Journal of Systems Architecture 155 (2024) 103257

journal homepage: www.elsevier.com/locate/sysarc

Contents lists available at ScienceDirect

EMBEDDED
SOFTWARE
DESIGN

Journal of Systems Architecture

Design-time methodology for optimizing mixed-precision CPU architectures

on FPGA

Lev Denisov *, Andrea Galimberti, Daniele Cattaneo, Giovanni Agosta, Davide Zoni

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy

ARTICLE INFO

Keywords:
Mixed-precision
Design-time analysis
Transprecision computing
FPGA

Softcore CPU

FPU

Co-design

ABSTRACT

Approximate computing can significantly reduce the energy consumption of computing systems. Mixed-
precision hardware architectures and precision-tuning tools for software provide the ability to introduce
approximations, but when applied separately, they do not give complete control over the accuracy-energy
trade-off. The co-optimization of approximations in hardware and software is a complex task, but it promises
considerable benefits. We present a methodology for the fast design-time selection of mixed-precision
hardware-software combinations that minimize the energy consumption and the area of the target FPGA-
based softcore CPUs with configurable support for floating-point and fixed-point arithmetic. Our approach
can evaluate configurations more than 2000 times faster than the alternative approach of using gate-level
simulation. On benchmarks from the PolyBench suite the identified hardware-software configurations showed

improvement of the energy-to-solution metric ranging from 20% to 95%.

1. Introduction

Current trends in computing are pushing for more computational
capabilities to address the needs of emerging applications such as ma-
chine learning and artificial intelligence, while conversely the energy
and power efficiency of the computing platforms becomes an ever more
important aspect to optimize.

On the one hand, moving computing tasks to the edge makes it
paramount to minimize the energy consumption of embedded systems
that are often either battery-powered or relying on energy harvesting.
On the other hand, managing the energy and power consumed by
cloud computing data centers is critical for the profitability of service
providers and their end users, as well as for the overall environmental
sustainability of computing.

In both scenarios, FPGA technology has surpassed its role of being
just a tool for ASIC prototyping becoming a viable production-grade
computing platform. In the edge computing scenario, employing FPGAs
helps satisfy the tight time-to-market deadlines, as well as deliver
heterogeneous system-on-chip (SoC) computing platforms that com-
bine hard central processing units (CPUs) and programmable FPGA
logic. Conversely, in the data center scenario, the ability to divide
large FPGAs into independently-managed partitions that can be as-
signed to different users and reconfigured dynamically gave rise to the
multi-tenant on-demand programmable logic offering.

* Corresponding author.
E-mail address: lev.denisov@polimi.it (L. Denisov).

https://doi.org/10.1016/j.sysarc.2024.103257

At the same time, a vast amount of research has been devoted to
the effective design and deployment of CPU softcores on FPGA tar-
gets [1-7]. The reconfigurability of FPGAs coupled with the generality
of softcore CPUs makes it the perfect opportunity to explore their
co-design at a low economic cost.

RISC-V has emerged in the last decade as the de facto standard
architecture for both academic and industry research due to its intrinsic
extensibility, which has provided the ideal basis for the development of
novel approaches to designing CPU cores with state-of-the-art energy
efficiency and performance [8,9]. However, most of the time, even for
RISC-V cores, the CPU is designed first and then software is developed
to take advantage of it. This is due to the disconnect between the
development processes of hardware and software, which happen inde-
pendently with minimal information exchange between them. Such an
approach, however, is intrinsically limited, as it takes time for software
developers to optimize applications for the hardware, a task typically
performed by trial and error. Therefore, providing parametric and
easily configurable at design time architectures is crucial for effective
integration between the hardware and software domains.

At the same time, for software and algorithm design, it is often diffi-
cult to produce an energy-efficient but semantically equivalent version
of a given program. This is due at least in part to the need for two
different skills: expertise in the application domain needed to preserve
the expected functional behavior of the application, and expertise in

Received 23 February 2024; Received in revised form 23 July 2024; Accepted 4 August 2024

Available online 7 August 2024

1383-7621/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:lev.denisov@polimi.it
https://doi.org/10.1016/j.sysarc.2024.103257
https://doi.org/10.1016/j.sysarc.2024.103257
http://creativecommons.org/licenses/by/4.0/

L. Denisov et al.

low-power computing, needed to produce energy-efficient code. Since
these skills usually derive from different educational and professional
paths, there are only a few specialists able to master both, leading to
a sharp increase in the development and maintenance costs of such
code bases. This cost becomes even higher when custom hardware
accelerators or specialized instruction set extensions are involved. Thus,
there is a need for tools to support the automation of co-design of
hardware and software for energy-efficient embedded systems.
Precision tuning is one technique that can provide significant benefits
in terms of energy efficiency, hardware area, and performance. Preci-
sion tuning is a part of the family of approximate computing techniques,
and it deals with trading off the precision of individual operations with
their performance and energy efficiency, as well as with the complexity
of the hardware units needed to perform them [10]. Precision tuning
must be performed at the fine grain to be effective, balancing the
advantages of employing the optimal data type size for each operation
with the cost of performing data type casts. Automated tools aid signif-
icantly in performing optimizations of this complexity. Unfortunately,
only a few such tools exist that are suitable for industrial use [10].

Main contributions. This work proposes a methodology for the auto-
mated hardware-software (HW/SW) co-design of mixed-precision CPUs
meant for FPGA deployment. Differently from the existing method-
ologies discussed in the open literature, our proposal considers the
hardware-software combination as a whole, and it can, therefore, de-
liver a CPU hardware architecture and optimized software that are
custom-tailored to the target workload to maximize the energy ef-
ficiency of the computing platform while guaranteeing the required
accuracy.
Our manuscript provides four main contributions:

1. we introduce two error estimation approaches, namely an ap-
proach based on a machine-learning-based model and a simu-
lation-based one, and compare them with a state-of-the-art me-
thod; the proposed error estimation techniques are combined
with performance and area metrics to drive the multi-objective
exploration of the design space;

2. we propose a multi-stage design space exploration (DSE) pro-
cess meant for mixed-precision, FPGA-based softcore CPUs that
minimizes the time needed for the exploration while maximizing
the quality of the resulting solutions, with a reduction of more
than 2000x in the time required by the DSE compared to the
gate-level simulation-based approach;

3. we evaluate the effectiveness of our proposal through a com-
prehensive experimental campaign that targets, as the mixed-
precision hardware architecture, a softcore FPGA-based 32-bit
RISC-V CPU with configurable support for both floating-point
and fixed-point arithmetic and, as the software application work-
load, a set of compute-intensive kernels from a state-of-the-art
benchmark suite;

4. the full experimentation suite, including the simulation data and
optimization framework described in this article, is available as
open-source on GitHub.!

Organization of the paper. The rest of this paper is organized as follows.
In Section 2 we review the state of the art in mixed-precision comput-
ing, while in Section 3 we provide an overview of the tools adopted
as the main components for our co-design methodology. In Section 4
we introduce the proposed co-design methodology, for which we then
provide validation through the experimental campaign discussed in
Section 5. Finally, in Section 6 we draw conclusions and highlight
future research directions.

L https://github.com/TAFFO-org/jsa_co_design.

Journal of Systems Architecture 155 (2024) 103257
2. Related work

When engineering computing systems and programs, the choice of
the number representation to use is often taken for granted. However,
that choice has a measurable impact on the quality of service provided
and the energy efficiency of the system [11], and the latter property is
of great interest for embedded systems in general, and for other fields
such as cloud computing, in order to enable more sustainable data
center operation [12]. In particular, adopting lower-precision represen-
tations has been shown to significantly impact on energy consumption
in low-power embedded platforms [13-16]. This approximate comput-
ing practice, which focuses on choosing the best data representation to
use in a computation, is called precision tuning [10,17]. Precision tuning
allows automatically transforming a program into a reduced precision
form, saving time and effort for the programmer.

The most important aspect of precision tuning is the choice of the
data types, which is typically performed to enable the automatic trans-
formation of a program into a reduced-precision form. Most precision
tuning research targeted to high-performance-computing focuses on the
use of differently-sized floating point representations. Instead, in tools
targeted to embedded systems applications, the typical goal is to move
from floating-point representations to fixed point ones. Indeed, fixed
point representations have been exploited in hardware-software co-
design techniques since the early years of ASIC design, particularly for
DSP applications [18]. In this context, research has developed several
approaches for automating the conversion of a program from floating
point to fixed point representations, such as FRIDGE [19], Autoscaler
for C [20], fixify [21] and Xfp [22]. The typical limitation of these
tools is that they are only able to perform the conversion to the fixed
point, without considering the option of adopting small floating-point
types such as IEEE 754 binary16 or bfloat16, which have nevertheless
been shown to be effective for embedded applications [22]. Only some
tools in this category, such as Tarro [23], are able to simultaneously
handle fixed point and floating point representations together. Another
limitation is that the value added by these tools in a hardware-software
co-design methodology is limited. Indeed, a tool that solely focuses on
the transformation of the software has a limited ability to inform the
design process of the hardware. One could perform multiple manual
conversions, changing the tool parameters each time, to determine
which data types and sizes are the most suitable for the applica-
tion. However, this approach reintroduces the same time-consuming
iterative processes that these tools intend to remove in the first place.

Indeed, current research on hardware-software co-design in approx-
imate computing systems mostly considers design flows that instantiate
optimal hardware to fit the software, without the ability to consider the
hardware/software system as a whole [24]. Even where a system-level
approach is followed, the methodologies being considered are often
specific to a restricted application area, such as neural networks [25]
or image processing [24].

3. Background

The hardware-software co-design methodology proposed in this
manuscript is implemented by integrating existing mixed-precision ap-
proaches by the authors. Ideally, the mixed-precision tool we employ
must support a wide range of hardware architectures, and it must also
be able to handle both floating-point and fixed-point data types to
consider as many relevant points in the design space as possible. This
tool must also be extensible and modular to enable its modification.
Among the various tools discussed in Section 2, Tarro meets all these
requirements. On the hardware side, a reconfigurable CPU core design
is required to allow the instantiation of hardware that meets the
recommendations made by the design methodology. In our work, we
employ a highly parameterized RISC-V core implementation featuring
multiple possible ALU and FPU setups, which provides a wide range of
synthesizable cores for several application scenarios.


https://github.com/TAFFO-org/jsa_co_design

L. Denisov et al.

(c_ann) — __attribute((annotate(" (top) ")))
(topy — (target) (datat)

(target)y — target(’ (id) ’) | ¢

(dataty —  (scalar)

(scalary — scalar( (datav) )

(datav) —  (range) (final)

(range) — range( (num) , (num) ) | ¢

(final) — final | &

Fig. 1. BNF grammar of user annotations in the TAFFO precision tuning tool.

3.1. The TaFro precision tuning framework

Tarro is an automated precision tuning solution based on the rLvm
compiler framework. Tarro is composed of five independent passes,
namely: Initializer, Value Range Analysis (VRA), Data Type Allocation
(DTA), Conversion, and Feedback Estimator (FE). This modular archi-
tecture enables its extensibility, and the use of the production-grade
M framework allows Tarro to support all state-of-the-art computer
architectures and instruction sets. The mir (Initializer) pass parses the
annotations created by the developer and prepares metadata for future
passes. The vra pass calculates numerical intervals for all variables that
have been annotated, as well as any other variable that is dependent on
them. The intervals are propagated through the program with Interval
Arithmetic [23,26,27]. This approach is efficient for programs that
do not contain exceedingly long chains of arithmetic operations or
combinations of operations that lead to the explosive growth of the
value intervals (e.g. exponentiation to high degrees or division by
quantities close to zero). In cases where every loop iteration modifies
a unique array element and does not have a shared state, the value
range can be calculated for the whole array by evaluating only one
loop iteration. This is possible because every element of the array would
undergo the exact same transformation in terms of interval arithmetic.
In other cases, the standard LLVM loop trip-count estimation is used
coupled with loop unrolling. The upcoming step is the pra, which
selects a suitable data type for each intermediate value and variable
used. Two algorithms are available for this process: a greedy algorithm
that chooses the fixed point type with the highest correct fractional
point position, or a linear-optimizer-based algorithm that produces
mixed precision results [28]. Conversion modifies the LLvm-r based on
the information provided by pra. Finally, re statically analyzes the error
using state-of-the-art estimation methods [29].

TAFFO static analysis requires the programmer to provide the an-
notations specifying the initial value range of the variables and the
precision tuning scope. The annotations are inserted in the source code
and follow the formal grammar shown in Fig. 1. On scalar variables or
arrays that need to be converted, the annotation contains a scalar
declaration that marks the variables as explicitly being a part of the
set of variables that require tuning. Within this declaration, additional
optional attributes provide the initial range of the annotated variable
(the range attribute), and if that range shall be assumed immutable
(the final keyword). In addition, the target declaration may be
used to create a new vra and rE analysis entry point.

3.2. Mixed-precision hardware architecture

The mixed-precision CPU is characterized by a highly configurable
architecture which exposes a variety of configurations to be selected
at design time. The single-core, in-order CPU, based on the RISC-V
ISA, can provide dedicated mixed-precision hardware support for both
floating-point and fixed-point arithmetic.

Its baseline configuration, without both floating-point and fixed-
point hardware support, implements the standard RISC-V I and M
extensions [30].

Journal of Systems Architecture 155 (2024) 103257

| CPU Instruction Decode (ID) stage |

Y

)2 |
o
v v v
2 RV32I RV32MZm RV32F
bt Integer ALU Mul-div ALU FPU
2 Configurable: Configurable:
3 Zm yes/no F yes/no,
= FP format
o
)
=9
o

v v v
v

I CPU Memory (MEM) stage |

Fig. 2. Configurable architecture of the mixed-precision CPU.

The mixed-precision floating-point hardware support can be op-
tionally provided by instantiating a floating-point unit (FPU) within
the execute stage of the CPU [31]. The FPU implements the single-
precision floating-point instructions defined within the RISC-V F exten-
sion, which targets the standard 32-bit IEEE 754 float32 floating-point
format, but the instantiated hardware can be configured at design time
to target smaller data types. In particular, the mixed-precision FPU
supports any floating-point format which is encoded by a 1-bit sign
and an 8-bit exponent, as for the IEEE 754 float32 format, while the
mantissa can be encoded by any value ranging from 1 to 23 bits. The
FPU can also instantiate functional units for various operations that
target different floating-point formats, i.e., have different precision, in
this work, we limit its configuration to a single floating-point format
for the whole FPU, for the sake of simplicity.

The mixed-precision fixed-point hardware support can be optionally
provided by instantiating a modified multiplication-division functional
unit within the execute stage of the CPU [32]. The fixed-point hard-
ware implements custom fixed-point instructions which are the fixed-
point-equivalent of the integer multiplication and division instructions
defined in the standard RISC-V M extension. In particular, the fixed-
point format is the same for both the operands and for the result, the
fixed-point values are 32-bit ones and the number of fractional bits is
defined at run time by an immediate encoded within the opcode of the
single fixed-point instruction to be executed.

Fig. 2 summarizes the configurable options that can be selected by
the system designer when instantiating the mixed-precision CPU. The
integer ALU, providing hardware support for the RISC-V I extension,
is always implemented. The multiplication-division ALU can be instan-
tiated either in its baseline configuration, supporting the sole RISC-V
M extension, or in its fixed-point configuration, supporting both the
standard RISC-V M and custom RISC-V Zm extensions, with the latter
implementing fixed-point multiplication-division instructions. Finally,
the CPU can optionally implement the FPU to provide support for the
standard RISC-V F extension, and, when the FPU is instantiated in the
CPU, the floating-point format employed internally can be selected at
design time.

4. Methodology

This section describes the proposed hardware-software co-design
methodology, introducing a novel multi-stage DSE process for mixed-
precision, FPGA-based softcore CPUs and two error estimation ap-
proaches based on a machine-learning-based model and on a simplified
simulation, respectively.

The proposed DSE process, depicted in Fig. 3, can be split into eight
main steps, which are detailed in their separate subsections, namely,



L. Denisov et al.

user [] existing new D config output
fi

input module module le

Source code —)l Profiler SW features float/fixed
and data

CPU Options

HW features

\ 4
Target error | | Area metrics Error Erlwergy
estimator estimator

v
v

Configuration selection

TAFFO Precision Tuning
—>

INIT HVRA — DTA HCONV —FE
Configuration [ H H H

refinement ¢
D S— E.rror Simple simulation

estimate

[ Optimal configurations ]
[ Verification ]

Fig. 3. Block diagram of the proposed hardware-software co-design methodology.

hardware characterization (see Section 4.1), software requirement col-
lection (Section 4.2), error estimation (Section 4.3), energy estimation
(Section 4.4), area metrics (Section 4.5), configuration selection (Sec-
tion 4.6), dynamic configuration selection refinement (Section 4.7), and
configuration verification (Section 4.8).

A running example aims to provide the reader with a better under-
standing of the proposed hardware-software co-design methodology,
demonstrating its usage in a simple use case scenario. The various steps
of the running example are detailed at the end of each part.

We remark that the proposed approach is independent of the tools
chosen for its evaluation, i.e. the mixed-precision compiler and config-
urable softcore CPU, therefore we first present it in a general way in
this section and later show its specific implementation in Section 5 for
experimental evaluation purposes.

4.1. Hardware characterization

Before the design phase can begin, it is necessary to collect informa-
tion about the reconfigurable hardware available. This step, depicted
as the HW Features block in Fig. 3, would typically be done by the
hardware vendor as this information is independent of the software
running on the system, and it can be collected once and then reused.
Required data concerns the set of possible hardware configurations,
such as the presence of an FPU, the available floating-point formats
in terms of exponent and mantissa sizes in bits, and the size of integers
in bits. Apart from these parameters that can be obtained from the
system definition, we also require information about the energy con-
sumption of the floating-point arithmetic operations for all the given
configurations. This information is collected by running simple micro-
benchmarks with the number and the mix of floating-point operations
pre-defined. The configurations are formed by the combinations of
FPU implementation (FPUImp) and HW fixed-point support (HWFixed):
CONF = FPUImp x HW Fixed. For each CPU configuration, the

Journal of Systems Architecture 155 (2024) 103257

hardware characterization outputs (1) the availability of a HW FPU, (2)
the availability of HW support for fixed-point arithmetic, (3) the area,
i.e., FPGA resource utilization, (4) the average energy consumption per
floating-point operation, (5) the bit length of integers, and (6) the bit
length of the floating-point mantissa and exponent.

Example 1. The example scenario considers two instances of a mixed-
precision FPGA-based CPU, IMFbfloat16 and IMZm. The hardware char-
acterization of the two CPU instances shows they are configured as
follows:

1. IMFbfloatl6 - FPU available, no hardware fixed-point support,
10053 LUT, 7256 FF, 4 DSP, 15.6 nJ per fixed-point opera-
tion, 23.2 nJ per floating-point operation, 32-bit integer, 7-bit
floating-point mantissa, 8-bit floating-point exponent.

2. IMZm - FPU unavailable, hardware fixed-point support, 8342
LUT, 5761 FF, 4 DSP, 14.1 nJ per fixed-point operation, 187.7 nJ
per floating-point operation, 32-bit integer, 23-bit floating-point
mantissa, 8-bit floating-point exponent.

4.2. Software requirement collection

This step is represented by the Profiler and SW Features blocks in
Fig. 3. The design process itself starts with the user providing one
or more programs that are going to be running on the system. Each
program should have at least one representative input dataset. As a
first step, we collect information about the program: the number of
floating-point operations, dynamic ranges of the floating-point input
variables, output dimensions, and acceptable relative error threshold.
The developer can provide some of these properties: the output di-
mensions are specified explicitly, the error threshold depends on the
acceptable output quality, and the dynamic ranges of inputs some-
times have natural limits (e.g. the maximum speed of a vehicle or
the maximum heart rate of a patient), can be estimated, or can be
specified in the operating limits of a device or an application. Others
are not easily derivable: for these, we employ an automatic collection
step. The automatic collection consists of instrumenting the programs
with profiling instructions that log statistics about the floating-point
operations performed at run time, to derive their number and run-
time dynamic ranges. This instrumentation is added at LLvm-1r level. We
only collect value data for variables whose range cannot be determined
statically, i.e. the input variables, to reduce the amount of required
logging. Fully profiling all variables can potentially improve the quality
of the estimated ranges. In our previous work [33], we observed
that using profiling in precision tuning can lead to up to 4 orders of
magnitude lower resulting relative error than the static analysis is able
to achieve in cases when representative training datasets are available,
mostly due to more accurate value range estimation. However, we
opt out for a simpler version of range estimation in the interest of
making the configurations search faster and more robust to input data
variation. In case the whole program is too big for instrumentation,
only the most intensive kernels can be instrumented, or statistical
approximations can be used to reduce the number of calls to the logging
function. These approaches do not need to be very precise as the overall
design model is not very sensitive to small variations in the number of
floating-point operations. An example of how our implementation adds
instrumentation to the code can be found in Listings 1 (original code)
and 2 (instrumented code).

Listing 1: Requirement collection: original LLvm-IR code

fmul float %9, %12
fadd float %10, %14

%varil
%var2

AW N -



L. Denisov et al.

Listing 2: Requirement collection: instrumented LLvM-Ir code

@varl_name = constant "uniql"
@var2_name = constant "uniqg2"
define void @log_value(/name, %value) {...}

%uniql = fmul float %9, %12
call @log_value(@varl_name, %uniql)
%uniq2 = fadd float %10, %14
call @log_value(@var2_name, %uniq2)

O oONOU A WN -

For each program, the software requirement collection outputs (1)
the number of floating-point operations, (2) the minimum and maxi-
mum values for the input variables, and (3) the output size in terms of
the number of elements, i.e. floating point values.

Example 2. The software workload of the running example scenario
is the 3mm kernel from the PolyBench/C benchmark suite, with an
input scaling factor of 4 and a target relative error threshold of 103,
Software profiling characterizes the considered kernel as having 5220
floating-point operations, 72 output elements, and an input value range
from O to 13.9.

4.3. Error estimation

We evaluate 3 methods for estimating the relative error for every
combination of hardware and software configuration: static formula,
linear model, and simplified simulation. The static formula and the
linear model correspond to two possible implementations of the Error
estimator block, while the simplified simulation corresponds to the
Simple simulation block in Fig. 3.

4.3.1. Static formula error estimation
For floating-point configurations, we use Formula (1), that is de-
rived from the one proposed by Rump et al. [34].

ERR; = 21082(Nop)=M ~10g3(Dyr) 1)

N,, is the number of floating-point operations in the program, M is

the mantissa size in bits for the floating-point format chosen, and D,,,
is the number of elements in the output. This formula represents the
intuitive understanding of the error in floating-point computations: the
mantissa size directly defines the precision, the accuracy decreases with
the number of arithmetic operations, but the more elements the output
has, the less error is accumulated per element.

Similarly to floating-point configurations (see Formula (1)), we
employ instead Formula (2) for fixed-point ones.

ERRfix — 2max((lag2(UarMax)fl),fM) (2)

Here, I is the integer size in bits, and M is the mantissa size in bits of
the floating-point format when mixed-precision with both floating-point
and fixed point variables is used. var M ax corresponds to the maximum
value among the input variables: varMax = max;_q .. (abs(V AR))),
where nvar is the number of input variables in the program and V AR;
is the maximum value of the variable with the index i. In this equation,
we assume that, at the end of the computation, the fixed-point result
will be converted into a floating-point format, as floating-point is likely
to be used at the interface level between different parts of the system.
In case the configuration has no FPU, we assume that the standard
float32 floating-point software implementation is used. The intuitive
understanding of this formula is that the error is limited by the size of
the fractional part which uses the rest of the bits after the integer part
is allocated. The bit size of the integer type in the system will define
the maximum precision and varM ax defines the number of bits taken
by the integer part of the variable.

Journal of Systems Architecture 155 (2024) 103257

Example 3.1. The error for floating-point and fixed point configu-
rations of 3mm benchmark running on the IMFbfloat16 and IMZm
hardware can be estimated with the static Formulas (1)-(2) from the
previous examples’ data, resulting in 4 configurations:

+ IMFbfloatl6xfloat
ERRfI — 2/0g2(5220)—7—10g2(72) =5.66- 10—1
+ IMFbfloat16Xfixed
ERRfix - 2max((lag2(1349)732),77) =781 1073
» IMZmxfloat
ERRf, = 2/032(5220)—23—10g2(72) =8.64- 10—6
» IMZmxfixed
ERRfix — 2max((log2(13.9)—32),—23) =1.19. 10—7

4.3.2. Linear model error estimation

The machine-learning approach extends the static formula approach
by trying to learn the underlying dependencies between the features of
the program and the relative error. This has the advantage of possibly
recovering less obvious relationships and more accurately quantifying
the impact of every feature on the resulting error. The disadvantage of
this method is that it highly depends on the quality and variety of the
training data, and it might over-fit resulting in poor prediction power
on the unseen data. Given the considerations above we choose a simple
linear model that is unlikely to over-fit due to its limited capacity to
remember the input. We also follow the standard machine-learning
protocol by splitting the available data into training and test subsets.

We employ a linear Ridge regression on the gate-level simulation
data, trained on the following features: mantissa bit size (M), number of
floating-point operations (N), absolute maximum initial variable value (V),
number of output elements (0). We pre-process the N, V, O features by
first computing their /og, and then standardizing the latter by scaling
to unit variance and removing the mean. The prediction target for
the model is the error obtained from the gate-level simulation of the
benchmarks. We train two separate models, for floating-point and for
fixed-point configurations, respectively, in order to simplify them and
improve accuracy. The hyper-parameters of the models are optimized
with n-fold cross-validation on the train set.

Example 3.2. The errors estimated by using the linear model with
weights given in Table 5 are:

« IMFbfloat16xfloat - ERR =7.70 - 10~
+ IMFbfloat16xfixed - ERR =7.10-1073
+ IMZmxfloat - ERR = 2.27 - 1077
+ IMZmxfixed - ERR =2.09 - 1076

4.3.3. Simplified simulation error estimation

This step simulates the reduced-bit hardware floating-point units in
software by automatically modifying the program according to the size
of the floating-point type. We propose a faster way of simulating the
different FPU sizes on the general-purpose architecture. Our idea is to
truncate the least significant bits of floating-point variables’ mantissa in
software by setting those bits to O after every floating-point operation.
We do this by inserting bitwise AND operations with a pre-computed
mask corresponding to the size of the simulated float type in rLvm-
iR code for every floating-point register. Our implementation of this
approach is available on GitHub.?

Listing 3: Mantissa truncation: original iLvM-Ir code

%7 = load float, ptr %x
%8 = load float, ptr %x
%mul = fmul float %7, %8

a s~ N =

2 https://github.com/TAFFO-org/LAMPSimulator.


https://github.com/TAFFO-org/LAMPSimulator

L. Denisov et al.
Listing 4: Mantissa truncation: modified 1Lvm-Ir code

%7 = load float, ptr %x

%8 = load float, ptr %x

%res = fmul float %7, %8
%sim5 = bitcast float Yres to i32
%simé = and 132 %sim5, -65536
%sim7 = bitcast 132 %sim6 to float

W NG A WN -

An example of such modification is shown in Listings 3 and 4. Fixed-
point formats are handled by the same float-to-fixed transformation
pass used by the precision tuning framework (i.e. the Conversion pass in
taFFo: TAFFO Precision Tuning block in Fig. 3). Such simulation is a good
approximation to running the programs on the hardware implementa-
tion, providing a tradeoff between the accuracy and the complexity of
configuration. Libraries such as MPFR [35] that can simulate floating-
point formats exactly were not used for several reasons. First, the
rounding errors were found not large enough to justify the slowdown
of the simulation. Second, the implementation of the library assumes
modification of the source code of the program being tuned, which
would introduce a manual step from the programmer, significantly
reducing the value of the approach. Third, using this library would
prevent the optimizations done at the rLvm-IRr level, interfering with the
precision-tuning process. Our method allows us to completely avoid
these problems. In this approach we are taking advantage of the ex-
ponent size being unchanged between different floating-point formats
we are considering. In case if there are more floating-point formats
with different exponent sizes present, more sophisticated simulation
approaches need to be used, such as MPFR [35] or FlexFloat [36],
complicating the implementation but leaving the general approach
essentially the same.

Example 3.3. The errors obtained by running the simplified simulation
are:

+ IMFbfloat16xfloat - ERR = 5.56 - 1072
+ IMFbfloat16xfixed - ERR =3.11-1073
+ IMZmxfloat - ERR =7.52-1078
+ IMZmxfixed - ERR = 5.38 - 1077

4.4. Energy estimation

This step, corresponding to the Energy estimator block in Fig. 3,
estimates the energy consumption of every configuration by means of
Formula (3).

Energy = ENOP,,,; - N, 3)

ENOP,,,, is the measured average energy per floating-point operation
on the conf HW/SW configuration, and N, is the number of floating-
point operations in the program. The criteria that define a configuration
(conf) are described in Section 4.1. The main point of this step is not to
get an accurate estimate of the energy a configuration would consume,
but rather establish the relative order between the configurations in
terms of energy efficiency.

We collect the average energy consumption of floating-point con-
figurations on a known mix of arithmetic operations. The advantage
of this simple approach is that it is fast and it requires less data to
be collected in advance, while providing accurate enough results for
modeling the energy consumption of FPGA-based CPU softcores. It is
possible to build a more accurate model by considering different costs
per operation. This information can be collected by running a micro-
benchmark for each type of arithmetic operation, and then the software
characterization shall be updated with separate accounting for each
instruction type (see Section 4.2). We leave the exploration of the effect
of more accurate energy models for future study.

Journal of Systems Architecture 155 (2024) 103257

Example 4. The energy estimates obtained by applying Formula (3)
are:

IMFbfloat16xfloat

Energy =23.2-5220 = 121104
IMFbfloat16xfixed

Energy = 15.6 - 5220 = 81432
IMZmxfloat

Energy = 187.7 - 5220 = 979794
IMZmxfixed

Energy = 14.1 - 5220 = 73602

4.5. Area metrics

The area metrics information includes the number of flip-flops
(FF), lookup tables (LUT), and digital signal processing (DSP) elements
required for the FPGA implementation of a certain configuration. We
optimize the area by minimizing the share of the resources the design
takes on the reference FPGA architecture. This step, corresponding to
the Area metrics block in Fig. 3, employs Formula (4) to compute the
optimization target for the area.
param;

AreaShare = max
i€{(LUT.FF.DSP} arch;

4

The separate metrics by themselves could have been used in the op-
timization, but we chose to reduce them to one metric to reduce
the number of dimensions in the Pareto-set optimization. Indeed, all
area attributes are highly correlated, known, and fixed for every HW
configuration. Therefore, optimizing them individually is unlikely to
yield a significantly better result.

Example 5. The area share for configurations targeting the Artix-7
100 FPGA, that features 63400 LUTs, 126800 FFs, and 240 DSP, is
computed according to Formula (4) as:

» IMFbfloat16

10053 7256 4

AreaS hare = max{ s S
63400 126800 240

}=0.16

* IMZm

8342 5761 4
63400° 126800 240

AreaShare = max{ }=0.13

4.6. Configuration selection

The estimates for error, energy, and area described above are used
to compute the Pareto set of optimal configurations. For this step,
depicted as the Configuration selection block in Fig. 3, we use the Linear
model approach for error estimation, rather than the Static formula,
due to its better accuracy, as is evidenced by the experiment described
in Section 5.3. Since the configuration selection framework is agnostic
of the methods used for the estimation, if more accurate estimators
are available they can be plugged in without modifying the rest of the
framework. This step operates as follows. First, a set of configurations
are pre-selected, based on which ones satisfy the error threshold pro-
vided by the user. We then calculate the Pareto-optimal set out of the
pre-selected configurations. This set represents the configurations for
which any of the dimensions cannot be improved without making other
dimensions worse. The same method can be applied in cases when the
design selection is done for multiple applications or kernels that need
to be running on the same hardware by computing the Pareto set over
the features of all applications combined.



L. Denisov et al.

Example 6. Filtering the four hardware-software configurations by a
target relative error threshold of 10~ using the linear model esti-
mate from Example 3.2 excludes the IMFbfloatl6xfixed, which exceeds
the threshold with a value of 7.10 x 1073, leaving the following 3
configurations:

+ IMFbfloatl6xfloat
ERR=17.70-107*
Energy = 121104
AreaShare = 0.15

» IMZmxfloat
ERR=227-1077
Energy = 979794
AreaShare = 0.13

» IMZmxfixed
ERR=2.09-107°
Energy = 73602
AreaShare = 0.13

IMZmxfloat and IMZmXfixed constitute the Pareto set, since they have
a combination of attributes that cannot be improved by any other
configuration.

4.7. Dynamic configuration selection refinement

The configurations selected with the static rules may be suboptimal
in terms of error due to the impossibility of modeling the complex in-
teractions in the programs precisely with simple heuristics. We employ
therefore the simplified simulation described in Section 4.3.3 to get a
better error estimate. This step, depicted as the Configuration refinement
block in Fig. 3, introduces the time overhead due to the compilation
and running of every configuration, but since the previous step would
significantly limit the design space to be explored, it can still be faster
than the exhaustive search. We assume that the Pareto set from the
previous step is close to the ground truth Pareto set, so we also sample
some of the points in the vicinity of the statically discovered Pareto set
and test them directly to see if they yield better results. We have found
that we can just test the fixed-point configurations, leaving out the
floating-point ones, since the floating-point accuracy is predicted well
enough by the linear model estimation. The number of configurations
tested in this refinement step can be adjusted according to the available
time budget. The gate-level simulation, however, would still be too
slow for this step. Various strategies are possible for selecting among
the configurations to run. We propose taking configurations with the
error estimate exceeding the target relative error and picking from
them the ones having the best energy estimate. The reasoning behind
this is they give the biggest benefit in case their error turns out to be
acceptable, significantly improving the quality of the Pareto set. It is
possible to go for less risky exploration strategies but with less expected
benefit.

Example 7. Running the simple simulation on the Pareto-optimal con-
figurations from Example 6 returns the errors previously shown in
Example 3.3:

» IMZmxfloat
ERR=1752-10"%
Energy = 979794
AreaShare = 0.13

+ IMZmxfixed
ERR=538-1077
Energy = 73602
AreaShare = 0.13

Filtering by a 10~3 error threshold results in the same Pareto set.

Journal of Systems Architecture 155 (2024) 103257

4.8. Configuration verification

This step is represented by the Verification block in Fig. 3. At
this stage, we can verify that the selected configuration does indeed
satisfy our requirements by running it on the gate-level simulator.
This, however, is highly computationally- and time-intensive. This step
would be evaluated only with the final selected configuration before
producing the physical devices to make sure that the design performs
as expected.

Example 8. A gate-level simulation of the configurations in Example 7
allows verifying they meet the specified requirements:

» IMZmxfloat
ERR=735-10"%
Energy = 922535940
AreaShare = 0.13

+ IMZmxfixed
ERR=538-1077
Energy = 72029000
AreaShare = 0.13

The two configurations notably perform as expected relatively to each
other, i.e., the first one produces a smaller error and the second one
consumes less energy.

5. Experimental evaluation

We evaluate our methodology on instances of the mixed-precision,
FPGA-based softcore CPU described in Section 3.2 that can option-
ally support one of four different floating-point formats as well as
instantiate dedicated fixed-point hardware, for a total of 10 CPU config-
urations. We select a set of 14 kernels from a state-of-the-art benchmark
suite as their target workload, scale their inputs by 11 different scal-
ing factors in order to stress the dynamic range, and consider 2,
i.e., floating- and fixed-point, arithmetic modes, for a total of 3080 (10
- 14 - 11 - 2) hardware-software configurations.

In this section, we apply our hardware-software co-design method-
ology to such scenario and demonstrate its effectiveness in exploring
the trade-off between energy efficiency, accuracy, and resource uti-
lization and its speedup in examining the design space by orders of
magnitude compared to state-of-the-art simulation-based approaches.

5.1. Software setup

In our experimental evaluation, we made use of the Polybench/C
4.2 benchmark suite [37], which features programs written in ANSI C
that are characterized by a large share of floating-point computations.
In particular, we considered a representative set of 18 applications,
encompassing BLAS routines (gemm, gemver, gesummy, symm, syr2k,
syrk, and trmm), linear algebra kernels (2mm, 3mm, atax, bicg, and mvt),
stencils (jacobi-1d, jacobi-2d, seidel-2d, and heat —3d), and linear algebra
solvers (lu and ludcmp). The applications were compiled with Tarro® and
tvM 15.0 to obtain their fixed-point and floating-point versions. The
whole methodology described in Section 4, also including the hardware
design and verification flow, was executed on a server that features a
10-core Intel Xeon E5-2650 v3 CPU and a 64 GB memory and that runs
the Ubuntu 22.04.3 LTS operating system.

Because of the long time required to measure the energy consump-
tion of larger applications we did not evaluate data type propagation
beyond the kernel boundaries and co-optimization of multiple kernels.
Although data type propagation beyond the kernel boundary has been
shown beneficial [38], it can be seen as a separate technique that does
not significantly affect the kernel-hardware co-optimization and it can
be applied after. We refer the reader to Section 4.6 for details of how



L. Denisov et al.

Table 1
Software features of the PolyBench benchmark applications considered in the
experimental evaluation.

Benchmark # Annot. Output size #float ops
2mm 9 112 5700
3mm 9 72 5220
atax 7 22 2244
bicg 7 42 2242
gemm 7 120 6 352
gemver 14 440 4 640
gesummy 9 16 1 600
lu 6 400 21550
ludemp 9 20 22390
mvt 7 40 2080
symm 7 160 4935
syr2k 7 256 8872
syrk 6 256 4632
trmm 5 160 1805
jacobi-1d 3 15 840
jacobi-2d 4 225 18 250
seidel-2d 7 400 30 360
heat-3d 5 125 8 350

our method can be applied in case of optimization of multiple kernels
sharing the same hardware.

We ran benchmarks with different scales of input to characterize
how the dynamic range affects the selection of the hardware platform
and the precision-tuning settings. Dynamic range is the biggest differ-
ence between floating-point and fixed point [39], and it directly affects
the accuracy of number representations both in terms of available
fractional bits in fixed-point formats and the unit in the last place
(ulp) in floating-point formats [40]. Fixed point formats have uniform
precision throughout the dynamic range and perturbations exclusively
in the mantissa of floating-point formats do not change their ulp,
making small perturbations to inputs inefficient at stressing the system.
As such, scaling provides the worst case for the system evaluation as it
is likely to introduce conditions where one or more formats are not
adequate and force the system to choose a more optimal format. In
our experimental evaluation, we scaled the default inputs of the appli-
cations by multiplying them by scaling factors from the set Scales =
{1,2,4,8,16,32,64,128,256,512,1024} and tested the selection of the
Pareto-optimal set of configurations targeting relative error thresholds
from the set Target ErrThr = {0.01,0.001,0.0001,0.00001}.

The dynamic-range scale-independent software features of the
benchmarks collected with the instrumentation described in Section 4.2
are shown in Table 1, which also lists the number of TArro annotations
required for every benchmark.

5.2. Hardware setup

Functional validation and experimental evaluation were performed
on a configurable state-of-the-art system-on-a-chip (SoC) meant for
FPGA targets [30]. In particular, we considered an instance of the
reference SoC that featured a 32-bit in-order RISC-V CPU, a 32-bit
Wishbone bus, a 64 KB BRAM-based main memory, a user-space UART
for application input and output, and the debug infrastructure to allow
the communication between the host and either the prototyping board
or the simulation environment.

The complete SoC was implemented employing AMD Vivado ML
2022.2 targeting a 50 MHz clock frequency on the Digilent Nexys 4
DDR prototyping board, which is equipped with an AMD Artix-7 100
(xc7al00tcsg324-1) FPGA, a mid-range cost-effective chip packing
63400 look-up tables (LUT), 126 800 flip-flops (FF), 240 digital signal
processing (DSP) elements, and 135 blocks of 36 kb block RAM (BRAM).
To provide a fair evaluation, we implemented each one of the design

3 https://github.com/TAFFO-org/TAFFO, commit 8d6daef

Journal of Systems Architecture 155 (2024) 103257

s E (8 bits) M (7 bits)
bfloat16
1514 716 0
s E (8 bits) M (10 bits)
float19
1817 10[9 0
s E (8 bits) M (15 bits)
float24
2322 15/14 0
s E (8 bits) M (23 bits)
float32
3130 2322 0

Fig. 4. Floating-point formats supported by the mixed-precision CPU instances
considered in the experimental evaluation.

variants within the same SoC, employing the Vivado default synthesis
and implementation strategies. The resource utilization was extracted
from the post-implementation netlist for each SoC variant, and the
resources available on an Artix-7 100 FPGA were used as the basis to
calculate the resource share of each of the solutions, as described in
Section 4.5. We employed xsim, included in AMD Vivado ML 2022.2, as
the gate-level simulator. Power consumption results were collected for
each SoC and benchmark application as the dynamic power obtained
by Vivado Report Power from the corresponding post-implementation
simulations, and the energy consumption for an application executing
on an SoC was accordingly computed as the product of the corre-
sponding power consumption and execution time. We collected the
power consumption for the whole SoC; however, in our experimental
analysis, we remarkably only report values for the energy and power
consumption limited to the CPU since the latter is the actual target of
the optimizations brought by the proposed methodology.

Table 2 lists the configurations of the mixed-precision CPU con-
sidered in the experimental evaluation of this work, providing details
on the corresponding hardware support provided for fixed-point and
floating-point arithmetic operations and listing the latency of arith-
metic operations. The leftmost column lists the labels assigned to each
CPU throughout the rest of our discussion, while the next two columns
on its right highlight whether the corresponding CPU supports (v)
or not () fixed-point arithmetic, and whether it supports floating-
point arithmetic (v') or does not implement an FPU (-), indicating the
specific format (bfloat16, float19, float24, or float32) in the former case.

All the floating-point formats considered in this experimental eval-
uation, as depicted in Fig. 4, share the same 8-bit exponent width
and only differ in the mantissa bit width. bfloat16 and float32 are
widely used representations, while float19 and float24 are formats with
an intermediate precision. We remark that the proposed methodology
does not take into account any aspect related to memory organization,
e.g., using smaller or larger representations for floating-point values to
minimize the memory footprint or accesses.

Finally, the rightmost part of the latency of Table 2 lists the
latency, expressed as the number of clock cycles, for the addition-
subtraction (Add), multiplication (Mul), division (Div), and compari-
son (Cmp) operations in their integer, fixed-point, and floating-point
arithmetic variants.

Fixed-point addition and subtraction take the same time with and
without specific fixed-point hardware support, i.e., across all rows
of Table 2, since both operations are executed as the corresponding
integer operations. Fixed-point multiplication and division require 14
and more than 350 clock cycles when the custom Zm extension is not
supported, i.e., in the top five rows of Table 2, due to the need to
execute a sequence of instructions from the I and M extensions, whereas
integer multiplication and division take instead 5 and 14 clock cycles,
respectively. In particular, without Zm hardware support, the fixed-
point multiplication requires the execution of two multiplications, two
shifts, and an OR instruction, while the fixed-point division includes
invoking a software-implemented routine that takes hundreds of clock
cycles, severely hindering its latency. On the contrary, fixed-point mul-
tiplications and divisions executed with dedicated hardware support,


https://github.com/TAFFO-org/TAFFO

L. Denisov et al.

Table 2

Journal of Systems Architecture 155 (2024) 103257

Latency, in clock cycles, of the integer, fixed-, and floating-point operations of the considered configurations of the mixed-precision CPU.

CPU configuration Hardware support

Operations latency

Fixed-point Floating-point Integer Fixed-point Floating-point
Add Mul Div Cmp Add Mul Div Cmp Add Mul Div Cmp
M - - 1 5 14 1 1 14 >350 1 Soft-float execution
IMFbfloat16 - v/ bfloatl6 1 5 14 1 1 14 >350 1 4 4 8 4
IMFfloat19 - v float19 1 5 14 1 1 14 >350 1 4 4 10 4
IMFfloat24 - v float24 1 5 14 1 1 14 >350 1 5 5 12 4
IMFfloat32 - v float32 1 5 14 1 1 14 >350 1 5 5 12 4
IMZm v - 1 5 14 1 1 5 14 1 Soft-float execution
IMZmPFbfloat16 v v/ bfloatl6 1 5 14 1 1 5 14 1 4 4 8 4
IMZmFfloat19 v v float19 1 5 14 1 1 5 14 1 4 4 10 4
IMZmFfloat24 v v float24 1 5 14 1 1 5 14 1 5 5 12 4
IMZmFfloat32 v v float32 1 5 14 1 1 5 14 1 5 5 12 4
Table 3 Table 5
FPGA resource utilization of the considered configurations of the mixed-precision Coefficients of the linear model.
CPU. Feature Float Fixed
CPU configuration LUT FF DSP BRAM Intercept _15.651015 _12.408356
M 7936 5725 4 0 Mantissa bits (M) —6.822522 —3.022593
IMFbfloat16 10053 7256 4 0 Float op. count (N) 2.256770 1.667797
IMFfloat19 9874 7281 6 0 Variable max. value (V) 0.104946 2.085219
IMFfloat24 10245 7356 6 0 Output size (O) 1.803398 —1.754469
IMFfloat32 10719 7507 10 0
IMZm 8342 5761 4 0
IMZmFbfloat16 10431 7288 4 0
IMZmEfloat19 10351 7317 6 0 The energy per floating-point operation was collected by running
IMZmFfloat24 10699 7388 6 0 b h Kk hard fi ti Th Iti
IMZmFfloat32 11192 7543 10 0 encnmarks on ever?f ardware COI} 1guras lf)n. .e resu lng An{easure-
ments can be seen in Table 4. This data is derived by dividing the
total energy consumption measured during each benchmark run by the
Table 4

Mean energy per floating-point operation for every CPU configuration, referring to the
execution of a benchmark with a 59% mul, 30% add, 10% sub, and 1% div distribution.

CPU configuration Fixed (nJ) Float (nJ)
M 18.0 187.7
IMFbfloat16 15.6 23.2
IMFfloat19 16.2 23.8
IMFfloat24 16.8 25.2
IMFfloat32 17.5 26.6
IMZm 14.1 187.7
IMZmFbfloatl6 12.5 23.2
IMZmFfloat19 13.1 23.8
IMZmFfloat24 13.4 25.2
IMZmFfloat32 14.0 26.6

i.e., in the bottom five rows, take as long as the corresponding integer
instructions. Comparing hardware-supported fixed- and floating-point
arithmetic operations highlights faster fixed-point addition-subtractions
and comparisons in the SoC instances considered in our experimental
evaluation, while FPUs can execute faster or equally fast multiplications
and divisions.

Table 3 lists, for each considered configuration of the mixed-
precision CPU previously detailed in Table 2, the FPGA resources
occupied by their implementation on an AMD Artix-7 100 chip. The
resource utilization is reported in terms of LUTs, FFs, DSPs, and BRAM
blocks.

Starting from the baseline CPU, implementing the sole I and M
standard RISC-V extensions, the instantiation of additional functional
units correspondingly increases resource utilization. Instantiating an
FPU requires up to around 2800 LUTs, 1800 FFs, and 6 DSPs, and
the additional resource utilization increases as more mantissa bits are
used to represent floating-point values internally to the FPU. Similarly,
adding hardware fixed-point support has a smaller impact on resource
utilization, with an increase of around 500 LUTs and 40 FFs. Overall,
the largest configuration of the mixed-precision CPU, supporting all the
I, M, Zm, and F extensions and implementing a float32 FPU, occupies
41% LUTSs, 32% FFs, and 150% DSPs more than the smallest baseline
configuration, supporting the sole I and M extensions.

statically-known amount of floating-point operations performed. The
same applies to fixed-point configurations. Note that the number of
fixed-point operations is equal to the number of floating-point ones.

The CPU configurations without an FPU running floating-point code
show the worst energy efficiency (187.7 nJ) due to the software emula-
tion of the floating-point arithmetic. The floating-point code consumes
more energy per operation than the fixed-point code by about 8 nJ,
regardless of the FPU configuration: 23.2-26.6 nJ per floating-point
operation, saving 0.6-1.4 nJ per every level of FPU size. The fixed-point
code benefits from the fixed-point hardware extension (Zm), saving 3—4
nJ in comparison to the analogous version without it. Since the fixed-
point code still has its output converted to float, the availability of the
FPU and its size has a small effect on the energy consumption: about 0.5
nJ per every level of FPU size. The choice to have the output converted
to float is explained by the need to interface with other parts of the
program or other applications altogether that may be running on the
same CPU but not necessarily using the fixed point.

5.3. Experiment: Error estimation

Out of three models for error estimation described in Section 4.3
the static formula and the simple simulation can be used without
modification, but the linear model needs to be trained on the training
dataset. To train and verify the linear model, we divide the benchmarks
into two sets: training and testing, with 7 benchmarks in the training set
and 11 in the testing set. Every benchmark has various configurations
with different scales, precision-tuning options, and hardware options.
The test and training split was chosen randomly; syrk, ludcmp, 2 mm,
mvt, syr2k, atax, gemver were used for training, while gemm, bicg,
symm, 3 mm, gesummvy, lu, trmm, jacobi-1d, jacobi-2d, seidel-2d, heat —3d
were used for testing. The final coefficients of the linear models are
given in Table 5. This shows the relative impact of the features on
the relative error of floating-point and fixed-point configurations. The
regularization hyper-parameter alpha of the Ridge regression was set to
0.5 for the floating-point model and 48 for the fixed-point model.

We then evaluate all methods for relative error estimation on the
test set of benchmarks. The goal of all three models is to accurately
predict the output relative error for benchmarks running on the various



L. Denisov et al.

fixed
2.0+
5 1.5 Method
b~ — Linear model
g 1.0 Simple simulation
-g - Static formula
0.5+
0.0 ™, ¥ o e -.......-‘-I'-......---..._..
-6 -4 -2 0 2 4 6
loglO(error(error estimate))
float
1.0
>
= FAN
@057 EA
o d 'y
0.0 \

) 1 1 1 1 T T 1
-2.52.0 -15 -1.0 -0.5 0.0 05 1.0 1.5
loglO(error(error estimate))

Fig. 5. The error distribution of error estimation methods. This chart demonstrates
the distribution of log,((Predicted Error/Actual Error) for Predicted Error obtained with
three different methods: Static formula (discussed in 4.3.1), Linear model (discussed
in 4.3.2) and Simple simulation (discussed in 4.3.3). The top chart demonstrates the
fixed-point software configuration, while the bottom one shows the floating-point.
The prediction is computed on the test dataset. For the fixed-point configuration
the methods rank Simple simulation > Linear model > Static formula. The Simple
simulation method dominates in accuracy, with the metric tightly distributed around
the 0 mark. The Linear model gives slightly more accurate results than the Static
formula. For the floating-point, the ranking is Linear model > Simple simulation >
Static formula, with the Linear model giving a slightly tighter distribution around the 0
mark than the Simple simulation. The Static formula distribution is skewed significantly
to the right.

CPU configurations. As such, the ground truth for this evaluation is
the error observed from running all configurations on the gate-level
simulator described in Section 5.2. Fig. 5 shows the distribution of the
error for every error estimation method for floating-point and fixed-
point configurations. For fixed-point, the simplified simulation works
best. This is explained by the fact that fixed-point operations are always
prevalent in the instruction mix of fixed-point configurations, hence the
error introduced by the floating-point-only simulation is minimal. As
this estimator employs the precision tuning framework itself to handle
fixed-point representations, in that respect, the profiled code behaves
identically to the one effectively executed by the completed design. For
floating-point, the linear model and the simple simulation provide sim-
ilar accuracy, with the linear model being slightly more conservative.
The static formula approach is too inaccurate for both cases. Based
on these results, we decided to use the linear model and the simple
simulation approaches in our HW/SW co-design methodology.

5.4. Experiment: HW/SW co-design

As the basis of our comparison, we computed the ground-truth
Pareto sets for every software configuration and target error threshold
discussed in Section 5.1 across all of the CPU configurations. For that,
we use the target error thresholds to filter the configurations that have
relative errors exceeding these thresholds. Among the filtered records
we then find the Pareto set with the values of energy and area metrics
that cannot be improved without worsening other metrics. Thus, for
every software configuration and error requirement we obtain a set of
1 or more CPU configurations that are empirically optimal. We call that
the Ground Truth Sets.

10

Journal of Systems Architecture 155 (2024) 103257

Table 6
Prediction quality metrics.

Metric Before refine After refine (+2 conf)
True positive 77.36% 79.58%
False positive 33.19% 12.99%
False negative 22.64% 20.42%
Recall 77.36% 79.58%
Precision 69.98% 85.97%
F1 score 73.48% 82.65%
Error > Target 0.00% 1.44%
3mm-9.1% 2.3% 2.3% 2.3% 18.2% 4.5%
bicg - 4.5% 9.1% 11.4%
gemm -25.0% 13.6% 4.5% 2.3%
gesummv - 9.1% 6.8% 11.4%15.9%
heat-3d-12.5% 34.4%12.5%
jacobi-1d -18.8%
jacobi-2d - 3.1% 21.9%
u-11.4% 11.4% 9.1%
seidel-2d 18.8% 28.1%
symm-25.0% 2.3% 2.3% 9.1%
trmm -18.2% 4.5% 4.5% 4.5% 2.3% 2.3%
T T T T T T T T T
g & & & & & & & &5 3
— o~ m < n ©o ~ (= o

share of exact matches

Fig. 6. Share of the exact matches in Pareto sets between prediction and the ground
truth after the refinement step. The horizontal axis shows the (binned) share of the
exact matches between the predicted and the actual Pareto sets. The heatmap color
and numbers represent the percent of the benchmark configurations that fall in every
bin. The numbers in every row add up to 100% within the rounding error. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

We made estimations for relative error and energy for every com-
bination of software and CPU configurations as described in Sec-
tions 4.3.2 and 4.4. The error estimates were then used to filter by the
error threshold, and the energy estimates used in the Pareto selection
procedure together with the area metrics. We call these sets Prediction
Sets. In addition, we used the refinement technique discussed in Sec-
tion 4.7 with the addition of 2 configurations outside the Prediction
Sets to obtain the Refined Prediction Sets.

We compare the Ground Truth Sets with the Prediction Sets and
the Refined Prediction Sets in terms of the exact matches across all
benchmarks using several metrics such as true positive, false positive,
false negative rates. In addition, we calculate Recall (another name for
true positive), Precision, and F1 score metrics. The F1 score in particular
shows the overall balance of the model, as it penalizes selecting too
many and too few configurations equally. We also track the percentage
of configurations that exceed the target relative error and report it as
Error > Target. The result is shown in Table 6.

Before the refinement step the Prediction Sets have about 77% Recall,
but also have a relatively high false positive rate of 33%. The Refined
Prediction Sets improve the Recall and the false negative rate by about
2%, but more importantly reduce the false positive rate by 20% leading
to much improved F1 score at the cost of about 1.5% of configurations
exceeding the target error threshold. The low false positive and the
high false negative rates together with the low Error > Target metric
evidence that the model is erring on the safer, conservative side.
For an automatic HW/SW co-design tool this is a desired quality as
finding slightly suboptimal solutions is usually less of a problem than
not satisfying the accuracy requirements. From this point forward we
only analyze the Refined Prediction Sets as they show better overall
performance.

Then we analyze the distribution of share of the Refined Prediction
Sets that match the P,% of the Ground Truth Sets with P, representing
intervals P, = [0%, 10%),[10%,20%), ... ,[90%, 100%), [100%, + inf). This
distribution is shown in Fig. 6. We can see that for all benchmarks more
than 40% of configurations match the full Ground Truth Set exactly.



L. Denisov et al.

. We e X

(\6“\)‘“.0&9‘5 Qoé\“\'e R @
GO 0@ eV s et (o

| 1 1 1 1 1

IMZmFbfloatl6_fixed+ 7.4% 5.1% 5.1% 2.2% 0.0% 0.0%
IMFbfloat16_fixed{ 0.7% 0.0% 0.0% 0.7% 0.0% 0.0%
IMZmFfloat19_fixed 10.3% 10.3% 4.4% 0.0% 0.0%
IMFfloat19_float- 1.5% 0.0% 0.0% 1.5% 0.0% 0.0%
IMFfloat19_fixed| 1.5% 0.0% 0.0% 1.5% 0.0% 0.0%
IMZmFfloat24_float4 0.0% 0.7% 0.0% 0.0% 0.7% 0.0%
|MZmFﬂoat24_ﬁxed+ 6.6% 6.6% 29% 3.7% 3.7% 0.0%
IMFfloat24_float- 2.2% 2.2% 2.2% 0.0% 0.0% 0.0%
IMFfloat24_fixed|{ 0.7% 0.0% 0.0% 0.7% 0.0% 0.0%
IMZmFfloat32_fixed+{ 2.9% 7.4% 1.5% 15% 5.9% 0.0%
IMFfloat32_float- 2.9% 5.1% 2.9% 0.0% 2.2% 0.0%
IMZm_fixed -PARR MWL N 2.2% 0.0% 0.0%
IM_float 0.7% 2.2% 0.0%
IM_fixed -PARSRZ WL NV 2.2% 0.0% 0.0%

Fig. 7. 3mm benchmark: distribution of HW/SW configurations in the predicted and
ground truth Pareto sets after the refinement step. Other columns are true positive,
false negative, false positive, and Error bigger than the target error threshold. The
values are normalized to the sum of Ground truth.

Moreover, 70%-95% of configurations match their Ground Truth Set
by more than 50%. Only some benchmarks have a relevant share of
configurations (18%-25%) that match the Ground Truth Set less than
10%.

We then drill down on the distribution of the Ground Truth Sets
and the Refined Prediction Sets by CPU configuration and look at the
distribution of the CPU configurations across all Pareto sets for all
configurations for the 3mm benchmark, as depicted in Fig. 7. The latter
reports some of the same metrics as Table 6, with the percentage values
normalized to the total sum size of the Ground Truth Sets. We can see
that the prediction closely matches the Ground Truth Sets, especially
on the fixed configurations. With the float configurations, it tends to
prefer the bigger FPU sizes. It correctly identifies the biggest group
— the two CPUs without an FPU, one with and one without fixed
SW configuration. It has a good match rate at the lower FPU sizes as
well for the fixed configurations. The false negative rate shows that
some CPU configurations are not identified in prediction, for example,
IMFbfloat16_fixed, IMFfloat19 fixed, IMFfloat19 float, IMFfloat24 fixed.
Those configurations though do not make up a big percentage of the
Ground Truth Sets.

The exact matches between Pareto sets of the prediction and the
ground truth do not fully characterize the quality of the solution as
some sub-optimal configurations may be close enough to the configura-
tions in the ground truth Pareto set to be considered usable. To quantify
this we computed the Euclidean distance from every configuration in
the Refined Prediction Set to every configuration in the Ground Truth
Set. Since every dimension (relative error, energy, LUT, FF, DSP) has
different units we scale them by subtracting the mean and dividing
by the standard deviation before calculating the Euclidean Distance to
exclude the scale effect on the distance. Then for every configuration P,
in the Refined Prediction Set we find the configuration from the Ground
Truth Set G; with the minimal distance to it and calculate the ratio

R, = % where d € {error,energy, LUT, FF, DSP}. We use the
actual measurements of the predicted configurations instead of esti-
mated because we are evaluating the real performance of the selected
configuration. The resulting distribution of ratios of every dimension
is shown in Fig. 8. Overall, for every dimension the absolute majority
of the configurations of the Refined Prediction Set lies very close to
the corresponding configuration in the Ground Truth Set: R, €

11

Journal of Systems Architecture 155 (2024) 103257

3mm- 0.6% 5.8% 3.2% 1.9%
bicg+ 2.7% 0.7% 1.4% 0.7% 0.7% 1.4%
gemm-{ 5.0% 1.4%
gesummv- 3.2% 1.3% 1.3% 5.7%
heat-3d-{ 1.8%
jacobi-1d - 5.2%
jacobi-2d - 3.4% 4.6% 1.1%
Iu-| 0.8% 0.8% 1.6%
seidel-2d - 8.8% 3.9% 2.9% 1.0%
symm- 0.7% 3.0%
trmm - 3.9% 2.6%
T T T L L T T T T 1
-4.00 -2.00 -1.00 -0.50 0.00 0.02 0.50 1.00 2.00 4.00
Ratio of relative error (log10)
3mm-| 1.3% 3.8%
bicg - 1.4% 2.7%
gemm | 6.4%
gesummv- 1.9% 3.8% 3.8% 0.6%
heat-3d | 3.5%
jacobi-1d-  5.2%
jacobi-2d - 1.1% 1.1%
lu-| 0.8%
seidel-2d - 2.0% 3.9% 1.0%
symm -| 0.7% 3.0%
trmm- 0.7% 1.3% 5.2%
70% 95% 100% 105% 110% 120% Y 200% ‘
Ratio of energy
3mm-  1.3% 1.3% 0.6% 1.3%
bicg4  1.4% 1.4%
gemm -| 2.8%
gesummv-  4.5% 1.9%
heat-3d | 21.1%
jacobi-1d-  5.2% 1.0%
jacobi-2d - 1.1% 1.1%
lu| 3.1%
seidel-2d-{  3.9%
symm | 1.5% 0.7%
trmm-  0.7% 2.6% 0.7% 2.6%
95% 100% 105% 110% 120% ' 130% ‘
Ratio of LUT
3mm-  1.3% 1.9%
bicg-{ 2.7% 1.4%
gemm | 2.8%
gesummv- 5.7% 1.9%
heat-3d -
jacobi-1d-{  5.2% 1.0%
jacobi-2d | 2.3%
lu-| 3.1%
seidel-2d-{  4.9%
symm -| 0.7%
trmm-  0.7% 0.7% 2.6%
95% 100% 105% 110% 120% 130% ‘
Ratio of FF
3mm-| 3.8% 1.9%
bicg-{ 1.4% 4.7% 1.4%
gemm -| 6.4% 2.8%
gesummy - 5.7% 1.9%
heat-3d | 11.4%
jacobi-1d-  5.2% 1.0%
jacobi-2d - 4.6% 2.3%
lu- 3.1% 3.1%
seidel-2d-{ 1.0% 4.9%
symm -| 0.7% 0.7%
trmm-  0.7% 0.7% 2.6%
50% 100% 105% 150% 200% 250% ‘

Ratio of DSP

Fig. 8. Distribution of ratios between the target dimensions of configurations from
Refined Prediction Set to the closest (z-normalized Euclidean distance) configuration
from the Ground Truth Set. Rows are benchmarks and columns are bins of ratios for
the respective attribute. Column labels signify the lower bound of the bin (included);
the next label to the right signifies the end of the bin (not included). The last column
label signifies the bin from its value to infinity.

[10°,10%92) for 83.3-98.2% of configurations, R,,,,,, € [100%, 105%) for
89.8-99.2%, R,y € [100%, 105%) for 78.9-97.8%, Ry j € [100%, 105%)
for 92.4%-100%, R psp € [100%, 105%) for 90.8-98.5%.



L. Denisov et al.

100%[]

bench
00% ® 3mm
bicg
80% A gemm
= gesummv
70% @ heat-3d
< p jacobi-1d
[ jacobi-2d
= 60% .
3 < < lu
S = .
E 50% < seidel-2d
> ———@ =5
a 40% A trmm
c
w
30%
20% - 4 g
10%
> > »
0% T T T T TTIIIT T T T T TTIIIT T T T 1rrrrri
0.001% 0.01% 0.1% 1%

Target relative error

Fig. 9. Energy/error tradeoff. This chart shows the median energy consumption among
all the configurations in the predicted Pareto set by benchmark, normalized to baseline
HW/SW configuration (IMFfloat32 float) and shown in %. Irrespective of the error
threshold, energy consumption for jacobi-1d is around 5% and for heat —3d is around
20%. At the 0.001% target relative error 3mm, lu, gemm, symm, seidel-2d, jacobi-2d
are not consuming less energy, but with increasing the error threshold the energy
consumption drops below 80%. For bicg, trmm, and gesummy even at 0.001% target
relative error the energy consumption is less than 65% with further 5%-15% energy
decrease as the error threshold increases. At the 1% target relative error, the energy
consumption is less than 50% for 3mm and gesummv, less than 55% for bicg and lu,
and less than 60% for trmm, gemm and symm.

For the error chart, we can see that there are some configurations
in the Refined Prediction Set with lower error than the corresponding
configuration from the Ground Truth Set. This shows that the selection
approach is conservative in terms of error and does not always fully
utilize the error budget. On the energy, LUT, FF, and DSP charts we can
see the opposite: some configurations with higher values than 100%,
which is the result of selecting non-optimal configurations. The small
amount of values lower than 100% corresponds to the cases when the
overall non-optimal selected configuration is slightly better in one or
more dimensions than the optimal.

5.5. Optimization outcomes

The end goal of the HW/SW co-design approach we describe is
the optimization of the energy consumption under the relaxed require-
ments for the accuracy of the output. As such, we compare the energy
consumption of the selected configurations with regard to the default
choice (IMFfloat32 float). Fig. 9 shows the median energy reduction
depending on the target error threshold. The two outlier benchmarks,
heat —3d and jacobi-1d, are particularly well-suited for precision tuning
and show significant energy savings of around 80% and 95% respec-
tively. This is explained by both applications using a small number of
fractional bits allowing them to run correctly at the smallest and most
energy-efficient hardware configurations. For the majority of the appli-
cations tested the benefit is not so exceptional but is still significant.
As expected, the bigger the error allowance the more energy can be
saved. Allowing for 0.01% relative error saves more than 50% energy
for some benchmarks. The selected configurations introduce at most 4%
overhead in terms of the area metrics (LUT, FF, DSP) in comparison to
the default choice.

5.6. Optimization time

Traditional state-of-the-art approaches require executing RTL sim-
ulations, which are expensive in terms of time and computational

12

Journal of Systems Architecture 155 (2024) 103257

resources. In particular, given a new application to be executed on
the target computing platform, it is necessary to simulate its execution
for each of the HW/SW configurations through a post-implementation
RTL simulation in order to collect accurate information concerning
the energy and power consumption. For instance, identifying an op-
timal configuration for the execution of a new application, in our
experimental scenario with 10 different CPU instances and 2 software
versions, i.e., fixed and float, for a total of 20 HW/SW configurations,
requires therefore the execution of 20 gate-level simulations that, for
the considered target applications, take on average 45 min per each.

Conversely, the proposed methodology avoids the need for such
lengthy RTL simulations. Instead, it leverages simplified models to
estimate the error and the energy consumption and delivers the ar-
chitecture that is expected to minimize them and the area metrics.
For instance, identifying an optimal configuration for the execution
of a new application, in our experimental scenario with 20 HW/SW
configurations, requires therefore the execution of 20 simplified model
error estimations, each of whom takes 1.1 s per one configuration,
including instrumentation, compilation, and running. The proposed
methodology provides therefore a speedup in the optimization time
of around 2500x on average compared to state-of-the-art approaches
based on RTL simulation.

Moreover, with larger programs, gate-level simulation quickly be-
comes infeasible, making estimation methods the only viable option.
Consequently, the proposed solution is an attractive alternative to
direct gate-level simulation, saving time and programmer effort in
designing energy-efficient approximate applications by optimizing both
software and hardware.

We also note that, while gate-level simulations would be required
to provide accurate energy and power consumption metrics for a
target hardware architecture without applying the methodology in
this manuscript, faster behavioral simulations cannot provide power-
related metrics. Additionally, cycle-level architectural simulators, such
as gemb5, would need a power model for the target CPU, which is
complex to obtain for a new architecture.

6. Conclusions

In this paper, we introduced a hardware-software co-design method-
ology, and its supporting design automation tools, to explore the design
space of mixed-precision systems leveraging a configurable, softcore
mixed-precision CPU meant for FPGA targets and a precision tuning
compiler framework.

We proposed two novel methods to estimate the error induced
by precision tuning choices that provided an improvement over the
static methods currently employed in precision tuning frameworks,
and we introduced a multi-objective co-design methodology that em-
ploys successive refinements of the estimated Pareto set to reduce the
exploration time, by avoiding the need to perform costly gate-level
simulations, while retaining a very high accuracy (recall over 79% and
precision over 85%).

The proposed methodology was validated by employing gate-level
simulations as the ground truth. Considering all benchmarks, over 54%
of exact matches were found for the Pareto set, and less than 30% of the
cases had less than 40% exact matches. The chosen configurations that
were not the exact matches for the Pareto set still lie close to it, with
more than 75% of configurations having the error, energy, and area
metrics matching the corresponding metrics in the Pareto set within a
5% range. The implemented tool takes only an average of slightly over
1 s to perform the design space exploration, while the same exploration
performed using the gate-level simulation takes an average of 45 min,
corresponding to a speedup of around 2500x. Moreover, the solutions
identified by applying the proposed methodology with 1% allowed
error threshold reduced the energy-to-solution by up to 20% in the
worst case and up to 95% in the best case on the tested benchmarks.

Future developments involve the application of our framework to
more complex design space exploration techniques and extending it to
support a broader set of precision tuning options.



L. Denisov et al.
CRediT authorship contribution statement

Lev Denisov: Writing — review & editing, Writing — original draft,
Visualization, Software, Methodology, Investigation, Data curation,
Conceptualization. Andrea Galimberti: Writing — review & editing,
Writing — original draft, Validation, Software, Methodology, Investiga-
tion, Conceptualization. Daniele Cattaneo: Writing — review & edit-
ing, Writing — original draft, Software, Conceptualization. Giovanni
Agosta: Writing — review & editing, Supervision, Project adminis-
tration, Funding acquisition, Conceptualization. Davide Zoni: Writ-
ing — review & editing, Supervision, Project administration, Funding
acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This work is supported by the MSC-ITN grant agreement No.
956090 (APROPOS: Approximate Computing for Power and Energy Op-
timization, http://www.apropos-itn.eu/) and by the European Union’s
Chips Joint Undertaking program under grant agreement No.
101112274 (ISOLDE: High Performance, Safe, Secure, Open-Source
Leveraged RISC-V Domain-Specific Ecosystems, https://www.isolde-
project.eu/).

References

[1] M. Makni, M. Baklouti, S. Niar, M.W. Jmal, M. Abid, A comparison and
performance evaluation of FPGA soft-cores for embedded multi-core systems,
in: 2016 11th International Design & Test Symposium, IDT, IEEE, 2016, http:
//dx.doi.org/10.1109/idt.2016.7843032.

J.-M. Gorius, S. Rokicki, S. Derrien, Design exploration of RISC-V soft-cores
through speculative high-level synthesis, in: 2022 International Conference on
Field-Programmable Technology, ICFPT, IEEE, 2022, http://dx.doi.org/10.1109/
icfpt56656.2022.9974478.

T. Kuwahara, S. Fujita, Y. Sato, Y. Sibuya, A. Pala, H. Tomio, Y. Murata, Y.
Sakamoto, On-board computers for micro-satellites, Trans. Jpn Soc. Aeronaut.
Space Sci. Aerosp. Technol. Jpn 19 (4) (2021) 485-492, http://dx.doi.org/10.
2322/tastj.19.485.

M. Vousden, J. Morris, G. McLachlan Bragg, J. Beaumont, A. Rafiev, W. Luk,
D. Thomas, A. Brown, Event-based high throughput computing: A series of case
studies on a massively parallel softcore machine, IET Comput. Digit. Tech. 17
(1) (2022) 29-42, http://dx.doi.org/10.1049/cdt2.12051.

E. Taka, G. Lentaris, D. Soudris, Improving the performance of RISC-V softcores
on FPGA by exploiting PVT variability and DVFS, in: 2022 IEEE International
Symposium on Circuits and Systems, ISCAS, IEEE, 2022, http://dx.doi.org/10.
1109/iscas48785.2022.9937320.

N. Brown, M. Jamieson, J.K.L. Lee, Experiences of running an HPC RISC-
V testbed, 2023, http://dx.doi.org/10.48550/ARXIV.2305.00512, arXiv:2305.
00512.

A. Dorflinger, M. Albers, B. Kleinbeck, Y. Guan, H. Michalik, R. Klink, C.
Blochwitz, A. Nechi, M. Berekovic, A comparative survey of open-source
application-class RISC-V processor implementations, in: Proceedings of the 18th
ACM International Conference on Computing Frontiers, CF ’21, ACM, 2021,
http://dx.doi.org/10.1145/3457388.3458657.

E. Cui, T. Li, Q. Wei, RISC-V instruction set architecture extensions: A survey,
IEEE Access 11 (2023) 24696-24711, http://dx.doi.org/10.1109/ACCESS.2023.
3246491.

S. Kalapothas, M. Galetakis, G. Flamis, F. Plessas, P. Kitsos, A survey on RISC-
V-based machine learning ecosystem, Information 14 (2) (2023) http://dx.doi.
0rg/10.3390/info14020064, URL https://www.mdpi.com/2078-2489/14/2/64.

S. Cherubin, G. Agosta, Tools for reduced precision computation: a survey, ACM
Comput. Surv. 53 (2) (2020) http://dx.doi.org/10.1145/3381039.

P. Klavik, A.C.I. Malossi, C. Bekas, A. Curioni, Changing computing paradigms
towards power efficiency, Phil. Trans. R. Soc. A 372 (2018) (2014) 20130278.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

13

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Journal of Systems Architecture 155 (2024) 103257

S. Kumar, R. Buyya, Green cloud computing and environmental sustain-
ability, in: Harnessing Green It, John Wiley & Sons, Ltd, 2012, pp.
315-339, http://dx.doi.org/10.1002/9781118305393.ch16, Ch. 16, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/9781118305393.ch16, URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/9781118305393.ch16.

G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, L. Benini, A transprecision
floating-point platform for ultra-low power computing, in: DATE 2018, 2018,
pp. 1051-1056, http://dx.doi.org/10.23919/DATE.2018.8342167.

A. Linhares, et al., A SystemC profiling framework to improve fixed-point
hardware utilization, in: 2020 33rd Symposium on Integrated Circuits and
Systems Design, SBCCI, 2020, pp. 1-6, http://dx.doi.org/10.1109/SBCCI50935.
2020.9189919.

D. Cattaneo, et al., FixM: Code generation of fixed point mathematical func-
tions, Sustain. Comput.: Inform. Syst. 29 (2021) http://dx.doi.org/10.1016/
j.suscom.2020.100478, URL http://www.sciencedirect.com/science/article/pii/
§2210537920302018.

C. Inacio, D. Ombres, The DSP decision: fixed point or floating? IEEE Spectr. 33
(9) (1996) 72-74, http://dx.doi.org/10.1109/6.535397.

P. Stanley-Marbell, et al., Exploiting errors for efficiency: A survey from circuits
to algorithms, 2018, CoRR abs/1809.05859, arXiv:1809.05859, URL http://arxiv.
org/abs/1809.05859.

R. Cmar, et al,, A methodology and design environment for DSP ASIC fixed-
point refinement, in: DATE 1999, 1999, http://dx.doi.org/10.1109/DATE.1999.
761133, URL https://doi.ieeecomputersociety.org/10.1109/DATE.1999.761133.
H. Keding, et al., FRIDGE: A fixed-point design and simulation environment, in:
Proceedings of the Conference on Design, Automation and Test in Europe, DATE
'98, 1998, pp. 429-435.

K.-I. Kum, et al., AUTOSCALER for C: an optimizing floating-point to integer C
program converter for fixed-point digital signal processors, IEEE Trans. Circuits
Syst. II 47 (9) (2000) 840-848, http://dx.doi.org/10.1109/82.868453.

P. Belanovic, M. Rupp, Automated floating-point to fixed-point conversion with
the fixify environment, in: 16th IEEE International Workshop on Rapid System
Prototyping, RSP’05, 2005, pp. 172-178, http://dx.doi.org/10.1109/RSP.2005.
15.

E. Darulova, et al., Synthesis of fixed-point programs, in: Proceedings of the 11th
ACM International Conference on Embedded Software, EMSOFT ’13, 2013, pp.
22:1-22:10.

D. Cattaneo, M. Chiari, G. Agosta, S. Cherubin, TAFFO: The compiler-
based precision tuner, SoftwareX 20 (2022) 101238, http://dx.doi.org/10.
1016/j.s0ftx.2022.101238, URL https://www.sciencedirect.com/science/article/
Ppii/S$235271102200156X.

A. Sampson, J. Bornholt, L. Ceze, Hardware-software co-design: Not just a cliché,
in: SNAPL 2015, in: Leibniz International Proceedings in Informatics (LIPIcs), vol.
32, 2015, pp. 262-273, http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.262.

P. Huang, et al., A hardware/software co-design methodology for adaptive
approximate computing in clustering and ANN learning, IEEE Open J. Comput.
Soc. 2 (2021) 38-52, http://dx.doi.org/10.1109/0JCS.2021.3051643.

R.E. Moore, et al., Introduction to Interval Analysis, Siam, 2009.

D. Cattaneo, et al., Embedded operating system optimization through floating to
fixed point compiler transformation, in: 21st Euromicro Conference on Digital
System Design, DSD, Vol. 00, 2018, pp. 172-176, http://dx.doi.org/10.1109/
DSD.2018.00042.

D. Cattaneo, et al., Architecture-aware precision tuning with multiple number
representation systems, in: 2021 58th ACM/IEEE Design Automation Conference,
DAC, 2021, pp. 673-678, http://dx.doi.org/10.1109/DAC18074.2021.9586303.
S. Cherubin, et al.,, Dynamic precision autotuning with TAFFO, ACM Trans.
Archit. Code Optim. 17 (2) (2020) http://dx.doi.org/10.1145/3388785.

G. Scotti, D. Zoni, A fresh view on the microarchitectural design of FPGA-
based RISC CPUs in the IoT Era, J. Low Power Electron. Appl. 9 (2019) 19,
http://dx.doi.org/10.3390/jlpea9010009.

D. Zoni, A. Galimberti, W. Fornaciari, An FPU design template to optimize the
accuracy-efficiency-area trade-off, Sustaina. Comput.: Inform. Syst. 29 (2021)
100450, http://dx.doi.org/10.1016/j.suscom.2020.100450, URL https://www.
sciencedirect.com/science/article/pii/$2210537920301761.

D. Zoni, A. Galimberti, Cost-effective fixed-point hardware support for RISC-V
embedded systems, J. Syst. Archit. 126 (2022) 102476, http://dx.doi.org/10.
1016/j.sysarc.2022.102476, URL https://www.sciencedirect.com/science/article/
Ppii/S1383762122000595.

L. Denisov, G. Magnani, D. Cattaneo, G. Agosta, S. Cherubin, The impact
of profiling versus static analysis in precision tuning, IEEE Access 12 (2024)
69475-69487, http://dx.doi.org/10.1109/access.2024.3401831.

S.M. Rump, Error estimation of floating-point summation and dot product, BIT
Numer. Math. 52 (2012) 201-220, http://dx.doi.org/10.1007/s10543-011-0342-
4.

L. Fousse, et al., MPFR: A multiple-precision binary floating-point library with
correct rounding, ACM Trans. Math. Software 33 (2) (2007) http://dx.doi.org/
10.1145/1236463.1236468.

G. Tagliavini, A. Marongiu, L. Benini, FlexFloat: A software library for transpre-
cision computing, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 39 (1)
(2020) 145-156, http://dx.doi.org/10.1109/tcad.2018.2883902.


http://www.apropos-itn.eu/
https://www.isolde-project.eu/
https://www.isolde-project.eu/
https://www.isolde-project.eu/
http://dx.doi.org/10.1109/idt.2016.7843032
http://dx.doi.org/10.1109/idt.2016.7843032
http://dx.doi.org/10.1109/idt.2016.7843032
http://dx.doi.org/10.1109/icfpt56656.2022.9974478
http://dx.doi.org/10.1109/icfpt56656.2022.9974478
http://dx.doi.org/10.1109/icfpt56656.2022.9974478
http://dx.doi.org/10.2322/tastj.19.485
http://dx.doi.org/10.2322/tastj.19.485
http://dx.doi.org/10.2322/tastj.19.485
http://dx.doi.org/10.1049/cdt2.12051
http://dx.doi.org/10.1109/iscas48785.2022.9937320
http://dx.doi.org/10.1109/iscas48785.2022.9937320
http://dx.doi.org/10.1109/iscas48785.2022.9937320
http://dx.doi.org/10.48550/ARXIV.2305.00512
http://arxiv.org/abs/2305.00512
http://arxiv.org/abs/2305.00512
http://arxiv.org/abs/2305.00512
http://dx.doi.org/10.1145/3457388.3458657
http://dx.doi.org/10.1109/ACCESS.2023.3246491
http://dx.doi.org/10.1109/ACCESS.2023.3246491
http://dx.doi.org/10.1109/ACCESS.2023.3246491
http://dx.doi.org/10.3390/info14020064
http://dx.doi.org/10.3390/info14020064
http://dx.doi.org/10.3390/info14020064
https://www.mdpi.com/2078-2489/14/2/64
http://dx.doi.org/10.1145/3381039
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb11
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb11
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb11
http://dx.doi.org/10.1002/9781118305393.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118305393.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118305393.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118305393.ch16
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118305393.ch16
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118305393.ch16
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118305393.ch16
http://dx.doi.org/10.23919/DATE.2018.8342167
http://dx.doi.org/10.1109/SBCCI50935.2020.9189919
http://dx.doi.org/10.1109/SBCCI50935.2020.9189919
http://dx.doi.org/10.1109/SBCCI50935.2020.9189919
http://dx.doi.org/10.1016/j.suscom.2020.100478
http://dx.doi.org/10.1016/j.suscom.2020.100478
http://dx.doi.org/10.1016/j.suscom.2020.100478
http://www.sciencedirect.com/science/article/pii/S2210537920302018
http://www.sciencedirect.com/science/article/pii/S2210537920302018
http://www.sciencedirect.com/science/article/pii/S2210537920302018
http://dx.doi.org/10.1109/6.535397
http://arxiv.org/abs/1809.05859
http://arxiv.org/abs/1809.05859
http://arxiv.org/abs/1809.05859
http://arxiv.org/abs/1809.05859
http://arxiv.org/abs/1809.05859
http://dx.doi.org/10.1109/DATE.1999.761133
http://dx.doi.org/10.1109/DATE.1999.761133
http://dx.doi.org/10.1109/DATE.1999.761133
https://doi.ieeecomputersociety.org/10.1109/DATE.1999.761133
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb19
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb19
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb19
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb19
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb19
http://dx.doi.org/10.1109/82.868453
http://dx.doi.org/10.1109/RSP.2005.15
http://dx.doi.org/10.1109/RSP.2005.15
http://dx.doi.org/10.1109/RSP.2005.15
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb22
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb22
http://dx.doi.org/10.1016/j.softx.2022.101238
http://dx.doi.org/10.1016/j.softx.2022.101238
http://dx.doi.org/10.1016/j.softx.2022.101238
https://www.sciencedirect.com/science/article/pii/S235271102200156X
https://www.sciencedirect.com/science/article/pii/S235271102200156X
https://www.sciencedirect.com/science/article/pii/S235271102200156X
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.262
http://dx.doi.org/10.1109/OJCS.2021.3051643
http://refhub.elsevier.com/S1383-7621(24)00194-2/sb26
http://dx.doi.org/10.1109/DSD.2018.00042
http://dx.doi.org/10.1109/DSD.2018.00042
http://dx.doi.org/10.1109/DSD.2018.00042
http://dx.doi.org/10.1109/DAC18074.2021.9586303
http://dx.doi.org/10.1145/3388785
http://dx.doi.org/10.3390/jlpea9010009
http://dx.doi.org/10.1016/j.suscom.2020.100450
https://www.sciencedirect.com/science/article/pii/S2210537920301761
https://www.sciencedirect.com/science/article/pii/S2210537920301761
https://www.sciencedirect.com/science/article/pii/S2210537920301761
http://dx.doi.org/10.1016/j.sysarc.2022.102476
http://dx.doi.org/10.1016/j.sysarc.2022.102476
http://dx.doi.org/10.1016/j.sysarc.2022.102476
https://www.sciencedirect.com/science/article/pii/S1383762122000595
https://www.sciencedirect.com/science/article/pii/S1383762122000595
https://www.sciencedirect.com/science/article/pii/S1383762122000595
http://dx.doi.org/10.1109/access.2024.3401831
http://dx.doi.org/10.1007/s10543-011-0342-4
http://dx.doi.org/10.1007/s10543-011-0342-4
http://dx.doi.org/10.1007/s10543-011-0342-4
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1109/tcad.2018.2883902

L. Denisov et al.

[37]

[38]

L.-N. Pouchet, et al., Polybench: The polyhedral benchmark suite, 437 (2012) 1,
URL: http://www.cs.ucla.edu/pouchet/software/polybench.

D. Cattaneo, A. Maggioli, G. Magnani, L. Denisov, S. Yang, G. Agosta, S.
Cherubin, Mixed precision in heterogeneous parallel computing platforms via
delayed code analysis, in: Embedded Computer Systems: Architectures, Modeling,
and Simulation, Springer Nature Switzerland, 2023, pp. 469-477, http://dx.doi.
org/10.1007/978-3-031-46077-7_33.

14

[39]

[40]

Journal of Systems Architecture 155 (2024) 103257

J. Eldon, C. Robertson, A floating point format for signal processing, in: ICASSP
’82. IEEE International Conference on Acoustics, Speech, and Signal Processing,
Institute of Electrical and Electronics Engineers, 1982, http://dx.doi.org/10.
1109/icassp.1982.1171532.

E. Goubault, Static Analyses of the Precision of Floating-Point Operations,
Springer Berlin Heidelberg, 2001, pp. 234-259, http://dx.doi.org/10.1007/3-
540-47764-0_14.


http://www.cs.ucla.edu/pouchet/software/polybench
http://dx.doi.org/10.1007/978-3-031-46077-7_33
http://dx.doi.org/10.1007/978-3-031-46077-7_33
http://dx.doi.org/10.1007/978-3-031-46077-7_33
http://dx.doi.org/10.1109/icassp.1982.1171532
http://dx.doi.org/10.1109/icassp.1982.1171532
http://dx.doi.org/10.1109/icassp.1982.1171532
http://dx.doi.org/10.1007/3-540-47764-0_14
http://dx.doi.org/10.1007/3-540-47764-0_14
http://dx.doi.org/10.1007/3-540-47764-0_14

	Design-time methodology for optimizing mixed-precision CPU architectures on FPGA
	Introduction
	Related work
	Background
	The taffo precision tuning framework
	Mixed-precision hardware architecture

	Methodology
	Hardware characterization
	Software requirement collection
	Error estimation
	Static formula error estimation
	Linear model error estimation
	Simplified simulation error estimation

	Energy estimation
	Area metrics
	Configuration selection
	Dynamic configuration selection refinement
	Configuration verification

	Experimental Evaluation
	Software setup
	Hardware setup
	Experiment: Error estimation
	Experiment: HW/SW co-design
	Optimization outcomes
	Optimization time

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


