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Efficient and Scalable FPGA Design of GF(2m)
Inversion for Post-Quantum Cryptosystems

Andrea Galimberti*, Gabriele Montanaro, and Davide Zoni

Abstract—Post-quantum cryptosystems based on QC-MDPC codes are designed to mitigate the security threat posed by quantum
computers to traditional public-key cryptography. The polynomial inversion is the core operation of key generation in such cryptosystems
and the adoption of ephemeral keys imposes the execution of key generation for each session. To this end, there is a need for efficient
and scalable hardware implementations of the binary polynomial inversion operation to support the key generation primitive across
a wide range of computational platforms. This manuscript proposes an efficient and scalable architecture implementing the binary
polynomial inversion at the hardware level. Our solution can deliver a performance-optimized implementation for the large polynomials
used in post-quantum code-based cryptosystems and for each FPGA of the mid-range Xilinx Artix-7 family. The effectiveness of the
proposed solution was validated by means of the BIKE and LEDAcrypt post-quantum QC-MDPC cryptosystems as representative
use cases. Compared to the C11- and the optimized AVX2-based software implementations of LEDAcrypt, instances of the proposed
architecture targeting the Artix-7 200 FPGA show an average performance improvement of 31.7 and 2.2 times, respectively. Moreover,
the proposed architecture delivers a performance improvement up to 18.1 and 21.5 times for AES-128 and AES-192 security levels,
respectively, compared to the BIKE hardware implementation.

Index Terms—QC-MDPC cryptosystems, binary polynomial inversion, code-based cryptography, post-quantum cryptography, applied
cryptography, FPGA, hardware design.

✦

1 INTRODUCTION

Today, public-key cryptography (PKC) is the standard
solution to key exchange over an insecure channel. The secu-
rity of well-established and widely adopted PKC schemes,
such as RSA [1], Diffie-Hellman [2], and elliptic-curve cryp-
tosystems [3], relies on the hardness of factoring large inte-
gers and of computing discrete logarithms in a cyclic group.
However, quantum computers are expected to solve these
problems in polynomial time by means of algorithms such
as Shor’s [4], threatening to make traditional PKC obsolete
in the next decades. To cope with the security risk posed by
the advancements in quantum computing, the US National
Institute of Standards and Technology (NIST) started in 2016
a standardization process to identify a set of post-quantum
algorithms to replace current public-key cryptosystems [5].
Submitted proposals span over a wide portion of the state
of the art in computational theory, including algebraic ge-
ometry [6], coding theory [7], and lattice theory [8]. De-
spite the theoretical differences, each proposal must satisfy
two requirements. First, post-quantum cryptosystems must
leverage computationally hard problems for which even
quantum computers cannot compute a solution in poly-
nomial time. Second, NIST requires efficient software and
hardware implementations targeting Intel Haswell x86_64
CPUs and Xilinx Artix-7 FPGAs as representative architec-
tures. The choice of targeting FPGAs prevents the adoption
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of ASIC-specific technology optimizations, thus ensuring a
fair comparison of the hardware implementations.

From the theoretical point of view, code-based cryptog-
raphy has a remarkably good security track, dating back to
the McEliece cryptosystem [7] proposed in 1978, and thus
motivating its adoption by several proposals to the NIST
post-quantum cryptography (PQC) standardization process.
However, the strong security and performance of traditional
McEliece cryptosystems that employ binary Goppa codes [9]
comes at the cost of large memory requirements, in the order
of megabytes, to store the key pairs. Quasi-cyclic moderate-
density parity-check (QC-MDPC) codes [10] emerged as an
effective alternative to binary Goppa codes, reducing the
key size of code-based cryptosystems to tens of kilobytes
while maintaining security against quantum attacks. The
BIKE [11] and LEDAcrypt [12] proposals to the NIST PQC
competition rely on QC-MDPC codes.

From the computational point of view, NIST requires not
only software but also efficient hardware implementations,
since supporting the most computationally intensive parts
of each cryptosystem through dedicated accelerators is the
key to ensure the wide adoption of post-quantum security
solutions across the embedded devices at the edge. To
this end, several hardware implementations of BIKE and
LEDAcrypt targeting the Xilinx Artix-7 FPGA family have
been presented to efficiently support the encapsulation [13],
[14], the decapsulation [15], [16], [17], [18], or both [19]. To
the best of our knowledge, [19] represents the sole proposal
that also provides hardware support for the key generation
primitive of modern QC-MDPC cryptosystems, but delivers
a hardware architecture that is strongly tailored to low-area
FPGAs. Moreover, the solution is not proven to scale effec-
tively to chips with more available resources. In particular,
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the hardware is meant to support BIKE instances up to AES-
192-equivalent security, i.e., with polynomial length up to
24659, while AES-256 security requires polynomials with
length equal to 40973, that is 66% larger, thus exceeding the
size of single BRAMs available on the FPGAs targeted by
the NIST PQC competition.

TABLE 1: Performance of the software implementations of
the BIKE and LEDAcrypt cryptosystems.

Performance (103 clock cycles)
Cryptosystem KeyGen Encaps Decaps

BIKE [20]
600 220 2220AES-128 security level

AVX2, Intel Core i7-1065G7
LEDAcrypt-KEM-CPA [21]

1241 110 785AES-128 security level, n0 = 2
AVX2, Intel Core i5-6600

In contrast, we note that the hardware implementation of
the key generation primitive represents a critical component
to ensure the efficiency of any post-quantum code-based
cryptosystem for three reasons. First, the use of ephemeral
private/public key pairs to transmit the session key requires
the execution of the key generation primitive at each run.
Indeed, the key generation primitive requires a significant
fraction of the total execution time (see Table 1), thus mo-
tivating its optimization. Second, the size of the operands
of key generation is in the order of tens of thousands of
bits, thus imposing a careful design of the hardware imple-
mentation. Third, key generation must exhibit a constant-
time implementation to prevent timing-based side-channel
attacks, thus further increasing the design complexity.

1.1 Contributions

This manuscript presents an FPGA-optimized design
methodology to implement efficient and scalable hardware
support for polynomial inversion in GF (2m). Inversion
dominates the computational complexity of the key gener-
ation procedure of QC-MDPC cryptosystems, taking more
than 90% of the execution time [20], [21]. The proposed
inversion architecture is based on a known algorithm, based
on Fermat’s little theorem, that iterates exponentiations and
multiplications of binary polynomials [22]. The crucial con-
tribution of our research is the efficient and scalable imple-
mentation of a parametric hardware accelerator to support
the key generation primitive in QC-MDPC cryptosystems
across the entire Xilinx Artix-7 FPGA family, that is the
hardware target of the NIST PQC competition. Our proposal
adds two relevant contributions to the state of the art:

• Efficiency - The proposed architecture is optimized
to efficiently compute the time-consuming binary
polynomial inversion, by employing a parallel ar-
chitecture for exponentiation and multiplication and
an optimal hardware scheduling. Considering the
implementation of our solution on the Xilinx Artix-
7 200 FPGA, we observed an average performance
improvement of 2.2 against the AVX2-based software
implementation of LEDAcrypt-KEM-CPA, and a per-
formance improvement of 18.1 and 21.5 times for
AES-128 and AES-192 security levels, respectively,

compared to the FPGA-based hardware implemen-
tation of BIKE.

• Scalability - Three parameters allow the designer to
optimally select at design time the area-performance
trade-off regardless of the polynomial length. Such
parameters are i) the bandwidth of the architecture’s
datapath, ii) the degree of parallelism for computing
the exponentiation, and iii) the number of Karat-
suba recursions computed in parallel within the
multiplication. The exhaustive design space explo-
ration demonstrates the possibility of implement-
ing a performance-optimized inversion module, for
each instance of the BIKE and LEDAcrypt-KEM-CPA
cryptosystems, over the entire Artix-7 family. Indeed,
the smart use of the FPGA block RAM in place of flip-
flops to store the inputs, intermediate values, and
results allows handling polynomials with a length in
the order of tens of thousands of bits even on Artix-
7 12, i.e., the smallest FPGA of the Artix-7 family,
while still ensuring competitive performance.

1.2 Theoretical background
Quasi-cyclic codes are characterized by parity-check H ma-
trices that are composed of n0 circulant blocks with size
p× p, therefore they can be equivalently represented by the
n0 binary polynomials in GF (2p) with coefficients equal to
the first row of the corresponding circulant blocks. Moderate-
density codes feature sparse parity-check matrices, i.e., only
a small percentage of values are set to 1, allowing for a
sparse representation by enumerating the positions of bits
set to 1. QC-MDPC codes possess both the quasi-cyclic and
moderate-density properties.

The private key of a QC-MDPC cryptosystem is a parity-
check matrix H composed of n0 circulant blocks Hi (see
Equation (1)), while the corresponding public key is com-
puted as in Equation (2). Hi blocks are p×p circulant matri-
ces, that are equivalent to the polynomials in Z2[x]/(x

p +1)
with coefficients corresponding to their topmost rows.

H = [H0|H1|...|Hn0−1] (1)

[(H−1
n0−1 ·H0)|(H−1

n0−1 ·H1)|...|(H−1
n0−1 ·Hn0−2)] (2)

As shown in Equation (2), the key generation procedure
requires n0 − 1 multiplications, and the first term of each
multiplication is the multiplicative inverse of the rightmost
circulant block, i.e., Hn0−1. Inversion is thus a critical part of
the key generation primitive of QC-MDPC cryptosystems.

The rest of this section overviews the theoretical back-
ground of the binary polynomial inversion (see Sec-
tion 1.2.1) and exponentiation (see Section 1.2.2).

1.2.1 Inversion background
In GF (2m), a multiplicative inverse for a polynomial a(x),
denoted by a(x)−1, is a polynomial that when multiplied by
a(x) yields the multiplicative identity, i.e., a(x) ·a(x)−1 = 1.

Inversion algorithms can be split in two families, de-
riving from Euclid’s algorithm and from Fermat’s little
theorem, respectively. Euclid’s algorithm allows to compute
the greatest common divisor between two polynomials, and
polynomial-time algorithms based on it are proposed by
[23], [24], [25]. Algorithms based on Fermat’s little theorem
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Algorithm 1 Inversion procedure from [22]. a(x) is a
binary polynomial in Z2[x]/(x

p + 1) with a multiplicative
inverse, where p is a prime such that ord2(p) = p − 1. d(x)
is the multiplicative inverse of a(x), i.e., d(x) = a(x)−1.

1: function [d(x)] INVERSION(a(x))
2: b(x) = a(x);
3: c(x) = a(x);
4: for i ∈ 1 : (⌈log2 (p− 2)⌉ − 1) do
5: d(x) = c(x)2

2i−1

;
6: c(x) = d(x) · c(x);
7: if (p− 2)2[i] == 12 then
8: d(x) = b(x)2

2i

;
9: b(x) = d(x) · c(x);

10: end if
11: end for
12: d(x) = b(x)2;
13: return d(x);
14: end function

date back to the Itoh-Tsujii algorithm (ITA) introduced by
[26] and are employed in the software implementations
of BIKE [27] and LEDAcrypt [22] and in the hardware
implementation of BIKE [19].

The inversion algorithm employed by the software im-
plementation of LEDAcrypt-KEM-CPA [22] is detailed in
Algorithm 1. It takes a Z2[x]/(x

p + 1) binary polyno-
mial a(x) as input and executes a fixed number of iterations
to output its multiplicative inverse d(x) = a(x)−1. Each
iteration (lines 4-11 in Algorithm 1) consists of two expo-
nentiations (lines 5 and 8) and two multiplications (lines 6
and 9). However, lines 8 and 9 of iteration i are executed
only when the condition at line 7 is verified, i.e., if the i-
th bit of p − 2 is equal to 1. Finally, a squaring operation
produces the inverse polynomial (line 12). Algorithm 1
requires (log2(p − 2) + hw(p − 2) − 1) multiplications and
(log2(p − 2) + hw(p − 2)) exponentiations, where hw(y)
represents the Hamming weight, i.e., the number of bits set
to 1, of y. The amount of required operations depends thus
not on the input a(x), but exclusively on the polynomial
length p, that is a fixed parameter of the QC-MDPC code.

1.2.2 Exponentiation background
Exponentiation in GF (2m) is the operation that computes
g(x) = f(x)k, where the base f(x) and the result g(x) are
polynomials in GF (2m) while the exponent k is a number. If
k is a positive integer, then the exponentiation corresponds
to iterating k times the multiplication of the base f(x).

Algorithm 2 details the procedure to compute the ex-
ponentiation of a binary polynomial in Z2[x]/(x

p + 1). It
takes as inputs the f(x) polynomial and the k non-zero
positive integer value, which constitute the base and the
exponent, respectively, and it produces the corresponding
g(x) polynomial, where g(x) = f(x)k. The exponentiation
procedure starts by setting the g(x) polynomial to 0, i.e., its
corresponding binary representation is initially constituted
by all p bits set to 0 (see line 2 in Algorithm 2). Then, for each
i ranging from 0 to (p−1), the algorithm computes the value
of the bit in position i · k mod p of the g(x) polynomial, i.e.,
g(x)[i · k mod p], as the bit-wise exclusive OR between the

Algorithm 2 Exponentiation procedure. f(x) is a binary
polynomial in Z2[x]/(x

p + 1), where p is a prime such that
ord2(p) = p− 1. k is a non-zero positive integer, i.e., k > 0.
g(x) = f(x)k. Note that a ⊕= b is equivalent to a = a ⊕ b.

1: function [g(x)] EXPONENTIATION(f(x), k)
2: g(x) = 0;
3: for i ∈ 0 : (p− 1) do
4: g(x)[(i · k) mod p] ⊕= f(x)[i];
5: end for
6: return g(x);
7: end function

values of g(x)[i · k mod p] and the i-th bit of the f(x) poly-
nomial, i.e., f(x)[i] (see lines 3-5 in Algorithm 2). Notably,
if k and p are coprime, each bit of g(x) is assigned exactly
once inside the for loop in Algorithm 2, hence each bit of
g(x) can be computed independently from the other bits of
the same polynomial. Line 2 of Algorithm 2 thus becomes
g(x)[(i · k) mod p] = f(x)[i]. The coprimality condition is
verified in the considered application of QC-MDPC codes to
cryptography, i.e., the BIKE and LEDAcrypt cryptosystems.

Time
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1

Fig. 1: Example of exponentiation.

Figure 1 shows an example of the iterative exponen-
tiation procedure in Algorithm 2 to compute g(x) as the
4-th power of f(x). f(x) and g(x) are polynomials in
Z2[x]/(x

p + 1) represented as p-bit binary values, where
k is equal to 4 and p is equal to 11. The procedure takes
12 timesteps. At timestep 0, all bits in g(x) are cleared, i.e.,
set to 0. One bit of the f(x) polynomial is then processed
at each of the subsequent 11 timesteps, with the i-th bit
in the f(x) polynomial contributing to generate the bit
in position i · k mod p in the g(x) polynomial (see line 4
in Algorithm 2), where i ranges from 0 to 10. For each
timestep, the processed and generated bits in f(x) and g(x)
polynomials are highlighted in red. At the final timestep,
the value of g(x) is the result of the exponentiation, i.e.,
g(x) = f(x)4.

2 RELATED WORKS

This section is organized in two parts. Section 2.1 discusses
the state of the art related to the binary polynomial inver-
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sion, while Section 2.2 overviews the state of the art related
to the binary polynomial exponentiation.

2.1 Inversion state of the art

Several algorithms to compute the multiplicative inverses
in GF (2m) and their hardware implementations have been
proposed since the 1980s. Fermat’s little theorem is at the
core of the first state-of-the-art proposals, such as [28] and
ITA [26]. Other Fermat-based software and hardware im-
plementations were later introduced by [29], [30], [31], [32],
[33], [34], [35]. Euclid’s algorithm, that computes the greatest
common divisor between two polynomials, was instead
first adapted to compute multiplicative inverses in GF (2m)
by [23], that is known as Brunner’s algorithm. Subsequent
proposals based on Euclid’s and Brunner’s algorithms were
[24], [25], [36]. However, all the previously listed state-of-
the-art proposals targeted polynomials with degree in the
order of few hundreds at most, due to the lesser require-
ments of traditional PKC and error control coding schemes.

Only few and more recent proposals target polynomials
with degrees in the order of tens of thousands, that are thus
suitable to post-quantum QC-MDPC cryptography. They
are software and hardware implementations of the BIKE
and LEDAcrypt cryptosystems. The software ones target
modern x86_64 CPUs that support custom instructions for
carry-less multiplication, while the hardware one targets
Artix-7 FPGAs. [27] introduced a constant-time algorithm
for polynomial inversion, targeting the software implemen-
tation of BIKE and based on Fermat’s little theorem. The
authors optimized the exponentiation operation and further
improved performance by means of a source code targeting
the latest Intel Ice Lake CPUs, that support the AVX512 and
Vector-PCLMULQDQ instructions. [22] presented a Fermat-
based algorithm that is employed in the software imple-
mentation of LEDAcrypt and was previously detailed in
Section 1.2. [19] presented the FPGA-based implementation
of BIKE that employs an inversion algorithm based on [34].
To the best of our knowledge, [19] represents the state-of-
the-art hardware implementation of binary polynomial in-
version. The employed algorithm differs from the one used
in [27], requiring the same number of exponentiations, but
slightly less operations if the exponentiations are computed
by means of iterated squarings. The algorithms [19], [22],
[27] used in BIKE and LEDAcrypt require the same number
of exponentiations and multiplications.

2.2 Exponentiation state of the art

Few implementations of the exponentiation algorithm have
been proposed in the last decade to efficiently support
the key generation algorithm in post-quantum QC-MDPC
cryptosystems [19], [22], [27]. [27] performs GF (2m) ex-
ponentiation with two main optimizations. First, the per-
mutation corresponding to a f(x)2

k

exponentiation is fully
precomputed by storing in a lookup table the positions of
bits in the inverse polynomial and indexing them by the
original positions in the input polynomial f(x). Lookup
tables can be precomputed for all values held by k during
the inversion algorithm, which depend exclusively on p.
Second, f(x)2

k

exponentiations are executed faster as a

chain of k squarings, when k is smaller than a threshold
value. However, the proposed lookup tables required p ·
(⌈log2(p−2)⌉−1)·⌈log2 p⌉ bits of memory, and may thus not
be suitable to constrained devices such as microcontrollers.
[22] optimized the memory requirements by using a smaller
lookup table, that holds only the (⌈log2(p− 2)⌉ − 1) values
obtained as 2i mod p, with i ∈ {1, 2, ..., ⌈log2(p − 2)⌉}. The
position of the j-th coefficient, where 0 ≤ j ≤ p−1, of a(x)2

i

is instead computed at run-time as (j · (2i mod p)) mod p,
i.e., through a multiplication and a modulus operation. [19]
compared three strategies to compute the f(x)2

k

exponen-
tiation. The first one iterates k squaring operations, i.e.,
f(x)2, processed by a squaring module. The second one
implements two modules, one computing f(x)2 and the
other computing f(x)2

4

. The latter is used as long as the
remaining exponent of the squaring chain is ≥ 4, other-
wise the iterative computation is done by the former. The
third strategy combines a fixed squaring module computing
f(x)2 and a module that computes f(x)2

k

exponentiations
with arbitrary k. f(x)2

k

exponentiations are executed by
the latter module when k ≥ BW , where BW is the width
of the architecture datapath, otherwise they are computed
by iterative squaring. The third strategy provides the best
performance, while occupying slightly more resources than
the first one.

3 METHODOLOGY

This section describes the architecture of an efficient and
scalable component that computes the multiplicative in-
verse of a binary polynomial in Z2[x]/(x

p + 1). Such arith-
metic primitive is the key element employed in the key
generation algorithm of QC-MDPC cryptosystems. The ef-
ficiency is achieved by means of i) a parallel architecture
to perform polynomial multiplications and exponentiations
and ii) an optimal hardware scheduling that allows the con-
current computation of the two operations whenever possi-
ble. The scalability is achieved by means of a configurable
architecture design that is meant to scale across a wide
range of FPGAs rather than being hard-coded to a specific
target. The configurable architecture allows to implement
the inversion of large binary polynomials on targets ranging
from resource-constrained FPGAs up to larger chips that
allow for faster execution.

The rest of this section is organized in three parts.
Section 3.1 describes the inversion architecture. Section 3.2
presents the architecture of the exponentiation component.
Section 3.3 is devoted to its complexity analysis. We note
that this manuscript does not aim to optimize the multiplica-
tion architecture, since we leverage the scalable and efficient
multiplier presented in [14].

3.1 Inversion architecture
The architectural view of the proposed inversion mod-
ule (Inv) is shown in Figure 2a. The module takes as
inputs the binary polynomial a(x) to invert and the control
signal doInv that starts the computation, and outputs the
binary polynomial d(x) that is the multiplicative inverse of
a(x). The proposed architecture is built upon the inversion
algorithm described in Figure 2b.
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(b) FSM control signals associated to the inversion algorithm

Fig. 2: Top-view architecture of the inversion module, composed of the computational datapath and of the finite state
machine that drives the control signals according to the execution of the inversion algorithm (Algorithm 1).

Architectural view - The Inv module consists of four
submodules, i.e., Compute, DataMem, Iter, and FSM. The
computational unit (Compute) implements the optimized
architectures to perform the binary polynomial exponen-
tiation (Exp) and multiplication (Mul). The memory mod-
ule (DataMem) is meant to efficiently store the input poly-
nomial as well as the intermediate results of the compu-
tation. The iteration module (Iter) produces the values
of the iterator i according to the implemented inversion
algorithm (see Figure 2b). Finally, the finite state machine
controller (FSM) generates the control signals that drive the
multiplexers of the datapath and the write enable signals of
the registers and memories, depending on the values of the
iterator i, the code parameter p, and the doInv input.

Algorithmic view - The proposed architecture is built upon
the inversion procedure described in Algorithm 2b. The
input phase starts when the doInv input signal is set to
1, storing the binary polynomial a(x) received as an input
to the Inv module in the two memories of the DataMem
submodule, i.e., Mb(x) and Mc(x). Such hardware phase cor-
responds to the execution of the lines 2-3 in Figure 2b. At the
end of the input phase, the Inv module starts computing the
polynomial inverse by iteratively executing the hardware
operations corresponding to the instructions at lines 4-11 in
Figure 2b. The FSM selectively asserts the selectors of the
multiplexers and the write-enable, i.e., we, control signals
to ensure the correct execution of the inversion procedure.
By observing that the value of p is a fixed parameter
of the cryptosystem, we note that the FSM only requires
the value of the i counter at each iteration to correctly
generate the values of the control signals, thus mimicking
the execution of the control instructions, i.e., the for loop
and the if conditional statement at lines 4 and 7 of the
inversion algorithm. Figure 2b highlights the values of the
control signals within the proposed architecture during the
hardware execution of the inversion algorithm, where the
"−" symbol identifies don’t care values. Once all the iterations
have been executed, the FSM forces the final squaring of the
c(x) polynomial (see line 12) and subsequently outputs the
obtained result d(x) = a(x)−1 (see line 13).

Optimized hardware scheduling - To maximize the perfor-
mance without duplicating the instances of the computa-
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Fig. 3: Temporal evolution of the sequential and optimized
executions of the inversion algorithm for (p − 2) =
45910 = 1110010112. Ix(,y) represents the x-th instruction
of the inversion algorithm at the y-th iteration, where
x ∈ {1 . . . 14} and y ∈ {1 . . . 4}.

tional resources, i.e., Mul and Exp, the proposed inversion
architecture is designed to schedule the exponentiations and
multiplications to always use the Exp and Mul modules
concurrently whenever possible. Starting from the analysis
of the inversion algorithm in Figure 2b, we identified two
pairs of instructions for which the computation can be
optimized by means of a concurrent execution, since each
pair of instructions shows no data dependence. Considering
the i-th iteration of the inversion algorithm (see lines 4-
11 Figure 2b), the multiplication and the exponentiation
instructions at line 6 and 8, respectively, can be concurrently
executed on two separate functional units. In a similar
manner, the instructions at line 9 of the i-th iteration and
at line 5 of the (i + 1)-th iteration can also be computed at
the same time. We note that the concurrent execution of the
two pairs of instructions is constrained to the validity of the
condition at line 7 of the inversion procedure in Figure 2b,
i.e., (p− 2)2[i] == 1.
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To demonstrate the effectiveness of the implemented
hardware scheduling, Figure 3 shows an example of the
execution of the first four iterations of the inversion algo-
rithm, i.e., i ∈ {1, 2, 3, 4}, considering (p − 2) = 45910 =
1110010112. To better highlight the execution speedup due
to the proposed optimized hardware scheduling, Figure 3
unrolls the considered for loop iterations. In particular, Ix(,y)
identifies the instruction at line x of the inversion procedure
that is executed during the y-th iteration of the for loop.
The execution of the inversion algorithm takes advantage of
the optimized hardware scheduling for each i-th iteration
of the for loop such that (p − 2)[i] is equal to 1, since the
validity of the condition at line 7 (see Figure 2b) allows
the concurrent execution of the two identified pairs of
multiplication-exponentiation instructions. Considering the
example in Figure 3, the optimized hardware scheduling
and the non-optimized sequential scheduling execute the
four considered iterations in 10 and 14 time units, respec-
tively. The performance speedup of the proposed hardware
scheduling is due to the concurrent executions at iterations
1, i.e., I6,1-I8,1 and I9,1-I5,2, and 3, i.e., I6,3-I8,3 and I9,3-I5,4,
respectively (see timesteps 4, 5, 8, and 9 in Figure 3). It is
important to note that the actual performance speedup due
to the optimized hardware scheduling is a function of the
number of ones in the binary encoding of (p − 2) (see line
7 in Figure 2b), where p is a parameter of the cryptosystem.
However, the selection of the value of p is subject to a set
of contrasting requirements to balance the decode failure
rate, the performance, and the security of the cryptosystem,
thus preventing a choice of its value that only favors the
performance of inversion as also highlighted in [20], [21].

Complexity analysis - The time complexity of the inversion
procedure (Tinv) can be expressed as a function of only
the polynomial length p and the execution times of the
exponentiation (Texp) and multiplication (Tmul). Without
considering the proposed scheduling optimization, the in-
version procedure requires one exponentiation and one mul-
tiplication at each iteration of the for loop, and, in addition,
one more exponentiation and one more multiplication at
each i-th iteration corresponding to an i-th bit of (p − 2)
that is equal to 1. The number of executed iterations is equal
to ⌈log2(p− 2)− 1⌉. In addition, one final exponentiation at
the power of 2 is performed.

The proposed scheduling optimization reduces the num-
ber of operations that are required in the i-th iterations for
which (p − 2)2[i] is equal to 1. In such case, an iteration
requires two times the execution time of the operation tak-
ing the longest between exponentiation and multiplication,
instead of the execution time of two exponentiation and two
multiplications. The resulting time complexity can therefore
be expressed in clock cycles as in Equation 3.

Tinv = ((2 · (hw(p− 2)− 1))− 1) ·max{Texp, Tmul}
+ (zeros(p− 2) + 1) · (Texp + Tmul)

+ Texp

(3)

Notably, hw(p − 2) corresponds to the number of bits of
(p−2) set to 1, while zeros(p−2) corresponds to the number
of zeros of the binary representation of (p− 2), that is equal
to (⌈log2(p− 2)⌉ − hw(p− 2)).

For completeness, we also report the time complexity of
the multiplier introduced in [14], allowing us to express,
together with the time complexity of the exponentiation
module discussed later, the execution time of the inversion
procedure as a function of only the code parameter p and
of the architectural parameters of the implementation. Let
PARM be the parallelism parameter that expresses how
many times the Karatsuba recursion formula is applied, and
BW be the bandwidth of the multiplier datapath, then its
time complexity can be expressed as in Equation 4.

Tmul =

(
PARM∑
i=0

2

2i

)
·
⌈ p

BW

⌉
+


⌈

p
2PARM

⌉
BW


2

(4)

The first term refers to the data movement between the
different layers of Karatsuba recursion, while the second
term refers to the execution time required by the 2PARM

innermost Comba multipliers, each concurrently computing
one partial product of the Karatsuba formula.

3.2 Exponentiation architecture
The exponentiation is a critical operation to efficiently
perform the polynomial inversion, thus its implementa-
tion must be carefully designed to optimize the area-
performance trade-off. Starting from the the exponentiation
procedure detailed in Algorithm 2, the proposed hardware
component leverages the possibility to independently com-
pute each bit of the result polynomial g(x) to deliver a par-
allel architecture that allows the concurrent computation of
PARE bits of g(x). The parallel architecture is achieved by
employing PARE separate hardware memories. In particu-
lar, each memory manages the writing of one of the PARE

bits of g(x). Once all p bits of f(x) have been processed
and written to the corresponding PARE memories, their
bit-wise XOR produces the final g(x) polynomial.

Time

0

3
4
5
6

2
1

7

Fig. 4: Example of parallelized exponentiation.

To demonstrate the performance speedup due to the
use of the proposed parallel exponentiation architecture,
Figure 4 details the computation of the g(x) polynomial as
the 4-th power of the f(x) polynomial using a parallelism
of 2, i.e., PARE = 2. We note that, apart from the parallel
computation, the example in Figure 4 performs the compu-
tation previously discussed in Section 1.2.2 (see Figure 1).
At timestep 0, f(x) holds the input polynomial, while the
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Fig. 5: Detailed view of the proposed exponentiation architecture. (N =
⌈

P
BW

⌉
, K =

⌈
P

PARE

⌉
)

PARE gi(x) polynomials, g0(x) and g1(x), are set at 0.
At each subsequent timestep, PARE adjacent bits are read
from the f(x) polynomial, and each of them is written to
the corresponding gi(x) polynomial. Blue and red colors to
highlight the bits processed at each timestep as well as their
positions in the gi(x) polynomials, where i ∈ {0, 1}. Once
all p bits of the f(x) polynomial have been read and written
in the correct position of the PARE gi(x) polynomials, the
gi(x) polynomials are bit-wise XORed to produce the g(x)
result polynomial, which is the 4-th power of f(x).
Architectural view - The Exp module in Figure 5 represents
our architecture for polynomial exponentiation. It has a
BW-bit input f and an input t, corresponding to the base
polynomial f(x) and to the exponent 22

t

, respectively, and a
BW-bit output g that corresponds to the resulting polynomial
g(x) = f(x)2

2t

. BW is a design-time parameter that defines
the datapath bandwidth of the exponentiation module.

The Exp module is designed as a two-stage architecture,
composed of the Stage1 and Stage2 modules. They con-
tain a memory, composed of FPGA BRAMs, that can hold
p bits and has a BW-bit read/write data bandwidth, and
they respectively store the f(x) and gi(x) polynomials. The
PARE design-time parameter defines the degree of paral-
lelism within the exponentiation module, i.e., the number of
Stage2 replicas that are instantiated to parallelize the com-
putation. To further improve the efficiency of the proposed
architecture, two lookup tables AddrIncr and AddrStart
are populated at compile time to provide the address incre-
ment and start values for gi(x) memories. AddrIncr con-
tains log2(p− 2) entries, indexed from 0 to (log2(p− 2)− 1),
each containing the (PARE · 22t) mod p value, where t is
the index of the entry. AddrStart contains log2(p− 2) sets
of entries, indexed from 0 to (log2(p − 2) − 1). Each set of
entries contains PARE values equal to (s·22t) mod p value,
where s holds all integer values comprised between 0 and
(PARE − 1), referring to the corresponding gi(x) memory,
and t is the index of the set of PARE entries.

Algorithmic view - The execution of the exponentiation
can be seen as organized in three logical phases, i.e., Input,
Computation and Output. During the Input phase, the Exp
module stores the p-bit f(x) polynomial into the memory
component of the Stage1 module, passing BW bits per clock
cycle through the f input, while the Stage2 memory is
reset to contain all 0 bits. At the same time, the t value fed
through the t input is used to index the AddrIncr and the
PARE AddrStart values within the two respective lookup
tables. The Stage2 modules share the same AddrIncr
value, while the AddrStart values are correctly dispatched
to the instances of the Stage2 module. Thereafter, the
Computation phase takes place. At each clock cycle, PARE

bits are read and output from the memory of the Stage1
module, from the least to the most significant bits of the p-
bit f(x) polynomial. These PARE bits are split and each
of them is fed as a single-bit signal to one of the replicas
of the Stage2 module. Each single-bit input to a Stage2
module is written, one per clock cycle, into the Stage2
memory at a position that starts from the AddrStart value
and that is incremented (modulo p) at each clock cycle by
the AddrIncr value. The Computation phase ends when all
p bits read from the Stage1 memory have been written
to their corresponding positions in the PARE Stage2
memories. Finally, during the Output phase, the content of
the Stage2 memories is output, BW bits per clock cycle, and
the PARE BW-bit outputs are XORed. We note that p and 22

t

are coprime, i.e., their GCD is 1, thus, it is guaranteed that
there can not be any bits set to 1 in two or more different
Stage2 memories, i.e., we cannot have any cancellations
due to the XOR operation. The result of the XOR operation
corresponds to the actual g(x) polynomial, which is output
BW bits per clock cycle through the g port.

3.3 Exponentiation complexity analysis
This section discusses the time and space complexity of
the proposed exponentiation architecture, highlighting the
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design choices that allow its implementation across a wide
range of resource-performance trade-offs.
Time complexity - Equation (5) defines the time required
to execute an exponentiation (Texp), expressed in terms of
clock cycles.

Texp =
⌈ p

BW

⌉
·
⌈

BW

PARE

⌉
(5)

It has three parameters. p corresponds to the polynomial
length. It is a parameter of the QC-MDPC code and, thus,
it can not be controlled by the hardware designer. BW is
the bandwidth of the exponentiation datapath expressed
in bits and PARE is the parallelism implemented in the
exponentiation module. Both are configurable parameters
of the proposed architecture and can be tuned to explore
different area-performance trade-offs.

Equation (5) is the product of two terms. The first term⌈ p
BW

⌉
represents the number of memory lines to be read

from the input polynomial and written into the output
polynomial. The second term

⌈
BW

PARE

⌉
accounts for the par-

allel writing on separate BRAMs for the output polynomial.
Equation (5) is fully independent from the input polynomial
and depends instead exclusively on the p code parameter
and on the BW and PARE architectural parameters. Since
the execution time of the multiplication module is also in-
dependent from its input values, and the same holds for the
top inversion module, then our implementation guarantees
constant-time execution of binary polynomial inversion.
Space complexity - Experimental results showed empiri-
cally that LUT and BRAM relative utilization of the available
FPGA resources are similar to each other across all hardware
instances on the whole Artix-7 family and for all polynomial
lengths, with the LUT utilization being slightly larger than
the BRAM one on average. At the same time, flip-flops are
mostly unused in the proposed architecture. The number
of BRAMs is therefore deemed a good metric for the space
complexity of the exponentiation module.

Our architecture requires one p-bit memory for the
Stage1 module and one p-bit memory for the Stage2
module. Due to the parameterized replication of Stage2
modules, the overall exponentiation module requires
(PARE + 1) p-bit memories. Equation (6) defines the num-
ber of BRAMs of the exponentiation module (Mexp).

Mexp = (PARE + 1) ·
⌈

p

SBRAM

⌉
·
⌈

BW

BWBRAM

⌉
(6)

It has five parameters. Other than p, BW , and PARE ,
SBRAM represents the size of a BRAM, that may be either
16Kb or 32Kb in Artix-7 FPGAs, while BWBRAM represents
the data bandwidth of a BRAM, that may be either 32 bits
for 16Kb memories or 64 bits for 32Kb memories.

Equation (6) is the product of three terms. The first term
(PARE + 1) represents the number of p-bit memories. The
second term

⌈
p

SBRAM

⌉
accounts for the number of BRAM

memories required to store a p-bit polynomial. The third
term

⌈
BW

BWBRAM

⌉
accounts for the number of BRAM memo-

ries necessary to provide the required BW data bandwidth.

4 EXPERIMENTAL EVALUATION

This section discusses the area and performance of the
proposed inversion architecture in order to highlight its
efficiency and scalability. We note that we are not proposing
a novel post-quantum QC-MDPC cryptosystem. In contrast,
the proposed design methodology is meant to deliver an ef-
ficient and scalable hardware support for the binary polyno-
mial inversion, thus accelerating QC-MDPC cryptosystems
that employ it within their key generation procedure.

We adopted the LEDAcrypt-KEM-CPA [12] and
BIKE [11] key encapsulation mechanisms as representative
use cases to demonstrate the validity of the proposed ar-
chitecture. The inversion module was implemented on all
FPGAs of the mid-range Xilinx Artix-7 family, that offers
the best price-performance ratio and is the target for the
hardware assessment within the NIST PQC standardization
process. Performance results of the proposed architecture
are compared with two state-of-the-art software implemen-
tations running on an Intel Core i7 processor [39] and with
a state-of-the-art hardware implementation targeting the
Artix-7 FPGA family [38].

The rest of this section is organized in three parts. Sec-
tion 4.1 overviews the LEDAcrypt and BIKE cryptosystems
and their underlying codes. Section 4.2 details the exper-
imental setup, encompassing hardware and software. Fi-
nally, Section 4.3 discusses the area and performance results.

4.1 LEDAcrypt and BIKE cryptosystems

We considered the BIKE [20] and LEDAcrypt-KEM-CPA [21]
key encapsulation mechanisms as representative use cases
for binary polynomial inversion. Both cryptosystems rely on
the Niederreiter cryptoscheme [37] and employ a QC-MDPC
code. BIKE was selected as an alternate proposal for the
third round of the NIST PQC standardization process, while
LEDAcrypt also participated to the competition. This part
overviews the BIKE and LEDAcrypt code configurations
with the goal of demonstrating the wide applicability of our
inversion architecture.

TABLE 2: Polynomial length of the BIKE [20] and
LEDAcrypt-KEM-CPA [21] cryptosystems.

Code Security level Polynomial length p
L1.4

AES-128

7187
L1.3 8237
L1.2 10883
B1 12323
L3.4

AES-192

13109
L3.3 15373
L3.2 21011
B3 24659
L5.4

AES-256

21611
L5.3 25603
L5.2 35339
B5 40973

The QC-MDPC codes underlying BIKE and LEDAcrypt-
KEM-CPA feature parity-check matrices H composed of n0

circulant blocks with size p × p, where p is a large prime
number and n0 ∈ {2, 3, 4} for LEDAcrypt-KEM-CPA, while
n0 is equal to 2 for BIKE. The block size p of the code
corresponds to the bitlength of the polynomial which has
to be inverted. Table 2 reports all the p code parameters for
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BIKE and LEDAcrypt-KEM-CPA. They range from 7187 to
40973. The Bi and Li.j labels refer to BIKE and LEDAcrypt-
KEM-CPA instances where i refers to security levels 1, 3, and
5, that correspond to AES-128, AES-192, and AES-256, and
j indicates the number of circulant blocks composing the H
matrix. The experimental results detailed in the following
were obtained for the code parameters in Table 2.

TABLE 3: Available resources on the Artix-7 family FPGAs.

FPGA LUT FF BRAM
Artix-7 12 8000 16000 20
Artix-7 15 10400 20800 25
Artix-7 25 14600 29200 45
Artix-7 35 20800 41600 50
Artix-7 50 32600 65200 75
Artix-7 75 47200 94400 105
Artix-7 100 63400 126800 135
Artix-7 200 134600 269200 365

4.2 Experimental setup
Hardware setup - The inversion architecture discussed in
Section 3 was described in SystemVerilog and it was im-
plemented using the Xilinx Vivado 2018.2 hardware design
suite. The experimental evaluation was carried out on the
FPGAs from the mid-range Xilinx Artix-7 family, for which
the available resources are detailed in Table 3.

Each design instance was implemented at a 133 MHz
operating frequency. For each considered FPGA and code
configuration, we only reported the best hardware imple-
mentation, i.e., the feasible one providing the best perfor-
mance in terms of execution time for an inversion. Such
instances were identified after an extensive design space
exploration that considered a wide range of values for the
configurable parameters of the architecture. We explored
two bandwidths BW , 32 and 64 bits, three levels of mul-
tiplication parallelism PARM , with 1, 2, and 3 Karatsuba
recursions computed in parallel, and a large set of levels of
exponentiation parallelism PARE , with values equal to the
powers of 2 between 1 and BW .

TABLE 4: Resource utilization, timing, and performance of
the reference hardware instances of BIKE [38].

Code BW LUT FF BRAM Freq. Exec. time

B1
32 1776 342 3 100MHz 25.20ms
64 4162 427 3 80MHz 8.88ms
128 11721 733 6 74MHz 3.36ms

B3
32 1585 311 3 100MHz 110.02ms
64 4366 493 3 83MHz 35.26ms
128 12025 660 6 74MHz 12.04ms

The proposed architecture is compared to the reference
inversion module extracted from the hardware implemen-
tation of BIKE, that targets FPGAs and is freely available
online [38]. The state-of-the-art reference was implemented
and simulated by employing Vivado 2018.2, targeting Artix-
7 FPGAs and using the same synthesis and implementation
directives as the ones used for our architecture. We con-
sidered only the reference instances implementing the third
exponentiation strategy (see Section 2.2), since they show a
lower or equal area and higher or equal performance than
the other two [19]. The hardware reference implementation
of BIKE is available in three bandwidths, i.e., 32, 64, and

128 bits, for the security levels 1 and 3. The instances with
32- and 64-bit bandwidth can be instantiated on an Artix-
7 12 FPGA, i.e., the smallest Artix-7 chip, while the 128-bit
instances must target an Artix-7 25 or larger FPGA due to
the required LUT resources. Resource utilization, maximum
clock frequency, and execution time for the reference hard-
ware instances of BIKE are detailed in Table 4.
Software setup - We considered two reference software
versions of binary polynomial inversion extracted from the
implementation of LEDAcrypt-KEM-CPA. The C11 version
is used as the baseline reference design for performance
evaluation, while the optimized software implementation
employing the Intel AVX2 extension is considered as the top-
notch reference from the point of view of performance. Both
are freely available online [39].

Both software versions were executed on an Intel Core
i7-6700HQ CPU, forcing a fixed operating frequency of
3.5 GHz to avoid performance variability due to the power
management controller. For each LEDAcrypt-KEM-CPA
code configuration, the execution time of the inversion
procedure for the C11 and AVX2 software implementations
was obtained as the average of 30 executions.

Functional Validation Architecture

FPGACtrl Inv

cmdInv
a
c

ack2Host
invDone

UART

cmdM2S
weM2S
dataM2S
dataS2M
ackS2M

tx
rx

clk
rst

Fig. 6: Hardware setup for the functional assessment of the
proposed polynomial inversion architecture.

Functional validation - The proposed architecture was
functionally validated through both post-implementation
timing simulation and board prototype execution, checking
the correctness of the obtained results against the inver-
sion procedure extracted from the software implementation
of LEDAcrypt-KEM-CPA [39]. For each LEDAcrypt KEM-
CPA configuration, i.e., the nine Li.j polynomial lengths
reported in Table 2, we collected the results of the software
execution of 10000 different inversion procedures.

Post-implementation simulation targeted the Xilinx
Artix-7 12 (xc7a12tcsg325-1) and 200 (xc7a200tsbg484-1) FP-
GAs, while board prototype execution targeted the Dig-
ilent Nexys 4 DDR board, that features an Artix-7 100
(xc7a100tcsg324-1) FPGA. In both cases, we implemented
a performance-optimized instance of our inversion module
for each LEDAcrypt-KEM-CPA polynomial length and each
target FPGA. Each inversion instance executed 10000 inver-
sions, and their results were compared with the output of
software execution.

Figure 6 describes the functional validation architecture
used for both post-implementation simulation and proto-
type execution. It is made of three parts: the FPGA con-
troller (Ctrl) communicates with the host computer to col-
lect the input and return the output, the UART module cre-
ates a communication channel between the FPGA controller
and the host computer, and the Inv block represents an
instance of the proposed inversion architecture. To perform
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(a) Xilinx Artix-7 12 (b) Xilinx Artix-7 200

Fig. 7: Resource utilization of the proposed inversion architecture implemented on the Xilinx Artix-7 12 and 200 FPGAs.
The utilization for each resource type is expressed as a percentage of the available resources on the target FPGA.

an inversion operation, the Ctrl module drives the cmdM2S
and weM2S signals to collect the input polynomial from the
UART module. The FPGA controller waits until the UART
has sent the required data before closing the communica-
tion, that implements a blocking protocol. Once the input
has been collected, the cmdInv signal is used to load the
operand a(x) into Inv and to start the inversion. BW bits
of a(x) per clock cycle are passed to the inversion module
through the a signal. The Inv module signals the end of the
computation through the invDone control signal while BW
bits of c(x) per clock cycle are loaded into Ctrl through
the c signal. The Inv and the Ctrl modules exchange
data through an acknowledged protocol (see cmdInv and
ack2Host signals). Finally, the Ctrl module sends the
result back to the UART module through the dataM2S
signal. The Ctrl and the UART modules also exchange
data through an acknowledged protocol (see cmdM2S and
ackS2M signals).

4.3 Experimental results
This section discusses the area and the performance of the
proposed inversion template architecture, to demonstrate
its efficiency and scalability across the entire Xilinx Artix-
7 family of mid-range FPGAs.
Area results - The proposed architecture makes use of the
BRAMs of the FPGA as the primary means of storage,
allowing the inversion module to fit on tiny FPGAs even
for codes with a large block size p. In such a way, the
maximum allowed dimension of the dense vectors that store
the input, intermediate, and output polynomials is not a
function of the available amount of flip-flops, that easily
become the scarcest resources on small FPGAs, but it is
instead a function of the available BRAM storage capacity.
We note that a single BRAM can store up to 36kb and the
smallest Artix-7 FPGA features 20 BRAMs and 16000 flip-
flops, while the considered polynomial lengths range from
7187 to 40973 bits.

Figure 7 reports the utilization of the look-up ta-
ble (LUT), flip-flop (FF), and block RAM (BRAM) resources
as a percentage of the total available resources on the Artix-
7 12 and 200 FPGAs, for polynomial lengths that suit the
nine LEDAcrypt-KEM-CPA cryptosystem configurations.
Look-up tables are the most used FPGA resource in smaller

designs fitting on Artix-7 12 FPGAs. Indeed, most best-
performing designs that are still suitable for the smallest
Artix-7 FPGA require up to 99% of available LUT resources,
while used BRAMs are around 90-95%. Similarly, the major-
ity of Artix-7 200 instances show a slightly higher utilization
of LUTs than BRAMs. Regardless of the differences in used
FPGA resources, all designs targeting the whole range of
Artix-7 FPGAs are characterized by a wide usage of BRAMs,
thus significantly minimizing the use of flip-flops. Even if
the flip-flop utilization is low, it must be noted that the
unused FF resources can not be exploited to further improve
the design. For example, on average the FF utilization on
the Artix-7 12 is below 15%, while the BRAM utilization
is above 90% (see Figure 7a). However, an Artix-7 12 chip
features 16000 FFs, thus its storage capacity is lower than
a single BRAM and insufficient to store p-bit polynomials.
In a similar manner, the FF utilization on Artix-7 200 is
lower than 10% for each LEDAcrypt configuration. Even
in such scenario, it is impossible to improve the design by
leveraging the FF resources.

TABLE 5: Architectural parameters for hardware instances
of the proposed architecture on Artix-7 12 and 200 FPGAs.

Code Artix-7 12 Artix-7 200
BW PARE PARM BW PARE PARM

L1.4 64 1 1 64 32 3
L1.3 64 1 1 64 64 3
L1.2 64 1 1 64 64 3
B1 64 1 1 64 64 3
L3.4 64 1 1 64 32 3
L3.3 32 16 1 64 64 3
L3.2 64 1 1 64 64 3
B3 64 1 1 64 64 3
L5.4 64 1 1 64 32 3
L5.3 64 1 1 64 64 3
L5.2 32 1 1 64 32 3
B5 32 1 1 64 32 3

In contrast, we identified two main limiting factors to a
higher grade of parallelism. On the multiplier side, increas-
ing PARM parallelism, i.e., implementing parallel compu-
tation of 4 or more Karatsuba recursions, demands a number
of LUTs and BRAMs that is not available on any FPGA from
the Artix-7 family. On the exponentiation side, a high level
of PARE parallelism (which is nonetheless bounded by the
BW bandwidth parameter) may cause timing closure at
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implementation time to fail, requiring to resort to instances
with lower PARE that work at the target 133 MHz clock
frequency. As shown in Table 5, configurations such as L5.4
have a PARE value equal to 32, while other ones such as
L5.3 have a PARE value equal to 64, which is the maximum
allowed value. A lower exponentiation parallelism results
in around 4% and 8% lower LUT and BRAM utilization,
respectively, on Artix-7 200 implementations.

TABLE 6: Execution times of C11 and AVX2 software [39]
run on a i7-6700HQ CPU and of hardware instances of the
proposed architecture on Artix-7 12 and 200 FPGAs.

Code Software [39] Proposed architecture
C11 AVX2 Artix-7 12 Artix-7 200

L1.4 1.80ms 0.20ms 1.18ms 0.10ms
L1.3 2.53ms 0.24ms 1.49ms 0.11ms
L1.2 4.46ms 0.35ms 2.10ms 0.16ms
L3.4 6.25ms 0.50ms 2.71ms 0.24ms
L3.3 8.11ms 0.78ms 8.56ms 0.28ms
L3.2 16.79ms 0.95ms 5.73ms 0.44ms
L5.4 19.58ms 1.24ms 6.09ms 0.51ms
L5.3 22.69ms 1.06ms 7.85ms 0.57ms
L5.2 49.95ms 2.43ms 47.61ms 1.11ms

Performance results - The performance assessment is
achieved by comparing the execution time of the proposed
inversion procedure to those of the software implementation
of LEDAcrypt and the hardware implementation of BIKE.

In particular, Table 6 reports the performance results for
all LEDAcrypt-KEM-CPA configurations, considering the
two software references, i.e., C11 and AVX2, and the two
hardware instances of the proposed architecture that target
the Artix-7 12 and 200 FPGAs. For example, C11 takes
between 1.80 ms and 49.95 ms to complete the inversion,
with the two extremes corresponding to the L1.4 and L5.2
code configurations, respectively.
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Fig. 8: Performance speedup with respect to C11 software
inversion. Software inversion is executed on the i7-6700HQ
CPU, while hardware inversion is implemented on the
Artix-7 12 and 200 FPGAs.

Figure 8 reports the performance speedup of the AVX2
software and the two hardware implementations, normal-
ized with respect to the C11 software, highlighting the
actual performance improvement across the different im-
plementations of the inversion procedure. The performance
speedup of the x implementation is defined as the ratio
between the execution time of the C11 software (TC11) and

the execution time of x (Tx), where x ∈ {AVX2, Artix-7 12,
Artix-7 200}, as shown in Equation 7.

speedupx =
TC11

Tx
(7)

The inversion modules targeting the low-end Artix-
7 12 FPGA show an execution time comprised between
1.18 and 47.61 milliseconds, with a performance speedup
between 0.95 and 3.22 (2.08 on average). Notably, the only
LEDAcrypt-KEM-CPA configuration for which Artix-7 12
performance is worse than C11 performance is L3.3, be-
cause of the reduced bandwidth BW due to area constraints
(specifically, LUTs). The optimized AVX2 software imple-
mentation shows a performance speedup ranging between
8.9 and 21.4 (14.5 on average), while our inversion mod-
ules targeting the Artix-7 200 FPGA show a performance
speedup ranging between 18.3 and 45.2 (31.7 on average),
compared to the C11 reference. Moreover, our solution
overcomes the AVX2 software implementation by 2.2 times
on average, thus demonstrating the superior capability com-
pared to optimized software solutions that exploit custom
instructions offered by recent high-end Intel processors.
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Fig. 9: Breakdown of the execution times of the macro-
operations, for instances of the proposed architecture
targeting the Artix-7 12 and 200 FPGAs.

Figure 9 shows the breakdown of execution times for
the macro-operations scheduled within the inversion pro-
cedure, highlighting the time spent computing exponentia-
tions, multiplications, and concurrent exponentiations and
multiplications. For each configuration of the LEDAcrypt
code, the left and right columns specify the breakdown of
the execution times for instances of the inversion targeting
the Artix-7 12 and 200 FPGAs, respectively. We note that,
for each reported result, the corresponding architectural
parameters and performance results are reported in Table 5
and Table 6, respectively. Figure 9 highlights a large fraction
of the execution time spent in performing the concurrent
execution of the multiplication and the exponentiation. Such
value is comprised between 20% and 57% (35% on average)
on Artix-7 12 and between 27% and 60% (41% on average)
on Artix-7 200 instances. Considering the performance ben-
efit due to the optimized hardware scheduling as well as its
theoretical analysis detailed in Section 3, we note that the
fraction of the execution time spent performing concurrent
exponentiations and multiplications grows higher according
to two factors. First, the ratio of 1s constituting the binary
encoding of the (p − 2) value. Second, the difference in ex-
ecution time between exponentiations and multiplications,
that depends on the level of parallelism for each module.
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Fig. 10: Execution time of inversion. Results are shown for
the reference hardware implementation and for instances
of our template architecture on all Artix-7 FPGAs.

The performance achieved by the proposed architecture
is also compared to the BIKE reference hardware. Figure 10
reports the execution time to complete the inversion proce-
dure of BIKE for polynomial lengths required to implement
AES-128 and AES-192 security, i.e., B1 and B3 in Table 2. We
note that the reference hardware does not support the BIKE
configuration with AES-256 security, thus we could not com-
pare our architecture performance with respect to the B5
polynomial length. Results are reported for state-of-the-art
hardware accelerators with 32-, 64-, and 128-bit bandwidth,
and for instances of the proposed architecture targeting each
FPGA of the Artix-7 family. We remark that the reference
hardware instances of BIKE with 128-bit bandwidth only fit
the Artix-7 25 and larger FPGAs. In contrast, each of our
inversion instances was chosen to provide the best possible
performance while satisfying the resource availability of all
the target FPGAs using a 133 MHz operating frequency.
Compared to the BIKE reference hardware, our solution
provides a speedup ranging from 1.4 to 18.1 for B1 and
between 1.6 and 21.5 for B3. The minimum and maximum
speedup are achieved on the Artix-7 12 and 200 FPGAs,
respectively, while the other instances of our scalable archi-
tecture provide a range of intermediate speedup values.

TABLE 7: Architectural parameters, resources, and perfor-
mance of inversion instances that target the B3 code.

FPGA BW PARE PARM LUT FF BRAM Exec. time
Artix-7 12 64 1 1 7954 1782 18 7.44ms
Artix-7 15 64 8 1 10180 2952 25 5.50ms
Artix-7 25 64 16 1 12568 4274 33 5.36ms
Artix-7 35 64 32 1 17291 6899 49 5.29ms
Artix-7 50 64 16 2 26787 7310 69 1.61ms
Artix-7 75 64 32 2 31547 9935 85 1.54ms

Artix-7 100 64 64 2 39319 14945 117 1.50ms
Artix-7 200 64 64 3 81928 24626 225 0.56ms

To further investigate the performance improvements,
Table 7 reports the architectural parameters, resource uti-
lization, and performance of the inversion instances on the
Artix-7 FPGAs, considering the B3 polynomial length (see
Table 2). The experimental results confirm that the higher
time complexity of the multiplication with respect to the
exponentiation (see Section 3.1 and Section 3.3) may suggest
favoring the optimization of the former. For example, the
execution time decreases from 1.50ms to 0.56ms by increas-

ing the multiplication parallelism PARM from 2 to 3 (see
lines Artix-7 100 and 200 in Table 7). However, results in
Table 7 also highlight the critical contribution to the overall
performance of inversion given by optimizing the exponen-
tiation component. For instance, the execution time drops
from 7.44ms to 5.29ms by increasing the exponentiation
parallelism PARE from 1 to 32 (see lines Artix-7 12 and
35 in Table 7).

5 CONCLUSIONS

This manuscript presents an FPGA-optimized design
methodology to implement efficient and scalable hard-
ware support for polynomial inversion in GF (2m). The
efficiency is achieved by means of i) an optimized com-
puting architecture to perform polynomial multiplications
and exponentiations and ii) an optimized scheduling in-
frastructure that enables the concurrent computation of
the two operations whenever possible. The scalability is
attained through a configurable architecture that scales from
resource-constrained FPGAs up to larger chips that enable
faster execution. We considered the LEDAcrypt and BIKE
QC-MDPC post-quantum cryptosystems as representative
use cases for the inversion of large binary polynomials.
For each code configuration, our template architecture can
deliver a performance-optimized inversion implementation
while scaling across the whole Xilinx Artix-7 family of mid-
range FPGAs. The experimental results demonstrate that
the proposed architecture provides hardware support for
inversion for polynomials with length of tens of thousands
of bits even on the smallest FPGA of the Artix-7 family.
Considering our implementation of inversion on the Artix-
7 200 FPGA, the experimental results show an average
performance improvement of 2.2 times across the full range
of the LEDAcrypt configurations, when compared to the
LEDAcrypt software implementation employing the Intel
AVX2 extension. Compared to the state-of-the-art hardware
implementation of BIKE targeting Xilinx Artix-7 FPGAs,
the instances of our inversion template architecture show
a performance improvement up to 18.1 and 21.5 times for
AES-128 and AES-192 security levels, respectively.
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