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Abstract. In this work we focus on two different methods to deal with parametrized partial
differential equations in an efficient and accurate way. Starting from high fidelity approxima-
tions built via the hierarchical model reduction discretization, we consider two approaches,
both based on a projection model reduction technique. The two methods differ for the algo-
rithm employed during the construction of the reduced basis. In particular, the former employs
the proper orthogonal decomposition, while the latter relies on a greedy algorithm according
to the certified reduced basis technique. The two approaches are preliminarily compared on
two-dimensional scalar and vector test cases.

1. Introduction

The interest for fluid dynamics simulations is growing more and more in the scientific commu-
nity and in the nowadays society, both in terms of spread and of relevance. This is, most of all,
due to practical issues and time reasons. Physical experiments are often very expensive and time
demanding so that, for some specific applications (e.g., in naval or aeronautic applications as
well as in medical surgery planning), they are not well-suited, and numerical simulations become
the actual tool for modeling reliable scenarios in such contexts.

Although the computational power is continuously growing, standard methods in Computa-
tional Fluid Dynamics (CFD), such as direct numerical simulations based on finite elements,
may be very demanding in terms of computational time and numerical sources, especially when
interested in simulating challenging phenomena in complex domains with a certain accuracy, or,
even more, when dealing with multi-query or parametric frameworks [24].

For these reasons, many different methods have been proposed in the scientific panorama
with the aim of offering a compromise between modeling accuracy and computational efficiency.
Model reduction techniques represent a relevant solution in such a direction [24]. Some of them
are strictly intertwined with the model of the phenomenon at hand, while others perform the
reduction only under specific physical assumptions on the described configuration [36, 9, 8].

In this work, we focus on the Hierarchical Model (HiMod) reduction technique [17, 31, 30, 34].
This procedure has been devised to describe CFD configurations where a principal dynamics
overwhelms the transverse ones, with a strong interest for hemodynamic configurations [5, 20, 32].
The leading dynamics is aligned with the main stream of the flow, while transverse dynamics are
generally induced by geometric irregularities in the computational domain and play a role only
in localized areas. In practice, the idea is to discretize the different dynamics by resorting to
different numerical methods, in the spirit of a separation of variable. For instance, in the original
proposal of HiMod reduction, the main direction of the flux is discretized with 1D finite elements,
while the transverse dynamics are reconstructed by using few degrees of freedom via a suitable
modal basis. This separate discretization, independently of the dimension of the (full) problem
at hand, leads to solve a system of coupled 1D problems, whose coefficients include the effect of
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the transverse dynamics. This ensures to the HiMod reduction a reliability which is considerably
higher compared with standard 1D reduced models, and at a computational cost which remains
absolutely affordable. The computational advantages provided by a HiMod discretization have
been also verified for simulations in real geometries [3, 20, 27]. In particular, HiMod reduction
guarantees a linear dependence of the computational cost on the number of degrees of freedom
in contrast to a standard full finite element model which demands a suitable power of such a
number.

The interest of this paper is on a parametric setting, where the reference model, coinciding
with a parametric Partial Differential Equation, has to be solved several times, for many different
values of the parameter. The goal we pursue is to approximate, for each value of the parame-
ter, the HiMod discretization by a modeling procedure which turns out to be computationally
cheaper than HiMod reduction itself.
A first effort in such a direction is proposed in [6, 26]. The authors apply a Proper Orthogonal
Decomposition procedure to HiMod approximations, to extract a reduced basis which allows us
to predict the HiMod discretization associated with any value of the parameter. The new pro-
cedure, named HiPOD, is numerically investigated on scalar elliptic problems and on the Stokes
equations in [6]. In this paper, we investigate a new procedure, alternative to HiPOD, to pursue
the same goal of managing, in a cheap way, a parametric framework. In particular, we aim at
exploiting the computational advantages provided by a greedy algorithm in the construction of
a reduced basis [16, 22]. For this purpose, we combine HiMod reduction with the Reduced Basis
(RB) approach [37, 21], into the new technique called HiRB. HiPOD or HiRB approximations
considerably decrease the computational effort due to the lower dimension of the high fidelity
problems. According to an offline/online paradigm, the offline stage remains the bottleneck from
a practical viewpoint. However, the employment of HiMod discretizations as high fidelity solu-
tions significantly reduces the computational effort of this phase. Finally, a system of very small
order is solved during the online phase and yields a reliable approximation for the parametric
problem at hand.

The paper is organized as follows. Section 2 introduces the HiMod setting, and particular-
izes such a procedure both to a scalar advection-diffusion-reaction problem and to the Stokes
equations. Sections 3 and 4 exemplify the HiPOD and the HiRB procedures, respectively on
the test problems introduced in the previous section. Particular care is devoted to the inf-sup
condition characterizing the discretization of the Stokes problem. Actually, although the high
fidelity solutions satisfy the Ladyzhenskaya-Brezzi-Babuška (LBB) condition, this is not ensured
either by the POD and the reduced basis formulations. To overcome this issue, we propose here
to resort to the supremizer enrichment stabilization technique [4]. Section 5 performs a pre-
liminary comparison between HiPOD and HiRB, starting from the (two-dimensional) test cases
considered throughout the paper. Finally, some conclusions are drawn in Section 6 and future
developments are summarily itemized.

2. The HiMod setting

We summarize here the main features of the Hierarchical Model (HiMod) reduction technique,
following the original setting in [17, 31, 34, 30]. We assume that the d-dimensional domain, Ω,
with d = 2, 3, coincides with the fiber bundle

(1) Ω =
⋃

x∈Ω1D

{x} × γx,

where Ω1D is the supporting fiber aligned with the main flow, while γx denotes the (d − 1)-
dimensional transverse fiber at point x ∈ Ω1D, parallel to the secondary dynamics. In practice,
computations are performed in a reference domain, Ω̂, so that Ψ(Ω) = Ω̂, Ψ : Ω → Ω̂ being a
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Figure 1. HiMod map between the physical and the reference domain.

sufficiently regular map (see Figure 1). In general, domain Ω̂ coincides with a rectangle (d = 2) or
with a right circular cylinder (d = 3). For simplicity, we consider a rectilinear axis Ω1D = (0, L)
with L > 0, so that Ψ(x,y) = (x,ψx(y)), for any (x,y) ∈ Ω. Map Ψ preserves the supporting
fiber and deforms only the transverse shape of the domain via the map ψx : γx → γ̂ between
the generic, γx , and the reference, γ̂, transverse section. This induces a decomposition similar
to (1) on the reference domain as well, being Ω̂ =

⋃
x∈Ω1D

{x}× γ̂. We refer to [29, 32, 5] for the
more general case of a curvilinear fiber Ω1D.

In the next sections, we apply the HiMod discretization to a scalar and to a vector problem,
in order to detail the involved procedures.

2.1. HiMod reduction for advection-diffusion-reaction problems. We consider as full
problem to be reduced the generic scalar advection-diffusion-reaction (ADR) problem, find u :
Ω→ R such that

(2)



−∇ ·
(
ν∇u

)
(x,y) + b(x,y) · ∇u(x,y) + σ(x,y)u(x,y) = f(x,y) in Ω,

u(x,y) = g(x,y) on ΓD,

ν(x,y)
∂u

∂n
(x,y) = h(x,y) on ΓN ,

ν(x,y)
∂u

∂n
(x,y) + ρ(x,y)u(x,y) = l(x,y) on ΓR,

with ΓD, ΓN , ΓR portions of the boundary ∂Ω of Ω, such that
◦
ΓD ∩

◦
ΓN ∩

◦
ΓR= ∅ and ΓD ∪

ΓN ∪ ΓR = ∂Ω, n being the unit outward normal vector to ∂Ω. Concerning the problem data,
ν ∈ L∞(Ω), with ν(x,y) ≥ ν0 > 0 a.e. in Ω, denotes the diffusion coefficient, b = [bx, by]T ∈
[L∞(Ω)]d, with ∇ · b ∈ L2(Ω), the advective field, σ ∈ L2(Ω), with σ(x,y) ≥ 0 a.e. in Ω,
the reaction, f ∈ L2(Ω) the forcing term, g ∈ H1/2(ΓD), h ∈ L2(ΓN ) and l ∈ L2(ΓR) are
the boundary data, with ρ ∈ L∞(ΓR) and where standard notation are adopted for function
spaces [15].

HiMod reduction applies to the weak form of the full problem,

(3) find u ∈ V : a(u, v) = F (v) ∀v ∈ V,

with V = H1
ΓD

(Ω),

(4)
a(u, v) =

∫
Ω

ν∇u · ∇v dΩ +

∫
Ω

b · ∇uv dΩ +

∫
Ω

σuv dΩ +

∫
ΓR

ρuv dS

F (v) =

∫
Ω

fv dΩ +

∫
ΓR

lv dS +

∫
ΓN

hv dS
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where, to simplify notation, we assume g = 0 in (2) and we drop the dependence on (x,y). The
assumptions above on the problem data ensure the well-posedness of (3) [15].

Thus, the HiMod formulation for problem (2) can be stated as

(5) find um ∈ Vm : a(um, vm) = F (vm) ∀vm ∈ Vm,
for a certain m ∈ N+, and with

(6) Vm =

{
vm(x,y) =

m∑
k=1

ṽk(x)ϕk(ψx(y)), with ṽk ∈ V h1D, x ∈ Ω1D, y ∈ γx
}
,

the HiMod space, where V h1D is a one-dimensional (1D) discrete subspace of H1(Ω1D) associated
with a subdivision, Th, of Ω1D, {ϕk}mk=1 is a modal basis of functions defined on γ̂, orthonormal
with respect to the L2(γ̂)- scalar product, and m is the modal index, i.e., the number of modes
employed to model the transverse dynamics. In the sequel, we identify V h1D with the standard
space of the (continuous) finite elements (FE) [15], while referring to [29, 32, 5] for different
discretizations. As far as the choice of m is concerned, it can be fixed a priori, thanks to
heuristic considerations or to a partial knowledge of the full problem, or a posteriori, driven by
a modeling error analysis as in [33, 35].

The HiMod space has to be endowed with a conformity and a spectral approximability as-
sumption to ensure the well-posedness of formulation (5), as well as a standard density hypothesis
has to be advanced on the discrete space V h1D to guarantee the convergence of the HiMod ap-
proximation, um, to u (we refer to [31] for the details).

Concerning the boundary conditions completing problem (2), we have to distinguish between
data assigned on the inflow/outflow boundaries and on the lateral surface of Ω. In the first case,
we employ a modal expansion of the data to be imposed in an essential way. With reference to
lateral boundary conditions, we resort to the approach proposed in [3], where the authors set
a general way to incorporate, essentially, the lateral boundary data by defining a customized
basis referred to as an educated modal basis. The effectiveness of such a procedure is successfully
investigated both from a theoretical and a numerical point of view in the same work. In the
numerical assessment below, we resort to an educated modal basis to manage the lateral boundary
conditions.

From a computational viewpoint, discretization (5) turns the full model (2) into a system of m
coupled 1D problems defined on Ω1D. This represents the strength-point of a HiMod formulation
due to the expected saving in terms of computational effort, for m reasonably small. Actually,
we are led to solve the HiMod linear system

(7) Amum = fm,

where Am ∈ RmNh×mNh and fm ∈ RmNh are the HiMod stiffness matrix and right-hand side
associated with the bilinear and linear forms in (4), with Nh = dim(V h1D), and where um ∈ RmNh

collects the (unknown) coefficients of the HiMod expansion

(8) um(x,y) =
m∑
k=1

Nh∑
i=1

ũk,iθi(x)ϕk(ψx(y)),

with {θi}Nh
i=1 the FE basis. For a full characterization of system (7), we refer to [17, 31].

To qualitatively investigate the reliability of the HiMod reduction, we solve problem (2) by
means of a FE solver and of a HiMod discretization on the two-dimensional (2D) domain, Ω,
identified by the map ψx(y) = y − 0.2 sin

(
3πx/(2L)

)
, with x ∈ [0, 4], L = 4 and Ω̂ = (0, 4) ×

(−0.5, 0.5). Concerning the problem data, we assign ν = 5, b = [20, 75]T , σ = 25, f = f(x, y) =
1.8χS1

(x, y)−1.8χS2
(x, y), with χω the characteristic function associated with the subset ω ⊂ Ω,

S1 = {(x, y) : 0.5(x−0.75)2 +0.4y2−0.02 < 0}, S2 = {(x, y) : 0.5(x−1.5)2 +0.4y2−0.02 < 0};
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Figure 2. ADR test case: comparison between the full solution (left) and the
HiMod approximation, u8, (right).

ΓD and ΓN are identified with the inflow and outflow boundary, respectively while ΓR coincides
with the lateral surface, being g = h = l = 0 and ρ = 1.
The FE solver employs affine finite elements on a 2D unstructured mesh consisting of 12800
triangles. The HiMod reduction discretizes the main stream with linear finite elements associated
with a uniform subdivision of the supporting fiber into 80 intervals, while resorting to m = 8
educated modal basis functions in the transverse direction. Figure 2 compares the FE with the
HiMod approximation and highlights the good qualitative matching between the two solutions.
A quantitative investigation of the HiMod procedure is beyond the goal of this paper and can
be found, e.g., in [31, 3, 20], together with a modeling convergence analysis both with respect to
the modal expansion and the FE discretization.

2.2. HiMod reduction for the Stokes equations. In this section we generalize the HiMod
procedure to a vector problem, namely, to the Stokes equations, find u : Ω→ Rd and p : Ω→ R
such that

(9)



−∇ ·
(
2νD(u)

)
(x,y) +∇p(x,y) = f(x,y) in Ω,

∇ · u(x,y) = 0 in Ω,

uy(x,y) = 0 on Γin ∪ Γout,

−∂ux
∂x

(x,y) + p(x,y) = −Cin(x,y) on Γin,

−∂ux
∂x

(x,y) + p(x,y) = Cout(x,y) on Γout,

u(x,y) = 0 on Γw,

where u = (ux, uy)T and p denote the velocity and the pressure of the flow, ν > 0 is the
kinematic viscosity, D(u) = 0.5

(
∇u + (∇u)T

)
is the strain rate, f = [fx, fy]T is the force per

unit mass, and Cin and Cout are the inflow and outflow data, respectively. The boundary ∂Ω
is partitioned so that the inflow and outflow sections, Γin and Γout, coincide with the fibers γ0

and γL, respectively while Γw denotes the lateral walls
⋃
x∈Ω1D

{x} × ∂γx. On Γin and Γout we
impose a non-homogeneous tangential Neumann condition, with Cin and Cout constant values,
and we assume the transverse component of the velocity to be null. Finally, a no-slip boundary
condition is enforced on the velocity along the wall surface.

By introducing the bilinear forms a(·, ·) : V × V → R and b(·, ·) : V ×Q→ R, defined as

a(u,v) =

∫
Ω

2νD(u) : ∇v dΩ, b(u, q) =

∫
Ω

∇ · u q dΩ,
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and the functional F (·) : V → R, given by

F (v) =

∫
Ω

f · v dΩ +

∫
∂Ω

Cn · v dS,

being C = −Cin on Γin and C = Cout on Γout, with V = {v ∈ H1(Ω;Rd) : vy = 0 on Γin ∪
Γout and v = 0 on Γw} and Q = L2(Ω), the weak form of (9) can be stated as find u ∈ V , p ∈ Q
such that

(10)

{
a(u,v) + b(v, p) = F (v) ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q,

where the notation is simplified by removing the dependence on (x,y) and where the natural
boundary conditions still have to be properly included in F .

The generalization of a HiMod reduction to the Stokes equations deserves particular attention,
especially with reference to the two-field formulation involved by saddle point problems [11, 12].
While the search for inf-sup (or LBB) compatible spaces for velocity and pressure is largely
investigated for standard finite element and spectral discretizations [11, 12, 14], we are not aware
of any theoretical result for hybrid methods involving both the techniques. In [20, 27], empirical
criteria to select the HiMod velocity and pressure are provided and numerically checked. A first
theoretical assessment of these criteria is currently under investigation [7].
The reduced spaces involved in the HiMod discretization of the Stokes equations are

Vmu =
{
vmu(x,y) = (vx,mu(x,y), vy,mu(x,y))T : vx,mu ∈ Vmu , vy,mu ∈ [Vmu ]d−1

}
,

Qmp
=
{
qmp

(x,y) =

mp∑
k=1

q̃k(x)ηk(ψx(y)), with q̃k ∈ Qh1D, x ∈ Ω1D, y ∈ γx
}
,

for the velocity and the pressure, respectively where space Vmu is the scalar space defined as in
(6). Notice that we employ the same (educated) modal basis, {ϕk}mu

k=1, for all the components
of the HiMod velocity, while we resort to the modal basis {ηk}

mp

k=1 to discretize the pressure.
For what concerns the compatibility of the velocity with the pressure HiMod spaces, in this

work we adopt the empirical criterion in [3, 20], so that we set mu = mp + 2 and we choose the
1D FE pair (V h1D, Q

h
1D) as the Taylor-Hood P2/P1 elements [11]. We denote by Nh,u and Nh,p

the dimension of V h1D and Qh1D, so that the dimension of Vmu and Qmp becomes dmuNh,u and
mpNh,p, respectively.

Let us now describe the algebraic formulation for the HiMod discretization of the Stokes
problem. After assembling the matrices Amu ∈ RdmuNh,u×dmuNh,u , Bmp,mu ∈ RmpNh,p×dmuNh,u

and the vector fmu ∈ RdmuNh,u associated with the HiMod discretization of the forms a(u,v),
b(u, q) and F (v) in (10), the linear system

(11)
[
Amu BTmp,mu

Bmp,mu 0

] [
umu

pmp

]
=

[
fmu

0

]
has to be solved, where umu ∈ RdmuNh,u and pmp

∈ RmpNh,p collect the unknown coefficients of
the HiMod expansion for the velocity, umu , and the pressure, pmp

, respectively and with 0 the
null vector in RmpNh,p .

We conclude this section by exemplifying the HiMod procedure on a benchmark Stokes test
case. The reference domain is Ω̂ = (0, L)× (−0.5, 0.5) ⊂ R2, while the map ψx is given by

ψx(y) =
y

1 + 2
5 sin

(
6πx
L + π

2

)
2
H

,

so that Ω coincides with a sinusoidal domain. In particular, we select L = 6 and H = 1. Fur-
thermore, we assign ν = 5, f = [3, 0]T , Cin = 10, Cout = 0.
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Concerning the HiMod discretization, we enrich the Taylor-Hood P2/P1 discretization of the
mainstream by resorting to mp = 5 and mu = 7 educated modes to discretize the transverse
components of the pressure and the velocity, respectively. In particular, both the finite ele-
ment approximations rely on a uniform subdivision of the supporting fiber into 80 subintervals.
Figures 3-5 compare the HiMod approximation with a full P2/P1 FE solution computed on a
unstructured mesh consisting of 12800 elements. The two discretizations lead to fully comparable
approximations both in terms of velocity and pressure.

Figure 3. Stokes test case: comparison between the full solution (left) and
the HiMod approximation, u7/p5, (right) for the horizontal component of the
velocity.

Figure 4. Stokes test case: comparison between the full solution (left) and the
HiMod approximation, u7/p5, (right) for the vertical component of the velocity.

Figure 5. Stokes test case: comparison between the full solution (left) and the
HiMod approximation, u7/p5, (right) for the pressure.

Remark 2.1. As investigated more into the details in [42], the conservative form (9) of the
Stokes problem allows one to obtain a more accurate HiMod approximation with respect to a non-
conservative formulation. This is due to the coupling between the velocity components (namely,
between the off-diagonal blocks of the HiMod matrix) ensured by the conservative form.
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Remark 2.2. Cylindrical domains demand a careful selection of the modal basis as investigated
in [20], where a polar coordinate system is employed to model the transverse dynamics in circular
and elliptic pipes. As a first alternative, one can resort to the Transversally Enriched Pipe
Element Method (TEPEM) [27]. In such a case, the physical domain is mapped to a reference
slab, so that the modal basis coincides with the tensor product of the one-dimensional modal
functions. In [20] TEPEM is compared with the HiMod reduction based on polar coordinates to
highlight pros and cons of the two approaches. As expected, TEPEM turns out to be easier to
implement but less accurate than HiMod, especially in the presence of highly oscillatory flows.
The higher reliability characterizing the HiMod scheme can be ascribed to the tight correspondence
between the domain geometry and the modal basis. Another alternative to a polar coordinate
system is represented by the isogeometric version of the HiMod approach, as recently investigated
in [5] for patient-specific geometries.

3. The HiPOD approach

HiMod reduction allows one to recast a d-dimensional problem as a system of 1D problems.
Even though this leads to a computational benefit, the overall computational cost might be
still not negligible when dealing with multi-query or inverse problems or, more in general, with
parametrized settings. In this context, to further lighten the computational effort, we rely on
projection-based model reduction techniques, by properly combining the HiMod discretization
with the Proper Orthogonal Decomposition (POD). In particular, we adopt the standard of-
fline/online paradigm [21]. The offline phase is meant to build the POD basis, starting from
the hierarchical reduction of a certain number of full problems associated with a sampling of
the parameter domain. The online phase approximates the HiMod discretization for any new
value of the parameter by employing the POD basis. The combination between HiMod and POD
justifies the name of this method, HiPOD [6, 26, 28].

3.1. HiPOD reduction for ADR problems. We generalize problem (3) to a parameter de-
pendent setting, so that the new problem is

(12) find u(µ) ∈ V : a(u(µ), v;µ) = F (v;µ) ∀v ∈ V,

where µ ∈ D ⊂ RP denotes a vector of P real numbers collecting the problem parameters, and
D is the parameter domain.

3.1.1. The offline phase. We choose the sampling S = {µ(1),µ(2), . . . ,µ(M)} ⊂ DM for the
parameter µ. For each value µ(j) ∈ S, we approximate the corresponding solution, u(µj), to
(12) by computing the HiMod discretization, um(µ(j)), for a certain value, m, of the modal
index. According to the modal expansion in (8), this yields the M vectors

um(µ(j)) = [ũµ
(j)

1,1 , . . . , ũµ
(j)

1,Nh
, . . . , ũµ

(j)

m,1 , . . . , ũ
µ(j)

m,Nh
]T ∈ RmNh j = 1, . . . ,M
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collecting, by mode, the HiMod coefficients. These vectors are employed to assemble the response
matrix

U =
[
um(µ(1)),um(µ(2)), . . . ,um(µ(M))

]
=



ũµ
(1)

1,1 ũµ
(2)

1,1 . . . ũµ
(M)

1,1
...

...
...

...
ũµ

(1)

1,Nh
ũµ

(2)

1,Nh
. . . ũµ

(M)

1,Nh

...
...

...
...

ũµ
(1)

m,1 ũµ
(2)

m,1 . . . ũµ
(M)

m,1
...

...
...

...
ũµ

(1)

m,Nh
ũµ

(2)

m,Nh
. . . ũµ

(M)

m,Nh


∈ RmNh×M ,

which will be used to extract the POD basis. To this aim, we define the correlation matrix
associated with U ,

(13) C = UTXm,u U ∈ RM×M ,

with Xm,u ∈ RmNh×mNh the HiMod matrix associated to the inner product in Vm. Then, we
consider the spectral decomposition of matrix C, so that

(14) Cϕ∗k = λkϕ
∗
k k = 1, . . . ,M,

with ϕ∗k/λk the k-th eigenvector/eigenvalue pair of C, being ϕ∗k ∈ RM and λk ∈ R. The POD
basis is thus identified by the vectors

(15) ϕk =
1

λk
Uϕ∗k ∈ RmNh k = 1, . . . , N,

with N ≤M . Integer N can be selected driven by heuristic considerations (e.g., by studying the
trend of the spectrum of C) or by an energy criterion, for instance, we pick N such that

E(N) > 1− ε with E(N) =

∑N
i=1 λi∑M
i=1 λi

,

and ε a user-defined tolerance. Independently of the adopted criterion, we denote the reduced
POD space by Vm,N = span{ϕ1, . . . ,ϕN}, and the matrix collecting, by column, the POD basis
functions by Φm,N = [ϕ1, . . . ,ϕN ] ∈ RmNh×N .

Remark 3.1. As an alternative to the approach based on the correlation matrix, one can exploit
directly the spectral properties of the response matrix U to extract the reduced POD basis, by
setting Xm,u = I in (13), with I ∈ RmNh×mNh the identity matrix [6]. This two-fold possibility
is justified by the relation between the singular vectors of U and the eigenvectors of C [19].

3.1.2. The online phase. Goal of the online phase is to build a HiMod approximation to problem
(12) for any value µ ∈ D of the parameter, by skipping the solution of the associated HiMod
system (7),

(16) Am(µ)um(µ) = fm(µ),

where the dependence on the parameter µ has been highlighted. This task is accomplished by
means of a projection step, i.e., by solving the system

(17) Am,N (µ)um,N (µ) = fm,N (µ),

with um,N (µ) ∈ RN ,

Am,N (µ) = ΦTm,NAm(µ)Φm,N ∈ RN×N , fm,N (µ) = ΦTm,N fm(µ) ∈ RN .
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Figure 6. ADR test case: eigenvalue trend of the correlation matrix for D =
D1 (left) and D = D2 (right).

Notice that the order of system (17) is significantly smaller compared with the HiMod system
(16), being, in general, N � mNh. Successively, um,N (µ) is projected back to the original
HiMod space, thus obtaining the approximation

um(µ) ≈ Φm,Num,N (µ) := um,N,POD(µ).

In the sequel, we will denote by um,N,POD(µ) the HiPOD approximation for the HiMod solution
um(µ) associated with vector um,N,POD(µ). As known, the bottleneck of the projection approach
lies in the assembly of Am(µ) and fm(µ). An efficient assembly can be obtained under an affine
parameter dependence hypothesis. This requirement will be accomplished in the considered test
cases. Alternative procedures, such as the empirical interpolation method, are adopted in more
complex cases [21].

3.1.3. Numerical assessment. We apply the HiPOD procedure to the test case in Section 2.1.
We remind that the high fidelity solution is provided, in such a case, by a HiMod approximation.

We identify the parameter µ in (12) with the vector µ = [ν, bx, by, σ]T , which collects some
data of problem (2). Concerning the parameter domain, we pick two ranges characterized by a
significantly different amplitude, i.e.,

(18) D1 = [1, 100]4, D2 = [1, 10]× [15, 25]× [70, 80]× [20, 30].

In both the cases, we randomly select 100 different samples, so that S = {µ(1),µ(2), . . . ,µ(100)}.
During the offline phase, we hierarchically reduce the corresponding 100 ADR problems, by

employing the same HiMod discretization as in Figure 2, right.
The number N of POD basis functions is picked by analyzing the spectrum of the correlation
matrix C (see Figure 6). The eigenvalues quickly decrease. For the sake of comparison, we select
N = 20 for both ranges. The corresponding eigenvalue, normalized to the maximum one, is
O(10−6) and O(10−7) for D1 and D2, respectively.

Then, we run the online phase to approximate the HiMod solution associated with the pa-
rameter µ = [5, 20, 75, 25]T , i.e., the solution in Figure 2, right.

By comparing the contour plot of the HiPOD approximation in Figure 7 (left for D1, right
for D2) with the HiMod discretization in Figure 2, right, we recognize that the global trend of
the HiMod solution is correctly detected by both the HiPOD solutions. As shown in Figure 8,
a more quantitative investigation based on the distribution of the error u8(µ) − u8,20,POD(µ)
shows that the solution associated with the smallest parameter domain is, as expected, more
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accurate (about of two orders of magnitude) with respect to the approximation obtained when
dealing with D1. The highest accuracy is particularly evident in correspondence with the outflow
boundary. In Section 5 we provide a further error analysis for this test case, based on a random
sampling.

Figure 7. ADR test case: HiPOD approximation associated with D1 (left) and
D2 (right).

Figure 8. ADR test case: HiPOD modeling error associated with D1 (left)
and D2 (right).

3.2. HiPOD reduction for the Stokes equations. We generalize problem (10) to a param-
eter dependent setting as: find u(µ) ∈ V , p(µ) ∈ Q such that

(19)

{
a(u(µ),v;µ) + b(v, p(µ);µ) = F (v;µ) ∀v ∈ V,
b(u(µ), q;µ) = 0, ∀q ∈ Q.

3.2.1. The offline phase. As in Section 3.1.1, we assume to deal with a training set S consisting
of M different parameters. According to a segregated approach, we generate the POD basis
for the velocity and for the pressure independently. In [6] it has been shown that a segregated
procedure is more effective compared with a monolithic approach, where a unique POD basis
(for both velocity and pressure) is built. Moreover, we resort to a vector-valued POD basis for
the velocity, in contrast to what has been done in Section 2.2, where the same (scalar) modal
basis is adopted for each component of the velocity. This choice is consistent with standard
reduced order modeling techniques in a finite element framework [4, 40]. Thus, we assemble two
distinct response matrices, Uu ∈ RdmuNh,u×M for the velocity and Up ∈ RmpNh,p×M for the
pressure. Then, by mimicking the scalar case, we compute the correlation matrices associated
with Uu and Up, and we retain the first Nu and Np eigenvectors for the velocity and for the
pressure, respectively. This leads us to identify the reduced order spaces Vmu,Nu and Qmp,Np

,
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together with the corresponding matrices Υmu,Nu and Πmp,Np collecting, by column, the POD
basis functions for velocity and pressure, respectively.

The basic HiPOD procedure is here modified to take into account the stability issue charac-
terizing the approximation provided by a projection of the Stokes equations. Actually, it turns
out that, even though the solutions involved in the offline phase are inf-sup stable, this does
not guarantee a priori the inf-sup condition to the reduced space, with the possible generation
of spurious pressure modes. Following [4, 40], to recover the inf-sup property for the POD ap-
proximation, we enrich the velocity space Vmu,Nu with the so-called supremizer solutions. In
particular, to preserve the offline/online paradigm, we properly modify the procedure proposed
in [4]. Let pmp

(µ(i)) be the i-th column of matrix Up, for i = 1, . . . ,M . We solve the additional
HiMod systems

(20) Xmu,u smu(µ(i)) = BTmp,mu
(µ(i))pmp(µ(i)),

for = 1, . . . ,M , thus obtaining theM supremizer solutions smu(µ(i)) ∈ RdmuNh,u . Here Xmu,u ∈
RdmuNh,u×dmuNh,u denotes the HiMod matrix associated with the inner product in Vmu (so that
we use the same modal basis for both velocity and supremizers), while Bmp,mu(µ) encodes the
HiMod discretization of the bilinear form b(v, p(µ);µ). Successively, we assemble the response
matrix Us ∈ RdmuNh,u×M associated with the supremizers together with the corresponding
correlation matrix, and we build the matrix Ξmu,Ns collecting the first Ns POD supremizer
basis functions, with Ns < M . Finally, we define the matrix

Φmu,Nu+Ns = [Υmu,Nu ,Ξmu,Ns ] ∈ RdmuNh,u×(Nu+Ns)

and the enriched velocity space Vmu,Nu+Ns spanned by the columns of Φmu,Nu+Ns . Throughout
the paper, we will refer to Vmu,Nu+Ns simply as to the reduced velocity space. Furthermore, we
will always assume Nu = Ns = Np = N .

3.2.2. The online phase. We extend here the procedure introduced in Section 3.1.2. For any
µ ∈ D, with µ 6= µ(i) and i = 1, . . . ,M , rather than solving the corresponding HiMod system

(21)
[
Amu(µ) BTmp,mu

(µ)

Bmp,mu(µ) 0

] [
umu(µ)
pmp

(µ)

]
=

[
fmu(µ)

0

]
,

we rely on the reduced system

(22)
[
Amu,N (µ) BTmp,mu,N

(µ)

Bmp,mu,N (µ) 0

] [
umu,2N (µ)
pmp,N (µ)

]
=

[
fmu,N (µ)

0

]
,

where umu,2N (µ) ∈ R2N and pmp,N (µ) ∈ RN denote the POD reduced approximations for
the velocity and the pressure, 0 is the null vector in RN , and where we assume that matrices
Amu,N (µ) = ΦTmu,2N

Amu(µ)Φmu,2N ∈ R2N×2N , Bmp,mu,N (µ) = ΠT
mp,N

Bmp,mu(µ)Φmu,2N ∈
RN×2N and the vector fmu,N (µ) = ΦTmu,2N

fmu(µ) ∈ R2N can be efficiently assembled owing to
affine parameter dependence. Finally, POD solutions umu,2N (µ) and pmp,N (µ) are projected
back to the HiMod space, to yield the approximations

umu(µ) ≈ Φmu,2Numu,2N (µ) := umu,2N,POD(µ), pmp
(µ) ≈ Πmp,Npmp,N (µ) := pmp,N,POD(µ)

for the HiMod velocity and pressure in (21). The HiPOD approximations for the HiMod solutions
umu(µ) and pmp(µ) will be denoted in the sequel by umu,2N,POD and pmp,N,POD, respectively.

Concerning the stability of the POD reduced problem, for any µ ∈ D, one can numerically
compare the inf-sup constant associated with the HiMod discretization,

(23) βmu,mp
(µ) = inf

qmp∈Qmp,

qmp 6=0

sup
vmu∈Vmu ,

vmu 6=0

b(vmu , qmp
;µ)

‖vmu‖V ‖qmp‖Q
,
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with the corresponding constant resulting from the POD reduction procedure,

(24) βmu,mp,N,POD(µ) = inf
qmp,N,POD∈Qmp,N ,

qmp,N,POD 6=0

sup
vmu,2N,POD∈Vmu,2N,

vmu,2N,POD 6=0

b(vmu,2N,POD, qmp,N,POD;µ)

‖vmu,2N,POD‖V ‖qmp,N,POD‖Q
,

where, with an abuse of notation, we have adopted the same symbol for the continuous HiPOD
spaces as for the corresponding discrete counterparts. Practical computations for these constants
rely on generalized eigenvalue problems (see, e.g., [11]). In particular, we resort to the formulas

βmu,mp
(µ) =

√
λ

(1)
mu,mp , βmu,mp,N,POD(µ) =

√
λ

(1)
mu,mp,N

,

where λ(1)
mu,mp , λ

(1)
mu,mp,N

, denote the minimum eigenvalue of the generalized problems[
Xmu,u BTmp,mu

(µ)

Bmp,mu(µ) 0

] [
vmu(µ)
qmp

(µ)

]
= −λmu,mp

[
0 0
0 Xmp,p

] [
vmu(µ)
qmp

(µ)

]
,[

Xmu,u,2N Bmp,mu,N (µ)T

Bmp,mu,N (µ) 0

] [
vmu,2N

(µ)
qmp,N (µ)

]
= −λmu,mp,N

[
0 0
0 Xmp,p,N

] [
vmu,2N

(µ)
qmp,N (µ)

]
,

respectively, where Xmu,u is defined as in (20), Xmp,p ∈ RmpNh,p×mpNh,p denotes the HiMod
matrix associated with the inner product in Qmp , while Xmu,u,2N ∈ R2N×2N , Xmp,p,N ∈ RN×N
are the corresponding reduced order matrices, given by

Xmu,u,2N = ΦTmu,2NXmu,uΦmu,2N , Xmp,p,N = ΠT
mp,NXmp,pΠmp,N ,

and where, to simplify the notation, we have removed the subscript POD to the HiPOD approx-
imations.

3.2.3. Numerical assessment. We refer to the test case in Section 2.2. We identify the parameter
with the vector µ = [ν, Cin, Cout, fx, fy]T varying in the domain

D = [1, 10]× [5, 15]× [0, 10]× [1, 10]× [0, 10].

We consider a sampling set S consisting of 100 randomly selected values, {µ(1),µ(2), . . . ,µ(100)}.
Then, we hierarchically reduce problem (10) for each parameter in S, by preserving the same
HiMod discretization as the one adopted in Figures 3-5, right.

Figure 9 shows the trend of the eigenvalues of the correlation matrix associated with the HiMod
velocity, pressure and supremizers. The drop to the numerical precision occurring at the fourth
eigenvalue in all the plots suggests us to set N = 4. Indeed, due to the superposition property
and since we deal with a linear problem, four independent basis functions are enough to span
the space of the solutions to this parametrized Stokes problem. In the online phase we yield an
approximation for the HiMod discretization corresponding to the parameter µ = [5, 10, 0, 3, 0]T ,
i.e., for the solution provided in Figure 3-5, right. Figures 10-12, left show the contour plot of the
HiPOD approximation for the two components of the velocity and for the pressure. Comparing
the three plots with the corresponding ones in Figures 3-5, right we recognize that the selected
POD basis suffices to provide a reliable approximation, at least qualitatively. Nevertheless, if
we investigate more into the details the distribution of the HiPOD error, we remark that while
the two components of the HiMod velocity are approximated up to the machine precision, this
is not the case for the pressure as shown by the contour plots in Figure 12, right. This lack of
accuracy for the pressure is consistent with what already observed in [6], and deserves a further
investigation, for instance, by considering different choices for the supremizers [38, 2].

Finally, in Figure 13 we compare the trend of the HiPOD inf-sup constant βmu,mp,N,POD(µ)
with βmu,mp

(µ) in (23). For this purpose, we set Nu = Np = 4 and we make Ns varying between
0 and 4. To simplify notation, we preserve the same notation as in (24) although hypothesis
Nu = Np = Ns is here removed. It is evident that the system is unstable for Ns = 0 so that
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Figure 9. Stokes test case: eigenvalue trend of the correlation matrix associ-
ated with the velocity (left), the pressure (center) and the supremizers (right).

Figure 10. Stokes test case: HiPOD approximation for the x-component of
the velocity (left) and associated modeling error (right).

Figure 11. Stokes test case: HiPOD approximation for the y-component of
the velocity (left) and associated modeling error (right).

Figure 12. Stokes test case: HiPOD approximation for pressure (left) and
associated modeling error (right).

supremizers are required to recover a reliable pressure, while βmu,mp,N,POD(µ) reaches a value
comparable with βmu,mp

(µ) when Ns = 4.
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Figure 13. Stokes test case: trend of the inf-sup constant βmu,mp,N,POD(µ) as
a function of Ns compared with βmu,mp(µ).

4. The HiRB approach

As an alternative to the HiPOD reduction, we introduce a new technique to deal with a
parametrized setting. We aim at applying a Reduced Basis (RB) approach to HiMod solutions,
by relying on a greedy algorithm during the offline phase (see, e.g., [16, 22]). The combination
of HiMod with RB justifies the name HiRB adopted to denote the new procedure.

4.1. HiRB reduction for ADR problems. Analogously to what done in Section 3, we first
exemplify the HiRB reduction on problem (12). In particular, we focus on the offline stage since
HiPOD and HiRB essentially resort to the same projection procedure during the online phase.

4.1.1. The offline phase. Let S = {µ(1),µ(2), . . . ,µ(M)} ⊂ DM be the training set for the pa-
rameter µ. The key idea of the RB method is to generate the reduced space, Ṽm,N , by a greedy
algorithm, i.e., by adding a single function at a time to the reduced basis [21]. Let Ṽm,k denote
the reduced space known at the k-th iteration. Additionally, we assume to have an error esti-
mator, ηm,k(µ), for the modeling error associated with the reduced solution um,k,RB(µ) ∈ Ṽm,k,
such that

(25) ‖um(µ)− um,k,RB(µ)‖V ≤ ηm,k(µ) with µ ∈ D,
with um(µ) the high fidelity HiMod discretization.

Algorithm 1 itemizes the steps constituting the offline phase of HiRB method. First, the
greedy algorithm identifies as new parameter the value

(26) µ(k+1)
g = arg max

µ∈S
ηm,k(µ),

which corresponds to the most informative HiMod solution not yet included in the reduced space,
since it maximizes the discrepancy between the HiMod space, Vm, and the reduced space, Ṽm,k
(step 1.). The search performed by the greedy algorithm starts from a random choice, µ(1)

g , for
the parameter and goes on until when a value k ∈ N is found such that maxµ∈S ηm,k(µ) < η, or
the reduced space dimension reaches N , with η a user-defined threshold.
Then, the HiMod approximation, um(µ

(k+1)
g ) ∈ RmNh , is computed (step 2.) and orthonor-

malized with respect to the functions already included in the RB basis, collected in the matrix
Φ̃m,k = [ϕ̃1, . . . , ϕ̃k] ∈ RmNh×k (step 3.). This is justified by the fact that solutions at step
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2. can be linearly dependent so that they cannot constitute a basis. We denote the new basis
function yielded at step 3. by ϕ̃k+1 ∈ RmNh . Finally, the RB matrix is extended to include the
new basis function, so that we have

Φ̃m,k+1 = [Φ̃m,k, ϕ̃k+1] ∈ RmNh×(k+1)

(step 4.). This allows us to define the space Ṽm,k+1 of the HiRB approximations associated with
Φ̃m,k+1.

Algorithm 1 HiRB offline phase for ADR problems

1. select µ(k+1)
g = arg maxµ∈S ηm,k(µ). If ηm,k(µ

(k+1)
g ) > η, go to 2., otherwise break;

2. compute um(µ
(k+1)
g );

3. compute the new element, ϕ̃k+1, of the basis by orthonormalizing um(µ
(k+1)
g ) with respect

to Φ̃m,k;
4. build the updated RB matrix Φ̃m,k+1 by including ϕ̃k+1 as the (k + 1)-th column, and
then go back to 1.

Throughout the paper, the HiRB reduced space eventually yielded by Algorithm 1 is denoted
by Ṽm,N , with N possibly equal to k, for k < N , if the check at step 1. succeeds at the k-th
iteration.

Finally, the HiRB online phase follows, by mimicking exactly what performed in Section 3.1.2,
with matrix Φm,N replaced by Φ̃m,N . In particular, we denote the HiRB approximation associ-
ated with the vector um,N,RB(µ) := Φ̃m,N ũm,N (µ) by um,N,RB(µ), with ũm,N (µ) the solution
of the reduced system corresponding to (17).

The choice of the error estimator, ηm,k(µ), represents a key issue of the RB approach, in
particular to ensure the convergence of the greedy algorithm as well as the reliability of the
reduced order model. In general, ηm,k(µ) demands the computation of the reduced solution
Φ̃m,kũm,k(µ), so that, at each iteration of Algorithm 1, an online phase of dimension k has to
be carried out. For additional details in a standard RB setting, we refer the interested reader,
e.g., to [10, 13, 16, 21, 38, 39]. The most common choice for the modeling error estimator relies
on the ratio between the dual norm of the weak residual associated with the reduced model
and a lower bound for the coercivity constant of the reduced problem [21]. This is the choice
pursued to define ηm,k(µ) in (25), where we set the coercivity constant to one since it is not
trivial to compute exactly this value. The reliability of this estimator is numerically verified in
Section 5. The extension of the successive constraint method proposed in [23] to the HiMod
setting represents a topic for a possible future investigation.

4.1.2. Numerical assessment. We adopt exactly the same setting as in Section 3.1.3, so that the
parameter µ coincides with the vector [ν, bx, by, σ]T and varies over the ranges, D1 and D2, in
(18). Algorithm 1 is run over a training set S consisting of 100 samples. Nevertheless, we omit
to set the threshold η at step 1. and we fix a priori the dimension N of the reduced space to 20,
also with a view to the comparison performed in Section 5. This leads to hierarchically reduce
only 20 ADR problems, in contrast to 100 ADR problems with the HiPOD procedure. Finally,
we run the HiRB online phase for µ = [5, 20, 75, 25]T to approximate the HiMod solution to
problem (2).

Figure 14 shows the contour plot of the HiRB approximation for the two ranges of the pa-
rameter µ. The qualitative matching between these solutions and the HiMod approximation in
Figure 2, right is good. By analyzing the distribution of the modeling error, u8(µ)−u8,20,RB(µ),
in Figure 15, it is confirmed that the smaller the parameter range the higher the accuracy of
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the HiRB approximation. In particular, the maximum error reduces more than one order when
sampling µ in D2. A cross-comparison with the HiPOD approximations in Figures 7-8 highlights
a slightly higher reliability for the HiRB approach for this test case. A more thorough investi-
gation in such a direction will be performed in Section 5, together with an error analysis over a
random testing.

Figure 14. ADR test case: HiRB approximation associated with D1 (left) and
D2 (right).

Figure 15. ADR test case: HiRB modeling error associated with D1 (left) and
D2 (right).

4.2. HiRB reduction for the Stokes equations. We detail the offline step of the HiRB
reduction procedure on problem (19), while referring to Section 3.2.2 for the online phase.

4.2.1. The offline phase. In this context, we assume to have an error estimator both for the
velocity and the pressure [18, 38], such that

‖umu(µ)− umu,2k,RB(µ)‖V + ‖pmp(µ)− pmp,k,RB(µ)‖Q ≤ ηmu,mp,k(µ) with µ ∈ D,

with
(
umu(µ), pmp

(µ)
)
the high fidelity HiMod solution pair and

(
umu,2k,RB(µ), pmp,k,RB(µ)

)
the HiRB approximation belonging to the RB space Ṽmu,2k × Q̃mp,k.

Algorithm 2 details the operations characterizing the HiRB offline phase when applied to the
Stokes problem. Two are the main differences with respect to Algorithm 1, namely i) we pursue
a segregated approach to build the reduced spaces for the velocity and the pressure, ii) the space
for the velocity is enriched via the supremizers.
After the greedy selection on the training set S (step 1.), we solve both the HiMod problem (21)
and the HiMod supremizer equation (20) by setting µ = µ

(k+1)
g and µ(i) = µ

(k+1)
g , respectively

thus obtaining the HiMod velocity and pressure pair,
(
umu(µ

(k+1)
g ),pmp(µ

(k+1)
g )

)
∈ RdmuNh,u×

RmpNh,p , and the HiMod supremizer, smu(µ
(k+1)
g ) ∈ RdmuNh,u , (step 2.). Then, according to
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Algorithm 2 HiRB offline phase for the Stokes equations

1. select µ(k+1)
g = arg maxµ∈S ηmu,mp,k(µ). If ηmu,mp,k(µ

(k+1)
g ) > η, go to 2., otherwise

break;
2a. compute the HiMod pair

(
umu(µ

(k+1)
g ),pmp

(µ
(k+1)
g )

)
;

2b. compute the HiMod supremizer smu(µ
(k+1)
g );

3a. compute the new element, υ̃k+1, of the RB basis for the velocity by orthonormalizing
umu(µ

(k+1)
g ) with respect to Υ̃mu,k;

3b. compute the new element, π̃k+1, of the RB basis for the pressure by orthonormalizing
pmp(µ

(k+1)
g ) with respect to Π̃mp,k;

3c. compute the new element, ξ̃k+1, of the RB supremizer basis for the velocity by orthonor-
malizing smu(µ

(k+1)
g ) with respect to Ξ̃mu,k;

4a. build the updated RB matrix Υ̃mu,k+1 by including υ̃k+1 as the (k + 1)-th column;
4b. build the updated RB matrix for the pressure Π̃mp,k+1 by including π̃k+1 as the (k+1)-th
column;
4c. build the updated RB matrix Ξ̃mu,k+1 by including ξ̃k+1 as the (k + 1)-th column;
4d. build the updated RB matrix for the velocity Φ̃mu,2(k+1), and then go back to 1.

a segregated approach, each HiMod solution is orthonormalized separately, with respect to the
corresponding previous basis functions, stored in matrices Υ̃mu,k, Π̃mp,k and Ξ̃mu,k, respectively.
This yields the (k+1)-th RB snapshots, υ̃k+1, π̃k+1, ξ̃k+1, (step 3.), which are successively used
to enrich the corresponding matrices (steps 4a.− 4c.), so that

Υ̃mu,k+1 = [Υ̃mu,k, υ̃k+1] ∈ RdmuNh,u×(k+1),

Π̃mp,k+1 = [Π̃mp,k, π̃k+1] ∈ RmpNh,p×(k+1),

Ξ̃mu,k+1 = [Ξ̃mu,k, ξ̃k+1] ∈ RdmuNh,u×(k+1).

In particular, matrix Π̃mp,k+1 allows us to define the (k + 1)-th RB space for the pressure. The
corresponding space for the velocity is the one associated with matrix

Φ̃mu,2(k+1) = [Υ̃mu,k+1, Ξ̃mu,k+1] ∈ RdmuNh,u×2(k+1)

which is finally built at step 4d.

4.2.2. Numerical assessment. We adopt the same numerical setting as in Section 3.2.3 with the
goal of approximating the HiMod solution in Figures 3-5, right with a reduced basis approach.
Analogously to Section 4.1.2, we waive the opportunity to employ the threshold η in Algorithm 2,
and we fix the dimension of the reduced spaces to N = 4 to match the choice in Section 3.2.3.

Figures 16-18, left show the contour plot of the HiRB approximation for the two components
of the velocity and for the pressure. The qualitative agreement both with the HiMod solution
and with the HiPOD approximation in Figures 3-5, right and 10-12, left respectively confirms
the reliability of the proposed procedure. The distribution of the HiRB modeling error in Ω
is provided in Figures 16-18, right. The pressure is the quantity characterized by the worst
accuracy, analogously to what obtained with the HiPOD approach. Nevertheless, we remark
that HiRB technique furnishes an approximation of lower quality also for the y-component of
the velocity when compared with the HiPOD approximation (notice the difference in terms of
order of magnitude for the corresponding modeling errors in Figure 17, right and Figure 11,
right, respectively). Finally, we recognize a more uniform distribution of the modeling error in
Figure 16, right with respect to the corresponding trend of Figure 10, right. In the former case,



19

the error is spread across the whole domain, whereas in the latter the error is mostly confined to
the outflow boundary.

Figure 16. Stokes test case: HiRB approximation for the x-component of the
velocity (left) and the associated modeling error (right).

Figure 17. Stokes test case: HiRB approximation for the y-component of the
velocity (left) and the associated modeling error (right).

Figure 18. Stokes test case: HiRB approximation for pressure (left) and the
associated modeling error (right).

5. HiPOD versus HiRB

This section is meant to compare HiPOD and HiRB techniques. The comparison is carried
out in terms of three main issues, which are investigated hereafter, separately.

For this purpose, we remind that both HiPOD and HiRB approaches actually carry out a
twofold reduction. The first one is obtained with the HiMod discretization [3, 20, 27], while the
second reduction is performed via a projection step during the online phase. The final expectation
is the capability to have a reliable approximation for the (full) problem at hand, with a very
contained computational effort.
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Figure 19. ADR test case, parameter range D1: H1(Ω)-norm of the modeling
error associated with the HiPOD (left) and with the HiRB (right) reduction as
a function of N .

5.1. Accuracy of the reduced problems. To compare HiPOD and HiRB in terms of accuracy,
we plot the average of the associated error over a testing set of 100 randomly selected parameters
for both the test cases in Sections 2.1 and 2.2.

In particular, in Figures 19 and 20 we show the trend of the H1(Ω)-norm of the modeling
error characterizing the ADR test case and for the two choices of the parameter range in (18).
For HiRB approximations, we provide also the trend of the error estimator. HiPOD exhibits
a slightly higher accuracy with respect to HiRB (about half an order of magnitude), for both
D1 and D2. This is likely related to the adopted estimator which under-estimates the exact
error of about one order of magnitude (see Figures 19 and 20, right). Actually, ηm,k(µ) is an
error indicator rather than an error estimator, since we have set the coercivity constant to one.
This might result in a sub-optimal greedy selection, although the (monotonic) decreasing trend
of the exact error is correctly captured by ηm,k(µ). Finally, as expected, the reduced order
approximation associated with D2 is more accurate for both the procedures.

The discrepancy between HiPOD and HiRB in terms of accuracy is less evident when con-
sidering the Stokes test case. For N = 4, the velocity is approximated almost at the machine
precision, while the pressure is characterized by a modeling error of the order of 10−2 with re-
spect to the L2(Ω)-norm. The lower accuracy of the pressure is consistent with what remarked
in Figures 12 and 18. Possible improvements in such a direction are suggested in Section 3.2.3.
Moreover, the computation of separate error bounds for the velocity and the pressure would be
helpful in improving the accuracy, despite requiring further evaluation of stability factors [18].

5.2. Speedup of the reduced problems. We investigate here the computational effort de-
manded by the online stage of the HiPOD and HiRB methods. We quantify such an effort in
terms of CPU time1. In particular, we quantify the speedup characterizing the two approaches
with the ratio τm(µ)/τm,N (µ), where we denote the elapsed time associated with the standard
HiMod approximation by τm(µ), and the time required to solve the corresponding HiPOD or
HiRB system by τm,N (µ). A value of speedup greater than one results in a computational gain.

Table 1 gathers the values of this investigation. In order to filter out any dependence on µ, we
compute the speedup index over a testing set of 100 randomly selected parameters. We observe
a large speedup for the Stokes test case and a very mild sensitivity with respect to N for the

1All the simulations are performed on a laptop with Intel R CoreTM i7 CPU and 4GB RAM.
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Figure 20. ADR test case, parameter range D2: H1(Ω)-norm of the modeling
error associated with the HiPOD (left) and with the HiRB (right) reduction as
a function of N .

Figure 21. Stokes test case: H1(Ω)-norm of the modeling error associated with
the HiPOD (left) and with the HiRB (right) velocity as a function of N .

ADR problem, independently of the adopted technique. More in detail, we point out a general
lower speedup (of about one third) for the HiRB procedure when compared with HiPOD, in
particular for the ADR test case. This is due to the fact that quantity τm,N (µ) includes also
the time elapsed for the evaluation of the error estimator in the HiRB case, whereas this is not
required by the HiPOD procedure. Actually, the HiPOD and the HiRB speedups become very
similar for the Stokes test case.

5.3. Cost of the offline phase. We focus now on the offline phase, by comparing the total
time required by the HiPOD and HiRB procedures to build the reduced basis.

It is reasonable that, for a fixed dimension, N , of the reduced space, the HiRB reduction
requires less offline time than HiPOD. Actually, to extract the reduced basis, the HiPOD ap-
proach computes the HiMod discretization for each of the M parameters in the sampling set, S,
and, only a posteriori, compresses such information into a reduced basis of dimension N , with
N < M . On the contrary, the HiRB method iteratively generates the reduced basis by adding
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Figure 22. Stokes test case: L2(Ω)-norm of the modeling error associated with
the HiPOD (left) and with the HiRB (right) pressure as a function of N .

N HiPOD-ADR HiRB-ADR HiPOD-Stokes HiRB-Stokes

1 169.7329 68.6832 866.3399 680.9745
2 182.3241 71.1751 977.5722 747.6919
3 178.6220 70.5680 843.5975 693.1631
4 182.1824 70.1519 793.0461 629.6215

Table 1. Speedup for HiPOD and HiRB methods applied to the test cases in
Sections 2.1 and 2.2.

a new basis function at each iteration of the greedy algorithm. Thus, we compute exactly N
HiMod solutions, out of the M possible approximations, associated with the parameters in S.

Nevertheless, the offline stage of the HiRB method includes the evaluation of the error esti-
mator during the greedy selection. A key requirement is that this evaluation is computationally
cheap. However, the construction of the data structures (e.g., higher order tensors [21]) required
for this purpose usually entails an additional computational cost, which might dominate the over-
all offline cost if M is small. Finally, further less relevant differences between the two methods
can be pointed out, such as the CPU time required to solve the eigenvalue problem associated
with the HiPOD reduction.

Figure 23 compares the trend of the total CPU time demanded by the offline stages of the
HiPOD and HiRB procedures, as a function of the size M of the sampling set, when applied to
the test case in Section 2.1 and for N set to 20. In agreement with what remarked above, it
follows that the HiRB training is more expensive than the HiPOD one for small values of M .
For instance, for M = 50, HiPOD takes 25s, whereas HiRB requires more than 90s, most of the
time being spent in the setup of the error estimator. Vice versa, for large values of M , HiRB
demands less time than HiPOD. For example, when M = 300, HiPOD is more time-consuming
than HiRB, by requiring 140s to be compared with 110s.

Finally, we remark the different slope characterizing the two plots in Figure 23. The mild
slope of the HiRB curve confirms that the computational effort required by the evaluation of
the error estimator is essentially independent of the size M . On the contrary, the considerable
slope of the HiPOD curve highlights that the computation of the HiMod approximations is not
negligible and, in general, heavier than the evaluation of ηm,k(µ).
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Figure 23. ADR test case: comparison between HiPOD and HiRB offline times
as a function of M .

6. Conclusions

This work has to be meant as a first attempt to compare the new reduction techniques HiPOD
and HiRB, for the modeling of parametrized problems. HiPOD has been introduced in [26, 6],
whereas the HiRB approach is proposed here for the first time. The two methods are then
compared on a benchmark ADR and Stokes problem. Starting from this comparison, we can
state that HiRB is better performing than HiPOD for large training sets, thus turning out to
be the ideal tool to tackle, for instance, time demanding fluid dynamics problems. As expected,
the greedy algorithm allows us to reduce the offline time. The weak point of the HiRB approach
remains the availability of a reliable error estimator. So far, to simplify the introduction of the
new method, we have adopted an error indicator coinciding with the residual associated with the
reduced solution, by completely neglecting the coercivity constant. This rough choice actually
leads to under-estimate the exact error, with a consequent performance loss in terms of speedup
and slightly of accuracy with respect to the HiPOD procedure. However, these conclusions have
to be considered as preliminary since we have limited our analysis only to two test cases and,
clearly, a more thorough investigation is deserved.

An important issue related to both HiPOD and HiRB has concerned the inf-sup stability which
is not necessarily guaranteed for the reduced formulations. To tackle this matter in both the
cases, supremizer enrichment has been employed with significative improvements. The pressure
approximation for the Stokes equations still demands some amendment for both the techniques.
The proposal of different supremizers likely represents a viable remedy in such a direction.

Among other future developments of possible interest, we cite the generalization to three-
dimensional and to nonlinear problems, as well as to an unsteady framework. Finally, to certify
the reliability of the two methods, a more rigorous investigation of the accuracy characterizing
HiPOD and HiRB procedures is desirable, by properly combining HiMod estimates in [31, 3]
with the well-established accuracy results on POD and RB [41, 21].
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