|.

If B is complete, then EB is also complete (and thus, a Banach space).
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6.1. Fredholm and nuclear operators

We now introduce Fredholm operators and nuclear operators in locally convex spaces 
and describe (without proofs) some of their most important topological properties (which 
easily carry over from the classical case). For a general theory on nuclear operators, we 
refer to [44, Ch. 47]. A thorough theory of these operators was developed in [32]. For a 
concise exposition of the most important facts (which we mainly follow here) we refer to 
[38].

Definition 6.1. Let E be a quaternionic locally convex space. A right-linear operator 
T : E → E is called a Fredholm operator if it is of the form

Tx =
∞∑
k=1

μkxk〈x′
k, x〉, x ∈ E, (18)

where {μk} ∈ �1 is a real sequence, and {xk} (resp. {x′
k}) is contained in an absolutely 

convex set B ⊂ E (resp. B′ ⊂ E′) such that EB (resp. E′
B′) is complete.

Definition 6.2. Let E be a quaternionic locally convex space. A Fredholm operator T such 
that in the representation (18) the sequence {x′

k} is equicontinuous is called a nuclear 
operator.

Remark 6.3. Nuclear operators are always compact (thus, they are continuous).

In the commutative case, it was shown in [38] that the trace of a nuclear operator 
on a locally convex space possessing the approximation property is well defined (i.e., 
it does not depend on the representation (18)). We will obtain a quaternionic version 
of the Grothendieck-Lidskii for 2/3-nuclear operators, which in turn shows that such 
operators have a well-defined trace, even if the underlying space E does not have the 
approximation property.

6.2. Tensor products and the canonical balanced form

Given locally convex spaces E and F (which are right and left H-vector spaces, re-
spectively), we can endow the algebraic tensor product E⊗F with the strongest locally 
convex topology so that the canonical balanced R-bilinear mapping E × F → E ⊗ F is 
separately continuous. The completion of E ⊗ F in this topology is called the inductive 
tensor product of E and F , and it is denoted by E⊗F (in [44], it is also denoted by 
E⊗̂εF , where ε stands for equicontinuous; such a topology can also be defined in terms 
of convergence in products of equicontinuous sets of E′ and F ′ [44, Definition 43.1]).

Given another complete locally convex space G, associating with every R-linear con-
tinuous mapping E⊗F → G its composition with the canonical map E × F → E⊗F
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yields a bijection between the continuous R-linear mappings E⊗F → G and the sepa-
rately continuous R-bilinear balanced mappings E × F → G.

In the classical case, the trace of a tensor x ⊗ x′ ∈ E ⊗E′ is defined as the canonical 
linear form arising from the canonical bilinear form E×E′ → C given by the dual pairing 
〈x′, x〉 = x′(x). In the quaternionic case, the dual pairing

E × E′ → H

(x, x′) �→ 〈x′, x〉 = x′(x),

does not define a balanced form, and, in turn, does not allow to define a canonical R-
linear form on E⊗E′ (the balance property in the definition of the tensor product E⊗E′

requires any such form to be balanced in E × E′ in order to be well defined). However, 
since for any a, b ∈ H we have Re(ab) = Re(ba), the map

E × E′ → R

(x, x′) �→ 2Re(〈x′, x〉), (19)

defines a R-bilinear balanced form on E × E′, which we use to define the quaternionic 
trace (note that the factor 2 in (19) is not necessary, but with this definition the quater-
nionic trace of a tensor is consistent with the classical trace of the companion matrix of 
the associated operator, see Subsection 6.3). Since the mapping (19) is separately con-
tinuous, it can be extended to a continuous R-linear form on E⊗E′, which we call the 
quaternionic trace, and denote it by TH,1(·). This allows to define higher order traces of 
tensors u ∈ E⊗E′ as done above. To this end, it is necessary to introduce the composi-
tion of two Fredholm kernels v ◦u in the obvious way (so that this composition coincides 
with the composition of the associated operators). If

u =
∞∑
k=1

μkxk ⊗ x′
k, and v =

∞∑
�=1

ν�y� ⊗ y′�, (20)

we define

v ◦ u =
∞∑

k,�=1

μkν�
(
y�〈y′�, xk〉

)
⊗ x′

k, (21)

which is again a Fredholm kernel. For k ≥ 2, we define uk = u ◦ uk−1, and

TH,k(u) = 1
k!

∣∣∣∣∣∣∣∣∣∣

TH,1(u) k − 1 0 · · · 0
TH,1(u2) TH,1(u) k − 2 · · · 0

...
...

. . . . . .
...

TH,1(uk−1) TH,1(uk−2) · · · TH,1(u) 1
k k−1 2

∣∣∣∣∣∣∣∣∣∣
. (22)
TH,1(u ) TH,1(u ) · · · TH,1(u ) TH,1(u)
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As usual, we take the convention TH,0(u) = 1.
After defining the k-th order trace of a Fredholm kernel u, we may proceed as in the 

Hilbert space case, and introduce the quaternionic Fredholm determinant of u. Such a 
determinant takes the form

detH(I + zu) :=
∞∑
k=0

TH,k(u)zk.

The Fredholm kernel u naturally defines a right-linear map, and the above determinant 
vanishes at (minus) the inverses of the standard eigenvalues (and their conjugates) of 
such a map. We proceed to discuss in detail how Fredholm kernels and right-linear maps 
are related.

6.3. Tensor products, right-linear operators, and Fredholm kernels

Let us denote by Lw(E) the R-vector space of all weakly continuous right-linear 
operators in E endowed with the weak operator topology, given by the semi-norms 
A → |〈x′, Ax〉|, with A ∈ Lw(E), x ∈ E, and x′ ∈ E′. Let us denote by Γ the R-linear 
mapping E ⊗E′ → Lw(E), under which the tensor

u =
n∑

k=1

μkxk ⊗ x′
k

is mapped into the finite-rank operator

Γ(u) : x �→
n∑

k=1

μkxk〈x′
k, x〉.

It is clear that Γ establishes a bijection between E ⊗ E′ and the subspace of operators 
of finite rank in R(E). Observe that the balance property in E ⊗E′ is satisfied through 
the map Γ, i.e., two equal tensors (xq) ⊗ x′ = x ⊗ (qx′) define two equal operators 
xq〈x′, ·〉 = x〈qx′, ·〉.

Remark 6.4. If u ∈ E ⊗ E′, then TH,1(u) (the trace form defined through (19) and the 
canonical map E × E′ → E ⊗ E′) coincides with the classical trace of the companion 
matrix of Γ(u). More generally, if u ∈ E⊗E′, it is clear that for every k ≥ 0, one has 
TH,k(u) = TH,k(Γ(u)).

The map Γ is continuous in the inductive topology, but in general it cannot be contin-
ued to E⊗E′, since R(E) may not be complete. However, there exists a linear subspace 
of E⊗E′ where Γ can be continued, which we now introduce.
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Definition 6.5. We denote by E⊗E′ the subspace of E⊗E′ consisting of all elements of 
the form

u =
∞∑
k=1

μkxk ⊗ x′
k, (23)

with {μk}, {xk}, and {x′
k} as in Definition 6.1. We say that u ∈ E⊗E′ is a Fredholm 

kernel on E.

Fredholm kernels were extensively studied by Grothendieck in [32]. Under the given 
assumptions, the series (23) converges in E⊗E′. It is clear that if u is a Fredholm kernel, 
then Γ(u) is a Fredholm operator, or in other words, the class of Fredholm operators is 
the image of all Fredholm kernels under the mapping Γ (or rather, the continuation of 
Γ, which we denote identically).

Remark 6.6. If E is complete and metrizable, then Γ can be continued to the whole E⊗E′

(this may be proved using the same topological arguments as in [32, Ch. II, §1.1]). In 
particular, if E is a Banach space, E⊗E′ contains only Fredholm kernels, and in this 
case the class of Fredholm operators and the class of nuclear operators coincide.

Following the classical approach from [32], given a Fredholm kernel u ∈ E⊗E′, one 
may try defining the (quaternionic) trace of the Fredholm operator Γ(u) by the identity

TH,1(Γ(u)) := TH,1(u),

with TH,1(u) as defined in the previous subsection. However, the mapping Γ may not be 
bijective, in which case the quantity TH,1(Γ(u)) is not well defined. On the other hand, 
it is clear from the definitions that if

Γ(u) = 0 implies TH,1(u) = 0, (24)

on a linear subspace Y ⊂ Γ
(
E⊗E′), then, given a Fredholm operator T ∈ Y , the quater-

nionic trace TH,1(T ) = TH,1(Γ−1(T )) is well defined. This is related to the so-called 
uniqueness problem, which consists in showing that the trace of an arbitrary Fredholm 
operator in a (locally convex) space E is well defined (in which case we say that the 
uniqueness problem has a positive solution in E). Obviously, (24) gives a sufficient con-
dition for the uniqueness problem to have a positive solution in a subspace Y ⊂ E

(which may be E itself). In the classical noncommutative case, Grothendieck showed in 
[32] that the uniqueness problem has a positive solution in a Banach space E if and only 
if it possesses the approximation property, whilst that a positive solution in a locally con-
vex space E is equivalent to certain topological approximation-type conditions (see also 
[38,39]; the assertion is not true in locally convex spaces with the usual approximation 
property [38, Theorem 2]).
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Grothendieck also found [32, Ch. II, §1] a linear subspace of E⊗E′ in which the 
mapping Γ is bijective. We introduce its quaternionic counterpart.

Definition 6.7. Let 0 < p ≤ 1 and let E be a quaternionic locally convex space. We say 

that u ∈ E⊗E′ is a p-summable Fredholm kernel on E if u is a Fredholm kernel on 
E, with {μk} ∈ �p. The images Γ(u) of such kernels are called p-summable Fredholm 
operators. If the sequence {x′

k} defining u is equicontinuous, Γ(u) is called a p-nuclear 
operator.

It is shown in [32] that for p-summable Fredholm kernels u with p ≤ 2
3 , the uniqueness 

problem has a positive solution. What is more, in this case the Grothendieck-Lidskii 
formula holds for the operator Γ(u), and the mapping Γ is bijective. In what follows, we 
aim to obtain corresponding statements for the quaternionic case.

6.4. The quaternionic Grothendieck-Lidskii formula

Theorem 6.8. Let E be a quaternionic locally convex space, and let u be a p-summable 
Fredholm kernel on E, where p ≤ 1. Then, the quaternionic Fredholm determinant of u
is an entire function of order (1/p − 1/2)−1.

Proof. Let us first find expressions for TH,m(un) for finite-rank tensors un in terms of 
〈x′

k, x�〉 rather than directly from the definition (22) (i.e., in terms of TH,1(ud
n), with 

d ≤ m). We first find such expressions in the finite-rank case and then pass to the 
general (infinite-rank) case by limiting arguments. For the truncated kernels

un =
n∑

k=1

μkxk ⊗ x′
k,

it is clear by definition that the matrix representation of Γ(un) is

⎛⎜⎜⎝
μ1〈x′

1, x1〉 μ1〈x′
1, x2〉 · · · μ1〈x′

1, xn〉
μ2〈x′

2, x1〉 μ2〈x′
2, x2〉 · · · μ2〈x′

2, xn〉
...

...
. . .

...
μn〈x′

n, x1〉 μn〈x′
n, x2〉 · · · μn〈x′

n, xn〉

⎞⎟⎟⎠ . (25)

Writing, for each k,

xk = u1
k + u2

kj, x′
k = v1

k + v2
kj,

we have

〈x′
k, x�〉 = 〈v1

k, u
1
�〉 + 〈v2

k, u
2
�〉 +

(
〈v1

k, u
2
�〉 − 〈v2

k, u
1
�〉
)
j =: αk,� + βk,�j, αk,�, βk,� ∈ C.
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We can assume without loss of generality that |〈x′
k, x�〉| ≤ 1 for every k, �. In this case, 

it is clear that |αk,�|, |βk,�| ≤ 2.
We can now associate to un the corresponding companion matrix of (25), i.e., the 

matrix

χΓ(un) =
(

α(n) β(n)

−β(n) α(n)

)
,

with α(n) = {μkαk,�}nk,�=1, β
(n) = {μkβk,�}nk,�=1 ∈ Mn(C). For convenience, let us write

χΓ(un) = {μpn(k)γk,�}2n
k,�=1,

where

pn(k) =
{
k, if 1 ≤ k ≤ n,

k − n, if n + 1 ≤ k ≤ 2n.

The quaternionic Fredholm determinant (of the tensor un) then takes the form

detH(I + zun) =
2n∑
k=0

TH,k(un)zk =
2n∑
k=0

TH,k(Γ(un))zk =
2n∑
k=0

Tr
(∧k

χΓ(un)

)
zk,

where, by (7),

TH,k(un) = Tr
(∧k

χΓ(un)

)
=

∑
1≤i1<···<ik≤2n

μp(i1) · · ·μp(ik) det(γiα,iβ )1≤α,β≤k.

We now use the fact that the determinant of a k×k complex matrix with entries having 
modulus less than or equal to 1, is bounded from above by k

k
2 [33]. Since |γk,�| ≤ 2 for 

every k, �, this implies

det(γiα,iβ )1≤α,β≤k ≤ 2kk k
2 ,

for any set of indices {i1, . . . , ik}. Thus,

|TH,k(un)| ≤ 2kk k
2

∑
1≤i1<···<ik≤2n

μp(i1) · · ·μp(ik) ≤ 2kk k
2

∑
i1≤···≤ik

multiplicity of ik is ≤2

μi1 · · ·μik ,

where the last estimate is independent of n. Letting n → ∞, we get

|TH,k(u)| ≤ 2kk k
2

∑
i1≤···≤ik

μi1 · · ·μik .
multiplicity of ik is ≤2
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We now estimate the last sum. First, we note that such a sum corresponds to the (un-
signed) coefficient of zk of the infinite product given by

g(z) =
∞∏
k=1

(1 − μkz)2 =
∞∏
k=1

(
1 − 2μkz + μ2

kz
2).

Since {μk} ∈ �p, we derive from Theorem 2.1 that g is an entire function of order p. 
Further, by Corollary 2.3, we get, for every q > p and k ∈ N,∑

i1≤···≤ik
multiplicity of ik is ≤2

μi1 · · ·μik ≤ Ck−
k
q .

Hence,

|TH,k(u)| ≤ C2kkk
( 1
2− 1

q

)
= C2kk− k

r ,

where 1
r = 1

q −
1
2 . Applying Theorem 2.2, we find that detH(I + zu) is an entire function 

of order r, and so it is of order s, where 1
s = 1

p − 1
2 , since q > p is arbitrary. �

In order to obtain the quaternionic Grothendieck-Lidskii formula, we first need the 
following result concerning the genus of the quaternionic Fredholm determinant of a 
p-summable Fredholm kernel.

Lemma 6.9. Let E be a quaternionic locally convex space, and let u be a p-summable 
Fredholm kernel on E, where 0 < p ≤ 2/3. Then, the quaternionic Fredholm determinant 
of u has genus 0.

Proof. Writing u as

u =
∞∑
k=1

(√μkxk) ⊗ (√μkx
′
k),

with |〈x′
k, x�〉| ≤ 1 for every k, �, it is clear that the quaternionic Fredholm determinant 

of u is the same as that of the infinite matrix A = (ak�)∞k,�=1, with ak� = √
μkμ�〈x′

k, x�〉. 
Since 

{√
μk

}
∈ �4/3 and |〈x′

k, x�〉| ≤ 1, the matrix A defines a Hilbert-Schmidt operator 
in �2, by Lemma 4.10. What is more, such an operator is of trace class, since

3
4 + 3

4 − 1
2 = 1,

and therefore the quaternionic Fredholm determinant of A (and hence, that of T ), has 
genus zero, by Corollary 4.11. �
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Theorem 6.10. Let E be a quaternionic locally convex space, and let u be a p-summable 
Fredholm kernel on E, where 0 < p ≤ 2/3. Then, the Grothendieck-Lidskii formula holds. 
More precisely, if {λk(T )} is the sequence of standard eigenvalues of T := Γ(u), one has

TH,1(u) = 2Re
( ∞∑

k=1

λk(T )
)
,

TH,2(u) =
∞∑
k=1

|λk(T )|2 + 4
∞∑
k=1

∞∑
�=k+1

Re(λk(T ))Re(λ�(T )),

and

detH(I + zu) =
∞∏
k=1

(1 + 2Re(λk(T ))z + |λk(T )|2z2).

Proof. The equality concerning the Fredholm determinant follows readily from the fact 
that detH(I + zu) is an entire function of order 1 and genus 0 (by Theorem 6.8 and 

Lemma 6.9), and its zeros are 
{
− λk(T )−1}∪

{
− λk(T )

−1}
, together with Hadamard’s 

representation. In order to prove the equalities concerning the first and second-order 
traces, we further use Hadamard’s representation. We may write

h(z) := detH(I + zu) = ea+bz
∞∏
k=1

(1 + zλk(T ))(1 + zλk(T ))e−2Re(λk(T ))z, (26)

where, since 
∑

|λk(T )| < ∞ (by Theorem 6.8) and h is of genus zero, we necessarily 
have

b = 2Re
( ∞∑

k=1

λk(T )
)
.

From the definition detH(I + zu) =
∑∞

k=0 z
kTH,k(u), it follows that h(0) = 1 and 

h′(0) = TH,1(u). Thus, a = 0 in (26). On the other hand, it is easy to see, by applying the 
product differentiation rule to entire functions represented by infinite products to (26), 
that b = TH,1(u). This establishes the quaternionic Grothendieck-Lidskii trace identity. 
The corresponding identity for TH,2(u) follows simply by inspecting the quadratic term 
of detH(I + zu). �
Corollary 6.11. Under the same assumptions as in Theorem 6.10, the quaternionic trace 
of T (and hence also the k-th order traces as well as the Fredholm determinant of T ) is 
well defined, i.e., the quantities

detH(I + zT ) = detH(I + zΓ−1(T )), TH,k(T ) = TH,k(Γ−1(T )), k ≥ 1,

do not depend on the choice of {xk} and {x′
k} in (18).
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Proof. By Theorem 6.10, (24) holds for the subspace of 23 -summable Fredholm operators. 
Thus, the uniqueness problem has a positive solution in this subspace. �
Remark 6.12. Corollary 6.11 obviously holds for the class of 2

3 -nuclear operators, since 
they are a subclass of the class of 2

3 -summable Fredholm operators.

Finally, we derive summability properties of the standard eigenvalues of p-summable 
Fredholm operators. To this end, we first need an auxiliary result for compositions of 
p-summable Fredholm kernels.

Theorem 6.13. Let E be a quaternionic locally convex space, and let u and v be p and 
q-summable Fredholm kernels, respectively, where 0 < p, q ≤ 1. Then, the composition 
v ◦ u ∈ E⊗E′ is a Fredholm kernel whose Fredholm determinant has order r ≤ 1 and 
genus zero, where 1

r = 1
p + 1

q − 1. Furthermore, the sequence of standard eigenvalues of 
Γ(v ◦ u) satisfies {λk(Γ(v ◦ u))} ∈ �r.

Proof. It is clear that v ◦ u is a Fredholm kernel, since u and v are Fredholm kernels. 
Now, if u and v are of the form (20), writing, for k ≥ 1,

Yk =
∞∑
�=1

ν�y�〈y′�, xk〉,

we may rewrite (21) as

v ◦ u =
∞∑
k=1

μkYk ⊗ x′
k =

∞∑
k=1

(√μkYk) ⊗ (√μkx
′
k).

Thus, the Fredholm determinant of v ◦ u is the Fredholm determinant of the matrix 
A = (amn)∞m,n=1, where

amn = 〈√μmx′
m,

√
μnYn〉 =

∞∑
�=1

√
μmμnν�〈x′

m, y�〉〈y′�, xn〉

=
∞∑
�=1

(√μmν�〈x′
m, y�〉) · (

√
μnν�〈y′�, xn〉).

Defining the infinite matrices B = (bmn)∞m,n=1 and C = (cmn)∞m,n=1 by

bmn = √
μnνm〈x′

m, yn〉, cmn = √
μmνn〈y′m, xn〉,

we have A = CB. Without loss of generality we may assume that |〈x′
m, yn〉|, |〈y′m, xn〉| ≤

M < ∞. Then, B and C are matrices representing Hilbert-Schmidt operators in �2. 
Furthermore, by Lemma 4.10 (with 2p and 2q in place of p and q, respectively), the 
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matrices B and C actually define an operator in the class St acting on the Hilbert space 
�2, with

1
t

= 1
2p + 1

2q − 1
2 .

Thus, by Hölder’s inequality for operators, A defines an operator in the class Sr, where

1
r

= 2
t

= 1
p

+ 1
q
− 1.

Since p, q ≤ 1, we have r ≤ 1. Thus, the conclusion follows from Corollary 4.11. �
Corollary 6.14. Under the same assumptions as in Theorem 6.10, we have {λk(T )} ∈ �r, 
where

1
r

= 1
p
− 1

2 .

In particular, if u is a 2
3 -summable Fredholm kernel, then {λk(T )} ∈ �1.

Proof. By Theorem 6.13, the composition u2 is a Fredholm kernel with Fredholm deter-
minant of order s and genus 0, where

1
s

= 2
p
− 1,

and moreover {λk(T 2)} ∈ �s. Putting r = s
2 , since |λk(T 2)| = |λk(T )|2, we have that 

{λk(T )} ∈ �r. �
Appendix A. Well-definiteness of the quaternionic Fredholm determinant in Hilbert 
spaces

The results and discussion in this section are well known in the classical case. However, 
it is not clear (a priori) whether they should extend to the noncommutative case. For the 
sake of completeness, we include these results with details, which highlight the differences 
with the commutative case.

We aim to show that the quaternionic Fredholm determinant in infinite-dimensional 
Hilbert spaces is well defined for trace-class operators T , and that it can be defined as 
the limit of the Fredholm determinants of a sequence of operators (increasing in rank) 
converging to T in the trace-class norm.

We start with the Banach algebra inequality

‖AB‖1 ≤ ‖A‖1‖B‖1, (27)
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for quaternionic trace-class operators A, B on a Hilbert space H. To this end, we need the 
min-max theorem for self-adjoint positive operators (recall that an operator A ∈ L(H)
is said to be positive if 〈Ax, x〉 ≥ 0 for every x ∈ H; a compact self-adjoint operator is 
positive if and only if all of its eigenvalues are positive, cf. [29, Ch. III, §9]).

Theorem A.1. Let H be a quaternionic Hilbert space and A ∈ L(H) be compact and 
positive. Let {λk(A)} be the sequence of eigenvalues of A, in decreasing order. Then, for 
every n ∈ N,

λn(A) = min
dimM=n−1

max
x⊥M
‖x‖=1

〈Ax, x〉.

The proof follows exactly the same lines as in the classical case (see [29, Ch. III, 
Theorem 9.1]).

Theorem A.2. For any trace-class operators A, B on a quaternionic Hilbert space H, the 
inequality (27) holds.

Proof. By definition, we have

μn(AB)2 = λn(|AB|2).

We now use that |AB|2 = (AB)∗AB and |B|2 = B∗B are compact positive operators to 
apply the min-max theorem and obtain

λn(|AB|2) = min
dimM=n−1

max
x⊥M
‖x‖=1

〈(AB)∗ABx, x〉 = min
dimM=n−1

max
x⊥M
‖x‖=1

‖ABx‖2

≤ ‖A‖2 min
dimM=n−1

max
x⊥M
‖x‖=1

‖Bx‖2 = ‖A‖2 min
dimM=n−1

max
x⊥M
‖x‖=1

〈B∗Bx, x〉

= ‖A‖2λn(|B|2) = ‖A‖2μn(B)2.

Since ‖A‖ ≤ ‖A‖1, we get

μn(AB) ≤ ‖A‖1μn(B),

and we obtain the desired inequality by summing up on n. �
Lemma A.3. Let F be a finite-rank operator on a quaternionic Hilbert space. For z ∈ C

such that |z| is small enough, we have

detH(I − zF ) = exp
( ∞∑ (−1)m+1

m
TH,1(Fm)zm

)
.

m=1
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Proof. Let {λk}nk=1 be the standard eigenvalues of F . By Corollary 3.12, we have

detH(I − zF ) =
n∏

k=1

(1 − zλk)(1 − zλk) = exp
( n∑

k=1

log(1 − zλk) + log(1 − zλk)
)

= exp
( n∑

k=1

∞∑
m=1

(−1)m+1

m
λm
k zm + (−1)m+1

m
λm
k zm

)

= exp
( n∑

k=1

∞∑
m=1

(−1)m+1

m
2Re(λm

k )zm
)

= exp
( ∞∑

m=1

(−1)m+1

m
2Re

( n∑
k=1

λm
k

)
zm

)

= exp
( ∞∑

m=1

(−1)m+1

m
TH,1(Fm)zm

)
,

as desired. �
Lemma A.4. Let F and G be finite-rank operators on a quaternionic Hilbert space H, 
and assume that ‖F‖1, ‖G‖1 ≤ r < 1. Then, there exists a constant M > 0 such that

|detH(I + F ) − detH(I + G)| ≤ M‖F −G‖1.

Proof. By Lemma A.3, we have, for r small enough,

|detH(I + F ) − detH(I + G)|

=
∣∣∣∣ exp

(
−

∞∑
m=1

1
m
TH,1(Fm)

)
− exp

(
−

∞∑
m=1

1
m
TH,1(Gm)

)∣∣∣∣.
Using Theorem 4.4 and the inequality (27), we get

TH,1(Fm) ≤ 2
n∑

k=1

|λk(Fm)| ≤ 2
n∑

k=1

μk(Fm) = 2‖Fm‖1 ≤ 2‖F‖m1 ≤ 2rm,

and similarly for TH,1(Gm). By the mean value theorem, we have

|detH(I + F ) − detH(I + G)| ≤ Cr

∣∣∣∣ ∞∑
m=1

1
m

(
TH,1(Fm) − TH,1(Gm)

)∣∣∣∣
≤ Cr

∞∑
m=1

1
m

∣∣TH,1(Fm) − TH,1(Gm)
∣∣

= Cr

∞∑
m=1

1
m

∣∣TH,1(Fm −Gm)
∣∣ ≤ 2Cr

∞∑
m=1

1
m

∥∥Fm −Gm
∥∥

1,
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where Cr ≤ C < ∞ uniformly in r < 1. Let now q = max
{
‖F‖1, ‖G‖1

}
≤ r. It follows 

easily by induction, (27), and the inequality

‖Fm −Gm
∥∥

1 ≤ ‖(Fm−1 −Gm−1)F‖1 + ‖Gm−1(F −G)‖1,

that

‖Fm −Gm
∥∥

1 ≤ mqm−1‖F −G‖1.

Thus, we conclude

|detH(I + F ) − detH(I + G)| ≤ 2C
1 − q

‖F −G‖1. �
Theorem A.5. Let T be a trace-class operator on a quaternionic Hilbert space H, and 
assume {Fn} is a sequence of finite-rank operators on H converging to T in the trace-
class norm. Then,

detH(I + T ) = lim
n→∞

det(I + Fn).

In particular, the definition of detH(I+T ) does not depend on the choice of the sequence 
{Fn}.

Proof. Since T is compact, we may write T = A + F , where F is a finite-rank operator 
and ‖A‖ ≤ ‖A‖1 ≤ r < 1. We define another finite-rank operator Gn = Fn − F , so that

‖A−Gn‖1 = ‖T − F −Gn‖1 = ‖T − Fn‖1 → 0, as n → ∞.

By Lemma A.4, it follows that {detH(I + Gn)} is a Cauchy sequence, and thus it con-
verges. Indeed, for arbitrarily small ε > 0 and n large enough, we have ‖Gn‖1 ≤ r+ε < 1, 
and hence

|detH(I +Gn)−detH(I +Gm)| ≤ M(‖Gn−A‖1 + ‖Gm−A‖1) → 0, as m,n → ∞.

Now, the fact that ‖A‖ ≤ r and ‖A −Gn‖ ≤ ‖A −Gn‖1 → 0 implies that the operators 
I + A and I + Gn are invertible for n large enough. For such n, we have

detH(I + Fn) = detH(I + Gn + F ) = detH(I + Gn) detH(I + (I + Gn)−1F ), (28)

where we have applied the well-known identity det(A +BC) = det(A) det(I +CA−1B), 
taking into account that the involved determinants correspond to complex matrices. In 
order to show that the sequence {detH(I + (I + Gn)−1F )} converges, we write

F =
N∑

xk ⊗ x′
k.
k=1
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Since (I + Gn)−1 → (I + A)−1 in the operator norm, we get

(I + Gn)−1F =
N∑

k=1

(
(I + Gn)−1xk

)
⊗ x′

k →
N∑

k=1

(
(I + A)−1xk

)
⊗ x′

k, as n → ∞,

and therefore detH(I + (I +Gn)−1F ) → detH(I + (I +A)−1F ) as n → ∞ (cf. Proposi-
tion 3.10 and Remark 3.11).

Finally, we prove that the definition of detH(I + T ) does not depend on the choice 
of the sequence {Fn}. Let {Kn} be a sequence of finite-rank operators such that ‖T −
Kn‖1 → 0. A similar argument as above shows that, for Ln = Kn − F , we have

|detH(I+Gn)−detH(I+Ln)| ≤ M(‖Gn−A‖1+‖Ln−A‖1) → 0, as n → ∞, (29)

which, by (28), implies that

|detH(I + Fn) − detH(I + Kn)|
= |detH(I + Gn) detH(I + (I + Gn)−1F ) − detH(I + Ln) detH(I + (I + Ln)−1F )| → 0,

as n → ∞, since (29) holds and

detH(I + (I + Gn)−1F ), detH(I + (I + Ln)−1F ) → detH(I + (I + A)−1F ),

as n → ∞. �
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