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PENALIZATION METHOD FOR THE NAVIER–STOKES–FOURIER SYSTEM

Danica Basarić1,*, Eduard Feireisl1, Mária Lukáčová-Medvid’ová2,
Hana Mizerová1,3 and Yuhuan Yuan2

Abstract. We apply the method of penalization to the Dirichlet problem for the Navier–Stokes–Fourier
system governing the motion of a general viscous compressible fluid confined to a bounded Lipschitz
domain. The physical domain is embedded into a large cube on which the periodic boundary conditions
are imposed. The original boundary conditions are enforced through a singular friction term in the
momentum equation and a heat source/sink term in the internal energy balance. The solutions of the
penalized problem are shown to converge to the solution of the limit problem. In particular, we extend
the available existence theory to domains with rough (Lipschitz) boundary. Numerical experiments are
performed to illustrate the efficiency of the method.
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1. Introduction

Let us consider the Navier–Stokes–Fourier system in the entropy formulation,

𝜕𝑡𝜚+ div𝑥(𝜚𝑢) = 0, (1.1)
𝜕𝑡(𝜚𝑢) + div𝑥(𝜚𝑢⊗ 𝑢) +∇𝑥𝑝 = div𝑥S, (1.2)

𝜕𝑡(𝜚𝑠) + div𝑥(𝜚𝑠𝑢) + div𝑥

(︁𝑞

𝜗

)︁
=

1
𝜗

(︂
S : D𝑥𝑢− 𝑞 · ∇𝑥𝜗

𝜗

)︂
· (1.3)

The unknowns are the standard variables: the density 𝜚 = 𝜚(𝑡, 𝑥), the temperature 𝜗 = 𝜗(𝑡, 𝑥), and the velocity
𝑢 = 𝑢(𝑡, 𝑥), whereas the thermodynamic functions: the pressure 𝑝 = 𝑝(𝜚, 𝜗), the entropy 𝑠 = 𝑠(𝜚, 𝜗) as well
as the viscous stress tensor S = S(𝜗,D𝑥𝑢), and the heat flux 𝑞 = 𝑞(𝜗,∇𝑥𝜗) are determined through suitable
constitutive relations.

The fluid is confined to a bounded domain Ω ⊂ 𝑅𝑑, 𝑑 = 2, 3, on the boundary of which the Dirichlet boundary
conditions

𝑢|𝜕Ω = 0, 𝜗|𝜕Ω = 𝜗𝐵 , 𝜗𝐵 = 𝜗𝐵(𝑡, 𝑥) (1.4)
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are imposed. Our goal is to approximate solutions of problem (1.1)–(1.4) via penalization of the spatial domain.
Specifically, we suppose

Ω ⊂ T𝑑,

where T𝑑 is sufficiently large “flat” torus, and replace the field equations (1.1)–(1.3) by the penalized system

𝜕𝑡𝜚+ div𝑥(𝜚𝑢) = 0, (1.5)

𝜕𝑡(𝜚𝑢) + div𝑥(𝜚𝑢⊗ 𝑢) +∇𝑥𝑝 = div𝑥S− 1
𝜀
1T𝑑∖Ω𝑢, (1.6)

𝜕𝑡(𝜚𝑠) + div𝑥(𝜚𝑠𝑢) + div𝑥

(︁𝑞

𝜗

)︁
=

1
𝜗

(︂
S : D𝑥𝑢− 𝑞 · ∇𝑥𝜗

𝜗
− 1
𝜀
1T𝑑∖Ω|𝜗− 𝜗𝐵 |𝑘(𝜗− 𝜗𝐵)

)︂
(1.7)

on the set (0, 𝑇 ) × T𝑑, where 𝜗𝐵 is a smooth extension of the boundary temperature on T𝑑 ∖ Ω. Obviously,
solving the problem on the flat torus T𝑑 is equivalent to imposing the space periodic boundary conditions. The
solution of the original problem is then recovered by letting 𝜀→ 0 in (1.6), (1.7).

The penalization method is a popular simulation tool when the boundary of Ω has a complicated structure and
its approximation by polygons may be problematic. The difficulty with domain approximation and construction
of a suitable mesh is transformed to the forcing terms that are much easier to handle. This idea has been
used quite often in the literature. Domain penalization is realized in the immersed boundary method [17, 18]
and the (Lagrange-multiplier based) fictitious domain method [8, 9, 12]. Both approaches have been originally
developed in the context of incompressible Navier–Stokes equations. In the context of fluid-structure interaction
problem a penalization method is applied on a moving domain in [2]. Penalization of boundary conditions
in a spectral method approximating one- and multidimensional compressible Navier–Stokes–Fourier equations
was discussed in [10, 11]. Related numerical analysis for one-dimensional heat equation with a singular forcing
term was presented in [1]. For elliptic boundary problems the error estimates between the exact solution and
(numerical) solutions of 𝐿2- or 𝐻1 penalization problems were presented in [15,19–21].

Even at the purely theoretical level, penalization can be useful for problems with low regularity (Lipschitz)
of the boundary, where suitable approximation by regularization is hampered by the absence of smooth approx-
imate solutions. Our goal in this paper is twofold:

– Using the framework of weak solutions, developed in [6] for the penalized problem and, more recently, in [3]
for the original Dirichlet problem, we show that weak solutions of (1.5)–(1.7) converge to a weak solution of
(1.1)–(1.4) as 𝜀→ 0. In particular, the hypotheses concerning regularity of the spatial domain indispensable
in [3] are relaxed.

– We perform numerical experiments illustrating the abstract results.

As far as we are aware, our paper is the first one to provide analytical results as well as finite volume
simulations on complex domains for the penalization method applied to the multidimensional Navier–Stokes–
Fourier system with inhomogeneous Dirichlet boundary conditions for the temperature. Possible applications
include the celebrated and amply studied Rayleigh–Bénard problem in its original compressible setting, cf.
e.g. Davidson [4]. The penalization method can efficiently handle domains with rough (Lipschitz) boundaries
extending the current theory presented in [3] restricted to smooth domains.

The rest of the paper is organized in the following way: In Section 2 we define the concept of weak solution
to the Dirichlet problem for the Navier–Stokes–Fourier system and formulate the main theoretical result on
the strong convergence of the penalized solutions. Sections 3 and 4 are devoted to the derivation of the uni-
form bounds using the ballistic energy inequality and to the convergence analysis of the penalized solutions,
respectively. Section 5 presents a series of numerical simulations illustrating robustness and efficiency of the
proposed penalization strategy when solving the Dirichlet problem for the Navier–Stokes–Fourier system in
complex domains.
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2. Constitutive equations, weak solutions, main theoretical result

Before stating our main analytical result, let us introduce the basic hypotheses imposed on the physical
domain and constitutive equations.

2.1. Physical domain

We suppose that Ω ⊂ 𝑅𝑑, 𝑑 = 2, 3 is a bounded domain with Lipschitz boundary. In addition, we suppose
that the boundary datum 𝜗𝐵 can be extended on [0, 𝑇 ]× T𝑑 in the following way:

𝜗𝐵 ∈𝑊 1,∞(︀[0, 𝑇 ]× T𝑑
)︀
, 𝜗𝐵 ∈𝑊 2,∞([0, 𝑇 ]× Ω) ∩𝑊 2,∞(︀[0, 𝑇 ]×

(︀
T𝑑 ∖ Ω

)︀)︀
,

inf 𝜗𝐵 > 0, ∆𝑥𝜗𝐵(𝑡, ·) = 0 a.a. in [0, 𝑇 ]× Ω. (2.1)

Note that such an extension always exists as long as Ω as well as the boundary datum are smooth of class at
least 𝐶2+𝜈 . Optimal results concerning regularity of Ω can be found in the monograph by Medková [16]. For
less regular (Lipschitz) domains, condition (2.1) must be imposed as a hypothesis.

2.2. Constitutive equations

The equations of state interrelating the thermodynamic functions 𝑝, 𝑠, to the internal energy 𝑒 are motivated
by the existence theory developed in [3]. Specifically, we suppose:

𝑝(𝜚, 𝜗) = 𝑝m(𝜚, 𝜗) + 𝑝rad(𝜗), with 𝑝m(𝜚, 𝜗) = 𝜗
5
2𝑃

(︂
𝜚

𝜗
3
2

)︂
, 𝑝rad(𝜗) =

𝑎

3
𝜗4, (2.2)

𝑒(𝜚, 𝜗) = 𝑒m(𝜚, 𝜗) + 𝑒rad(𝜚, 𝜗), with 𝑒m(𝜚, 𝜗) =
3
2
𝜗

5
2

𝜚
𝑃

(︂
𝜚

𝜗
3
2

)︂
, 𝑒rad(𝜚, 𝜗) =

𝑎

𝜚
𝜗4, (2.3)

𝑠(𝜚, 𝜗) = 𝑠m(𝜚, 𝜗) + 𝑠rad(𝜚, 𝜗), with 𝑠m(𝜚, 𝜗) = 𝒮
(︂
𝜚

𝜗
3
2

)︂
, 𝑠rad(𝜚, 𝜗) =

4𝑎
3
𝜗3

𝜚
, (2.4)

where 𝑎 > 0, 𝑃 ∈ 𝐶1[0,∞) satisfies

𝑃 (0) = 0, 𝑃 ′(𝑍) > 0 for 𝑍 ≥ 0, 0 <
5
3𝑃 (𝑍)− 𝑃 ′(𝑍)𝑍

𝑍
≤ 𝑐 for 𝑍 ≥ 0 (2.5)

and

𝒮 ′(𝑍) = −3
2

5
3𝑃 (𝑍)− 𝑃 ′(𝑍)𝑍

𝑍2
· (2.6)

It follows from (2.5) and (2.6) that the functions

𝑍 ↦→ 𝑃 (𝑍)
𝑍

5
3

and 𝑍 ↦→ 𝒮(𝑍)

are decreasing, and we assume

lim
𝑍→∞

𝑃 (𝑍)
𝑍

5
3

= 𝑝∞ > 0, (2.7)

lim
𝑍→∞

𝒮(𝑍) = 0. (2.8)

We refer to Chapter 2 of [6] for the physical background of the hypotheses (2.2)–(2.8). In particular, equations
(2.7) and (2.8) describe the behaviour of the fluid in the degenerate area, where (2.8) is in agreement with the
Third law of thermodynamics.
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2.3. Transport terms

We suppose the fluid is Newtonian (linearly viscous), with the viscous stress

S(𝜗,D𝑥𝑢) = 𝜇(𝜗)
(︂
∇𝑥𝑢 +∇𝑡

𝑥𝑢− 2
𝑑

div𝑥𝑢 I
)︂

+ 𝜂(𝜗) div𝑥𝑢 I.

Here D𝑥𝑢 = (∇𝑥𝑢 +∇𝑡
𝑥𝑢)/2 stands for the symmetric velocity gradient.

Similarly, the heat flux is given by Fourier’s law

𝑞(𝜗,∇𝑥𝜗) = −𝜅(𝜗)∇𝑥𝜗.

As for the transport coefficients 𝜇, 𝜂 and 𝜅, we suppose they are continuously differentiable functions of tem-
perature 𝜗 satisfying

0 < 𝜇(1 + 𝜗) ≤ 𝜇(𝜗) ≤ 𝜇(1 + 𝜗), |𝜇′(𝜗)| ≤ 𝑐 for all 𝜗 ≥ 0, (2.9)
0 ≤ 𝜂(𝜗) ≤ 𝜂(1 + 𝜗), (2.10)

0 < 𝜅(1 + 𝜗𝛽) ≤ 𝜅(𝜗) ≤ 𝜅(1 + 𝜗𝛽), 𝛽 > 6. (2.11)

2.4. Weak solutions

The concept of weak solution of the penalized system (1.5)–(1.7) was introduced in [6].

Definition 2.1 (Weak solution of the penalized problem). We say that the trio of functions [𝜚, 𝜗,𝑢] is a weak
solution of the penalized Navier–Stokes–Fourier system (1.5)–(1.7) with the initial data

𝜚(0, ·) = 𝜚0, (𝜚𝑢)(0, ·) = 𝑚0, 𝜚𝑠(𝜚, 𝜗)(0, ·) = 𝑆0

if the following holds.

(i) Weak formulation of the continuity equation: the integral identity

−
∫︁

T𝑑

𝜚0𝜙(0, ·) d𝑥 =
∫︁ 𝑇

0

∫︁
T𝑑

[𝜚𝜕𝑡𝜙+ 𝜚𝑢 · ∇𝑥𝜙] d𝑥d𝑡, (2.12)

holds for any 𝜙 ∈ 𝐶1
𝑐 ([0, 𝑇 )× T𝑑).

(ii) Weak formulation of the renormalized continuity equation: for any function

𝑏 ∈ 𝐶1[0,∞), 𝑏′ ∈ 𝐶𝑐[0,∞)

the integral identity

−
∫︁

T𝑑

𝑏(𝜚0)𝜙(0, ·) d𝑥 =
∫︁ 𝑇

0

∫︁
T𝑑

[𝑏(𝜚)𝜕𝑡𝜙+ 𝑏(𝜚)𝑢 · ∇𝑥𝜙+ 𝜙 (𝑏(𝜚)− 𝑏′(𝜚)𝜚)div𝑥𝑢] d𝑥 d𝑡 (2.13)

holds for any 𝜙 ∈ 𝐶1
𝑐 ([0, 𝑇 )× T𝑑).

(iii) Weak formulation of the momentum equation: the integral identity

−
∫︁

T𝑑

𝑚0 ·𝜙(0, ·) d𝑥 =
∫︁ 𝑇

0

∫︁
T𝑑

[𝜚𝑢 · 𝜕𝑡𝜙 + (𝜚𝑢⊗ 𝑢) : ∇𝑥𝜙 + 𝑝(𝜚, 𝜗)div𝑥𝜙] d𝑥 d𝑡

−
∫︁ 𝑇

0

∫︁
T𝑑

S(𝜗,D𝑥𝑢) : D𝑥𝜙 d𝑥d𝑡− 1
𝜀

∫︁ 𝑇

0

∫︁
T𝑑∖Ω

𝑢 ·𝜙 d𝑥d𝑡
(2.14)

holds for any 𝜙 ∈ 𝐶1
𝑐 ([0, 𝑇 )× T𝑑;𝑅𝑑).
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(iv) Weak formulation of the entropy inequality : the integral inequality

−
∫︁

T𝑑

𝑆0 𝜙(0, ·) d𝑥 ≥
∫︁ 𝑇

0

∫︁
T𝑑

[︂
𝜚𝑠(𝜚, 𝜗)

(︀
𝜕𝑡𝜙+ 𝑢 · ∇𝑥𝜙

)︀
+

𝑞(𝜗,∇𝑥𝜗)
𝜗

· ∇𝑥𝜙

]︂
d𝑥d𝑡

+
∫︁ 𝑇

0

∫︁
T𝑑

𝜙

𝜗

(︂
S(𝜗,D𝑥𝑢) : D𝑥𝑢− 𝑞(𝜗,∇𝑥𝜗) · ∇𝑥𝜗

𝜗

)︂
d𝑥d𝑡

− 1
𝜀

∫︁ 𝑇

0

∫︁
T𝑑∖Ω

𝜙

𝜗
|𝜗− 𝜗𝐵 |𝑘(𝜗− 𝜗𝐵) d𝑥d𝑡

(2.15)

holds for any 𝜙 ∈ 𝐶1
𝑐 ([0, 𝑇 )× T𝑑), 𝜙 ≥ 0.

(v) Total energy balance: the integral inequality

𝜓(𝜏)
∫︁

T𝑑

(︂
1
2
𝜚|𝑢|2 + 𝜚𝑒(𝜚, 𝜗)

)︂
(𝜏, ·) d𝑥−

∫︁ 𝜏

0

𝜕𝑡𝜓

∫︁
T𝑑

[︂
1
2
𝜚|𝑢|2 + 𝜚𝑒(𝜚, 𝜗)

]︂
d𝑥d𝑡

+
1
𝜀

∫︁ 𝜏

0

𝜓

∫︁
T𝑑∖Ω

|𝑢|2 d𝑥 d𝑡+
1
𝜀

∫︁ 𝜏

0

𝜓

∫︁
T𝑑∖Ω

|𝜗− 𝜗𝐵 |𝑘(𝜗− 𝜗𝐵) d𝑥d𝑡

≤ 𝜓(0)
∫︁

T𝑑

(︂
1
2
|𝑚0|2

𝜚0
+ 𝜚0𝑒(𝜚0, 𝑆0)

)︂
d𝑥 (2.16)

holds for a.e. 𝜏 ∈ (0, 𝑇 ) and any 𝜓 ∈ 𝐶1[0, 𝑇 ], 𝜓 ≥ 0.

A suitable concept of a weak solution for the system (1.1)–(1.3) endowed with the Dirichlet boundary condi-
tions (1.4) has been developed only recently in [3].

Definition 2.2 (Weak solution of the Dirichlet problem). We say that the trio of functions [𝜚, 𝜗,𝑢] is a weak
solution of the Navier–Stokes–Fourier system (1.1)–(1.3), with the Dirichlet boundary conditions (1.4) and the
initial data

𝜚(0, ·) = 𝜚0, (𝜚𝑢)(0, ·) = 𝑚0, 𝜚𝑠(𝜚, 𝜗)(0, ·) = 𝑆0

if the following holds.

(i) Weak formulation of the continuity equation: the integral identity

−
∫︁

Ω

𝜚0𝜙(0, ·) d𝑥 =
∫︁ 𝑇

0

∫︁
Ω

[𝜚𝜕𝑡𝜙+ 𝜚𝑢 · ∇𝑥𝜙] d𝑥d𝑡, (2.17)

holds for any 𝜙 ∈ 𝐶1
𝑐

(︀
[0, 𝑇 )× Ω

)︀
.

(ii) Weak formulation of the renormalized continuity equation: for any function

𝑏 ∈ 𝐶1[0,∞), 𝑏′ ∈ 𝐶𝑐[0,∞),

the integral identity

−
∫︁

Ω

𝑏(𝜚0)𝜙(0, ·) d𝑥 =
∫︁ 𝑇

0

∫︁
Ω

[𝑏(𝜚)𝜕𝑡𝜙+ 𝑏(𝜚)𝑢 · ∇𝑥𝜙+ 𝜙 (𝑏(𝜚)− 𝑏′(𝜚)𝜚)div𝑥𝑢] d𝑥 d𝑡 (2.18)

holds for any 𝜙 ∈ 𝐶1
𝑐

(︀
[0, 𝑇 )× Ω

)︀
.

(iii) Weak formulation of the momentum equation: the integral identity

−
∫︁

Ω

𝑚0 ·𝜙(0, ·) d𝑥 =
∫︁ 𝑇

0

∫︁
Ω

[𝜚𝑢 · 𝜕𝑡𝜙 + (𝜚𝑢⊗ 𝑢) : ∇𝑥𝜙 + 𝑝(𝜚, 𝜗)div𝑥𝜙] d𝑥d𝑡

−
∫︁ 𝑇

0

∫︁
Ω

S(𝜗,D𝑥𝑢) : D𝑥𝜙 d𝑥 d𝑡

(2.19)

holds for any 𝜙 ∈ 𝐶1
𝑐

(︀
[0, 𝑇 )× Ω;𝑅𝑑

)︀
.
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(iv) Weak formulation of the entropy inequality : the integral inequality

−
∫︁

Ω

𝑆0 𝜙(0, ·) d𝑥 ≥
∫︁ 𝑇

0

∫︁
Ω

[︂
𝜚𝑠(𝜚, 𝜗)

(︀
𝜕𝑡𝜙+ 𝑢 · ∇𝑥𝜙

)︀
+

𝑞(𝜗,∇𝑥𝜗)
𝜗

· ∇𝑥𝜙

]︂
d𝑥d𝑡

+
∫︁ 𝑇

0

∫︁
Ω

𝜙

𝜗

(︂
S(𝜗,D𝑥𝑢) : D𝑥𝑢− 𝑞(𝜗,∇𝑥𝜗) · ∇𝑥𝜗

𝜗

)︂
d𝑥d𝑡

(2.20)

holds for any 𝜙 ∈ 𝐶1
𝑐 ([0, 𝑇 )× Ω), 𝜙 ≥ 0.

(v) Ballistic energy balance: for any

𝜗 ∈ 𝐶1
(︀
[0, 𝑇 ]× Ω

)︀
, inf 𝜗 > 0, 𝜗|𝜕Ω = 𝜗𝐵 (2.21)

the integral inequality∫︁
Ω

(︂
1
2
𝜚|𝑢|2 + 𝜚𝑒(𝜚, 𝜗)− 𝜗𝜚𝑠(𝜚, 𝜗)

)︂
(𝜏, ·) d𝑥+

∫︁ 𝜏

0

∫︁
Ω

𝜗

𝜗

(︂
S(𝜗,D𝑥𝑢) : D𝑥𝑢− 𝑞(𝜗,∇𝑥𝜗) · ∇𝑥𝜗

𝜗

)︂
d𝑥d𝑡

≤
∫︁

Ω

(︂
1
2
|𝑚0|2

𝜚0
+ 𝜚0𝑒(𝜚0, 𝑆0)− 𝜗(0, ·)𝑆0

)︂
d𝑥 (2.22)

−
∫︁ 𝜏

0

∫︁
Ω

[︃
𝜚𝑠(𝜚, 𝜗)

(︁
𝜕𝑡𝜗+ 𝑢 · ∇𝑥𝜗

)︁
+

𝑞(𝜗,∇𝑥𝜗) · ∇𝑥𝜗

𝜗

]︃
d𝑥d𝑡

holds for a.e. 𝜏 ∈ (0, 𝑇 ).

Apparently, the main difference between the two concepts of weak solutions is the total, ballistic energy
balance (2.16), (2.22), respectively. In addition, the pointwise inequality (2.22) is weaker than its counterpart
(2.16) stated in the differential form. Still (2.22) is sufficient for showing the weak–strong uniqueness property,
see [3].

2.5. Main result

Having collected the necessary material, we are ready to state the main theoretical result of the paper.

Theorem 2.3 (Convergence of the penalization method). Let Ω ⊂ 𝑅𝑑, 𝑑 = 2, 3, be a bounded Lipschitz domain.
Suppose that the boundary function 𝜗𝐵 admits the extension (2.1). Let the thermodynamic functions 𝑝, 𝑒, 𝑠 as
well as the transport coefficients 𝜇, 𝜂, 𝜅 satisfy the hypotheses (2.2)–(2.11). Consider a family of measurable
initial data

𝜚0,𝜀 > 0, 𝑚0,𝜀, 𝑆0,𝜀

defined on T𝑑 and satisfying

𝜚0,𝜀 → 𝜚0 in 𝐿1
(︀
T𝑑
)︀
,

𝑚0,𝜀 → 𝑚0 weakly in 𝐿𝑞
(︀
T𝑑;𝑅𝑑

)︀
for some 𝑞 > 1,

𝑆0,𝜀 → 𝑆0 weakly in 𝐿𝑞
(︀
T𝑑
)︀

for some 𝑞 > 1,∫︁
T𝑑

(︂
1
2
|𝑚0,𝜀|2

𝜚0,𝜀
+ 𝜚0,𝜀𝑒(𝜚0,𝜀, 𝑆0,𝜀)

)︂
d𝑥→

∫︁
T𝑑

(︂
1
2
|𝑚0|2

𝜚0
+ 𝜚0𝑒(𝜚0, 𝑆0)

)︂
d𝑥 (2.23)

as 𝜀→ 0, where

–
𝜚0 ≥ 0, 𝑚0(𝑥) = 0, 𝑆0(𝑥) = 𝜚0(𝑥)𝑠(𝜚0(𝑥), 𝜗𝐵(𝑥)) for any 𝑥 ∈ T𝑑 ∖ Ω (2.24)

if 𝜗𝐵 = 𝜗𝐵(𝑥) is independent of 𝑡;



PENALIZATION METHOD FOR THE NSF SYSTEM 1917

–

𝜚0(𝑥) = 0, 𝑚0(𝑥) = 0, 𝑆0(𝑥) = 𝜚0(𝑥)𝑠(𝜚0(𝑥), 𝜗𝐵(0, 𝑥)) =
4𝑎
3
𝜗3

𝐵(0, 𝑥) for any 𝑥 ∈ T𝑑 ∖ Ω (2.25)

if 𝜗𝐵 = 𝜗𝐵(𝑡, 𝑥).

Let (𝜚𝜀, 𝜗𝜀,𝑢𝜀)𝜀>0 be the corresponding family of weak solutions to the penalized problem specified in Defini-
tion 2.1, with the parameter 𝑘 > 𝛽 − 1.

Then, up to a suitable subsequence,

𝜚𝜀 → 𝜚 in 𝐶weak

(︁
[0, 𝑇 ];𝐿

5
3 (Ω)

)︁
and (strongly) in 𝐿1((0, 𝑇 )× Ω),

𝑢𝜀 → 𝑢 weakly in 𝐿2
(︀
0, 𝑇 ;𝑊 1,2

(︀
Ω;𝑅𝑑

)︀)︀
,

𝜗𝜀 → 𝜗 weakly in 𝐿2
(︀
0, 𝑇 ;𝑊 1,2(Ω)

)︀
and strongly in 𝐿2((0, 𝑇 )× Ω),

where (𝜚, 𝜗,𝑢) is a weak solution of the Navier–Stokes–Fourier system (1.1)–(1.3), with the boundary conditions
(1.4) and the initial conditions (𝜚0,𝑚0, 𝑆0) in the sense of Definition 2.2.

Remark 2.4. The existence theory ([6], Chap. 3) can be adapted in a straightforward manner to provide a
family of weak solutions (𝜚𝜀, 𝜗𝜀,𝑢𝜀)𝜀>0 to the penalized problem assumed in the hypotheses of Theorem 2.3.
Accordingly, Theorem 2.3 represents an alternative proof of existence of a weak solution for the limit system,
cf. [3].

Remark 2.5. As shown in Section 3.2, formula (3.39) from [6],

0 ≤ 𝑠𝑚(𝜚, 𝜗) <∼ 1 + | log(𝜚)|+ [log(𝜗)]+. (2.26)

Consequently, we may set

𝜚0𝑠(𝜚0, 𝜗𝐵(0, ·)) = 𝜚0𝑠𝑚(𝜚0, 𝜗𝐵(0, ·)) +
4𝑎
3
𝜗3

𝐵(0, ·) =
4𝑎
3
𝜗3

𝐵(0, ·) whenever 𝜚0 = 0

in agreement with (2.25)

Remark 2.6. The hypothesis requiring the limit initial density to be zero outside Ω can be dropped provided
𝜗𝐵 is independent of time, see Section 4.3.

The forthcoming two sections are devoted to the proof of Theorem 2.3.

3. Uniform bounds

Our goal is to establish uniform bounds for the sequence of solutions of the penalized problem independent
of 𝜀→ 0.

3.1. Ballistic energy inequality

The crucial point is rewriting the ballistic energy inequality in terms of the solutions of the penalized problem.
To this end, consider

𝜙(𝑡, 𝑥) = 𝜓(𝑡)𝜗(𝑡, 𝑥), 𝜓 ∈ 𝐶1
𝑐 [0, 𝑇 ), 𝜓 ≥ 0,

where
𝜗 ∈ 𝐶1

(︀
[0, 𝑇 ]× T𝑑

)︀
, inf 𝜗 > 0, 𝜗|T𝑑∖Ω = 𝜗𝐵 (3.1)
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as a test function in the penalized entropy inequality (2.15). We get

−𝜓(0)
∫︁

T𝑑

𝑆0,𝜀 𝜗(0, ·) d𝑥 ≥
∫︁ 𝑇

0

𝜓

∫︁
T𝑑

[︂
𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

(︁
𝜕𝑡𝜗+ 𝑢𝜀 · ∇𝑥𝜗

)︁
+

𝑞(𝜗𝜀,∇𝑥𝜗𝜀)
𝜗𝜀

· ∇𝑥𝜗

]︂
d𝑥 d𝑡

+
∫︁ 𝑇

0

𝜓

∫︁
T𝑑

𝜗

𝜗𝜀

(︂
S(𝜗𝜀,D𝑥𝑢𝜀) : D𝑥𝑢𝜀 −

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝜀

𝜗𝜀

)︂
d𝑥 d𝑡

− 1
𝜀

∫︁ 𝑇

0

𝜓

∫︁
T𝑑∖Ω

𝜗𝐵

𝜗𝜀
|𝜗𝜀 − 𝜗𝐵 |𝑘(𝜗𝜀 − 𝜗𝐵) d𝑥 d𝑡

+
∫︁ 𝑇

0

𝜕𝑡𝜓

∫︁
T𝑑

𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)𝜗 d𝑥d𝑡;

whence, after a straightforward manipulation,

−
∫︁

T𝑑

𝑆0,𝜀 𝜗(0, ·) d𝑥 ≥
∫︁ 𝜏

0

∫︁
T𝑑

[︂
𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

(︁
𝜕𝑡𝜗+ 𝑢𝜀 · ∇𝑥𝜗

)︁
+

𝑞(𝜗𝜀,∇𝑥𝜗𝜀)
𝜗𝜀

· ∇𝑥𝜗

]︂
d𝑥 d𝑡

+
∫︁ 𝜏

0

∫︁
T𝑑

𝜗

𝜗𝜀

(︂
S(𝜗𝜀,D𝑥𝑢𝜀) : D𝑥𝑢𝜀 −

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝜀

𝜗𝜀

)︂
d𝑥 d𝑡

− 1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

𝜗𝐵

𝜗𝜀
|𝜗𝜀 − 𝜗𝐵 |𝑘(𝜗𝜀 − 𝜗𝐵) d𝑥d𝑡

−
∫︁

T𝑑

𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)𝜗(𝜏, ·) d𝑥 for a.a. 𝜏 ∈ (0, 𝑇 ).

(3.2)

Finally, we subtract (3.2) from the penalized energy balance (2.16) obtaining∫︁
T𝑑

(︂
1
2
𝜚𝜀|𝑢𝜀|2 + 𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)− 𝜗𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

)︂
(𝜏, ·) d𝑥

+
∫︁ 𝜏

0

∫︁
T𝑑

𝜗

𝜗𝜀

(︂
S(𝜗𝜀,D𝑥𝑢𝜀) : D𝑥𝑢𝜀 −

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝜀

𝜗𝜀

)︂
d𝑥d𝑡

+
1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

1
𝜗𝜀

|𝜗𝜀 − 𝜗𝐵 |𝑘+2 d𝑥 d𝑡+
1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

|𝑢𝜀|2 d𝑥 d𝑡

≤
∫︁

T𝑑

(︂
1
2
|𝑚0,𝜀|2

𝜚0,𝜀
+ 𝜚0,𝜀𝑒(𝜚0,𝜀, 𝑆0,𝜀)− 𝜗(0, ·)𝑆0,𝜀

)︂
d𝑥

−
∫︁ 𝜏

0

∫︁
T𝑑

[︃
𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

(︁
𝜕𝑡𝜗+ 𝑢𝜀 · ∇𝑥𝜗

)︁
+

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗

𝜗𝜀

]︃
d𝑥d𝑡

(3.3)

for a.e. 𝜏 ∈ (0, 𝑇 ).

3.2. Mass conservation

It follows from the equation of continuity (2.12) that the total mass of the fluid is a constant of motion.
Specifically, in accordance with hypothesis (2.25),

𝑀0,𝜀 =
∫︁

T𝑑

𝜚𝜀(𝜏, ·) d𝑥 =
∫︁

T𝑑

𝜚0,𝜀 d𝑥→
∫︁

Ω

𝜚0 d𝑥 = 𝑀0 as 𝜀→ 0. (3.4)

3.3. Energy estimates

In accordance with hypothesis (2.1), we may consider 𝜗 = 𝜗𝐵 , where 𝜗𝐵 is the extension of the boundary
temperature specified in (2.1), as a “test” function in the ballistic energy inequality (3.3).
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Strictly speaking, equation (3.3) was originally derived for 𝐶1 functions, however, extension of its validity to
Lipschitz test functions is straightforward. We obtain∫︁

T𝑑

(︂
1
2
𝜚𝜀|𝑢𝜀|2 + 𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)− 𝜗𝐵𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

)︂
(𝜏, ·) d𝑥

+
∫︁ 𝜏

0

∫︁
T𝑑

𝜗𝐵

𝜗𝜀

(︂
S(𝜗𝜀,D𝑥𝑢𝜀) : D𝑥𝑢𝜀 −

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝜀

𝜗𝜀

)︂
d𝑥 d𝑡

+
1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

1
𝜗𝜀

|𝜗𝜀 − 𝜗𝐵 |𝑘+2 d𝑥d𝑡+
1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

|𝑢𝜀|2 d𝑥d𝑡

≤
∫︁

T𝑑

(︂
1
2
|𝑚0,𝜀|2

𝜚0,𝜀
+ 𝜚0,𝜀𝑒(𝜚0,𝜀, 𝑆0,𝜀)− 𝜗𝐵(0, ·)𝑆0,𝜀

)︂
d𝑥

−
∫︁ 𝜏

0

∫︁
T𝑑

[︂
𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

(︁
𝜕𝑡𝜗𝐵 + 𝑢𝜀 · ∇𝑥𝜗𝐵

)︁
+

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝐵

𝜗𝜀

]︂
d𝑥 d𝑡

(3.5)

for a.e. 𝜏 ∈ (0, 𝑇 ).
It follows from the hypotheses (2.9), (2.10) and the Korn–Poincaré inequality (see e.g. [6], Prop. 2.1) that

‖𝑢𝜀‖2𝑊 1,2(T𝑑;𝑅𝑑)
<∼
∫︁

T𝑑

𝜗𝐵

𝜗𝜀
S(𝜗𝜀,D𝑥𝑢𝜀) : D𝑥𝑢𝜀 d𝑥+

1
𝜀

∫︁
T𝑑∖Ω

|𝑢𝜀|2 d𝑥. (3.6)

Similarly, in accordance with hypothesis (2.11),⃦⃦⃦⃦
𝜗

𝛽
2
𝜀

⃦⃦⃦⃦2

𝑊 1,2(T𝑑)

+ ‖log(𝜗𝜀)‖2𝑊 1,2(T𝑑) ≤ 𝑐(𝜗𝐵)

[︃
1−

∫︁
T𝑑

𝜗𝐵
𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝜀

𝜗2
𝜀

d𝑥+
1
𝜀

∫︁
T𝑑∖Ω

1
𝜗𝜀

|𝜗𝜀 − 𝜗𝐵 |𝑘+2

]︃
.

(3.7)

In view of hypothesis (2.23), the energy of the initial data is uniformly bounded, and we may use (3.6), (3.7)
to reduce the inequality (3.5) to∫︁

T𝑑

(︂
1
2
𝜚𝜀|𝑢𝜀|2 + 𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)− 𝜗𝐵𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

)︂
(𝜏, ·) d𝑥

+
∫︁ 𝜏

0

(︂
‖𝑢𝜀‖2𝑊 1,2(T𝑑;𝑅𝑑) + ‖𝜗

𝛽
2
𝜀 ‖2𝑊 1,2(T𝑑) + ‖ log(𝜗𝜀)‖2𝑊 1,2(T𝑑)

)︂
d𝑡

+
1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

1
𝜗𝜀

|𝜗𝜀 − 𝜗𝐵 |𝑘+2 d𝑥d𝑡+
1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

|𝑢𝜀|2 d𝑥d𝑡

<∼
[︂
1 +

⃒⃒⃒⃒∫︁ 𝜏

0

∫︁
T𝑑

[︂
𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

(︁
𝜕𝑡𝜗𝐵 + 𝑢𝜀 · ∇𝑥𝜗𝐵

)︁
+

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝐵

𝜗𝜀

]︂
d𝑥 d𝑡

⃒⃒⃒⃒]︂
(3.8)

for a.e. 𝜏 ∈ (0, 𝑇 ).
Next, recalling ∆𝑥𝜗𝐵 = 0 in Ω we may integrate

−
∫︁

T𝑑

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝐵

𝜗𝜀
d𝑥 =

∫︁
Ω

𝜅(𝜗𝜀)∇𝑥𝜗𝜀 · ∇𝑥𝜗𝐵

𝜗𝜀
d𝑥+

∫︁
T𝑑∖Ω

𝜅(𝜗𝜀)∇𝑥𝜗𝜀 · ∇𝑥𝜗𝐵

𝜗𝜀
d𝑥

=
∫︁

𝜕Ω

𝐾(𝜗𝜀)[∇𝑥𝜗𝐵 · 𝑛±] d𝜎𝑥 −
∫︁

T𝑑∖Ω
𝐾(𝜗𝜀)∆𝑥𝜗𝐵 d𝑥,

where we introduced a function 𝐾, 𝐾 ′(𝜗) = 𝜅(𝜗)
𝜗 , and where [∇𝑥𝜗𝐵 ·𝑛±] denotes a possible jump of the normal

derivative of 𝜗𝐵 across 𝜕Ω. As
|𝐾(𝜗𝜀)| <∼

(︀
1 + | log(𝜗𝜀)|+ 𝜗𝛽

𝜀

)︀
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the volume integral ∫︁
T𝑑∖Ω

𝐾(𝜗𝜀)∆𝑥𝜗𝐵 d𝑥

is controlled by the left–hand side of (3.8) as soon as 𝑘 > 𝛽 − 1. To control the surface integral, we need the
following standard result.

Lemma 3.1. Let 𝑄 ⊂ 𝑅𝑑 be a bounded Lipschitz domain and 𝛿 > 0 arbitrary. Then there exists 𝑐(𝛿) such that

‖𝑣‖2𝐿2(𝜕𝑄) ≤ 𝛿‖∇𝑥𝑣‖2𝐿2(𝑄;𝑅𝑑) + 𝑐(𝛿)‖𝑣‖2𝐿2(𝑄)

for any 𝑣 ∈𝑊 1,2(𝑄).

Proof. Assuming the contrary, we get 𝛿0 > 0 and sequences (𝑣𝑛)∞𝑛=1 ⊂𝑊 1,2(𝑄), 𝐶𝑛 →∞ such that

‖𝑣𝑛‖2𝐿2(𝜕𝑄) ≥ 𝛿0‖∇𝑥𝑣𝑛‖2𝐿2(𝑄;𝑅𝑑) + 𝐶𝑛‖𝑣𝑛‖2𝐿2(𝑄).

Introducing 𝑤𝑛 = 𝑣𝑛/‖𝑣𝑛‖𝐿2(𝜕𝑄), we get

𝛿0‖∇𝑥𝑤𝑛‖2𝐿2(𝑄;𝑅𝑑) + 𝐶𝑛‖𝑤𝑛‖2𝐿2(𝑄) ≤ 1, ‖𝑤𝑛‖2𝐿2(𝜕𝑄) = 1.

Consequently, by compactness of the trace operator,

𝑤𝑛 → 0 weakly in 𝑊 1,2(𝑄) and 𝑤𝑛|𝜕𝑄 → 0 (strongly) in 𝐿2(𝜕𝑄),

which is a contradiction. �

Thus applying Lemma 3.1 to

𝑣 = 𝜗
𝛽
2
𝜀 , 𝑄 = T𝑑 ∖ Ω

we may infer that the surface integral ∫︁
𝜕Ω

𝐾(𝜗𝜀)[∇𝑥𝜗𝐵 · 𝑛±] d𝜎𝑥

is controlled by the left–hand side of (3.8).
We conclude by rewriting (3.8) in the form∫︁

T𝑑

(︂
1
2
𝜚𝜀|𝑢𝜀|2 + 𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)− 𝜗𝐵𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

)︂
(𝜏, ·) d𝑥

+
∫︁ 𝜏

0

(︂
‖𝑢𝜀‖2𝑊 1,2(T𝑑;𝑅𝑑) + ‖𝜗

𝛽
2
𝜀 ‖2𝑊 1,2(T𝑑) + ‖ log(𝜗𝜀)‖2𝑊 1,2(T𝑑)

)︂
d𝑡

+
1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

1
𝜗𝜀

|𝜗𝜀 − 𝜗𝐵 |𝑘+2 d𝑥d𝑡+
1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

|𝑢𝜀|2 d𝑥d𝑡

<∼
[︂
1 +

∫︁ 𝜏

0

∫︁
T𝑑

𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)
⃒⃒⃒
𝜕𝑡𝜗𝐵 + 𝑢𝜀 · ∇𝑥𝜗𝐵

⃒⃒⃒
d𝑥d𝑡

]︂
(3.9)

for a.e. 𝜏 ∈ (0, 𝑇 ).
Finally, in accordance with hypothesis (2.4) and by virtue of (2.26),

𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)|𝑢𝜀| = 𝜚𝜀𝒮

(︃
𝜚𝜀

𝜗
3
2
𝜀

)︃
|𝑢𝜀|+

4𝑎
3
𝜗3

𝜀|𝑢𝜀| ≤ 𝜚𝜀𝒮

(︃
𝜚𝜀

𝜗
3
2
𝜀

)︃
|𝑢𝜀|+ 𝛿|𝑢𝜀|2 + 𝑐(𝛿)𝜗6

𝜀 (3.10)
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for any 𝛿 > 0. Moreover, in accordance with the hypotheses (2.6), (2.8),

0 ≤ 𝜚𝜀𝒮

(︃
𝜚𝜀

𝜗
3
2
𝜀

)︃
<∼
(︁

1 + 𝜗
3
2
𝜀

(︀
1 + [log(𝜗𝜀)]+

)︀)︁
if
𝜚𝜀

𝜗
3
2
𝜀

≤ 1,

0 ≤ 𝜚𝜀𝒮

(︃
𝜚𝜀

𝜗
3
2
𝜀

)︃
<∼ 𝜚𝜀 if

𝜚𝜀

𝜗
3
2
𝜀

> 1.

Thus, going back to (3.9), we conclude∫︁
T𝑑

𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)|𝑢𝜀|d𝑥
<∼ 𝛿‖𝑢𝜀‖2𝐿2(T𝑑;𝑅𝑑) + 𝑐(𝛿)‖𝜗𝜀‖6𝐿6(T𝑑) +

∫︁
T𝑑

𝜚𝜀|𝑢𝜀|2 d𝑥+𝑀0,𝜀 (3.11)

for any 𝛿 > 0.
The bound (3.11) together with (3.9) yield the desired conclusion∫︁

T𝑑

(︂
1
2
𝜚𝜀|𝑢𝜀|2 + 𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)− 𝜗𝐵𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

)︂
(𝜏, ·) d𝑥

+
∫︁ 𝜏

0

(︂
‖𝑢𝜀‖2𝑊 1,2(T𝑑;𝑅𝑑) + ‖𝜗

𝛽
2
𝜀 ‖2𝑊 1,2(T𝑑) + ‖ log(𝜗𝜀)‖2𝑊 1,2(T𝑑)

)︂
d𝑡

+
1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

1
𝜗𝜀

|𝜗𝜀 − 𝜗𝐵 |𝑘+2 d𝑥d𝑡+
1
𝜀

∫︁ 𝜏

0

∫︁
T𝑑∖Ω

|𝑢𝜀|2 d𝑥d𝑡

<∼
[︂
1 +

∫︁ 𝜏

0

∫︁
T𝑑

(︂
1
2
𝜚𝜀|𝑢𝜀|2 + 𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)

)︂
d𝑥d𝑡

]︂
(3.12)

for a.e. 𝜏 ∈ (0, 𝑇 ). As the entropy is dominated by the energy, we may use Gronwall’s argument to conclude

ess sup
𝜏∈(0,𝑇 )

∫︁
T𝑑

(︂
1
2
𝜚𝜀|𝑢𝜀|2 + 𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)

)︂
d𝑥 <∼ 1,∫︁ 𝑇

0

(︂
‖𝑢𝜀‖2𝑊 1,2(T𝑑;𝑅𝑑) + ‖𝜗

𝛽
2
𝜀 ‖2𝑊 1,2(T𝑑) + ‖ log(𝜗𝜀)‖2𝑊 1,2(T𝑑)

)︂
d𝑡 <∼ 1,∫︁ 𝑇

0

∫︁
T𝑑∖Ω

1
𝜗𝜀

|𝜗𝜀 − 𝜗𝐵 |𝑘+2 d𝑥d𝑡+
∫︁ 𝑇

0

∫︁
T𝑑∖Ω

|𝑢𝜀|2 d𝑥d𝑡 <∼ 𝜀 (3.13)

uniformly for 𝜀 > 0.

4. Convergence

The ultimate step in the proof of Theorem 2.3 is letting 𝜀 → 0 in the sequence of approximate solutions
(𝜚𝜀, 𝜗𝜀,𝑢𝜀)𝜀>0. We claim that this reduces essentially to performing the limit in the ballistic energy inequality
(3.3). Indeed the weak formulation of the equation of continuity is the same for the penalized and the limit
system, while the momentum and the entropy balance (2.19), (2.20) do not see the penalization terms in (2.14),
(2.15), respectively, as the relevant test functions are compactly supported. Consequently, the limit in the
equation of continuity (2.12), the momentum equation (2.14) as well as the entropy inequality (2.15) can be
performed using the known compactness arguments as in Chapter 3 of [6]. Thus our task reduces to:

– verifying the renormalized equation of continuity for the limit (𝜚,𝑢);
– performing the limit in the ballistic energy inequality (3.3).

In the following text, we focus on the general case of a time dependent 𝜗𝐵 = 𝜗𝐵(𝑡, 𝑥) as specified in hypothesis
(2.24). The necessary modifications to handle hypothesis (2.25) are discussed in Section 4.3.
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4.1. Renormalized equation of continuity

Basically each step in the following arguments requires passing to a suitable subsequence in the family of
approximate solutions we will not relabel for simplicity. First, as a consequence of the hypotheses (2.3), (2.7),
we have

𝜚
5
3 + 𝜗4 <∼ 𝜚𝑒(𝜚, 𝜗).

Consequently, in view of the uniform bounds (3.13)

𝜚𝜀 → 𝜚 weakly-(*) in 𝐿∞
(︁

0, 𝑇 ;𝐿
5
3
(︀
T𝑑
)︀)︁
,

𝜗𝜀 → 𝜗 weakly-(*) in 𝐿∞
(︀
0, 𝑇 ;𝐿4

(︀
T𝑑
)︀)︀
,

𝑢𝜀 → 𝑢 weakly in 𝐿2
(︀
0, 𝑇 ;𝑊 1,2

(︀
T𝑑;𝑅𝑑

)︀)︀
,

𝜚𝜀𝑢𝜀 → 𝜚𝑢 weakly-(*) in 𝐿∞
(︁

0, 𝑇 ;𝐿
5
4
(︀
T𝑑;𝑅𝑑

)︀)︁
. (4.1)

In addition, as (𝜚𝜀,𝑢𝜀) satisfy the equation of continuity (2.12), we get

𝜚𝜀 → 𝜚 in 𝐶weak

(︁
[0, 𝑇 ];𝐿

5
3
(︀
T𝑑
)︀)︁
,

𝜚𝑢 = 𝜚𝑢. (4.2)

In particular, the equation of continuity (2.12) is satisfied in (0, 𝑇 )× T𝑑 by the limit (𝜚,𝑢).
Next, using (3.13) again we get

𝑢𝜀 → 0 in 𝐿2
(︀
(0, 𝑇 )×

(︀
T𝑑 ∖ Ω

)︀
;𝑅𝑑

)︀
(4.3)

yielding
𝑢 ∈ 𝐿2

(︁
0, 𝑇 ;𝑊 1,2

0

(︀
Ω;𝑅𝑑

)︀)︁
.

Moreover, as 𝜚 satisfies the equation of continuity, we get

𝜕𝑡𝜚 = 0 in 𝒟′
(︀
(0, 𝑇 )×

(︀
T𝑑 ∖ Ω

)︀)︀
.

By virtue of hypothesis (2.25),
𝜚(0, ·) = 𝜚0 = 0 in T𝑑 ∖ Ω,

and we may infer that

𝜚 = 0 in (0, 𝑇 )×
(︀
T𝑑 ∖ Ω

)︀
,

𝜚𝜀 → 0 in 𝐿𝑞((0, 𝑇 )×
(︀
T𝑑 ∖ Ω

)︀
) for any 1 ≤ 𝑞 <

5
3
· (4.4)

We conclude that (𝜚,𝑢) = (0, 0) satisfy the renormalized equation of continuity in (0, 𝑇 ) ×
(︀
T𝑑 ∖ Ω

)︀
, while

the known arguments yield the same conclusion in (0, 𝑇 )× Ω. By the same token, we may suppose

𝜚𝜀 → 𝜚 (strongly) in 𝐿𝑞((0, 𝑇 )× Ω)) for any 1 ≤ 𝑞 <
5
3
· (4.5)

4.2. Ballistic energy

Our ultimate goal in the proof of Theorem 2.3 is to perform the limit 𝜀→ 0 in the ballistic energy inequality
(3.3). The first issue to discuss is the strong convergence of the temperature. In view of the uniform bounds
(3.13), we may suppose

𝜗𝜀 → 𝜗 weakly in 𝐿2
(︀
0, 𝑇 ;𝑊 1,2

(︀
T𝑑
)︀)︀
,

log(𝜗𝜀) → log(𝜗) weakly in 𝐿2
(︀
0, 𝑇 ;𝑊 1,2

(︀
T𝑑
)︀)︀
. (4.6)
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In addition, we have strong (a.a. pointwise) convergence in Ω by the compactness arguments of Chapter 3
from [6], say,

𝜗𝜀 → 𝜗 (strongly) in 𝐿2((0, 𝑇 )× Ω),

and, again by (3.13),
𝜗𝜀 → 𝜗𝐵 in 𝐿𝑘+1

(︀
(0, 𝑇 )×

(︀
T𝑑 ∖ Ω

)︀)︀
. (4.7)

Thus we may infer

𝜗𝜀 → 𝜗 in 𝐿2
(︀
(0, 𝑇 )× T𝑑

)︀
, (𝜗− 𝜗𝐵) in 𝐿2(0, 𝑇 ;𝑊 1,2

0 (Ω)), log(𝜗) = log(𝜗), (4.8)

in particular, 𝜗 > 0 a.a. in (0, 𝑇 )× T𝑑.
We are ready to perform the limit in the ballistic energy inequality (3.3). To begin, in view of the hypotheses

(2.23), (2.25),∫︁
T𝑑

(︂
1
2
|𝑚0,𝜀|2

𝜚0,𝜀
+ 𝜚0,𝜀𝑒(𝜚0,𝜀, 𝑆0,𝜀)− 𝜗(0, ·)𝑆0,𝜀

)︂
d𝑥→

∫︁
Ω

(︂
1
2
|𝑚0|2

𝜚0
+ 𝜚0𝑒(𝜚0, 𝑆0)− 𝜗(0, ·)𝑆0

)︂
d𝑥

−
∫︁

T𝑑∖Ω

𝑎

3
𝜗4

𝐵(0, ·) d𝑥. (4.9)

Similarly, using the strong convergence of (𝜚𝜀, 𝜗𝜀) established in (4.5), (4.7) we get

lim inf
𝜀→0

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
T𝑑

(︂
1
2
𝜚𝜀|𝑢𝜀|2 + 𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)− 𝜗𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

)︂
d𝑥 d𝑡

≥
∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
Ω

(︂
1
2
𝜚|𝑢|2 + 𝜚𝑒(𝜚, 𝜗)− 𝜗𝜚𝑠(𝜚, 𝜗)

)︂
d𝑥 d𝑡−

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
T𝑑∖Ω

𝑎

3
𝜗4

𝐵 d𝑥 d𝑡. (4.10)

for any 𝛿 > 0.
Next, by the same argument,

−
∫︁ 𝜏

0

∫︁
T𝑑

𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)𝜕𝑡𝜗 d𝑥d𝑡→ −
∫︁ 𝜏

0

∫︁
Ω

𝜚𝑠(𝜚, 𝜗)𝜕𝑡𝜗 d𝑥d𝑡−
∫︁ 𝜏

0

∫︁
T𝑑∖Ω

4𝑎
3
𝜗3

𝐵𝜕𝑡𝜗𝐵 d𝑥 d𝑡

= −
∫︁ 𝜏

0

∫︁
Ω

𝜚𝑠(𝜚, 𝜗)𝜕𝑡𝜗 d𝑥d𝑡−
∫︁ 𝜏

0

d
d𝑡

∫︁
T𝑑∖Ω

𝑎

3
𝜗4

𝐵 d𝑥d𝑡

= −
∫︁ 𝜏

0

∫︁
Ω

𝜚𝑠(𝜚, 𝜗)𝜕𝑡𝜗 d𝑥d𝑡−
∫︁

T𝑑∖Ω

𝑎

3
𝜗4

𝐵(𝜏, ·) d𝑥+
∫︁

T𝑑∖Ω

𝑎

3
𝜗4

𝐵(0, ·) d𝑥. (4.11)

In addition, by virtue of (4.3),∫︁ 𝜏

0

∫︁
T𝑑

𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)𝑢𝜀 · ∇𝑥𝜗 d𝑥d𝑡→
∫︁ 𝜏

0

∫︁
Ω

𝜚𝑠(𝜚, 𝜗)𝑢 · ∇𝑥𝜗 d𝑥 d𝑡. (4.12)

Summing up (4.9)–(4.12) and plugging the result in the ballistic energy inequality (3.3) we obtain∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
Ω

(︂
1
2
𝜚|𝑢|2 + 𝜚𝑒(𝜚, 𝜗)− 𝜗𝜚𝑠(𝜚, 𝜗)

)︂
(𝑠, ·) d𝑥 d𝑠

+ lim inf
𝜀→0

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
T𝑑

𝜗

𝜗𝜀

(︂
S(𝜗𝜀,D𝑥𝑢𝜀) : D𝑥𝑢𝜀 −

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝜀

𝜗𝜀

)︂
d𝑥d𝑡d𝑠

≤ 2𝛿
∫︁

Ω

(︂
1
2
|𝑚0|2

𝜚0
+ 𝜚0𝑒(𝜚0, 𝑆0)− 𝜗(0, ·)𝑆0

)︂
d𝑥
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−
∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
Ω

(︁
𝜚𝑠(𝜚, 𝜗)

(︁
𝜕𝑡𝜗+ 𝑢 · ∇𝑥𝜗

)︁)︁
d𝑥 d𝑡d𝑠

− lim
𝜀→0

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
T𝑑

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗

𝜗𝜀
d𝑥d𝑡d𝑠 (4.13)

for any 𝛿 > 0.
Next,∫︁
T𝑑

𝜗

𝜗𝜀
S(𝜗𝜀,D𝑥𝑢𝜀) : D𝑥𝑢𝜀 d𝑥 =

∫︁
T𝑑

𝜗𝜇(𝜗𝜀)
1

2𝜗𝜀

⃒⃒⃒⃒
∇𝑥𝑢𝜀 +∇𝑡

𝑥𝑢𝜀 −
2
𝑑

div𝑥𝑢𝜀I
⃒⃒⃒⃒2

d𝑥+
∫︁

T𝑑

𝜗𝜂(𝜗𝜀)
1
𝜗𝜀
|div𝑥𝑢𝜀|2 d𝑥.

Consequently, combining convexity of the function

(𝜗,𝑍) ↦→ |𝑍|2

𝜗

with the strong convergence of the temperature established in (4.8), we may infer that

lim inf
𝜀→0

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
T𝑑

𝜗

𝜗𝜀
S(𝜗𝜀,D𝑥𝑢𝜀) : D𝑥𝑢𝜀 d𝑥d𝑡d𝑠 ≥

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
Ω

𝜗

𝜗
S(𝜗,D𝑥𝑢) : D𝑥𝑢 d𝑥 d𝑡d𝑠. (4.14)

Similarly, we rewrite

−
∫︁

T𝑑

𝜗

𝜗2
𝜀

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝜀 d𝑥 =
∫︁

T𝑑

𝜗𝜅(𝜗𝜀)|∇𝑥 log(𝜗𝜀)|2 d𝑥.

Consequently, using arguments similar to (4.14), we get

− lim inf
𝜀→0

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
T𝑑

𝜗

𝜗𝜀

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗𝜀

𝜗𝜀
d𝑥 d𝑡d𝑠 ≥ −

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
Ω

𝜗

𝜗

𝑞(𝜗,∇𝑥𝜗) · ∇𝑥𝜗

𝜗
d𝑥 d𝑡d𝑠

−
∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
T𝑑∖Ω

𝑞(𝜗𝐵 ,∇𝑥𝜗𝐵) · ∇𝑥𝜗𝐵

𝜗𝐵
d𝑥 d𝑡d𝑠.

(4.15)

Our ultimate goal is to perform the limit in the last integral in (4.13), namely

lim
𝜀→0

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
T𝑑

𝑞(𝜗𝜀,∇𝑥𝜗𝜀) · ∇𝑥𝜗

𝜗𝜀
d𝑥 d𝑡 d𝑠 =

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
Ω

𝑞(𝜗,∇𝑥𝜗) · ∇𝑥𝜗

𝜗
d𝑥 d𝑡 d𝑠

+
∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
T𝑑∖Ω

𝑞(𝜗𝐵 ,∇𝑥𝜗𝐵) · ∇𝑥𝜗𝐵

𝜗𝐵
d𝑥d𝑡 d𝑠. (4.16)

In view of the strong convergence of (𝜗𝜀)𝜀>0 and weak convergence of (∇𝑥𝜗𝜀)𝜀>0, it is enough to observe that
the terms

𝜅(𝜗𝜀)
𝜗𝜀

∇𝑥𝜗𝜀, 𝜀 > 0

are equi–integrable. Seeing that for small values of 𝜗𝜀 we have 𝜅(𝜗𝜀)
𝜗𝜀

∇𝑥𝜗𝜀 ≈ ∇𝑥 log(𝜗𝜀) controlled by (3.13), we
focus on

𝜗𝛽−1
𝜀 ∇𝑥𝜗𝜀, 𝜗𝜀 ≥ 1, 𝜀 > 0.

Writing

𝜗𝛽−1
𝜀 ∇𝑥𝜗𝜀 = 𝜗

𝛽
2
𝜀 ∇𝑥𝜗

𝛽
2
𝜀
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we observe, by virtue of the estimates (3.13), that it is enough to control the norm⃦⃦⃦⃦
𝜗

𝛽
2
𝜀

⃦⃦⃦⃦
𝐿𝑞((0,𝑇 )×T𝑑)

<∼ 1 for some 𝑞 > 2.

This is definitely possible on the set (0, 𝑇 ) ×
(︀
T𝑑 ∖ Ω

)︀
since 𝑘 + 1 > 𝛽. As for Ω, we have, by virtue of (3.13)

and the standard Sobolev emebedding,(︂
𝜗

𝛽
2
𝜀

)︂
𝜀>0

bounded in 𝐿2
(︀
0, 𝑇 ;𝐿6(Ω)

)︀
, (𝜗𝜀)𝜀>0 bounded in 𝐿∞(0, 𝑇 ;𝐿4(Ω));

whence the desired conclusion follows by interpolation.
Plugging (4.14)–(4.16) in (4.13) we get∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
Ω

(︂
1
2
𝜚|𝑢|2 + 𝜚𝑒(𝜚, 𝜗)− 𝜗𝜚𝑠(𝜚, 𝜗)

)︂
(𝑠, ·) d𝑥d𝑠

+
∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
Ω

𝜗

𝜗

(︂
S(𝜗,D𝑥𝑢) : D𝑥𝑢− 𝑞(𝜗,∇𝑥𝜗) · ∇𝑥𝜗𝜀

𝜗

)︂
d𝑥d𝑡d𝑠

≤ 2𝛿
∫︁

Ω

(︂
1
2
|𝑚0|2

𝜚0
+ 𝜚0𝑒(𝜚0, 𝑆0)− 𝜗(0, ·)𝑆0

)︂
d𝑥

−
∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁ 𝑠

0

∫︁
Ω

(︃
𝜚𝑠(𝜚, 𝜗)

(︁
𝜕𝑡𝜗+ 𝑢 · ∇𝑥𝜗

)︁
+

𝑞(𝜗,∇𝑥𝜗) · ∇𝑥𝜗

𝜗

)︃
d𝑥 d𝑡d𝑠

for any 𝛿 > 0. Finally, we divide the above inequality by 2𝛿 and let 𝛿 → 0 obtaining∫︁
Ω

(︂
1
2
𝜚|𝑢|2 + 𝜚𝑒(𝜚, 𝜗)− 𝜗𝜚𝑠(𝜚, 𝜗)

)︂
(𝜏, ·) d𝑥

+
∫︁ 𝜏

0

∫︁
Ω

𝜗

𝜗

(︂
S(𝜗,D𝑥𝑢) : D𝑥𝑢− 𝑞(𝜗,∇𝑥𝜗) · ∇𝑥𝜗𝜀

𝜗

)︂
d𝑥d𝑡

≤
∫︁

Ω

(︂
1
2
|𝑚0|2

𝜚0
+ 𝜚0𝑒(𝜚0, 𝑆0)− 𝜗(0, ·)𝑆0

)︂
d𝑥

−
∫︁ 𝜏

0

∫︁
Ω

(︃
𝜚𝑠(𝜚, 𝜗)

(︁
𝜕𝑡𝜗+ 𝑢 · ∇𝑥𝜗

)︁
+

𝑞(𝜗,∇𝑥𝜗) · ∇𝑥𝜗

𝜗

)︃
d𝑥 d𝑡

for a.a. 𝜏 ∈ (0, 𝑇 ), which is nothing other than the ballistic energy inequality (2.22).
We have proved Theorem 2.3.

4.3. Time independent 𝜗𝐵

Finally, we consider the time independent boundary temperature as specified in hypothesis (2.24). Under
these circumstances, the main stumbling block is the fact that the strong convergence of the density outside Ω
stated in (4.4) is no longer valid.

Fortunately, as 𝜗𝐵 is independent of time, the integrals over T𝑑∖Ω vanish in (4.11). Moreover, the convergence
in (4.9) reads now∫︁

T𝑑

(︂
1
2
|𝑚0,𝜀|2

𝜚0,𝜀
+ 𝜚0,𝜀𝑒(𝜚0,𝜀, 𝑆0,𝜀)− 𝜗(0, ·)𝑆0,𝜀

)︂
d𝑥→

∫︁
Ω

(︂
1
2
|𝑚0|2

𝜚0
+ 𝜚0𝑒(𝜚0, 𝑆0)− 𝜗(0, ·)𝑆0

)︂
d𝑥

+
∫︁

T𝑑∖Ω
(𝜚0𝑒(𝜚0, 𝑆0)− 𝜗𝐵𝑆0) d𝑥. (4.17)
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Next, in view of the strong convergence of the approximate solutions in Ω, we get

lim inf
𝜀→0

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
T𝑑

(︂
1
2
𝜚𝜀|𝑢𝜀|2 + 𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)− 𝜗𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

)︂
d𝑥 d𝑡

≥
∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
Ω

(︂
1
2
𝜚|𝑢|2 + 𝜚𝑒(𝜚, 𝜗)− 𝜗𝜚𝑠(𝜚, 𝜗)

)︂
d𝑥 d𝑡

+ lim inf
𝜀→0

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
T𝑑∖Ω

(︁
𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)− 𝜗𝐵𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)

)︁
d𝑥d𝑡. (4.18)

Finally, we first use Fatou’s lemma to get

lim inf
𝜀→0

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
T𝑑∖Ω

(𝜚𝜀𝑒(𝜚𝜀, 𝜗𝜀)− 𝜗𝐵𝜚𝜀𝑠(𝜚𝜀, 𝜗𝜀)) d𝑥 ≥
∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
T𝑑∖Ω

⟨
𝜈𝑡,𝑥; 𝜚𝑒

(︁
𝜚, 𝜗
)︁
− 𝜗𝐵𝜚𝑠

(︁
𝜚, 𝜗
)︁⟩

d𝑥d𝑡,

where (𝜈𝑡,𝑥)𝑡∈(0,𝑇 ),𝑥∈T𝑑∖Ω is a Young measure generated by the sequence (𝜚𝜀, 𝜗𝜀)𝜀>0. In addition, as 𝜗𝜀 → 𝜗𝐵

strongly, the Young measure can be written as

𝜈𝑡,𝑥 = 𝛿𝜗𝐵(𝑥) ⊗ 𝜔𝑡,𝑥,

where (𝜔𝑡,𝑥)𝑡∈(0,𝑇 ),𝑥∈T𝑑∖Ω is the Young measure associated to (𝜚𝜀)𝜀>0. Accordingly,

∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
T𝑑∖Ω

⟨
𝜈𝑡,𝑥; 𝜚𝑒

(︁
𝜚, 𝜗
)︁
− 𝜗𝐵𝜚𝑠

(︁
𝜚, 𝜗
)︁⟩

d𝑥 d𝑡 =
∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
T𝑑∖Ω

⟨𝜔𝑡,𝑥; 𝜚𝑒(𝜚, 𝜗𝐵)− 𝜗𝐵𝜚𝑠(𝜚, 𝜗𝐵)⟩d𝑥d𝑡.

However, the function

𝜚 ↦→ 𝜚𝑒(𝜚, 𝜗𝐵)− 𝜗𝐵𝜚𝑠(𝜚, 𝜗𝐵)

is convex, see Chapter 2, Section 2.2.3 from [6]; whence, by Jensen’s inequality,∫︁ 𝜏+𝛿

𝜏−𝛿

∫︁
T𝑑∖Ω

⟨𝜔𝑡,𝑥; 𝜚𝑒(𝜚, 𝜗𝐵)− 𝜗𝐵𝜚𝑠(𝜚, 𝜗𝐵)⟩d𝑥d𝑡 ≥ 2𝛿
∫︁

T𝑑∖Ω
(𝜚0𝑒(𝜚0, 𝜗𝐵)− 𝜗𝐵𝜚0𝑠(𝜚0, 𝜗𝐵)) d𝑥.

Consequently, the last integrals in (4.17), (4.18) cancel out and the desired conclusion follows.

5. Finite volume simulations

The aim of this section is to illustrate convergence of the penalization method when simulating viscous com-
pressible flows in complex geometries. To this end we apply the finite volume method (FV) that has been recently
developed in [13] and analysed in [7]. In what follows we describe the FV method and present four numerical
experiments for the Navier–Stokes–Fourier system. We will also study the experimental rate of convergence of
the FV scheme with respect to both the discretization and the penalty parameters.

We consider for simplicity the perfect gas pressure law 𝑝 = 𝜚𝜗, internal energy and entropy are given by

𝑒 = 𝑐𝑣𝜗, 𝑠 = log
(︂
𝜗𝑐𝑣

𝜚

)︂
=

1
𝛾 − 1

log
(︂
𝑝

𝜚𝛾

)︂
, respectively, where 𝑐𝑣 =

1
𝛾 − 1

. In the numerical experiments

presented below 𝜚, 𝜗 are bounded from below and above. In this case theoretical results on the convergence of
the penalization method can be obtained for the perfect gas pressure law as well.
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5.1. Finite volume method

Our computational domain T𝑑 ⊂ 𝑅𝑑 is approximated by regular cuboids: finite volumes K of size ℎ𝑑, where
ℎ ∈ (0, 1) is a mesh step. The piecewise constant numerical solutions 𝑈𝜀

ℎ ≡ (𝜚𝜀
ℎ,𝑢

𝜀
ℎ, 𝜗

𝜀
ℎ) satisfy the following

semi-discrete first order FV method

𝐷𝑡𝜚
𝜀
ℎ + divup

ℎ 𝐹 (𝜚𝜀
ℎ,𝑢

𝜀
ℎ) = 0, (5.1a)

𝐷𝑡𝑚
𝜀
ℎ + divup

ℎ 𝐹 (𝑚𝜀
ℎ,𝑢

𝜀
ℎ) +∇ℎ𝑝

𝜀
ℎ = 2 divℎ(𝜇𝜀

ℎDℎ𝑢𝜀
ℎ) +∇ℎ(𝜆𝜀

ℎ divℎ 𝑢𝜀
ℎ)

+ 𝜚𝜀
ℎ𝑔𝜀

ℎ −
1
𝜀
1T𝑑∖Ω(𝐾)𝑢𝜀

ℎ, (5.1b)

𝐷𝑡0(𝜚𝜀
ℎ𝑒

𝜀
ℎ) + divup

ℎ 𝐹 (𝜚𝜀
ℎ𝑒

𝜀
ℎ,𝑢

𝜀
ℎ) + 𝑝𝜀

ℎ divℎ 𝑢𝜀
ℎ = divℎ(𝜅𝜀

ℎ∇ℎ𝜗
𝜀
ℎ) + 2𝜇𝜀

ℎ|Dℎ𝑢𝜀
ℎ|

2 + 𝜆𝜀
ℎ|divℎ 𝑢𝜀

ℎ|2

− 1
𝜀
1T𝑑∖Ω(𝐾)|𝜗𝜀

ℎ − 𝜗𝐵 |𝑘(𝜗𝜀
ℎ − 𝜗𝐵) (5.1c)

with 𝑚𝜀
ℎ = 𝜚𝜀

ℎ𝑢𝜀
ℎ, 𝑒

𝜀
ℎ = 𝑐𝑣𝜗

𝜀
ℎ, coefficients 𝜇𝜀

ℎ = 𝜇(𝜗𝜀
ℎ), 𝜆𝜀

ℎ = 𝜆(𝜗𝜀
ℎ), 𝜆(𝜗) = 𝜂(𝜗)− 2𝜇(𝜗)/𝑑, 𝜅𝜀

ℎ = 𝜅(𝜗𝜀
ℎ), and the

characteristic function

1T𝑑∖Ω(𝐾) =

{︃
1, if 𝐾𝑐 ∈ T𝑑 ∖ Ω,
0, otherwise,

where 𝐾𝑐 is the gravity center of 𝐾. Function 𝑔𝜀
ℎ stands for a piecewise constant approximation of an external

(gravitational) force.
Let us define the discrete operators and the numerical flux function used in the scheme (5.1). By 𝑟ℎ and

[[𝑟ℎ]] we denote the average and jump along a cell interface for any 𝑟ℎ piecewise constant function, respectively.
The discrete differential operators divℎ and ∇ℎ are adjoint operators defined on each finite volume 𝐾 in the
following way

(divℎ𝑣ℎ)𝐾 =
∑︁

𝜎∈𝜕𝐾

|𝜎|
|𝐾|

𝑣ℎ · 𝑛, (∇ℎ𝑟ℎ)𝐾 =
∑︁

𝜎∈𝜕𝐾

|𝜎|
|𝐾|

𝑟ℎ𝑛, Dℎ𝑟ℎ =
1
2
(︀
∇ℎ𝑟ℎ + (∇ℎ𝑟ℎ)𝑡

)︀
,

where 𝑣ℎ is a vector-valued piecewise constant function on T𝑑, and 𝑛 denotes an outer normal vector to 𝜕𝐾.
For flux approximation we apply the viscosity upwind numerical flux 𝐹ℎ defined by

𝐹ℎ(𝑟ℎ,𝑣ℎ) = 𝑈𝑝[𝑟ℎ,𝑣ℎ]− ℎ𝛼[[𝑟ℎ]], 0 < 𝛼 < 1,

𝑈𝑝[𝑟ℎ,𝑣ℎ] = 𝑟ℎ 𝑣ℎ · n−
1
2
|𝑣ℎ · n|[[𝑟ℎ]].

Moreover, we set (︀
divup

ℎ 𝐹 (𝑟ℎ,𝑣ℎ)
)︀
𝐾

=
∑︁

𝜎∈𝜕𝐾

|𝜎|
|𝐾|

𝐹ℎ(𝑟ℎ,𝑣ℎ).

For a vector-valued piecewise constant function 𝑤ℎ on T𝑑 the discrete divergence divup
ℎ 𝐹 (𝑤ℎ,𝑣ℎ)𝐾 is defined

componentwisely. See [13] for further details.
In our simulations we take the symbol 𝐷𝑡 in (5.1) as the forward Euler discretization with the time

step ∆𝑡 = 10−6. Initial data (𝜚ℎ,0,𝑢ℎ,0, 𝜗ℎ,0) are taken as piecewise constant projections of the exact ini-
tial data (𝜚0,𝑢0, 𝜗0) computed directly from (𝜚0,𝑚0, 𝑆0), cf. Theorem 2.3. Thus, 𝑢0 = 𝑚0

𝜚0
, 𝜚0 > 0 and

𝜗0 = exp[(𝛾 − 1)(𝑆0/𝜚0 + log 𝜚0)]. We set the transport coefficients and other parameters in (5.1),

𝜇 = 𝜆 = 𝜅 = 0.001, 𝛾 = 1.4, 𝑘 = 6, 𝛼 = 0.6.

The computational domain T2 is taken as [−1, 1]2 applying the periodic boundary condition. Following the
theoretical part, cf. Theorem 2.3 and Section 4.3, we will test two cases for the extension of the density outside
the fluid domain Ω:
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– constant density, i.e.
1T𝑑∖Ω𝜚ℎ,0 = 1,

– “zero” density, i.e.
1T𝑑∖Ω𝜚ℎ,0 = 0.01.

The latter is chosen as an approximation, since 1T𝑑∖Ω𝜚ℎ,0 = 0 is numerically unstable.
In the following, we present numerical solutions obtained by the FV method with the penalty parameter

𝜀 = 10−𝑚,𝑚 = 1, . . . , 4 and mesh-size ℎ = 4/(10 × 2𝑛), 𝑛 = 1, . . . , 5. Correspondingly, we compute three
𝐿1-errors at the finial time 𝑇 , i.e.

𝐸1(𝑈𝜀
ℎ) =

⃦⃦
𝑈𝜀

ℎ(𝑇, ·)− 𝑈𝜀
ℎref

(𝑇, ·)
⃦⃦

𝐿1(T2)
,

𝐸2(𝑈𝜀
ℎ) = ‖𝑈𝜀

ℎ(𝑇, ·)− 𝑈𝜀ref
ℎ (𝑇, ·)‖

𝐿1(T2)
,

𝐸3(𝑈𝜀
ℎ) =

⃦⃦
𝑈𝜀

ℎ(𝑇, ·)− 𝑈𝜀ref
ℎref

(𝑇, ·)
⃦⃦

𝐿1(T2)
,

respectively, with ℎref = 4/(10 × 2−5), 𝜀ref = 10−4. We would like to point out that the error 𝐸1(𝑈𝜀
ℎ) verifies

the convergence rate of the FV method for a fixed penalization parameter 𝜀 while 𝐸2(𝑈𝜀
ℎ) is used to study the

convergence rate of the penalization technique for a fixed ℎ. Further, we calculate 𝐸3(𝑈𝜀
ℎ) with the parameter

pair (ℎ, 𝜀(ℎ)) = (4/(10× 2𝑚), 10−𝑚),𝑚 = 1, . . . , 4 to investigate the convergence showed in Theorem 2.3.

5.2. Experiment 1: Ring domain – constant density outside Ω

In this experiment we consider the physical fluid domain to be a ring, i.e. Ω ≡ 𝐵0.7 ∖𝐵0.2, where 𝐵𝑟 = {𝑥 ∈
𝑅2
⃒⃒
|𝑥| ≤ 𝑟}. The initial data are given by

(𝜚,𝑢, 𝜗)(0, 𝑥) =

⎧⎪⎪⎨⎪⎪⎩
(1, 0, 0, 1), 𝑥 ∈ 𝐵0.2,(︁

1, sin(4𝜋(|𝑥|−0.2))𝑥2
|𝑥| ,− sin(4𝜋(|𝑥|−0.2))𝑥1

|𝑥| , 0.2 + 4|𝑥|
)︁
, 𝑥 ∈ Ω ≡ 𝐵0.7 ∖𝐵0.2,

(1, 0, 0, 3), 𝑥 ∈ T2 ∖𝐵0.7.

The final time is taken as 𝑇 = 0.1. Figure 1 shows all three types of errors, i.e. with respect to the mesh-
size ℎ, 𝐸1(𝑈𝜀

ℎ), with respect to the penalization parameter 𝜀, 𝐸2(𝑈𝜀
ℎ), as well as with respect to (ℎ, 𝜀(ℎ)) =

(4/(10× 2𝑚), 10−𝑚), 𝐸3(𝑈𝜀
ℎ). Experimental convergence study indicates that the convergence rate in all cases

is 1. Effects of different penalization parameters 𝜀 = 10−1, . . . , 10−4 are illustrated in Figure 2, which depicts
the numerical solutions on the mesh with 802 cells.

5.3. Experiment 2: Ring domain – zero density outside Ω

In this experiment we use a small initial density outside the fluid domain which approximates the case of
zero density outside Ω studied in the theoretical part. The rest of the set up is the same as in Experiment 1,
the initial data read

(𝜚,𝑢, 𝜗)(0, 𝑥) =

⎧⎪⎪⎨⎪⎪⎩
(︀
10−2, 0, 0, 1

)︀
, 𝑥 ∈ 𝐵0.2,(︁

1, sin(4𝜋(|𝑥|−0.2))𝑥2
|𝑥| ,− sin(4𝜋(|𝑥|−0.2))𝑥1

|𝑥| , 0.2 + 4|𝑥|
)︁
, 𝑥 ∈ Ω ≡ 𝐵0.7 ∖𝐵0.2,(︀

10−2, 0, 0, 3
)︀
, 𝑥 ∈ T2 ∖𝐵0.7.

Analogously as above, Figure 3 presents the errors 𝐸𝑖(𝑈𝜀
ℎ), 𝑖 = 1, 2, 3. The convergence rate 1 with respect to

ℎ, 𝜀 and (ℎ, 𝜀(ℎ)) = (4/(10 × 2𝑚), 10−𝑚) is numerically confirmed. Figure 4 demonstrates the influence of the
penalization parameter 𝜀 = 10−1, . . . , 10−4 in the numerical solution computed on the mesh with 802 cells. Due
to small value of the outside density, the fluid tends to flow out of the fluid region Ω which acts against the
penalization and consequently leads to small oscillation near the boundary.
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Figure 1. Experiment 1: Errors 𝐸𝑖(𝑈𝜀
ℎ), 𝑖 = 1, 2, 3. The solid line without any marker in the

figures denote the reference slope of ℎ (top), 𝜀 (middle) and ℎ (bottom). (a) 𝐸1(𝑈𝜀
ℎ) – 𝜚. (b)

𝐸1(𝑈𝜀
ℎ) – 𝑢. (c) 𝐸1(𝑈𝜀

ℎ) – 𝜗. (d) 𝐸2(𝑈𝜀
ℎ) – 𝜚. (e) 𝐸2(𝑈𝜀

ℎ) – 𝑢. (f) 𝐸2(𝑈𝜀
ℎ) – 𝜗. (g) 𝐸3(𝑈𝜀

ℎ) – 𝜚.
(h) 𝐸3(𝑈𝜀

ℎ) – 𝑢. (i) 𝐸3(𝑈𝜀
ℎ) – 𝜗.

5.4. Experiment 3: Complex domain – zero density outside Ω

We consider the same initial data as in the previous experiment but choose a more complicated geometry of
the fluid domain Ω ≡ 𝐵̂0.7 ∖ 𝑆0.2, where

𝐵̂0.7 :=
{︂
𝑥 ∈ 𝑅2

⃒⃒⃒⃒
|𝑥| ≤ (0.7 + 𝛿) + 𝛿 cos(8𝜑), tan(𝜑) =

𝑥

𝑦

}︂
, 𝑆0.2 =

{︂
𝑥 ∈ 𝑅2

⃒⃒⃒⃒
|𝑥1|+ |𝑥2| ≤ 0.2

}︂
.
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Figure 2. Experiment 1: Numerical solutions 𝑈𝜀
ℎ obtained with ℎ = 2/80 and 𝜀 =

10−1, . . . , 10−4. (a) 𝜚, 𝜀 = 10−1. (b) 𝜚, 𝜀 = 10−2. (c) 𝜚, 𝜀 = 10−3. (d) 𝜚, 𝜀 = 10−4. (e)
𝑢1, 𝜀 = 10−1. (f) 𝑢1, 𝜀 = 10−2. (g) 𝑢1, 𝜀 = 10−3 . (h) 𝑢1, 𝜀 = 10−4. (i) 𝑢2, 𝜀 = 10−1. (j)
𝑢2, 𝜀 = 10−2. (k) 𝑢2, 𝜀 = 10−3. (l) 𝑢2, 𝜀 = 10−4. (m) 𝜗, 𝜀 = 10−1. (n) 𝜗, 𝜀 = 10−2. (o)
𝜗, 𝜀 = 10−3. (p) 𝜗, 𝜀 = 10−4. (q) 𝑢, 𝜀 = 10−1. (r) 𝑢, 𝜀 = 10−2. (s) 𝑢, 𝜀 = 10−3. (t) 𝑢, 𝜀 = 10−4.
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Figure 3. Experiment 2: Errors 𝐸𝑖(𝑈𝜀
ℎ), 𝑖 = 1, 2, 3. The solid line without any marker in the

figures denote the reference slope of ℎ (top), 𝜀 (middle) and ℎ (bottom). (a) 𝐸1(𝑈𝜀
ℎ) – 𝜚. (b)

𝐸1(𝑈𝜀
ℎ) – 𝑢. (c) 𝐸1(𝑈𝜀

ℎ) – 𝜗. (d) 𝐸2(𝑈𝜀
ℎ) – 𝜚. (e) 𝐸2(𝑈𝜀

ℎ) – 𝑢. (f) 𝐸2(𝑈𝜀
ℎ) – 𝜗. (g) 𝐸3(𝑈𝜀

ℎ) – 𝜚.
(h) 𝐸3(𝑈𝜀

ℎ) – 𝑢. (i) 𝐸3(𝑈𝜀
ℎ) – 𝜗.

Note that Ω has only Lipschitz-continuous boundary 𝜕Ω. The initial data are given by

(𝜚,𝑢, 𝜗)(0, 𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︀
10−2, 0, 0, 1

)︀
, 𝑥 ∈ 𝑆0.2,

(1, 0, 0, 1), 𝑥 ∈ 𝐵0.2 ∖ 𝑆0.2,(︁
1, sin(4𝜋(|𝑥|−0.2))𝑥2

|𝑥| ,− sin(4𝜋(|𝑥|−0.2))𝑥1
|𝑥| , 0.2 + 4|𝑥|

)︁
, 𝑥 ∈ Ω ≡ 𝐵0.7 ∖𝐵0.2,

(1, 0, 0, 3), 𝑥 ∈ 𝐵̂0.7 ∖𝐵0.7,(︀
10−2, 0, 0, 3

)︀
, 𝑥 ∈ T2 ∖ 𝐵̂0.7.
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Figure 4. Experiment 2: Numerical solutions 𝑈𝜀
ℎ obtained with ℎ = 2/80 and 𝜀 =

10−1, . . . , 10−4. (a) 𝜚, 𝜀 = 10−1. (b) 𝜚, 𝜀 = 10−2. (c) 𝜚, 𝜀 = 10−3. (d) 𝜚, 𝜀 = 10−4. (e)
𝑢1, 𝜀 = 10−1. (f) 𝑢1, 𝜀 = 10−2. (g) 𝑢1, 𝜀 = 10−3 . (h) 𝑢1, 𝜀 = 10−4. (i) 𝑢2, 𝜀 = 10−1. (j)
𝑢2, 𝜀 = 10−2. (k) 𝑢2, 𝜀 = 10−3. (l) 𝑢2, 𝜀 = 10−4. (m) 𝜗, 𝜀 = 10−1. (n) 𝜗, 𝜀 = 10−2. (o)
𝜗, 𝜀 = 10−3. (p) 𝜗, 𝜀 = 10−4. (q) 𝑢, 𝜀 = 10−1. (r) 𝑢, 𝜀 = 10−2. (s) 𝑢, 𝜀 = 10−3. (t) 𝑢, 𝜀 = 10−4.
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Figure 5. Experiment 3: Errors 𝐸𝑖(𝑈𝜀
ℎ), 𝑖 = 1, 2, 3. The solid line without any marker in the

figures denote the reference slope of ℎ (top), 𝜀 (middle) and ℎ (bottom). (a) 𝐸1(𝑈𝜀
ℎ) – 𝜚. (b)

𝐸1(𝑈𝜀
ℎ) – 𝑢. (c) 𝐸1(𝑈𝜀

ℎ) – 𝜗. (d) 𝐸2(𝑈𝜀
ℎ) – 𝜚. (e) 𝐸2(𝑈𝜀

ℎ) – 𝑢. (f) 𝐸2(𝑈𝜀
ℎ) – 𝜗. (g) 𝐸3(𝑈𝜀

ℎ) – 𝜚.
(h) 𝐸3(𝑈𝜀

ℎ) – 𝑢. (i) 𝐸3(𝑈𝜀
ℎ) – 𝜗.

In the simulations we set 𝛿 = 0.05 and 𝑇 = 0.1. Figure 5 demonstrates that the experimental convergence rates
with respect to mesh size ℎ, penalization parameter 𝜀 and pair (ℎ, 𝜀(ℎ)) = (4/(10× 2𝑚), 10−𝑚) are of the first
order. Figure 6 illustrates the effects of different penalization parameters 𝜀 = 10−1, . . . , 10−4 on the numerical
solutions computed on the mesh with 802 cells.

We can observe some oscillations near the inner and outer boundaries, whereas the oscillations at the outer
boundary are larger than in Experiment 2. Due to small outside density the fluid flows outside, meanwhile
the temperature pushes the fluid to flow to the center. Consequently, due to the complex geometry of the fluid
domain, the oscillations become more visible and vortex structure arises. Interestingly, even that the oscillations
are present, the penalization method still converges with rate 1, which is consistent with our theoretical analysis.
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Figure 6. Experiment 3: Numerical solutions 𝑈𝜀
ℎ obtained with ℎ = 2/80 and 𝜀 =

10−1, . . . , 10−4. (a) 𝜚, 𝜀 = 10−1. (b) 𝜚, 𝜀 = 10−2. (c) 𝜚, 𝜀 = 10−3. (d) 𝜚, 𝜀 = 10−4. (e)
𝑢1, 𝜀 = 10−1. (f) 𝑢1, 𝜀 = 10−2. (g) 𝑢1, 𝜀 = 10−3 . (h) 𝑢1, 𝜀 = 10−4. (i) 𝑢2, 𝜀 = 10−1. (j)
𝑢2, 𝜀 = 10−2. (k) 𝑢2, 𝜀 = 10−3. (l) 𝑢2, 𝜀 = 10−4. (m) 𝜗, 𝜀 = 10−1. (n) 𝜗, 𝜀 = 10−2. (o)
𝜗, 𝜀 = 10−3. (p) 𝜗, 𝜀 = 10−4. (q) 𝑢, 𝜀 = 10−1. (r) 𝑢, 𝜀 = 10−2. (s) 𝑢, 𝜀 = 10−3. (t) 𝑢, 𝜀 = 10−4.



PENALIZATION METHOD FOR THE NSF SYSTEM 1935

Figure 7. Experiment 4: Errors 𝐸𝑖(𝑈𝜀
ℎ), 𝑖 = 1, 2, 3. The solid line without any marker in the

figures denote the reference slope of ℎ (top), 𝜀 (middle) and ℎ (bottom). (a) 𝐸1(𝑈𝜀
ℎ) – 𝜚. (b)

𝐸1(𝑈𝜀
ℎ) – 𝑢. (c) 𝐸1(𝑈𝜀

ℎ) – 𝜗. (d) 𝐸2(𝑈𝜀
ℎ) – 𝜚. (e) 𝐸2(𝑈𝜀

ℎ) – 𝑢. (f) 𝐸2(𝑈𝜀
ℎ) – 𝜗. (g) 𝐸3(𝑈𝜀

ℎ) – 𝜚.
(h) 𝐸3(𝑈𝜀

ℎ) – 𝑢. (i) 𝐸3(𝑈𝜀
ℎ) – 𝜗.

5.5. Experiment 4: Ring domain – zero density outside Ω, non-zero gravity force

In the last experiment we extend the setting of Experiment 2 by adding an external force pointing to the
center (0,0) defined by

g =
(︂
−100

𝑥1

|𝑥|
,−100

𝑥2

|𝑥|

)︂
·
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Figure 8. Experiment 4: Numerical solutions 𝑈𝜀
ℎ obtained with ℎ = 2/80 and 𝜀 =

10−1, . . . , 10−4. (a) 𝜚, 𝜀 = 10−1. (b) 𝜚, 𝜀 = 10−2. (c) 𝜚, 𝜀 = 10−3. (d) 𝜚, 𝜀 = 10−4. (e)
𝑢1, 𝜀 = 10−1. (f) 𝑢1, 𝜀 = 10−2. (g) 𝑢1, 𝜀 = 10−3 . (h) 𝑢1, 𝜀 = 10−4. (i) 𝑢2, 𝜀 = 10−1. (j)
𝑢2, 𝜀 = 10−2. (k) 𝑢2, 𝜀 = 10−3. (l) 𝑢2, 𝜀 = 10−4. (m) 𝜗, 𝜀 = 10−1. (n) 𝜗, 𝜀 = 10−2. (o)
𝜗, 𝜀 = 10−3. (p) 𝜗, 𝜀 = 10−4. (q) 𝑢, 𝜀 = 10−1. (r) 𝑢, 𝜀 = 10−2. (s) 𝑢, 𝜀 = 10−3. (t) 𝑢, 𝜀 = 10−4.
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In order to observe interesting phenomena the initial data are taken as

(𝜚,𝑢, 𝜗)(0, 𝑥) =

⎧⎪⎪⎨⎪⎪⎩
(10−2, 0, 0, 30), 𝑥 ∈ 𝐵0.2,(︁

1, 5 sin(4𝜋(|𝑥|−0.2))𝑥2
|𝑥| ,− 5 sin(4𝜋(|𝑥|−0.2))𝑥1

|𝑥| , 41.6− 58|𝑥|
)︁
, 𝑥 ∈ Ω ≡ 𝐵0.7 ∖𝐵0.2,

(10−2, 0, 0, 1), 𝑥 ∈ T2 ∖𝐵0.7.

The final time is set to 𝑇 = 0.2.
The errors 𝐸𝑖(𝑈𝜀

ℎ), 𝑖 = 1, 2, 3 are plotted in Figure 7. The results indicate that the numerical solutions converge
with respect to ℎ, 𝜀 and pair (ℎ, 𝜀(ℎ)) = (4/(10× 2𝑚), 10−𝑚) with rate nearly 1, 1/2, and 1, respectively. The
numerical solutions for different penalization parameters 𝜀 = 10−1, . . . , 10−4 on the mesh of 802 cells are shown
in Figure 8.

Comparing these results with those of previous Experiments we can see oscillatory fluid behaviour which is
due to the development of the so-called Rayleigh-Bénard convection rolls. These are visible in the density plots
in Figure 8 and arise due to the temperate gradient acting against the outer force, see [14] for more details.

In summary, we have demonstrated experimentally that the penalization method (1.5)–(1.7) is robust and
efficient. Penalized numerical solutions (𝜌𝜀

ℎ,𝑢
𝜀
ℎ, 𝜗

𝜀
ℎ)ℎ↘0,𝜀↘0 converge to an exact solution (𝜚,𝑢, 𝜗) of the Dirichlet

boundary problem. We have tested experimentally the strong convergence with respect to 𝐿1(T2)-norm. In
future our goal will be to extend theoretical analysis presented in this paper to the FV method (5.1) and
prove rigorously its convergence with respect to both parameters, the discretization parameter ℎ as well as the
penalization parameter 𝜀.

6. Conclusion

In the present paper we have studied convergence of a penalization method for the Navier–Stokes–Fourier
system with the Dirichlet boundary conditions. The physical fluid domain is embedded into a large cube on which
the periodic boundary conditions are imposed. The penalty terms act as the friction term in the momentum
and the sink/source term in the internal energy balance, respectively. We have discussed two cases with zero
and non-zero density outside of the physical fluid domain. In Theorem 2.3 we have shown that the penalized
solutions converge to a weak solution of the Dirichlet problem. For domains with rough (Lipschitz) boundaries
the existence of a global weak solution was an open problem. The key ingredient of the convergence analysis is
the use of the ballistic energy inequality (3.3) as a source of uniform bounds, and the limiting process discussed
in Section 4.2.

The penalization approach is also very suitable when fluid flow has to be simulated in complicated geometries.
Clearly, to generate a good and fitted mesh for complex domains is time-consuming. Our penalization approach
does not require any complicated meshes and it is enough to work with regular rectangular grids. Numerical
experiments presented in Section 5 illustrate the main ideas of theoretical analysis and demonstrate the efficiency
of our penalization technique in complex geometries.
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