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ABSTRACT

Convolutional neural networks (CNNs) are considered black boxes due to their robust nonlinear fitting
capability. In the context of fault diagnosis for rotating machinery, it may happen that a standard CNN
makes a final decision based on a mixture of significant and insignificant features, therefore, it is required
to establish a trustworthy intelligence fault diagnosis model with the controllable feature learning capa-
bility to identify fault types. In this paper, an explainable intelligence fault diagnosis framework is pro-
posed to recognize the fault signals, using data obtained through short-time Fourier transformation,
which is easily modified from a standard CNN. The post hoc explanation method is used to visualize
the features the model learned from a signal. The experimental results show that the proposed explain-
able intelligence fault diagnosis framework provides 100% testing accuracy and visualizations, the
Average Drop and the Average Increase from a classification activation mappings method demonstrate
the interpretability of the proposed framework.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

Classification activation mappings

creativecommons.org/licenses/by/4.0/).

1. Introduction

Rotating machinery is a key component in the mechanical sys-
tems [1-3]. Many researchers focus on the field of condition mon-
itoring and fault diagnosis based on traditional signal processing
techniques in the last two decades [4,5]. With the rapid develop-
ment of artificial intelligence, many algorithms are applied to deal
with rotating machinery fault diagnosis problems due to their
strong capability in high-dimensional data processing and easily
used by researchers in a variety of disciplines, such as convolu-
tional neural networks(CNNs) [6,7], auto-encoders(AEs) [2,8],
recurrent neural networks (RNNs) [9,10], deep Q networks(DQNs)
[11], etc.

Especially, the CNNs, which is one of the most popular deep
learning algorithms, is utilized to identify one-dimensional signals
and two-dimensional signals in the rotating machinery fault diag-
nosis field with high accuracies [12,13]. Jiang et al. [14] proposed a
multi-scale CNNs fault diagnosis framework for wind turbine gear-
boxes. Liu et al. [15] developed a multi-kernel multi-scale CNNs to
identify the one-dimensional signal under nonstationary condi-
tions. Xie et al. [16] developed a CNNs framework with multisensor
fusion to identify the three-channel red-green-blue images. Shao
et al. [17] proposed a modified CNNs framework to recognize the
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thermal images of the rotor-bearing system under varying operat-
ing conditions. The above methods have shown the superior per-
formance of the CNNs.

In addition, Wang et al. [11] proposed a human-like intelligence
fault diagnosis framework based on Deep Q networks (DQNs)
framework with a deep CNNs, which owns a better generalization
and stability than other existing methods. Ding et al. [18] devel-
oped a promising end-to-end intelligent fault diagnosis framework
based on deep reinforcement learning and auto-encoder, which
could mine the relationship between raw vibration signal and
the fault types effectively. Zhang et al. [19] proposed a promising
generative adversarial networks (GANs)-based intelligent fault
diagnosis framework to deal with imbalance dataset problem.
Zhou et al. [20] developed a global optimization GAN-based frame-
work for fault diagnosis with an unbalanced dataset, which illus-
trates its superiority in the classification performance over
existing deep learning algorithms.

However, CNNs and other deep learning algorithms are usually
seen as the black box, which is unclear what features a model is
using for fault diagnosis decisions [21]. Hence, it is necessary to
visualize the CNNs model in order to be sure that it has learned
the most important features to make final decisions [22]. In addi-
tion, the post hoc classification activation mapping (CAM) methods
are proposed to visualize the attention of CNNs model, including
CAM [23], Gradient-based CAM(Grad-CAM [24-26] and Grad-
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CAM++(the improvement of Grad-CAM) [27]), and Gradient-free
CAM (Score-CAM [28], Ablation-CAM [29]). But, there are several
disadvantages of the CAM and the gradient-based CAM. For
instance, the former has to change the structure of the learning
model when implementing the CAM, but the latter would be easily
saturated which would fail to display the saliency maps and it has
a coarse localization precision [26] due to the size difference
between the saliency maps and input data as shown in Fig. 1. On
the other hand, post hoc visualization methods are usually used
to evaluate the features that the deep learning models learned,
which is not effective sometimes. It is necessary to develop a
model that has interpretability and high-level recognition perfor-
mance in the field of rotating machinery fault diagnosis, just like
the interpretable CNNs in image classification [30]. Based on the
characteristics of the time-frequency domain signals under sta-
tionary conditions, the frequencies of main fault features do not
change over time. If a model can make a decision based on the sig-
nificant features, it could increase the confidence of this model in
fault diagnosis to some extent.

In order to deal with the above-mentioned issues, an explain-
able intelligence fault diagnosis framework is proposed to identify
a fault signal via significant features. In addition, the Smoothed
Score-CAM is used to visualize the attention of the explainable
intelligence fault diagnosis framework [31], which would have a
better visualization performance than the CAM and Gradient-
based CAM.

The main contributions of this paper are highlighted as follows:

(1) This work proposes a novel explainable convolutional neural
network, based on a located loss, which is first introduced in
worldwide terms for intelligent fault diagnosis.

(2) This work proposes firstly how to increase the interpretabil-
ity of CNN models by learning the significant features for
decision-making.

(3) This work makes a novel comprehensive comparison of the
performance of the proposed framework with the existing
traditional convolutional neural networks based on two
extensive experimental datasets (i. e. a gearbox dataset
and a bearing dataset).

The remainder of this paper is organized as follows: Section 2
presents the basic theory of the signal processing technique, the
CNNs and the post hoc visualization methods. Section 3 defines
the details of the proposed interpretable intelligence fault diagno-
sis framework. The detailed experiment results are demonstrated
in Section 4. Section 5 outlines the main conclusion of this work.
The nomenclatures used in this paper are summarized in Table 1.
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Table 1
Descriptions of notations.

Nomenclature H Feature map
upsample into the
same size of
the input data

w Convolutional kernel M New input with noisy
feature map

b bias 2 Constant

BN(-) Batch normalization B Constant

operation

a The output of convolutional ~ U(-) Upsampling

layer operation

s The output of Batch

normalization
h The output of activation
function

MaxPooling  Max pooling operation

y The output of pooling layer

Y¢ The final score of the target

class ¢

c The label of class

Ay The kth feature map in the Abbreviations

last convolutional layer

w The weight of kth feature CNNs Convolutional Neural

map for the class ¢ Networks

VA Constant AEs Auto-Encoders

L& ad—cam Saliency map for the classc  RNNs  Recurrent Neural

produced by Grad-CAM Networks

o Gradient weight computed DQNs Deep Q Networks

by the gradient

D Training set GANs Generative
Adversarial Networks

Mask Filter masks based on the CAM Classification

input data Activation Mapping

LocatedLoss  The located loss Grad- Gradient Based-CAM
CAM

EntropyLoss The entropy loss Grad- The improvement of
CAM+  the Grad-CAM
+

Loss The total loss SS- Smoothed score-CAM
CAM

o Hadamard product STFT short-time Fourier
transform

® Convolutional product DFT discrete Fourier
transform

Xy The baseline input CIC channel-wise
increase of
confidence

fe) The output of the model’s CWRU  Case Western

softmax layer Reserve University

C(-) The channel-wise increase of

confidence
Normalization the feature
map

0
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Fig. 1. The existing problems of the gradient-based CAM based on a gearbox dataset with a standard CNNs: (a) Failure to display (Grad-CAM); (b) Coarser location (Grad-CAM

++).
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2. Theoretical foundation

This section mainly addresses a popular signal processing tech-
nique which is used to obtain time-frequency spectrum with dis-
tinctive features, the short-time Fourier transform (STFT). It also
introduces the basic theory of Convolutional Neural Networks
and several types of explanation artificial intelligence algorithms,
for instance, gradient-based classification activation mapping and
gradient-free classification activation mapping.

2.1. The short-time Fourier transform view

In the context of rotating machinery fault diagnosis, the discrete
Fourier transform (DFT) is widely used to deal with numerous fault
diagnosis problems.

Although DFT has a good efficiency in obtaining the frequency
spectra for stationary signals, there would be a loss of information
transfered from time domain to frequency domain. Hence, the STFT
is introduced to extract the time-frequency information from the
raw vibration signals. The fundamental issue of the STFT is to apply
the DFT to short segments of the signal. The longer signal seg-
ments, the better frequency resolution and lower time resolution.
There would be a tradeoff between the time domain information
and frequency domain information.

2.2. The basic theory of the convolutional neural networks(CNNs)

CNN is one of the most popular deep learning algorithms, which
has been applied in a wide range of applications [32]. A standard
CNN consists of four basic layers, including convolutional layers,
batch normalization layers, pooling layers and fully connected lay-
ers. Convolutional layers are usually used to extract significant fea-
tures from the raw data; normalization layers are used to speed up
the convergence rate and to avoid overfitting; the pooling layers
are usually utilized to decrease the computational complexity
and to avoid overfitting, including max pooling, average pooling,
and etc [33]; fully connected layer is also used to extract features
for classification problems.

In one standard CNNs model, there are several convolutional
blocks, generally consists of at least two convolutional blocks, each
of them contains one convolutional layer, one normalization layer,
one activation function and one pooling layer. In this paper, the
output of one convolutional block is expressed as follows:

a=Wox+b (1)
s = BN(a) )
h = ReLU(s) = max(0,s) (3)
y = MaxPooling(h) (4)

where © refers to the convolutional operation, W and b refer to the
convolutional kernel and the bias in this convolutional layer,
respectively. BN(a) means the batch normalization operation for
the input a [34]. ReLU is one of the most popular activation func-
tions in the CNNs that could also speed up the convergence rate.
MaxPooling is the Max pooling operation [35]. a,s,h and y are the
outputs of the convolutional layer, batch normalization layer, acti-
vation function and pooling layer, respectively.

2.3. Explainable artificial intelligence

One of the main limitations of the CNNs in the rotating machin-
ery fault diagnosis is the interpretability, which is usually known
as black box [36]. It is unclear whether the CNNs model learned
the key information in the input dataset or not to make a final deci-
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sion. Hence, some gradient-based post hoc visualization methods
are developed to explain what the CNNs learned, such as the
gradient-based classification activation mapping (Grad-CAM) [24]
and the improvement, Grad-CAM++ [27].

The core idea of Grad-CAM is to generate the saliency map by
calculating the gradient of each feature map in the certain convo-
lutional layer corresponding to the classification result, which
could avoid to change the structure of the CNNs model [37]. The
process of calculating the Grad-CAM is given as follows:

Y= WY YA (5)
k i j
oY« .
ALY c A} (6)
ij

[
w,=2-

Lf}rad—CAM = RelU (ZWE . Ag) (7)
k

where Y¢ is the final score of the target class c,wy is the weight of
kth feature map for the class c. i,j are the spatial location in the
class-specific saliency map. A* refers to the kth feature map in the
last convolutional layer. Z is a constant corresponding to the data
points in the feature map. L¢, 4 cay i the saliency map correspond-
ing to the target class c.

However, it is difficult to generate an effective saliency map
based on the Grad-CAM if there are many essential features in
the input data. Hence, its improvement (Grad-CAM++) is developed
to improve the interpretability of the CNNs model for complex
input data. The main improvement of the Grad-CAM++ is modifica-
tion of the Eq. (6), which is given as follows:

oyY¢
wE = ZZaﬁF -ReLU (aA") (8)
i ]

i

2Y° :
(045)

ij =
2%Y° k 23y
25y ;;A“b{w-f}

ij i

LCGrad7CAM++ = RelU <2Wi Aﬁ) (10)
k

where cxﬁ-]‘-f is a gradient weight computed by the gradient for the tar-
get class c and the feature maps.

In addition, the methods based on the gradient have several
other drawbacks. On the one hand, gradient-based CAM for a CNNs
may focus on the unrelated parts due to the gradient saturation in
the flat zero-gradient region of the ReLU. On the other hand, the
weights obtained from the gradient-based CAM do not provide
right confidence scores for the feature maps, which would generate
a coarse localization saliency map [28].

3. Proposed framework for time-frequency spectrum based
visualization

In this section, an explainable intelligent fault diagnosis frame-
work is proposed that contains an standard CNNs classifier with
additional located loss to learn significant features of a signal
instead of learning insignificant features of time-frequency spec-
trum and the post hoc explainable artificial intelligence algorithm
that is used to visualize the classification criteria in the time-fre-
quency domain. In Section 3.1, a novel interpretable intelligence
fault diagnosis framework is proposed which could be easily mod-
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ified from the standard CNNs. In addition, a gradient-free classifi-
cation activation mappping method is introduced in Section 3.2
to verify whether the model is reliable.

3.1. The structure of the interpretable intelligence fault diagnosis
framework

An overview of the proposed interpretable intelligence fault
diagnosis framework is demonstrated in Fig. 2. The main structure
of the proposed method is based on the standard CNNs. In order to
make a trustworthy intelligent fault diagnosis framework, the
located loss is first introduced in the training process, which is
used to penalize if the model learned some insignificant fault fea-
tures in the training process.

LocatedLoss = Z”MaSki o U(f(x:))ll, (11)

ieD

1, X,k i)+ A i)

Maski(j, k) = { ) x,g, k) < mean(x;) + A * std(x;) (12)
0, Xi(j,k) = mean(x;) + 7  std(x;).

Loss = EntropyLoss + f « LocatedLoss (13)

where D stands for the samples in the training set. Mask; is the filter
mask based on the iy, input data x;, the data points equal to 1 where
the value of the data points located in the x; is lower than its aver-
age plus 4 multiply by standard deviation of x;,j, k are the coordi-
nates of the data point. $ is a constant which is a constraint for
the located loss. In the rotating machinery fault diagnosis problem,
A and B are set to 0.1 and 0.0003, respectively, which is based on the
testing performance of the framework. The larger 1 makes more val-
ues equal to 1 in the mask, which will make the model learn more
focused features that could lead to overfitting. The larger p makes
the model pay more attention on the features in the 0-valued region
of the mask.

In order to show the performance of the proposed framework, a
small standard CNNs is used in the framework. As shown in Fig. 3,
there are four convolutional layers, four normalization layers, four
pooling layers and one fully connected layer. The main parameters
of the CNNs model are also given in Fig. 3.
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3.2. Smoothed Score-CAM(SS-CAM)

Because of the limitation of the gradient-based post hoc visual-
ization in the rotating machinery fault diagnosis, it is necessary to
introduce an enhanced visual explanation algorithm, called
smoothed score-CAM. The pipeline of the smoothed score-CAM
[31] is demonstrated in Fig. 4. It is used the confidence score of
each feature map in the last convolutional layer, which is similar
to the CAM method [23]. The key idea of Smoothed score-CAM is
that it uses the average score based on the output of the CNNs
model which the inputs are the feature maps in the last convolu-
tional layer, which is called the channel-wise increase of confi-
dence (CIC), C(-). The CIC is obtained by:

C(A) =F(X o H) = FXs) (14)
Hf = s(U(A,k)) (15)
A¥ — min (Af)

S(Af) - max(Af‘) - min(Af‘) (18)

where X is the input data, f(X) is the output of the model’s softmax

layer. Af‘ is the kth feature map in the Ith convolutional layer(here is
the last convolutional layer). s(-) is the normalization operation
which data values in the mapping are within [0,1]. U(:) is the
upsampling operation that is used to generate a new feature map
with the same size of the input data. X, is the baseline input.

Hence, the significance of the A;‘ could be computed by the Eq.
(14), which is similar to the idea of the gradient-based post hoc
visualization methods [24,27]. In addition, in order to avoid the
influence of the noise information of input data on the feature
map, the Gaussian noise is added into the feature map Af-‘ to gener-
ate N noisy input samples, the calculation process is demonstrated
in the Fig. 4 (Phase 2). The equations are given by:

Lss cam = RelU (Z"IEAO (17)
k
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Fig. 2. The training process of the proposed intelligence fault diagnosis method.
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BatchNorm(64)
MaxPool(2,2)
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Fig. 3. The structure of the standard CNNs.

N
(C(M))
ne=——x (18)
M:z:’:(x* (AF+N(0,0%))) (19)

where c is the class of interest. o is the average score based on the
N noisy input M combined the input data X with the additive noise

feature map Af + N(0,0?).
4. Experimental validation and analysis

In this section, we use two different rotating machinery fault
datasets to verify the interpretable capability of the proposed
explainable CNNs. One is the gearbox dataset based on the same
fault type with different fault severity [38,39]. The bearing dataset
with multiple bearing fault types is taken from an open-source
Case Western Reserve University(CWRU) bearing dataset [40].
Then, the training performance of the proposed CNNs is compared
with the standard CNNs. Lastly, several evaluation metrics are used
to test whether the model is trustworthy.

4.1. Datasets

4.1.1. Gearbox dataset

The gearbox signals are collected from a 91.5 mm back-to-back
gearbox test rig that allows to control and create a very early stage
of natural micro-pitting development [38]. The pictures of the test
rig and the installation of the sensors are shown in Fig. 5. The gear-
box test rig contains two identical gearboxes connected through a

Phase 1

CNN

The feature maps in the last

—
Upsampling EF l
=
|

sian Noise

Phase 2

torsionally compliant shaft which the torque controlled by a servo-
hydraulic torque actuator. Each gearbox contains two gears, 16
teeth pinion and 24 teeth gear. The tooth surface of the pinion is
diagnosed in this experiment. The micro-pitting fault is a classical
fault in the gears, which has some bad effects on the gear mesh and
leads to a decrease in gear reliability. The original sampling rate of
40 kHz is used to record the acceleration signals and based on the
frequency information in the signals, the downsampling method is
used to change the sampling rate to 20 kHz. The vibration signals
were collected by 3 mono-axial accelerometers (KCF-107) at 3
orthogonal directions and the condition of teeth surfaces on the

pinion was diagnosed after every 10° cycles, total 5 * 10° cycles.
During the test, the pinion was spinning at 3000 rpm (50 Hz),
under a load of (500 &= 5) N - m [39]. Hence, there are five different
fault severity signals.

The collected vibration data is divided into around one-second
segments (19600 points), 80 segments of each fault severity are
transformed by the STFT into 141*141 time-frequency spectrum.
320 of the 400 STFT spectra are randomly selected as the training
set, and the other 80 time-frequency spectra are applied as the
testing set.

4.1.2. Bearing dataset

This bearing dataset could be seen as the baseline dataset in the
rotating machinery fault diagnosis field [40,41]. The bearing vibra-
tion signals are collected by an accelerometer located on the drive
end of a motor using 12 kHz sampling frequency under different
bearing loads (0-3hp). The health conditions of the bearing are
divided into four different health states, including normal state,
inner ring fault, ball fault and outer ring fault. Here, vibration sig-
nals used to evaluate the performance of the proposed framework
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Fig. 4. The flowchart of the smoothed score-CAM.
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Microphone

Fig. 5. The gearbox test rig and installation of sensors [38,39]: (a) gearbox test rig; (b) installation of sensors.

were collected from the bearings with 0.007 inches fault diameters
of the ball fault, inner ring fault and outer ring fault under an oper-
ation load of Ohp. Due to the data limitation (vibration of each
health state was collected during 20 s), the augmentation tech-
nique (shifting window) is applied to increase the training samples
and testing samples, each sample contains 12100 points. The STFT
is used to transform the one-dimensional time-domain signal into
a two-dimensional time-frequency spectrum (111*111). Each type
of signal contains 100 samples, of which 80% are randomly
selected for training and 20% for testing.

4.2. The performance of the proposed CNNs

The deep learning open-source framework, Pytorch (Version
1.13.0), is used to build and train the proposed CNN model and
the standard CNNs in Python (Version 3.8.16) on Windows 11.
Due to the characteristic of the proposed located loss, there are
not any trainable parameters added in the proposed intelligent
fault diagnosis framework. Hence, the computation complexity of
the proposed model is the same as the standard CNNs. The diagno-
sis accuracies of both models are 100% (the average results of five
times running) for the gearbox dataset and bearing dataset, which
means that the proposed model not only increases the inter-
pretability but also does not compromise the accuracy of the
model. Due to the existence of a filter mask, the model would more
focus on the major fault information in the input data instead of
the minor fault information. Hence, the proposed model has a fas-
ter convergence rate than the standard CNNs, convergence rates
are shown in Fig. 6 and Fig. 7 to verify the effectiveness of the pro-
posed framework. As shown in Fig. 6, the proposed framework
could reach convergence in 10 iterations instead of 20 iterations
for the standard CNNs convergence rate for the gearbox dataset.
According to the Fig. 7, the proposed model could converge into
100 % testing accuracy within 2 iterations instead of 5 iterations
for the standard CNNs with the bearing dataset.

4.3. Quality evaluation via signal recognition

In this section, the results of classification activation mappings
are demonstrated here. But it is not sufficient to evaluate the inter-
pretability quality of the model only by the classification activation
mappings generated by the SS-CAM. Hence, the Average Drop and
Average Increase metrics are used to evaluate the quality of the
model [27].

Average Drop: saliency maps indicate the crucial information
for a particular type of fault in a signal. The model’s confidence
would be mostly lowered if parts of the signal were omitted. This
drop is expected to be low. After an occlusion in a signal, this met-
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®
o
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Fig. 6. The testing accuracy changes vs. iterations for the gearbox dataset.

100 /

9 80 ——Standard CNN
=
g 60 ~——The proposed method
g
2 40
5
=

20

0
0 5 10 15 20 25 30

Iteration

Fig. 7. The testing accuracy changes vs. iterations for the bearing dataset..

ric shows the average drop in the model’s confidence for a partic-
ular fault type [27].

Average Increase: sometimes, the deep CNNs looks for the
entire pattern in the most discriminative part highlighted by the
saliency maps. The confidence scores of the model increases for
that particular class in this situation. This metric measures the
number of times that the model’s confidence increased after
excluding unimportant signals in its entirety [28].

Point-wise multiplication is used to mask the original input
data with saliency maps in order to observe changes in the pre-
dicted score on the target class. The equations of the Average Drop
and the Average Increase are given as follows:

N (o C
Average Drop = Yi ;CO"

i=1 i

% 100 (20)
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Table 2
Average Drop (the lower the better) and Average Increase (the higher the better)
across the gearbox dataset.

Metrics SS-CAM

Standard CNNs

38.77
10

The proposed method

3335
12.5

Average Drop(%)
Average Increase(%)

Table 3
Average Drop (the lower the better) and Average Increase (the higher the better)
across the bearing dataset

Metrics SS-CAM

Standard CNNs

28.99
1.25

The proposed method

Average Drop(%) 0.47
Average Increase(%) 5

N c C
Func(Y,-c< 05) 100

Average Increase = Z Y

i=1 1

(21)

where Y7 and Of mean the final prediction scores on class ¢ using
the original input data i, and using the classification activation map-
ping point-wise multiplication on the original input data i, respec-
tively. Func(-) indicates a boolean function when the condition in
the brackets is true, the function returns 1; otherwise, it returns 0.

Table 2 shows results of the Average Drop and Average Increase
of the proposed method and the standard CNNs for the gearbox
dataset (Average result of ten tests). The results demonstrate that
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Input signal

o

,_.
=
&
It

Frequency(Hz)
@ N v oA N
[~ <1
S5 282

5 88

Time(s)

Time(s)

(a)

SS-CAM

Input signal Attention signal

0.36
Time(s)

(©)

0.72
Time(s)

Input signal

Time(s)

(e)

Frequency(H

SS-CAM

0.36
Time(s)

Neurocomputing 541 (2023) 126257

the proposed method is more focused on the information points
than the standard CNNs across the gearbox dataset. Table 3 shows
that the performance of the proposed method is much better than
the standard CNNs with the bearing dataset (Average result of ten
tests). The Average Drop of the proposed method is lower than 1 %
which means that the decisions made by the proposed method are
mainly based on the data points shown by the saliency map.

4.4. Localization evaluations

The localization ability of the attention map is important
because the saliency map can be applied to localization tasks in
the frequency domain of the rotating machinery signals, to verify
decisions made by the intelligence fault diagnosis framework.
Here, in order to pinpoint the information in the signal that the
model actually learned, the point-wise mask has been applied
which is based on the value of the points in the classification acti-
vation mappings, which the value is changed into 1 if its value is
higher than its mean plus 1 multiply by the standard deviation
of the heatmap.

With the gearbox dataset, as shown in Fig. 8, the proposed
method could pay more attention on the fault information instead
of the irrelevant information, especially for data with fault severity
4. By comparing the results with the standard CNNs shown in
Fig. 9, the proposed model is a more trustworthy model than the
standard CNNs. For example, firstly, the proposed model focuses
on the fault information in the signal more intensively than the
standard CNNs, such as the middle picture of Fig. 8 (a) and Fig. 9
(a), but the learned features are almost close, like the right picture
of Fig. 8 (a) and Fig. 9 (a). Secondly, the decisions made by the pro-
posed model are based on the fault information in the signal, not
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Fig. 10. Localization evaluation results of the proposed model for the bearing fault dataset: (a) normal; (b) inner ring fault; (c) ball fault; (d) outer ring fault.

the unrelated features, such as the middle picture and right picture
of Fig. 8 (d) and Fig. 9 (d).

For the bearing dataset, comparing Fig. 10 with Fig. 11, it is easy
to distinguish which model is more trustworthy. For example, the
proposed model pays more attention to the key information among
all the input data, like the middle picture of Fig. 10 (b) and Fig. 11
(b), and the standard CNNs makes its diagnosis decision based on

its minor fault information, which cannot be a valid classification
result, like the middle picture of Fig. 10 (a) and Fig. 11 (a).

4.5. Frequency-domain localization evaluations

In the field of rotating machinery fault diagnosis, frequency-
domain signals are easily identified by fault diagnosis experts,
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and the Fourier transform is a popular signal processing technique.
Hence, there is a need to use frequency-domain spectra to evaluate
the proposed framework which actually learns the valid features
from different types of input. Based on the saliency maps of the
time-frequency domain signal by the proposed framework and
the standard CNNs, it is easy to identify which frequency is the
focus frequency for identification, and to explain what the black-
box learned. The width of red boxes in these figures are depended
on the focused frequency of the above saliency maps.

In the gearbox fault dataset, the frequency-domain signals of
different fault severities of the gearbox are also close to each other.
As shown in Fig. 12 and 13, the frequency component of around
6000 Hz and 7000 to 8500 Hz are the main components related
to the fault severity. The proposed framework focuses on the main
valid information instead of the unrelated information. For
instance, if the fault severity level 4 is considered, it is obvious that
the standard CNNs model focuses on the frequency parts with less
fault information, while the proposed CNNs model could focus on
the frequency parts with major fault information.

In the CWRU bearing dataset, there are four different bearing
healthy condition signals, the main frequencies of fault compo-
nents are different. Hence, it could be seen as an effective compar-
ative experiment to evaluate the performance of the proposed
framework. As shown in Figs. 14 and 15, the proposed framework
mainly focuses on the powerful frequency domain signal instead of
the irrelevant part, the standard CNNs focuses on the weak fre-
quency domain signal which could be easily disturbed by the noise
and would lead to the fault diagnosis model to make wrong deci-
sions. In addition, the proposed framework would be more likely
to focus on the differences between similar signals, such as inner
race fault frequency domain signals and outer race fault frequency
domain signals, shown in Fig. 10 and Fig. 11, respectively.

5. Conclusion

This paper proposed a new interpretable intelligence fault diag-
nosis framework based on a novel located loss that could push fil-
ters in the last convolutional layer to learn major features without

any annotations for supervision, which is easy to be modified from
the standard CNNs. The experimental results have shown better
convergence speed and interpretability of the proposed model than
the standard CNNs based on a gearbox dataset and a bearing data-
set. For future work, it is necessary to develop an intelligent fault
diagnosis framework, which could directly explain which part of
the input signal is interpreting the fault component to make the
final decision.
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