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Abstract. This paper deals with graph automaton groups associated with trees and some
generalizations. We start by showing some algebraic properties of tree automaton groups.
Then we characterize the associated semigroup, proving that it is isomorphic to the partially
commutative monoid associated with the complement of the line graph of the defining tree. After
that, we generalize these groups by introducing the quite broad class of reducible automaton
groups, which lies in the class of contracting automaton groups without singular points. We
give a general structure theorem that shows that all reducible automaton groups are direct limit
of poly-context-free groups which are virtually subgroups of the direct product of free groups;
notice that this result partially supports a conjecture by T. Brough. Moreover, we prove that
tree automaton groups with at least two generators are not finitely presented and they are
amenable groups, which are direct limit of non-amenable groups.
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1. Introduction

Automaton groups constitute a remarkable and exciting class of groups generated by finite
transducers also called Mealy machines. This class has gained popularity thanks to the Grig-
orchuk group, introduced in 1980 in [20] as the first example of a group of intermediate (i.e.,
faster than polynomial and slower than exponential) growth, answering to an important question
posed by Milnor. Over the last decades, this class has been shown to have deep connections with
the theory of profinite groups, with combinatorics via the notion of Schreier graph, and with
complex dynamics via the notion of iterated monodromy group (for more details see, for instance,
[2, 3, 21, 29]). In the last years, a special interest has been pointed out for decision problems
for automaton groups and semigroups (see [13, 14, 16, 18, 19, 33] and references therein). Many
automaton groups exhibit very interesting and exotic properties. In fact this class contains, for
instance, examples of Burnside groups, of amenable but not elementary amenable groups, of
groups with intermediate growth. Although there are many well studied examples of automaton
groups and a quite extensive literature, very little is known from their very general structural
point of view. It is easy to show that such groups must be residually finite and that they must
have solvable word problem, but besides such properties there exists no general classification.
Even just focusing on some specific subclasses of automaton groups (for instance branch, fractal,
just-infinite, e.g., [22, 23]) it seems to be a hard task to obtain structural results.

This paper has the aim of studying some properties of a class of automaton groups, called
tree automaton groups, belonging to the family of graph automaton groups introduced by the
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authors in [6] (and further studied in [7]) and of framing such class into a more general class of
automaton groups having some very peculiar topological properties.

In Section 2 we recall some preliminary definitions and properties about automaton groups
and dual automata, whereas in Section 3 we recall the basic definition of graph automaton group
introduced in [6].

In Section 4 we obtain some algebraic properties of such groups: we prove that they are not
solvable (Corollary 4.2), they have trivial center (Corollary 4.4), and we provide some necessary
conditions on the structure of their relations (Theorem 4.6), with an application to the context
of tree automaton groups.

In Section 5 we study the semigroups defined by the generators of a tree automaton group
and we prove that they are all partially commutative monoids. The graph defining the partial
commutations is obtained by taking the complement of the line graph of the tree T associated
with the tree automaton group (Theorem 5.8). It is a remarkable fact that this result does
not depend on the particular orientation of the defining tree. On the other hand, when the
graph defining the automaton group is not a tree, the semigroup structure does depend on the
orientation of the edges, as observed in Remark 5.11.

Finally, in Section 6, inspired by a property about relations that holds for tree automaton
groups, we define a quite broad class of automaton groups, generated by automata that we call
reducible. This class sits in the intersection between automaton groups without singular points
and contracting automaton groups. Besides containing tree automaton groups, it contains for
instance the famous Basilica group, introduced by R. Grigorchuk and A. Żuk in [24] as a group
generated by a three state automaton. At the end of the section, we also exhibit a procedure to
generate other examples of such automata. We prove a general structure theorem which shows
that a group generated by a reducible automaton is isomorphic to the direct limit of virtually
subgroups of the direct product of free groups; such subgroups either are abelian or they contain
a free non-abelian group (Theorem 6.7 and Proposition 6.8). As a consequence, we are able
to show that a group generated by a reducible automaton and having exponential growth, is
a direct limit of non-amenable groups (Theorem 6.9). Moreover, under the further assumption
that such a group is amenable, our results imply that it is not finitely presented (Theorem
6.10). We also show that the family of groups appearing in the direct limit are deterministic
poly-context-free groups, a class of groups introduced by Brough [5] for which it has been
conjectured to be virtually subgroups of the direct product of free groups. Although we do not
prove this conjecture, we support it by showing that the groups appearing in this limit satisfy this
conjecture thanks to the fact that the words representing the identity constitute a context-free
language arising by taking the inverse image of a Dyck language by a finite transducer.

2. Preliminaries on automaton groups

Let X be a finite set. For each integer n ≥ 1, let Xn (resp. X≥n) denote the set of words of
length n (resp. of length greater than or equal to n) over the alphabet X and put X0 = {∅},
where ∅ is the empty word. Moreover put X∗ =

⋃∞
n=0X

n and denote by X∞ = {x1x2x3 . . . :
xi ∈ X} the set of infinite words over X.

A finite automaton is a quadruple A = (A,X, λ, µ), where:

(1) A is a finite set, called the set of states;
(2) X is a finite set, called the alphabet ;
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(3) λ : A×X → A is the restriction map;
(4) µ : A×X → X is the output map.

Observe that many authors refer to such an automaton as a deterministic automaton. Given a
state s ∈ A and an element x ∈ X, we put:

s ◦ x = µ(s, x) ∈ X s · x = λ(s, x) ∈ A.

The automaton A is invertible if, for all s ∈ A, the transformation s◦ : X → X is a permutation
of X. An automaton A can be visually represented by its Moore diagram: this is a directed
labeled graph whose vertices are identified with the states of A. For every state s ∈ A and every
letter x ∈ X, the diagram has an arrow from s to s · x labeled by x|s ◦ x. A sink id in A is a
state with the property that id ◦ x = x and id · x = id for every x ∈ X. One can visualize an
invertible automaton by using such a directed graph: for any s ∈ A and x ∈ X there is exactly
one transition of the form

s
x|s◦x
−−−→s · x.

For an automaton A = (A,X, λ, µ) we may define its square automaton A2 = (A2,X, λ′, µ′)
having the transition s1s2

x|y
−−→t1t2 whenever s1

x|z
−−→t1 and s2

z|y
−−→t2 are transitions in A. In a

similar fashion we may define the n-th power An of A for each n.

The action of A can be naturally extended to the infinite set X∗ and to the set X∞ of infinite
words over X. Moreover one can compose the action of the states in A extending the maps ◦
and · to the set A∗. More precisely, given w = s1 · · · sn ∈ A∗ and u ∈ X∗ we have:

w ◦ u = (s2 . . . sn) ◦ (s1 ◦ u) w · u = ((s2 . . . sn) · (s1 ◦ u)) (s1 · u).(1)

Given an invertible automaton A, the automaton group generated by A is by definition the group
generated by the bijective transformations s◦ of X∗, for s ∈ A, and it is denoted by G(A). We
refer the interested reader to the monograph [29] for a more comprehensive discussion. When we
consider the generating set A without inverses, we get a semigroup S(A), called the automaton
semigroup generated by A. Notice that the action of G(A) (and so S(A)) on X∗ preserves the
sets Xn, for each n. Moreover, it is not difficult to check that the maps in Eqs. (1) naturally
extend to the free monoid (A ∪ A−1)∗, and they are well defined also on the free group FA

generated by A, and on the automaton group G(A).
It is a remarkable fact that an automaton group can be regarded in a very natural way as a

group of automorphisms of the rooted regular tree of degree |X| = k, i.e., the rooted tree Tk in
which each vertex has k children, via the identification of the kn vertices of the n-th level Ln

of Tk with the set Xn (in Fig. 1 the first three levels of the rooted tree T4 are represented).
Moreover, the boundary of Tk is naturally identified with the set X∞.

Put X = {1, . . . , k}. The action of g ∈ G(A) (resp. in S(A)) on X∗ can be factorized by
considering its action on X and |X| restrictions as follows. Let Sym(k) be the symmetric group
on k elements. Then an element g ∈ G(A) (resp. in S(A)) can be represented as

g = (g1, . . . , gk)σ,

where gi := g · i ∈ G(A) (resp. in S(A)) and σ ∈ Sym(k) describes the action of g on X. This
is the self-similar representation of g. In the tree interpretation, the permutation σ corresponds
to the action of g on the first level L1 of Tk, and the automorphism gi is the restriction of the
action of g to the subtree (isomorphic to Tk) rooted at the i-th vertex of the first level.
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Figure 1. The first three levels of the rooted tree T4.

An important class of automata is given by the so-called bounded automata [31]. An au-
tomaton is said to be bounded if the sequence of numbers of distinct paths of length n avoiding
the sink state (along the directed edges of the Moore diagram) is bounded. Finally, it is known
that, if the automaton A is bounded, then the group G(A) is amenable (see, e.g., [4]), i.e., it
admits a finitely additive, left-invariant, probability measure. This concept is strictly related to
that of growth. Given a finitely generated group with respect to a symmetric generating set, its
growth describes how asymptotically behaves the function that counts the number of elements
that can be written as a product of n generators. It is known that a group of subexponential
growth is amenable (see [8] for more details). A celebrated result of Gromov says that a finitely
generated group is virtually nilpotent if and only if it has polynomial growth [25].

Let G(A) be an automaton group. For a vertex v ∈ Tk, we denote by StabG(A)(v) the
stabilizer of v, that is, the subgroup consisting of all elements of G(A) fixing v. We also put
StabG(A)(Ln) =

⋂
v∈Ln

StabG(A)(v). Observe that StabG(A)(L1) = StabG(A)(X).

Let ψ : StabG(A)(X) → G(A)k be the map associating with an element g ∈ StabG(A)(X) the
k-tuple (g1, . . . , gk) consisting of its restriction to the k subtrees rooted at the first level of the
tree. Then G(A) is said to be:

(1) fractal, if the map ψ is surjective on each factor;
(2) weakly regular branch over its subgroup H, if Hk ⊂ ψ(H ∩ StabG(A)(X)), where H is

supposed to be nontrivial;
(3) contracting if there exists a finite set N of G(A) such that, for every g ∈ G(A), there

exists n ∈ N such that g · v ∈ N for all the words v ∈ X≥n. The minimal set N with
this property is called nucleus.

The reader further interested in these definitions and related properties is referred, for instance,
to [2]. The action of G(A) can be naturally extended to the boundary X∞. In this case, an
infinite sequence ξ ∈ X∞ is said to be a singular point for the action of G(A) if the stabilizer of
ξ coincides with its neighborhood stabilizer (see [34]).

The dual of A, denoted by ∂A, is the automaton (X,A, µ, λ) having the transition x
s|t

−−→y
whenever s

x|y
−−→t is a directed arrow in the Moore diagram of A. In the rest of the paper, we
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will make a large use of the notion of dual automaton, and we will often identify the following
maps:

• s · x in A is equivalent to x ◦ s in ∂A;
• s ◦ x in A is equivalent to x · s in ∂A.

Clearly, we can extend such transformations as for A and the same equivalences for elements
from X∗ and A∗ hold.

In the case A is invertible, one may carry on the action of A to the disjoint union A ⊔ A−1

in the obvious way: by adding transitions of the form t−1 y|x
−−→s−1 whenever s

x|y
−−→t in A. The

dual of A ⊔ A−1 will be called enriched dual and will be denoted by (∂A)− (see Example 3.2).
This has been already used in [14] as a tool to determine relations in G(A).

3. Graph automaton groups and words

In [6] we introduced the following construction associating an invertible automaton (and so
an automaton group) with a given finite graph.

Definition 3.1 (Graph automaton group). Let G = (V,E) be a finite graph, with vertex set V
and edge set E. An orientation of E is a function E : E → V × V with the property that either
E(e) = (x, y) or E(e) = (y, x) for any e = {x, y} ∈ E. Let AG,E = (E(E) ∪ {id}, V, λ, µ) be the
automaton such that:

• E(E) ∪ {id} is the set of states;
• V is the alphabet;
• λ : E(E)×V → E(E)∪{id} is the restriction map such that, for each e = (x, y) ∈ E(E),
one has

λ(e, z) =

{
e if z = x
id if z 6= x;

• µ : E(E) × V → V is the output map such that, for each e = (x, y) ∈ E(E), one has

µ(e, z) =





y if z = x
x if z = y
z if z 6= x, y.

In words, any oriented edge e = (x, y) is a state of the automaton AG,E and it has just one
restriction to itself and all other restrictions to the sink id. Its action is nontrivial only on the
letters x and y, which are switched since e ◦ x = y and e ◦ y = x. It is easy to check that AG,E

is invertible. The graph automaton group GG,E is the automaton group generated by AG,E .

Note that the graph automaton group is well defined since it is independent on the orientation.
In fact, the change of the orientation of an edge corresponds to consider the inverse of that
generator in the group. For this reason, we will use the notation GG for a graph automaton group.
Moreover, the graph automaton group associated with the disjoint union of graphs is isomorphic
to the direct product of the corresponding graph automaton groups (see [6, Proposition 3.5]):
therefore, from now on we will assume G to be connected. Furthermore, it follows from the
definition that the generators associated with two edges of G = (V,E) commute if and only
if those edges are not incident, since their action is nontrivial on disjoint subsets of V . In [6,
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Theorem 3.7] it is shown that the automaton AG,E is bounded, so that the group GG is amenable;
moreover, whenever |E| ≥ 2, one has that GG is a fractal group and it is weakly regular branch
over its commutator subgroup G′

G. In this paper, we will focus on graph automaton (semi)groups
associated with a tree T . When the orientation E of the edges of the graph G = (V,E) is fixed,
we simply use the notation AG for the automaton AG,E .

Example 3.2. Consider the oriented star graph S3 with vertex set {0, 1, 2, 3} and edge set
{a, b, c}, and the associated automaton AS3

depicted in Fig. 2. The dual automaton ∂AS3
and
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1|0, 2|2, 3|3

2|0, 1|1, 3|33|0, 1|1, 2|2

0|1

0|20|3

Figure 2. The oriented star graph S3 and the automaton AS3
.

its enriched version (∂AS3
)− are depicted in Fig. 3 and Fig. 4, respectively.

0

1

23

a|id a|id

a|id

b|id

b|id

b|id

c|id

c|id

c|id

a|a

b|bc|c

Figure 3. The dual automaton ∂AS3
.

In what follows we introduce some notations that are used throughout the paper.
Let A be a finite set and let FA be the free group generated by A, whose elements are all the
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23

b|id, b−1|id c|id, c−1|id

a|a, a−1|id a|id, a−1|a−1

c|c, c−1|id

c|id, c−1|c−1

a|id, a−1|id

b|id, b−1|id

b|b, b−1|id

b|id, b−1|b−1

a|id, a−1|id

c|id, c−1|id

Figure 4. The enriched dual automaton (∂AS3
)−.

reduced words in the alphabet Ã = A ∪A−1. Let

θ : Ã∗ → FA

be the canonical homomorphism associating with any word in Ã∗ the corresponding reduced
word in FA. For an element u ∈ FA, we use the notation |u| for its length with respect to the
generating set A.

Any finitely generated group G can be seen as a quotient of FA, for some generating set
A, and we denote by π : FA → G the corresponding canonical epimorphism. In particular,
any (nontrivial) relation in G corresponds to a nontrivial element of FA that projects onto the
identity of G.

In our context, the generating set A will be identified with the set E(E) ∪ {id}. Recall that
the maps · and ◦ can be defined on any element w ∈ FA, where the sink id may be identified
with the identity 1 of the group FA.

Remark 3.3. The fractalness property of the graph automaton group associated with a given
graph G = (V,E) proven in [6, Theorem 3.7] actually implies that for any w ∈ FA and any
v ∈ V n there exists w′ ∈ FA, such that w′ stabilizes v and w′ · v = w.

4. Algebraic properties of tree automaton groups

The aim of the first part of this section is to describe some algebraic properties that hold
in general for graph automaton groups; in the second part, we will focus on graph automaton
groups associated with graphs which are trees, that we call tree automaton groups.

Proposition 4.1. Let G = (V,E) be a graph and let GG be the associated graph automaton
group. Then GG/StabGG

(L1) ≃ Sym(|V |).

Proof. In order to prove our claim, we must show that the action of GG restricted on V recovers
the whole group Sym(|V |). We first observe that, if G has vertex set V = {1, . . . , n} and the edge
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e connects the vertices j and k, then the projection of e to GG/StabGG
(L1) is the transposition

(j, k). Since Sym(n) is generated by its transpositions, if we show that any transposition (i, j),
with i, j ∈ {1, . . . , n} belongs to GG/StabGG

(L1), then we are done. Let i, j be vertices in V ,
and let eǫ1i1 · · · e

ǫk
ik
, with ǫh ∈ {1,−1} be an oriented path from i to j in G. Then an explicit

computation shows that the element

eǫ1i1 · · · e
ǫk
ik
(eǫ1i1 · · · e

ǫk−1

ik−1
)−1

acts on V ≡ L1 like the transposition (i, j). The claim follows. �

Corollary 4.2. Let G = (V,E) be a graph with |V | = n ≥ 5. Then the graph automaton group
GG is not solvable.

Proof. The result follows from Proposition 4.1, since the symmetric group Sym(n) is not solvable
for n ≥ 5. �

The following proposition holds in the general frame of automaton groups.

Proposition 4.3. Let G be a fractal automaton group such that G/StabG(L1) has trivial center.
Then the center Z(G) is trivial.

Proof. Suppose by contradiction that Z(G) contains a nontrivial element, that is, there exists a
nontrivial h ∈ G such that hg = gh for any g ∈ G. Since h is nontrivial, there exists a minimal k
such that h acts nontrivially on the k-th level. This means that there exist h′ ∈ G and v ∈ Xk−1

such that h ◦ v = v and h · v = h′, where the action of h′ on X is given by some permutation
σ 6= 1. Since G/StabG(L1) has trivial center, there exists τ ∈ G/StabG(L1) such that στ 6= τσ.
In particular, there exists g′ ∈ G such that g′ acts like the permutation τ on X. Since G is
fractal, there exists g ∈ G such that g ∈ StabG(v) and g · v = g′. Now

(hg) ◦ vx = g ◦ (v(h′ ◦ x)) = v(h′g′) ◦ x = vτσ(x)

and similarly (gh) ◦ vx = vστ(x). In particular, for any x ∈ X, one must have τσ(x) = στ(x).
But this is impossible. �

Notice that, if the graph G = (V,E) has only two vertices, then the associated graph au-
tomaton group is the so-called Adding Machine, and it is isomorphic to Z (see [6, Example 3.6,
Part 1]).

Corollary 4.4. Let G = (V,E) be a graph on n ≥ 3 vertices and let GG be the corresponding
graph automaton group. Then Z(GG) is trivial.

Proof. We know that GG is fractal and in Proposition 4.1 we have already proven that the
quotient GG/StabGG

(L1) is isomorphic to Sym(n). It is well known that Z(Sym(n)) is trivial
for n ≥ 3. The claim follows from Proposition 4.3. �

From now on, we consider a graph automaton group obtained by applying the construction of
Definition 3.1 to a graph T = (V,E) which is a tree. We denote by T the associated automaton,
and by GT the corresponding tree automaton group. The arboreal structure of the T will be
reflected on the algebraic properties of GT , since the dual automaton ∂T resembles a tree.
Indeed, if in the underlying graph of ∂T we forget the orientation, the loops and the multiedges,
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we get a simple graph which is isomorphic to the tree T (see, for instance, Fig. 3 for the case
where T is the star graph on 4 vertices). This fact will be heavily used henceforth.

Although the state set of the automaton T is E(E)∪{id}, we will refer to E as the generating
set, since the sink id is identified with the identity element of the free group FE(E)∪{id}; therefore,
with a slight abuse of notation, we will write FE . Given an element w ∈ FE and a word u ∈ V ∗,
if w · u (or u ◦w in ∂T ) contains some occurrences of id, we will identify such occurrences with
1.

Lemma 4.5. Let T = (V,E) be a tree. Let w ∈ FE be a nontrivial element and let x ∈ V be a
vertex such that w ◦ x = x. Then |w · x| < |w|.

Proof. Let us prove the statement by induction on the length |w|. The base case |w| = 1 is
trivial, since in this case in the dual ∂T w is a loop corresponding to an edge of T not adjacent
to x, hence w · x = 1. Let us assume the statement to be true for all words of length strictly
smaller than |w|. Let w = aw′, with a ∈ E. We have two cases:

• a ◦ x = x, and so in this case we have that a · x = 1 and so the statement holds since
|w · x| < |w|.

• a ◦ x = y with y 6= x. Without loss of generality, we can suppose that a = (x, y) is an
oriented edge of T . This implies that w′ ◦ y = x, since w = aw′ fixes x by hypothesis.
Now, if there exists a nonempty prefix u of w′ such that u ◦ y = y, with u′ = u · y, then,
by the induction hypothesis, we have |u′| = |u · y| < |u|. Therefore, we get

w · x = (aw′) · x = (auv) · x = (a · x)(u · (a ◦ x))(v · (au ◦ x))

= (a · x)(u · y)u′′ = (a · x)u′u′′

for some word u′′, hence |w · x| < |w|. If there is no such a nonempty prefix u, then by
the tree-like structure of ∂T , necessarily the word w starts with a2, since w is supposed
to be reduced. Since a2 ·x = a, we certainly have |w ·x| < |w| and the proof is concluded.

�

The previous result allows us to obtain the following property about relations in a graph
automaton group.

Theorem 4.6. Let G = (V,E) be an (oriented) graph and let w ∈ FE a relation in GG, so that
π(w) = 1, such that the generators occurring in w constitute a subset {e1, . . . , et} of edges whose
induced subgraph in G does not contain any cycle. Then the sum of the exponents of each of the
ei’s in w is zero.

Proof. First of all we notice that the statement is invariant under the orientation of the ei’s.
Now remark that generators belonging to disjoint subgraphs of G act on disjoint alphabets and
so they give rise to a trivial commutator, which is a relation that satisfies our claim. This implies
that we can restrict our attention to relations w involving edges whose induced subgraph in G
is a tree T with edge set E = {e1, . . . , et}.

Let w ∈ FE be such a relation of GG and let w = (w1, . . . , wn) be its self-similar representation,
where n is the cardinality of the vertex set V of G. Let us prove the statement by induction
on |w|. It is easy to show that the shortest relations are given by commutators of nonadjacent
edges, which have the claimed property. If w is a relation of length greater than 4, then for
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any x ∈ V one has w ◦ x = x and so by Lemma 4.5 |wx| = |w · x| < |w|. Since each of the
wx’s is a relation, being a restriction of a relation, by inductive hypothesis each of the wx’s has
the property that the sum of the exponents of each of the ei’s is zero. Finally, observe that
in each graph automaton group, any occurrence of e±1

i appearing in w, appears in exactly one
restriction wy, for some y. This concludes the proof. �

Recall that the set of words of FE such that the sum of the exponents of each generator
is zero coincides with the commutator subgroup F ′

E . Then, by Theorem 4.6, the sum of the
exponents of each of the ei’s in any relation of a tree automaton group GT is zero, and so every
relation in GT belongs to F ′

E . The following corollary holds.

Corollary 4.7. Let T be a tree with edge set E = {e1, . . . , et}. Then

GT /G
′
T ≃ Z

t.

Proof. Let π : FE → GT . We have to show that π(ei11 · · · eitt ) 6∈ G′
T for any (i1, . . . , it) 6= (0, . . . , 0).

Suppose by contradiction that there exists (i1, . . . , it) 6= (0, . . . , 0) such that π(ei11 · · · eitt ) = g ∈

G′
T . Let w ∈ F ′

E be a word representing g. The word u = w−1ei11 · · · eitt is a relation in GT . Thus,
by Corollary 4.8, in u the sum of the exponents of each of the ei’s is equal to zero. Now, since
w ∈ F ′

E has also the same property, we deduce that (i1, . . . , it) = (0, . . . , 0), a contradiction. �

Moreover, Theorem 4.6 allows us to easily describe a family of nontorsion elements in GT .

Corollary 4.8. Let T = (V,E) be a tree. Then any word w ∈ FE such that the sum of the
exponents of some generator appearing in w is nonzero is not torsion.

Proof. The last statement follows from the observation that the sum of the exponents in wn is
n times the sum of the exponents in w. �

5. Tree automaton semigroups

In this section we study the automaton semigroup associated with a tree.

Definition 5.1 (Graph automaton semigroup). Let G = (V,E) be as in Definition 3.1 with
an orientation E of its edges. Let AG,E be the associated automaton. The graph automaton
semigroup SG,E is the semigroup generated by the automaton AG,E .

While for graph automaton groups the orientation of the graph is irrelevant, different ori-
entations of the graph may give rise to non isomorphic semigroups, as we will later observe in
Remark 5.11. In this section we show that, in the case of a tree, the orientation is irrelevant:
different orientations give rise to semigroups that are all isomorphic to the same partially com-
mutative monoid. When the graph G is fixed, we will denote the corresponding semigroup by
SE omitting the index G. Moreover, in order to simplify the notation, we always think the edge
set E endowed with an orientation E .

Notice that the generating automaton contains the sink state id, which corresponds to the
identity of the generated semigroup. For this reason, we also include id in the generating set of
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SE . We put A = E ∪ {id} in order to denote such a generating set. Remark that, in this way,
the dual automaton ∂AG,E everywhere contains loops of the form x

id|id
−−−→x.

Let us fix a tree T = (V,E) and let E be an orientation of its edges. We have already
remarked that two generators commute if and only if they correspond to two edges which are
not incident in T . Actually, these are the only nontrivial relations in SE . In fact, we will show
(see Theorem 5.8) that the semigroup SE is isomorphic to the partially commutative monoid
with presentation

〈A | id = 1, ab = ba if {a, b} is an edge in L(T )c〉,

where L(T )c is the graph obtained by complementing the line graph of T , i.e., two vertices a, b
are connected in L(T )c if the corresponding edges a, b ∈ E of T are not incident, and in this
case a and b commute in SE .

Example 5.2. In Fig. 5 an example of an oriented tree T , together with its line graph L(T )
and its complement L(T )c, is represented.
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Figure 5. An oriented tree T and the graphs L(T ) and L(T )c.

For each word u = a1 . . . an ∈ A∗ and vertex x ∈ V we denote by P (x, u) the path

x
a1|x ◦ a1

−−−−→x1
a2|x1 ◦ a2

−−−−→ . . . . . .
an−1|xn−2 ◦ an−1

−−−−→ xn−1
an|xn−1 ◦ an

−−−−→ xn

in ∂T starting at x induced by the word u, while we denote by p(x, u) the sequence of vertices of
P (x, u) without consecutive repetitions. For instance, consider the dual automaton associated
with the oriented tree depicted in Fig. 5. If we take the word w = e2e1e1e4, then:

P (1, w) = 1
e2|id

−−−→1
e1|e1

−−−→2
e1|id

−−−→1
e4|e4

−−−→5 p(1, w) = 1215.

We consider the following set

Ax = {ai ∈ A : such that x
ai|id

−−−→x are loops in ∂T }

which contains id together with the set of edges of T that are not incident to x. We denote by
ε : A∗ → E∗ the morphism that erases the identity state id. The following lemma follows from
the definition of Ax.

Lemma 5.3. Consider a word u ∈ A∗ such that p(x, u) = xy . . ., with x 6= y. Then we may
factorize u = u′αu′′, where u′ ∈ A∗

x and α ∈ E is the edge connecting x and y.

We say that a word v ∈ A∗ has a noose at x if v contains a nontrivial factor u = a1 . . . ak
such that the path P (x, v) in ∂T contains a subpath

x
u|u′

−−−→x = x1
a1|b1

−−−→x2
a2|b2

−−−→ . . .
ak|bk
−−−→xk+1
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where the only vertices equal to x are the first one x1 and the last one xk+1 (see Fig. 6). Note
that by the tree-like structure of ∂T it must be a1 = ak.

x x2

a1|b1

a2|b2

ak−1|bk−1

ak|bk

Figure 6. A noose in ∂T .

Lemma 5.4. Let T = (V,E) be a tree and let E be an orientation of E. Let α = (x, y) be an
oriented edge from x to y. Suppose that u = αwα is a word in A∗ such that

x
u|u′

−−−→x = x
α|α

−−−→y
w|w′

−−−→y
α|id

−−−→x

is a path in ∂T and w does not contain any occurrence of α. Then ε(u′) = ε(αw′id) = αε(w′)
is such that ε(w′) is a word formed by edges that are not incident to x.

Analogously, if u = αwα, with α = (y, x) is a word in A∗ such that

x
u|u′′

−−−→x = x
α|id

−−−→y
w|w′

−−−→y
α|α

−−−→x

is a path in ∂T and w does not contain any occurrence of α, then ε(u′′) = ε(idw′α) = ε(w′)α is
such that ε(w′) is a word formed by edges that are not incident to x.

Proof. The statement follows by observing that the edges forming the word ε(w′) are edges that
belong to the connected component containing the vertex y and obtained from T by cutting the
edge α. Since T is a tree, these edges are clearly not incident to x. �

Lemma 5.5. Let α = (x, y) be an oriented edge in E, and let u ∈ A∗ be a word such that
p(x, x ◦ u) = xy . . .. Then we may factorize

(2) u = wαw′, with w ∈ A∗
x, w

′ ∈ A∗.

Proof. By Lemma 5.3 we have that x◦u = vαv′, with v ∈ A∗
x. Let w be the prefix of u such that

x ◦ w = v. If w ∈ A∗
x, then the factorization in Eq. (2) is obtained. Suppose now that w /∈ A∗

x,
so that w contains a letter that is an edge incident to x. Let γ be the first letter occurring in
w having this property. We want to prove that it must be γ = α, and then the factorization in
Eq. (2) still holds.
By contradiction, assume that either γ = (x, z) or γ = (z, x), with z 6= y, depending on the
orientation. Let u = sγs′αw′ be a word, with s ∈ A∗

x, sγs
′ = w, and w′ is such that v′ = y ◦w′.

Since vα = x ◦ wα, then it must be x · w = x. By the tree-like structure of ∂T it happens that
w must have a (first) noose γtγ, where t is a cyclic path on z. It follows from Lemma 5.4 that,
depending on the orientation of γ, one has either ε(x ◦ γtγ) = t′γ or ε(x ◦ γtγ) = γt′. In both
cases p(x, x ◦ u) = xz . . . 6= xy . . ., a contradiction. �
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Proposition 5.6. Let u ≡ v be a relation of SE and let x ∈ V . Then:

• either p(x, u) = p(x, v) = x;
• or p(x, u) and p(x, v) both have length at least 2 and start with the same two vertices,
i.e., p(x, u) = xy . . . if and only if p(x, v) = xy . . ..

Proof. We first show that, given x ∈ V , it is impossible that p(x, u) = x and p(x, v) = xy . . .,
for some y ∈ V . In fact, in this case one has u ∈ A∗

x and, on the other hand, v must contain
an occurence α, where α is the edge joining x and y. Since u ≡ v is a semigroup relation, then
w := vu−1 is a group relation and, by Corollary 4.8, the exponent sum of the generator α in
w must be zero. This is in contradiction with the fact that u does not contain α and v only
contains positive powers of α.
It follows from the previous argument that we may have either p(x, u) = p(x, v) = x and there
is nothing to prove, or both p(x, u) and p(x, v) have length greater than 1. Hence we have to
show that p(x, u) = xy . . . if and only if p(x, v) = xy . . ., for some y ∈ V .
Let us prove the last claim by induction on L(u, v) = |ε(u)|+ |ε(v)|. One may check by a direct
computation that the minimal relation u = v verifies L(u, v) = 4, with u = ab and v = ba,
where a, b correspond to nonadjacent edges, and only one between a and b is incident to x. In
this case, the claim follows.

Suppose now by contradiction that there is a vertex x ∈ V such that p(x, u) = xy . . . and
p(x, v) = xz . . . with y 6= z. Since u ≡ v is a relation, it must be x · u = x · v. Hence by the
tree-like structure of ∂T we have that u or v has a noose at x, let us suppose that u has such
a noose. Let s = αwα be the factor of u that is a noose and let us suppose that it is the first,
in the sense that if u = u′su′′, then no factor of u′s is a noose at x. Since p(x, u) = xy . . ., we
have that u′ is a word on A∗

x, so that ε(x ◦ u′) is the empty word, and α is either equal to (x, y)
or to (y, x). Now, by Lemma 5.4, ε(x ◦ u) = ε(x ◦ s) is either equal to ε(αw′u′′) or to ε(w′αu′′)
(depending on the orientation of α) where ε(w′) is a word formed by edges that are not incident
to x. Hence, in both cases we have p(x, x ◦ u) = xy . . .. Since x ◦ u ≡ x ◦ v is also a relation
and L(x ◦ u, x ◦ v) < L(u, v) because u contains a noose, we can apply induction to deduce that
p(x, x ◦ v) = p(x, x ◦ u) = xy . . .. Therefore, by Lemma 5.5 we may factorize v as v′αv′′, with
v′ ∈ A∗

x and v′′ ∈ A∗. Hence, p(x, v) = xy . . ., a contradiction. �

Let u, v ∈ A∗. We write u→c v if:

• either ε(u) = ε(v);
• or there exist a, b ∈ E such that u = u′abu′′ and v = u′bau′′, where a, b are non incident
edges of E.

We write u→∗
c v if there is a sequence u = v1, . . . , vn = v of words such that

v1 →c v2 →c . . . →c vn−1 →c vn.

Observe that the relation →∗
c is an equivalence relation.

Proposition 5.7. Let u, v ∈ A∗. Then u ≡ v is a relation in SE , with respect to the generating
set A, if and only if u→∗

c v.

Proof. If u→∗
c v, then it is straightforward to verify that u ≡ v is a relation in SE .
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Let us prove the converse implication. Since, by definition, we have u→∗
c ε(u) and v →∗

c ε(v),
and ε(u) ≡ ε(v) by hypothesis, we may assume u, v ∈ E∗. By Theorem 4.6 u ≡ id is a relation
if and only if u = id. Thus we can suppose, without loss of generality, that |u| ≥ 1 and |v| ≥ 1.

Let us proceed by induction on |u| + |v|. If |u| + |v| = 2, then it must be u, v ∈ E, and so
u ≡ v if and only if u = v by definition of graph automaton semigroup. Let u = au, v = bv
with a, b ∈ E. We may assume that a 6= b since, if u, v start with the same letter a, then
by the cancellativity of SE (it embeds into the corresponding automaton group) we may apply
induction on the shorter relation u ≡ v.

We have two cases to consider: either a, b are edges in E sharing a vertex, or they commute.
By Proposition 5.6 we may exclude the first case. Indeed, if a, b share a common vertex x,
then if y is the other vertex of the oriented edge a, and z 6= y the other vertex of the oriented
edge b, then we would have p(x, u) = xy . . . and p(x, v) = xz . . ., which is in contradiction with
Proposition 5.6.

Thus, we may suppose that a, b commute and put a = (x, y), b = (x′, y′). By Proposition 5.6
we have that p(x, u) = xy . . . and p(x, v) = xy . . ., hence by Lemma 5.3 we deduce that v = v′av′′

with v′ ∈ A∗
x. Even more, we claim that v′ contains only elements that commute with a. Indeed,

suppose by contradiction that v′ contains a letter c that is an edge incident to a, we also assume
that no letter in v′ preceding c is incident to a, i.e., v′ = wcw′ where w does not contain any
generator incident to a. Let c = (y, z) or c = (z, y), with z 6= x. Since w does not contain
any generator that is incident to a, and thus to y, we conclude that p(y, v) = yz . . .. On the
other hand, since u starts with the letter a, we have p(y, u) = yx . . ., in contradiction with
Proposition 5.6. Thus, v = v′av′′ where v′ is a word containing only elements that commute
with a. Therefore v →∗

c av
′v′′ holds and so v ≡ av′v′′ is a relation by the first part of the

proof. Therefore, since u ≡ v ≡ av′v′′, we conclude that u ≡ av′v′′ is a relation. Now, since
both u = au and av′v′′ start with the letter a, we may cancel out this letter to obtain a shorter
relation u ≡ v′v′′. By the induction hypothesis we get that u→∗

c v
′v′′, from which we conclude

that u = au→∗
c av

′v′′ →∗
c v

′av′′ = v and so u→∗
c v. �

From the previous proposition it follows the main result of this section.

Theorem 5.8. Let T = (V,E) be a tree and let E be an orientation of E. Then, the automaton
semigroup SE is isomorphic to the partially commutative monoid with presentation

〈E ∪ {id} | id = 1, ab = ba if {a, b} is an edge in L(T )c〉.

We recall that the join of two graphs G and H is the graph denoted by G+H obtained by
taking two disjoint copies of G and H, and connecting each vertex of G to each vertex of H. In
the spirit of [6, Proposition 3.5], we obtain the following result.

Corollary 5.9. Let F = (V,E) be a forest formed by the trees T1, . . . , Tm, and let E be an
orientation of this forest. If S1, . . . ,Sm are the corresponding partially commutative monoids
associated with the trees Ti’s, then SE ≃ S1 × · · · × Sm. In particular SE has the following
presentation:

〈E ∪ {id} | id = 1, ab = ba if {a, b} is an edge in L(T1)
c + · · ·+ L(Tm)c〉.

The importance of Theorem 5.8 is highlighted by the next proposition and the following
remark, which show that when the graph G = (V,E) is not a tree, the semigroup is not inde-
pendent of the orientation.
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Proposition 5.10. Let E be an orientation of the graph G = (V,E) which does not produce an
oriented cycle. Then in the semigroup SG,E there are no relations of the form w = id, w ∈ E∗.

Proof. Suppose that the set P = {w ∈ E∗ : w = id in SG,E} of relations is nonempty, and let
u = a1 . . . ak ∈ P be a word with minimal length. In ∂AG,E consider the transition x1

a1|a1

−−−→x′1.
Since E does not give rise to any oriented cycle, and since there is a loop x1

u|u′

−−−→x1 with
u′ = x1 ◦ u, we deduce that u′ contains at least one occurrence of the identity id. Now, observe
that it must be also u′ = id in SG,E , and so ε(u′) is a shorter word in P . This situation may
occur only if u′ ∈ {id}∗. However, since we have the transition x1

a1|a1

−−−→x′1, the word u′ starts
with a1, which is not the identity, a contradiction. Therefore we conclude that P is empty. �

Remark 5.11. Take a graph G = (V,E) which is not a tree, and consider an orientation E1
without oriented cycles, and a second orientation E2 containing an oriented cycle w = a1 . . . ak.
We claim that SG,E1 and SG,E2 are not isomorphic. By contradiction, suppose that there is

an isomorphism ϕ : SG,E2 → SG,E1 . By [6, Theorem 3.7], we have wk−1 = id, so that w is a

nontrivial torsion element in SG,E2 , and so (ϕ(w))k−1 = id in SG,E1 , which implies that ϕ(w) is
also a nontrivial torsion element in SG,E1 . This contradicts the previous proposition.

6. Reducible automata and poly-context-free groups

In this section, we highlight an interesting connection between a class of automaton groups
(generated by automata that we call reducible, see Definition 6.1) containing tree automaton
groups and the class of the so-called poly-context-free groups. We need some preparation.

The word problem of a group G finitely generated by the set A consists of the set of all words

in Ã∗ that represent the identity of G. For this reason, the word problem can be described as
a language, i.e., a set of words over some finite alphabet. Let 〈A|R〉 be the standard presenta-
tion of the group G. We have that G ≃ FA/N where N is the normal closure of the defining
relations R. The normal subgroup N of FA is also denoted by WP (G : A;R) in the literature
[1]. One of the most interesting problems in this setting is the algebraic characterization of a
group G in terms of the language theoretic properties of WP (G : A;R). For example, Anisi-
mov proved that a group is finite if and only if its word problem is a regular language [1]. A
very celebrated result in this context is the classification of the groups with context-free word
problem by Müller and Schupp, which states that a finitely generated group has context-free
word problem if and only if it is virtually free [27, 28]. We recall that a regular language is a
language recognized by a finite automaton, i.e., the set of words labeling all paths from an initial
state to a given set of final states of the automaton. Moreover, a (deterministic) context-free
language is a language generated by a context-free grammar. It is well known that, differ-
ently from the regular case, the intersection of (deterministic) context-free languages is not, in
general, a (deterministic) context-free language [26]. For this reason, it is natural to consider
the closure of (deterministic) context-free languages under intersection. The intersection of k
(deterministic) context-free languages is said a (deterministic) k-context-free language. A lan-
guage is (deterministic) poly-context-free if it is (deterministic) k-context-free for some k ∈ N

[5]. A group is called k-context-free if its word problem is a (deterministic) k-context-free lan-
guage. A group whose word problem is a (deterministic) poly-context-free language is called
poly-context-free group. Such groups have been introduced in [5] and they have been further ex-
plored in [9], where it is proved that such groups have a (deterministic) multipass word problem.
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From now on we consider an invertible automaton A = (A,X, λ, µ) and the generated group

G(A). Henceforth it is important to distinguish between elements in Ã∗ and elements of the
free group FA, so we have to consider the use of the following two canonical morphisms:

θ : Ã∗ → FA ω : Ã∗ → G(A).

We first introduce a class of automaton groups which includes tree automaton groups. The
inspiring property is the one stated in Lemma 4.5, which we may slightly generalize as follows.

Definition 6.1 (Reducible automaton). An invertible automaton A = (A,X, λ, µ) is reducible
if, for any w ∈ FA such that µ(w, x) = x for some x ∈ X, there is an integer n such that
|λ(w, u)| < |w| for all u ∈ X≥n.

Observe that A may contain a sink state id: if this is the case, we identify it with the identity
1 of FA.

It is easy to show, by applying Lemma 2.2 of [12], that the class of automaton groups
generated by reducible automata is contained in the class of automaton groups that do not have
singular points. Moreover, the following proposition holds.

Proposition 6.2. A reducible automaton A generates a contracting group.

Proof. Let G(A) be the group generated by the automaton A and let π : FA → G(A) be the
canonical map. Consider the set

N = {π(w) | w ∈ FA, |w| ≤ m},

where m = |X|. This is clearly a finite subset of G(A) and we claim that this is the nucleus of
G(A). Indeed, let h 6∈ N such that h = π(w), for some w ∈ FA with |w| > m. Then, for any
x ∈ X, in (∂A)− there is a path

x
w1|w

′

1−−−→y
w2|w

′

2−−−→y
w3|w

′

3−−−→z

with w = w1w2w3, since m = |X|. Now, by Definition 6.1 applied to w2 we know that for a
sufficiently large n we have that |w2 ·u| < |w2| for all u ∈ X≥n. Thus, by iterating this argument,
we may find an integer N such that |w · v| ≤ m for all v ∈ X≥N , i.e., π(w) · v = h · v ∈ N for
v ∈ X≥N . �

In conclusion, the class of groups defined by reducible automata is contained in the inter-
section of the class of contracting groups with the class of automaton groups without singular
points. There are several groups generated by reducible automata. Lemma 4.5 implies that tree
automaton groups are generated by reducible automata. But also the famous Basilica group
belongs to this class: this can be directly checked by showing that any element in the Basilica
group can be reduced by restriction using a word of length at most two. A similar argument
works also for a generalization of this group recently introduced in [17]. At the end of this
section, we will give a general strategy to construct infinitely many reducible automata.

There is an interesting connection between groups defined by reducible automata and poly-
context-free groups. Indeed, we will show (see Theorem 6.7) that groups generated by reducible
automata are direct limits of deterministic poly-context-free groups. Brough has conjectured in
[5] that the class of finitely generated poly-context-free groups coincides with the class of (finitely
generated) groups which are virtually a finitely generated subgroup of a direct product of free
groups. In this section, we partially support this conjecture by showing that the direct system of
poly-context-free groups whose limit is the group associated with a reducible automaton group
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is formed by groups that are virtually a finitely generated subgroup of a direct product of free
groups (see Proposition 6.6).

We are going to associate with a reducible automaton A a direct system of groups by show-
ing that WP (G(A) : A;R) may be decomposed into a union of deterministic poly-context-free
languages.

For each integer k > 0, let StabG(A)(Lk) be the stabilizer of the k-th level of the rooted tree

of degree |X|, identified with Xk. The language of k-fragile words is defined as

(3) Fk = {w ∈ ω−1(StabG(A)(Lk)) : θ(w · u) = 1 for all u ∈ X≥k}.

The name is inspired by [11, 15] and refers to the existence of relations that eventually become
trivial after certain restrictions. Note that Fk ⊆ Fh if h ≥ k.

We recall that a (symmetric) Dyck language over an alphabet A is the word problem of the
free group FA (see [10] for more details). We have the following proposition.

Proposition 6.3. Let G(A) be a group generated by a reducible automaton. Then each Fk is a
deterministic |X|k-context-free language and

WP (G(A) : A;R) =
⋃

k>0

Fk.

Proof. Let us start by proving that each Fk is a deterministic |X|k-context-free language.
Let A′ = A\{id} if A contains the sink state id, otherwise we put A′ = A. Let DA′ be the Dyck
language on the alphabet A′, i.e.:

DA′ = {w ∈ Ã′
∗
: θ(w) = 1}, with θ : Ã′

∗
→ FA.

It is a well known fact that DA′ is a deterministic context-free language [26]. Let SA be the
language obtained by the shuffle between DA′ and {id, id−1}∗, i.e., SA = ε−1(DA′), where

ε : Ã∗ → Ã′
∗
is the morphism erasing all occurrences of id, id−1. Roughly speaking, we are

considering all possible insertions of letters id, id−1 into elements in DA′ . Since deterministic
context-free languages are closed under inverse homomorphisms [26, Theorem 6.3], we have that
SA is also deterministic context-free. For every u ∈ X∗ define the language

(4) Fu = {w ∈ Ã∗ : θ(ε(w · u)) = 1}.

It follows from the definition that Fu = {w ∈ Ã∗ : w · u ∈ SA}. Let B = (∂A)− be the enriched

dual automaton and consider its power B|u|, that is clearly a deterministic automaton. Let

Tu : Ã∗ → Ã∗ be the mapping defined by Tu(v) = u ◦ v (where the action ◦ is referred to the one

defined by B|u|). Observe that Fu = T−1
u (SA), i.e., the set of words in Ã∗ that label the input

of paths starting at u in B|u| whose output belongs to SA. Since SA is deterministic context-
free, then the language given by the words labeling its input is also deterministic context-free,
as stated in [26, Theorem 11.2]. Therefore we deduce that Fu is a deterministic context-free
language. Now, we claim that Sk := ω−1(StabG(A)(Lk)) is a regular language. Indeed, for each

v ∈ Lk the language {w ∈ Ã∗ : w ◦ v = v} is regular since it is accepted by the automaton Bk

with initial and final state v; therefore

Sk =
⋂

v∈Xk

{w ∈ Ã∗ : w ◦ v = v}
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is the intersection of regular languages, and it is also regular [26, Theorem 3.3]. Finally

(5) Fk = Sk ∩
⋂

u∈Xk

Fu =
⋂

u∈Xk

(Fu ∩ Sk)

by virtue of Eq. (3) and Eq. (4), so that Fk is the intersection of |X|k deterministic context-free
languages, since the intersection of the deterministic context-free language Fu with the regular
language Sk is still a deterministic context-free language [26, Theorem 6.5]. Therefore, Fk is a
deterministic |X|k-context-free language.

Now let w ∈ WP (G(A) : A;R): we clearly have w ∈ ω−1(StabG(A)(Lk)) for all k ≥ 1. If we
putm = |w|, then by the reducibility of the automaton there is an n1 such that |θ(w ·v)| < |θ(w)|
for all v ∈ X≥n1 , so eventually, after at most m iterations of this argument, we may find m
positive integers n1, . . . , nm such that if k = n1 + · · ·+ nm it holds θ(w · v) = 1 for all v ∈ X≥k,
i.e., w ∈ Fk.

Conversely we claim that, if w ∈ Fk for some k ≥ 1, then w ∈ WP (G(A) : A;R). In order
to prove that, it is enough to show that w ◦ u = u for all u ∈ X∗. Since w ∈ ω−1(StabG(A)(Lk))

then w ◦ u′ = u′ for all u′ ∈ X≤k. Moreover, since θ(w · u′) = 1 by hypothesis, we have that
w · u′ acts like the identity also on the subtree rooted at u′, thus w ◦ u′v = u′v for every v ∈ X∗

and so w is in WP (G(A) : A;R).
�

Eq. (5) shows that Fk is the intersection of the deterministic context-free languages

(6) Fu ∩ Sk = {w ∈ ω−1(StabG(A)(Lk)) : θ(ε(w · u)) = 1},

with u ∈ Xk. We have the following lemma.

Lemma 6.4. Let u ∈ Xk. There is a morphism ϕu : H → FA from a finite index normal free
subgroup H of FA such that

ker(ϕu) = θ(Fu ∩ Sk).

Moreover, θ−1(θ(Fu ∩ Sk)) = Fu ∩ Sk holds.

Proof. First observe that Sk = ω−1(StabG(A)(Lk)) is a submonoid of Ã∗ and H = θ(Sk) is a
finite index normal subgroup of FA, since StabG(A)(Lk) is a finite index normal subgroup of

G(A). Let φu : Sk → Ã∗ be the map defined as:

(7) φu(w) = ε(w · u).

We claim that this is a homomorphism (it is essentially the virtual endomorphism defined in
[29]). Indeed, for all w1, w2 ∈ Sk, we have

φu(w1 w2) = ε((w1w2) · u) = ε((w1 · u) (w2 · u)) = ε(w1 · u)ε(w2 · u) = φu(w1)φu(w2),

since wi ◦ u = u. We now define ϕu : H → FA by putting

ϕu(g) = θ(φu(w)),

where w ∈ Ã∗ is any word with θ(w) = g. Notice that, by the definition of φu in Eq. (7), the
map ϕu does not depend on the particular choice of w. Since

(hh−1) · u = (h · u)(h · u)−1(8)
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holds for every h ∈ Sk, and, thus, φu(hh
−1) = φu(h)φu(h)

−1 = 1 holds for every h ∈ Sk, we
conclude that ϕu is a well defined homomorphism. Moreover, it follows from the definition of
ϕu that

ker(ϕu) = θ({w ∈ Sk : θ(ε(w · u)) = 1}) = θ(Fu ∩ Sk),

where the last equality follows from Eq. (6).
We conclude the proof by showing that θ−1(θ(Fu ∩ Sk)) = Fu ∩ Sk. Notice that it is enough

to prove that for any u ∈ Xk one has θ−1(θ(Fu ∩ Sk)) ⊆ Fu ∩ Sk, since the other inclusion

always holds. Let w ∈ Ã∗ be such that w ∈ θ−1(θ(Fu ∩Sk)). Then θ(w) ∈ θ(Fu ∩Sk), i.e., there
exists v ∈ Fu ∩ Sk such that θ(w) = θ(v). This means that w and v only differ for factors of
type hh−1, then clearly w and v act in the same way on X∗, and in particular w ∈ Sk because
v ∈ Sk. On the other hand, Eq. (8) ensures φu(w) = φu(v). Hence θ(ε(w · u)) = θ(ε(v · u)) = 1.
In particular w ∈ Fu ∩ Sk. �

It follows from Lemma 6.4 that

θ(Fk) = θ


 ⋂

u∈Xk

(Fu ∩ Sk)


 =

⋂

u∈Xk

θ(Fu ∩ Sk) =
⋂

u∈Xk

ker(ϕu),(9)

where the second equality is a consequence of the property θ−1(θ(Fu ∩ Sk)) = Fu ∩ Sk. In
particular, θ(Fk) is a normal subgroup of FA since it is intersection of normal subgroups.

Therefore, we may define for each k ≥ 1 the quotient group

Gk = FA/θ(Fk)

that we call the k-th fragile group. In view of Proposition 6.3 we have that each k-th fragile
group Gk is a poly-context-free group, in particular, it belongs to the class BDG defined in [9],
consisting of the groups having a deterministic multipass word problem. Brough’s conjecture
states that groups whose word problem is a poly-context-free language are virtually subgroups
of the direct product of free groups. To the best of the authors’ knowledge, this conjecture is
still open, and in Proposition 6.6 we partially support it, by showing that it holds in the case of
the fragile groups associated with a group defined by a reducible automaton. We first need the
following fact.

Lemma 6.5. Let N = N1 ∩N2 ∩ . . . ∩Nk be a language that is intersection of k languages on
the alphabet A with the property that θ−1(θ(Ni)) = Ni for each i = 1, . . . , k. Suppose that for
each i = 1, . . . , k there is a morphism ϕi : Hi → Fmi

between a subgroup Hi of FA of finite index
and a free group Fmi

of rank mi such that ker(ϕi) = θ(Ni). Then the group G = FA/θ(N) is
virtually a subgroup of Fm1

× · · · × Fmk
.

Proof. Since each Hi is a finite index subgroup of FA, then H = H1 ∩ . . . ∩Hk is a finite index
subgroup of FA. Let φ : H → Fm1

× · · · × Fmk
be the morphism defined component-wise by

φ = (ϕ1, . . . , ϕk). This is a well defined homomorphism with

ker(φ) = ker(ϕ1) ∩ . . . ∩ ker(ϕk) = θ(N1) ∩ . . . ∩ θ(Nk) = θ(N),

where the last equality follows from the property θ−1(θ(Ni)) = Ni for each i = 1, . . . , k, as in
Eq. (9). Hence H/θ(N) is a subgroup of Fm1

× · · · ×Fmk
. Since H is a finite index subgroup of

FA we have that H/θ(N) is a finite index subgroup of G = FA/θ(N). Therefore G is virtually
a subgroup of the direct product of free groups Fm1

× · · · × Fmk
. �
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We denote by Fm
A the m-th iterated direct product of the free group FA with itself.

Proposition 6.6. Each k-th fragile group Gk is virtually a subgroup of the direct product of Fm
A

with m = |X|k.

Proof. Let u ∈ Xk and put Nu = Fu ∩ Sk. Recall that Gk = FA/θ(Fk) and that θ(Fk) =⋂
u∈Xk θ(Nu) by Eq. (9). The claim follows from Lemma 6.5 applied to the morphisms ϕu :

H → FA with ker(ϕu) = θ(Fu ∩ Sk) as in Lemma 6.4. �

Since Fi ⊆ Fj holds for j ≥ i, we have a family of naturally defined epimorphisms ψi,j :
Gi → Gj . Thus, the family of fragile groups {Gi}i∈N together with the epimorphisms ψi,j is a
direct system of groups whose direct limit lim

−→
Gi is G(A) by virtue of Proposition 6.3. Therefore

Proposition 6.6 implies the following structural result.

Theorem 6.7. An automaton group G(A) associated with a reducible invertible automaton A
is isomorphic to the direct limit of groups which are virtually subgroups of the direct product of
free groups.

Theorem 6.7 gives some insight on the general structure of G(A) via its associated fragile
groups. The following result probably belongs to the folklore and it has the same flavor of [32,
Proposition 1]. Recall that the Nielsen-Schreier theorem states that a subgroup of a free group
is itself isomorphic to a free group. Moreover, a group G is Hopfian if every epimorphism from
G to G is an isomorphism (see, for instance, [30]).

Proposition 6.8. Let H be a subgroup of the direct product Fn1
× · · · × Fnk

of free groups.
Then, either H is abelian or it contains a free non-abelian subgroup.

Proof. Let {gi, i ∈ I} be a set of generators for H, and let pj : H → Fnj
be the projecting

homomorphism onto the j-th component. We consider the following two mutually excluding
cases.

• For each j = 1, . . . , k there is an element hj ∈ Fnj
such that pj(gi) ∈ 〈hj〉 for all

i ∈ I. Note that this is equivalent to the fact that 〈pj(gi), i ∈ I〉 is a free subgroup of
Fnj

of rank 1 by the Nielsen-Schreier theorem. Thus, for every generator gi, we have

gi = (hs11 , . . . , h
sk
k ) for some integers s1, . . . , sk. Therefore the generators {gi, i ∈ I}

commute, as they commute component-wise, and so H is abelian.
• There is some j ∈ {1, . . . , k} and s, t ∈ I such that 〈pj(gs), pj(gt)〉 is a free subgroup of
Fnj

of rank 2 by the Nielsen-Schreier theorem. Thus 〈gs, gt〉 is a free subgroup of rank
2 in H, since finitely generated free groups are Hopfian.

�

The following theorem holds.

Theorem 6.9. Let A be a reducible automaton and suppose that G(A) has exponential growth.
Then the fragile groups {Gi} are all non-amenable.

Proof. Let ψi : Gi → G(A) be the canonical homomorphism. Notice that ψi is surjective for any
i by Proposition 6.3. Since G(A) has exponential growth, it cannot be the homomorphic image
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of a virtually abelian group. By using Proposition 6.6 and Proposition 6.8 we deduce that Gi is
a finite index subgroup of the direct product of free groups containing a free group of rank at
least 2. In particular, Gi is not amenable. �

It follows from the previous theorem that, if G(A) is the group associated with a reducible
automaton and it has exponential growth, then it is a direct limit of non-amenable groups. This
gives us important information about the presentation of G(A).

Theorem 6.10. Let A be a reducible automaton and suppose that G(A) is amenable with ex-
ponential growth. Then G(A) is not finitely presented.

Proof. Suppose, by contradiction, that G(A) is finitely presented and then there exist i relations
w1, . . . , wi ∈ FA such that G(A) is isomorphic to FA/N , where N is the normal closure of
w1, . . . , wi. By Proposition 6.3 there exists k̄ such that w1, . . . , wi ∈ θ(Fk̄): this implies that
G(A) is isomorphic to the k̄-th fragile group Gk̄. This is a contradiction, because by Theorem
6.9 the group Gk̄ is non-amenable. �

The previous theorem applies to a large class of automaton groups. In fact if A is a bounded
automaton, then G(A) is amenable [4]. Moreover, a graph automaton group associated with
a graph with at least two edges has exponential growth [6, Corollary 3.10] and, by virtue of
Lemma 4.5, when the graph is a tree the group is generated by a reducible automaton. The
following corollary follows.

Corollary 6.11. Tree automaton groups associated with trees having at least two edges are
not finitely presented and they are amenable groups obtained as a direct limit of non-amenable
groups.

We notice that this corollary shows that the presentation property of tree automaton groups
is strongly different from the presentation property of tree automaton semigroup (compare with
Theorem 5.8). It also follows from Corollary 6.11 that tree automaton groups constitute a class
of groups that do not have free non-abelian subgroups although they are direct limit of groups
containing free non-abelian groups.

We conclude this section by exhibiting a procedure to construct a reducible automaton. Such
a method defines a class of reducible automata that contains also tree automata and several
more. Suppose that we want to build a reducible invertible automaton A on the set of states
A containing the sink state id. Given a finite index subgroup H of FA, the Schreier graph
Sch(H,A) of H with respect to A is defined as the graph whose vertices are the right cosets
Hg = {hg : h ∈ H}, for g ∈ FA, and whose edges are of type (Hg,Hga), a ∈ A. In particular,
one labels by a the (oriented) edge (Hg,Hga). We associate with H an invertible reduced
automaton B by defining its enriched dual (∂B)− as follows.

(1) We first construct the Schreier graph Sch(H, Ã) of H with respect to the symmetric

generating set Ã.

(2) Let Y be a spanning tree of Sch(H, Ã). The automaton ∂B− is obtained from Sch(H, Ã)
by adding the outputs as follows:
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• if the transition p
a

−−→q (and thus also its inverse q
a−1

−−→p) does not belong to Y ,
then we modify it by adding outputs as p

a|id
−−−→q and q

a−1|id−1

−−−→p;
• otherwise, we arbitrarily assign an output from A in case p

a
−−→q belongs to the

spanning tree Y .

It is not difficult to see that any word g ∈ FA labeling a loop at some vertex q of (∂B)− has the
property that |q ◦ g| < |g|, thus B is reducible.
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