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Storage systems’ impact on order picking time:  

An empirical economic analysis of flow-rack storage systems 
 

1. Introduction 

Within the field of warehouse engineering and management, order picking (OP) is a labor-

intensive activity that accounts for approximately 55% of warehouse operating costs 

(Giannikas et al., 2017). Due to its economic importance, OP has become a focal point for a 

large number of retail managers and researchers (Boysen et al., 2021). Despite the increasing 

availability of automation technology in the market, many warehouses still rely on human 

workers to perform OP activities (Lombaert et al., 2022). Warehouse managers face various 

challenges today, including the handling of volatile orders, the hiring and maintenance of a 

qualified and motivated workforce, and the provision of workplaces that do not expose the 

workforce to unnecessary injury risks. 

To improve workers’ well-being, it is necessary to consider mental, physical, and 

psychological factors in the design of the work system (Grosse et al., 2017; Vijayakumar et 

al., 2021). One aspect that system designers have to account for in this context is worker 

heterogeneity (e.g., differences in skills or experience), which may impact both worker well-

being and worker performance (in the case of picking, OP time [Hoberg et al., 2020; Matusiak 

et al., 2017]). 

More than a decade ago, Dallari et al. (2009) emphasized that empirical evidence on the 

interaction of order pickers with storage systems is largely missing. We will show in the 

literature review in Section 2 that this is still the case today, particularly for flow-rack storage 

systems. This paper addresses this research gap and reports the results of a field study that 

compared the performance of a flow-rack storage system to that of a normal pallet rack 

storage system. The study pays special attention to the impact of individual worker 
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heterogeneity on OP system performance. 

We formulate two research questions addressing the interface between engineering 

(storage system design) and management (OP time) when implementing flow-rack systems. 

With our first research question (RQ), we intend to analyze how system design influences OP 

time: RQ1 – How does the use of flow-rack storage systems influence OP time? The second 

question addresses the role of picker heterogeneity in the picking process: RQ2 – How does 

order picker heterogeneity influence the model fit measuring the relative performance of flow-

rack storage systems? 

These questions are addressed in an empirical analysis of archival data obtained in 

cooperation with a large German brick-and-mortar (B&M) grocery retailer. The warehouse 

under investigation applies two storage systems: a full-pallet storage system and a high-

density flow-rack storage system. The company decided to use both types of systems due to 

the slow-moving and fast-moving stock keeping unit (SKU) types within the same 

assortment. 

Our dataset includes a total of 2,357,976 picks performed by 192 order pickers in 2021. 

We formulate and apply a parametric log-logistic accelerated failure time model (AFTM) 

with OP time as the dependent variable (DV). To answer RQ1, we include the storage system 

as an independent variable (IV) and control for relevant parameters in OP (e.g., the travel 

distance, weight and volume per SKU, or the number of picks retrieved from the respective 

storage system). For RQ2, we formulate a mixed-effects model allowing one regression line 

per order picker and compare the model fit with the fixed effects model, assuming no worker 

heterogeneity. 

Our study is an effort to gain empirical insights into the impact of different storage 

systems on OP time in light of individual worker heterogeneity. We aspire to contribute to the 
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extant literature as follows: Gue et al. (2006) built analytical and simulation models to 

evaluate storage systems with high space utilization, similar to the high-density flow-rack 

storage system in our study. Their work provides insights into the effect of pick density on 

operator blocking. Our study extends the work of Gue et al. (2006) by empirically examining 

how flow-rack storage systems perform in terms of OP time compared to pallet rack storage 

systems. Furthermore, we explicitly include individual worker heterogeneity in our mixed-

effects log-logistic AFTM—an aspect that was ignored in the work of Gue et al. (2006). 

Battini et al. (2018) proposed a storage assignment method that considers the trade-off when 

storing and picking from pallet rack storage systems compared to flow-rack storage systems. 

We extend this work with an empirical assessment of OP and replenishing tasks, which could 

subsequently be used for conceptual, analytical, and simulation models. 

The remainder of this paper is structured as follows: In Section 2, we present a brief 

literature review. After explaining the applied methodology in Section 3, we present the 

empirical setting in Section 4. Section 5 provides the analysis results, and Section 6 discusses 

the relevant implications and extensions. We further detail the implications for theory and 

practice and present further research avenues in Section 7. 

2. Literature review 

2.1. Warehouse system design 

Warehouse and OP system design has been a popular area in engineering and management 

research for decades (de Koster et al., 2007). The fit of a warehouse system to a specific 

industry application mainly depends on the system’s order characteristics (Richards, 2021). 

While e-commerce retailers face low-volume, high-mix orders, B&M retailers face high-

volume, low-mix orders when processing orders from grocery stores (Boysen et al., 2021). 
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B&M grocery retailers process large orders with medium assortment sizes and face seasonal 

peaks with highly volatile workloads (Hübner et al., 2015). Warehouse operations in B&M 

grocery retailing include, for example, receiving, storing, OP, sorting, cross-docking, and 

shipping SKUs, where manual OP is considered the most cost- and time-intensive process 

(Richards, 2021). In practice, manual OP is often operated with vehicle support by industrial 

trucks, where human order pickers visit picking locations in a sequence defined by a pick list 

to retrieve an SKU from these locations (Dallari et al., 2009). Forklift operators keep the 

ground level supplied with SKUs by retrieving full pallets from the reserve area and 

replenishing picking locations (Tompkins et al., 2010). 

Most retailers design manual warehouse systems that can easily be adapted to varying 

workloads. Gu et al. (2010) categorized five major warehouse system design problems: the 

design of the overall structure with functional departments, warehouse size and dimensions, 

the design of the department layout, equipment selection, and the definition of the operation 

strategy. Decisions on the warehouse structure, dimensions, layout, and operation strategy 

(e.g., OP strategy) are—for the most part—driven by economic objectives that take into 

account investment and operating costs. In contrast, equipment selection is located at the 

interface of engineering and management.  

In summary, we contribute to the research on equipment selection in warehousing at the 

interface of engineering and management by evaluating the impact of flow-rack storage 

system design on the performance of manual OP systems. 

2.2. Storage system design 

Equipment selection in OP systems, in general, includes decisions on material handling and 

storage system design. While material-handling systems—and especially technical support by 
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assistive devices—are a well-examined research domain (Battini et al., 2015; Glock et al., 

2021), only a few works have evaluated alternative storage systems. The focus of these works 

was on the comparison of different pallet storage systems. 

One of the early works in this area was by White et al. (1981), who proposed analytical 

models to compare block-stacking, as well as single-deep and double-deep pallet racks. 

Calzavara et al. (2019) compared full-pallet and half-pallet single-deep storage systems in 

terms of cost, workload, and body postures order pickers need to adopt and found that both 

rack designs can be beneficial for alternative applications and SKU characteristics. Calzavara 

et al. (2017) proposed economic and ergonomic performance measures for storage systems in 

which orders are picked from full pallets, half pallets, and half pallets equipped with a pull-

out system. From an economic perspective, Calzavara et al. (2017) found that a half-pallet 

storage system is suited for an SKU picked a couple of times per month, while full pallets are 

recommended for an SKU picked with a higher frequency to reduce pallet replenishments. 

From an ergonomic perspective, storage on pallets is the most suitable solution when the SKU 

weight is high. For light SKUs, half pallets are suggested with high quantities per pick on the 

lower rack and low quantities per pick on the higher rack. 

In addition to pallet storage, other works deal with the evaluation of different storage 

systems. Gue et al. (2006), for example, built analytical and simulation models to evaluate 

storage systems with high space utilization. They paid special attention to picker blocking and 

found that when the OP system is busier and pick density is high, congestion is less of a 

problem, and workers are more productive. The potential impact of different storage systems 

on pick time was studied by Finnsgård and Wänström (2013), who conducted an experimental 

study in an automotive assembly line setting. Their results showed that packaging type, angle 

of exposure, height of exposure, and part size had a higher impact on manual picking time 
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than other factors. The height of exposure refers to the height of the storage location and, 

therefore, the storage system design. Picking from a height between the picker’s waist and 

shoulders (which is frequently referred to as the “golden zone”; see Petersen et al. [2005]) is 

considered economical and ergonomically efficient. 

Research, particularly on flow-rack storage systems, is scarce. One notable exception is 

the work of Battini et al. (2018), who proposed a storage assignment method for pallet-rack 

and flow-rack storage systems and considered both restocking and picking activities. The 

method considers total pallet refill time, total carton refill time, total picking time, and total 

travel time, among others. Applying this method to an industrial case with a B&M retailer, 

they found that 3,355 out of 7,683 SKUs should be stored in high-density flow-rack storage 

systems rather than full-pallet storage systems. 

In summary, our literature review has shown that high-density flow-rack systems have 

not received much attention in prior research. However, warehouse system design elements, 

such as flow-rack systems, are strategic in nature and particularly important, as they affect the 

design of operation strategies in manual OP systems and the overall warehouse and 

intralogistic setup (Baker & Canessa, 2009). 

2.3. Human factors and worker heterogeneity in manual OP 

Matusiak et al. (2017) proposed a multilevel model to account for order-picker heterogeneity. 

The integration of random intercepts allowed for one regression line for each individual 

observed in their dataset (Matusiak et al., 2017). This significantly improves their model fit 

because worker heterogeneity is methodologically considered. 

In addition to equipment and storage systems, human workers and their individual 

characteristics also influence the performance of manual OP systems (Glock et al., 2017). 
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Considering human factors in planning OP activities is therefore central to long-term business 

success (Grosse et al., 2015), as it triggers a more realistic planning outcome that takes into 

account the individual requirements of human workers. This enhances economic performance, 

quality, human well-being, and workplace satisfaction (Grosse et al., 2017).  

Although research that considers human factors in OP is still limited, publication 

numbers have increased recently in this field (for recent reviews, see Vanheusden et al. [2022] 

and de Lombaert et al. [2022]). Related works focused on physical human factors and 

investigated, for example, how pallets should be rotated in an OP warehouse to reduce both 

the workers’ load on the lower back and picking time, considering different working postures 

and SKU weight (Glock et al., 2019). Other studies have analyzed how SKUs should be 

assigned to different rack systems to reduce both costs and human energy expenditure 

(Calzavara et al., 2017; Calzavara et al., 2019). Diefenbach and Glock (2019) also considered 

the energy expenditure needed for picking SKUs with different weights and body postures 

and developed a mixed-integer program with different objective functions (minimizing either 

total walking distances or total ergonomic strains) to design a U-shaped OP area. They found 

that both objectives were only marginally conflicting. 

Despite physical labor, OP also requires cognitive effort, for example, in searching for 

SKUs or remembering storage locations (Grosse & Glock, 2015). This makes the work 

experience of the individual order picker a determinant of OP performance, as task times in 

OP are not constant but are subject to individual learning and worker skills (Sgarbossa et al., 

2022). Human learning, which leads to performance improvements in completing a manual 

task due to repetition and increasing practice and experience, has been well studied in the 

operations management literature, although works that employ empirical data are still rare 

(Glock et al., 2019). With regard to OP, a few experimental studies have shown that learning 
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effects occur and that the individual learning progress of workers affects OP performance in 

terms of OP time and pick errors. The first work in this area is that of Grosse and Glock 

(2013); it evaluates field data on the performance of inexperienced order pickers in a 

warehouse of a household products manufacturer. Well-known learning curves were fitted to 

the data to illustrate individual performance and quality improvement. A similar approach 

based on curve fitting was presented by Stinson (2014), who compared the performance of 

temporary workers to that of experienced order pickers.  

While both studies confirm that learning effects occur in OP and that experienced 

workers reach a learning plateau at some point, some variance in performance cannot be 

explained based on experience alone and could be caused by individual skills or work 

pressure. In a laboratory setting, Winkelhaus et al. (2018) observed that physical and mental 

fatigue can negatively impact worker learning. Another study analyzed empirical data from an 

online women’s apparel retailer (Batt & Gallino, 2019). They studied how worker experience 

and SKU characteristics impact OP time, particularly searching for SKUs (Batt & Gallino, 

2019). They developed a simulation model with the objective of minimizing expected pick 

time rather than travel distance. The results imply that pick times can be improved by 

incorporating pick density per storage location and learning/experience into the order picker 

routing problem.  

Other studies have considered worker learning in OP planning models to improve the 

models’ validity for OP practice. Grosse et al. (2013) studied storage reassignment decisions 

and showed that too frequent changes in storage assignments led to losses in worker 

experience and performance. Grosse and Glock (2015) developed a planning model that can 

be used to assign workers to specific warehouse zones in a way that utilizes their individual 

learning characteristics as well as possible. Zhang et al. (2019) integrated worker learning into 



9 

 

 

an order-batching model and showed how this can improve the accuracy and predictability of 

planning outcomes. They concluded that improving order pickers’ learning abilities through 

training is beneficial (Zhang et al., 2019). Also related to order batching, Matusiak et al. 

(2017) used joint order batching and generalized assignment model to assign the right picker 

to the right order batch based on his/her individual skills. Taking this worker heterogeneity 

into account, they were able to reduce OP time by up to 10% (Matusiak et al., 2017). In 

summary, considering human factors and worker heterogeneity is crucial for developing 

realistic OP planning models and deriving valuable managerial conclusions.  

2.4. Summary and contribution 

Although storage system design is highly relevant for OP system performance (Finnsgård & 

Wänström, 2013), the evaluation of different storage systems has received little attention in 

the academic literature. Our main contribution lies in providing empirical evidence on how 

alternative storage systems influence OP performance and in incorporating individual order 

picker heterogeneity into our economic assessment of a flow-rack storage system—similar to 

the multilevel model applied by Matusiak et al. (2017).  

The extant literature has also established the impact of order picker characteristics, such 

as order picker experience (Batt & Gallino, 2019; Loske, 2022), the picking level height 

(Finnsgård & Wänström, 2013), and workload (Kudelska & Pawłowski, 2020), on OP time. 

However, most of these studies examined the constructs in isolation with direct cause–effect 

relationships. Our work goes beyond these earlier contributions and investigates the 

moderating effect of storage systems on, for example, the impact of order picker experience 

on OP time. In summary, our objective is to quantify the impact of two alternative storage 



10 

 

 

systems—high-density flow-rack storage systems versus full-pallet rack systems—on OP 

time using empirical data. 

3. Case study 

3.1. Description 

A case study was carried out in cooperation with a B&M grocery retailer operating several 

warehouses in Germany. The warehouse under investigation stores perishable, non-cooled 

SKUs in 36 aisles and 6,098 pick locations. Two separate storage areas are present in the 

same warehouse, storing an identical assortment due to historical capacity extensions. The 

differentiation of slow-moving and fast-moving SKUs within the same assortment was pivotal 

for the company when deciding to implement different storage systems. Slow-moving SKUs 

are placed in flow racks to save space, whereas fast-moving products are placed on pallets to 

allow for larger storage quantities. 

We take advantage of the rack layouts to identify the impact of storage systems on OP 

time. The key benefits of the underlying systems and dataset for our analysis are as follows: 

(1) SKUs assigned to one batch are picked sequentially by a single order picker without 

intermediate tasks, (2) volume and weight measures for each SKU are collected upon arrival 

at the warehouse, and (3) the rack layouts are well suited to control for the height of the 

storage location, as the levels are fixed and standardized within the entire warehouse. In 

summary, the data allow us to directly observe the location and time of each shipment and 

pick and to utilize this information for calculating retrieval and stack height, travel distance, 

and time between picks. 

In the first storage system, SKUs are retrieved from full pallets stored on the floor level 

(referred to as full-pallet storage systems). In the second storage system, SKUs are retrieved 
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from a flow-rack system that stores 20 different SKUs on the ground floor on an area 

corresponding to the size of three pallets (referred to as high-density flow-rack storage 

systems). While 5,034 pick locations are part of full-pallet storage systems, 1,064 pick 

locations are assigned to high-density flow-rack storage systems. Herein, one SKU bundles 

several items and is assigned to exactly one storage location. Each storage location has one 

unique identification number and stores exactly one SKU. 

To replenish the pick locations, human operators equipped with manually steered 

forklifts perform storage and retrieval operations. Figure 1 illustrates the layout of the specific 

warehouse under examination, where the picker is routed, as depicted by arrows in a z-pick 

pattern or z-shape (Hsieh & Tsai, 2006). In this figure, we see the first picker route on the left 

side of the first aisle, traveling from bottom to top and indicating the typologies of storage 

systems along the way (see explanations in Figure 1). 

 

Figure 1. Warehouse layout in the examined case study 

 

The high-density flow-racks have four different levels, as illustrated in Figure 2, and all 
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shelf lines of the high-density flow-rack storage systems are colored according to the pick 

level and in line with a visual representation of the personal digital assistant utilized by the 

pickers. The racks have a ground floor level (green), Level 1 (blue) is at 0.60 meters from the 

floor, Level 2 (yellow) is at 1.20 meters from the floor, and Level 3 (red) is at 1.80 meters 

from the floor, as can be seen in Figure 2 in the corresponding real-life warehouse setting. 

Figure 2. Sample front view of the high-density flow-rack storage system 

 

The OP process examined in the case study involves picking SKUs nested in batches 

according to the following steps (see Figure 3): (step 1) travel to pick location n with a 

manually steered industrial truck, (step 2) reach and bend (body posture depends on the rack 

layout) to access pick location n, (step 3) physically pick up or grasp the required quantity of 

the SKU from pick location n, (step 4) sort SKU into order, (step 5) stack SKU on one of 

three rolling cages transported with the manually steered industrial truck, (step 6) document 

picking transaction for location n in the warehouse management system (WMS) via a touch 

display mounted on the industrial truck, and (step 7) travel to the subsequent pick location 

(return to the depot) n+1—for this, the relevant information is provided through the touch 

display. The elapsed time between steps (1) and (7) is measured exactly to the second and is 

used as the DV in the econometric model. Each order picker processes between 2,000 and 
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2,500 SKUs per day, with an average of 197 SKUs per batch. Figure 3 illustrates this OP 

process from the start of the time measurement on the left side across seven steps toward the 

end of the timekeeping on the right side. 

Figure 3. OP process observed in the case study 

 

3.2. Data collection and data cleaning 

We analyze archival OP data collected between May and June 2021. The WMS utilized by 

the case company stores extensive log data on OP processes. We utilize such log data to 

construct a model capable of evaluating the impact of different storage systems on OP time as 

a major predictor of OP productivity. From the company’s WMS, we extracted data including 

221 order pickers with details on batch identification (ID), pick ID, picker ID, load unit ID, 

article number, number of units picked, volume of secondary SKU packaging, weight of the 

SKU, timestamps of each pick, and slot address per pick. Furthermore, we operationalized the 

travel distance through a distance matrix. 

The raw picking events are created by the workers traveling through the warehouse, 

guided by a personal digital assistant. Each storage location has one unique identification 

number and stores exactly one SKU. All order pickers use the same model of industrial 
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trucks, with a personal digital assistant mounted on them. The personal digital assistant 

provides information about (1) the SKU number, (2) the storage location identifier, (3) the 

quantity to pick, and (4) the storage location identifier for the next three picks. Once the order 

picker finds the correct location in the rack, one SKU is picked off the rack and stacked into 

the order. This process is confirmed by pressing “next” on the personal digital assistant, 

which generates the event “picked” in the database and triggers the visualization of the next 

storage location and SKU to be picked. Order pickers continue this way, SKU after SKU, 

until the order is completed. Table 1 illustrates an exemplary dataset to outline which kinds of 

OP data are utilized. 

Table 1. Format of example WMS data collected 

date 
batch 

ID 
pick ID picker ID start end SKU ID SKU 

quanti

ty 
location … 

2022-06-01 123 1 987 10:03:14 10:03:44 337796 Pasta 2 01-001-01 … 

2022-06-01 123 2 987 10:04:10 10:04:50 953226 Sauce 3 01-008-02 … 

2022-06-01 123 3 987 10:06:08 10:06:21 935035 Wine 1 01-014-01 … 

2022-06-01 123 4 987 10:08:24 10:09:00 801384 Water 4 01-019-02 … 

… … … … … … …   … … 

 

An order placed by a grocery store is labeled with a batch ID when entering the WMS. 

This batch is assigned to exactly one-order picker ID through a first-come-first-serve method. 

One batch, also referred to as the picking list in the literature, contains several pick locations 

that need to be visited by the order picker. In our dataset, one line represents one pick location 

visited by the order picker, with every pick location storing exactly one SKU ID. An order 

picker visiting location 01-0001-01, where “pasta” is stored, may have to pick a varying 

quantity of the same SKU (e.g., two units of “pasta” in our case) (see Table 1). 

Our initial dataset included 2,912,681 picks performed by 221 order pickers over five 

weeks. We excluded all operators with less than 1,000 cumulative picks to ensure a common 

experience level in the examination group. Furthermore, we control for speed when dividing 

travel distance by throughput time. Datasheets of industrial trucks were used to estimate the 
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maximum speed of indoor forklift trucks, which equals 3.89 m/s, compared to 1.4 m/s for 

normal human walking speed. Note that this may depend on several factors, for example, 

indoor ambient conditions such as lighting or human operators’ familiarity with their 

environment. After data cleaning, our final dataset included 2,357,976 picks performed by 

192 order pickers. 

4. Model for storage system comparison 

4.1. Variables and measures 

Our primary interest lies in evaluating the impact of the two different storage systems on OP 

time as a major outcome variable of OP systems. Therefore, our IV of interest is the 

respective storage system. We develop an econometric model where OP time is the DV. 

Additionally, we include several control variables (CVs) quantifying different aspects of the 

OP process (e.g., distance) to operationalize picker traveling.  
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Figure 4. The procedure for translating OP data into an econometric model 

 

Figure 4 visualizes the procedure for translating the initial dataset into the constructs of 

the econometric model. One example of this translation is the location code used to translate 

whether the pick is retrieved from the full-pallet or high-density flow-rack storage system to 

quantify the IV. Additionally, the location code is used to calculate the pick level and the 

travel distance through a distance matrix. 

Our DV is ln(𝑝𝑖𝑐𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒)𝑖𝑗  defined as the logarithmic transformation of the elapsed 

time in seconds needed to travel from storage location i − 1 to storage location i and pick a 

given number of units of a SKU at storage location i by picker 𝑗. To measure OP time, we 

start a counter when the order picker confirms a pick on the pick list at location i – 1 by 

pushing “next” on the touch display mounted on the industrial truck (see Figure 3).  

The device holds a constant wireless connection with the WMS, documenting relevant 

time stamps. The clock measurement ends after the picker has traveled to pick location i, has 
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picked the SKU, and confirms the pick by pushing a symbol representing one of the three 

load units on the industrial truck. Both timestamps are used to calculate the total OP time, 

which we utilize as our DV. Such an OP time is operationalized as a continuous metric 

variable and is frequently used in OP research to evaluate performance in OP systems (Batt & 

Gallino, 2019; Matusiak et al., 2017). 

The IV of interest quantifies whether the SKUs are retrieved from the full-pallet (coded 

as 0) or high-density flow-rack storage system (coded as 1). Therefore, we operationalize the 

storage systems with a binary dichotomous variable (Figure 2). We also include several CVs: 

• (CV1) Volume per SKU: As the SKU dimensions are relevant for the stacking process in 

manual OP, we integrate the volume per SKU as a continuous variable to control for the 

article dimensions impacting the complexity of the packing problem. The volume is 

measured in liters. 

• (CV2) Quantity of SKU retrieved from source location: Because the quantity of an SKU 

retrieved from a source location may vary from order to order, we integrate this factor as a 

CV. 

• (CV3) Weight per SKU: Because the weight of each SKU picked can impact the energy 

expenditure and metabolic costs of an order picker during the OP process (see Section 2.3), 

we integrate the weight in kilograms as a continuous variable. 

• (CV4) Travel distance: Manual picker-to-part systems require pickers to travel to dedicated 

SKU storage locations. Therefore, we integrate the travel distance from pick location to 

pick location as a continuous variable measured in meters. Because one line in our dataset 

represents one pick location visited by the order picker, we can operationalize the travel 

distance using a distance matrix. 
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• (CV5) Level: The four different pick levels of the high-density flow-racks (see Section 3.1) 

are integrated as an additional CV. 

• (CV6) Pick position in batch: After an order picker grasps an SKU from a pick location, 

the SKU has to be sorted and stacked into an existing order (consisting of the previous pick 

positions). This could cause differences in height for manual material-handling tasks, 

including sorting and stacking.  

•  (CV7) Experience of order picker: We integrate the cumulative picks per picker ID for the 

entire dataset to control for individual picker experience. The experience of the order 

picker is a continuous variable. 

Table 2 summarizes the operationalization of our variables and provides relevant 

descriptive statistics.  

Table 2. Operationalization of variables and descriptive statistics for our OP model 

No. Variable description of operationalization operationalization mean sd. 

DV Picking 

time per 

pick 

Timestamps for the beginning and the end of 

the picking process are used to calculate the 

total event time in seconds 

 

Continuous 21.88 17.61 

IV Storage 

system 

0 = pick from full-pallet storage system 

1 = pick from high-density flow-rack 

 storage system 

Binary dummy  

0; n = 2,277,617 picks (96.98%) 

1; n = 71,035 picks (3.02%) 

CV1 Volume 

per SKU 

Volume of the secondary package in liters Continuous 

 

8.83 7.11 

CV2 Quantity of 

SKU 

Number of picks from one picking  

location 

Continuous 

 

11.34 19.18 

CV3 Weight per 

SKU 

Weight in kilograms per SKU, including  

the SKU, primary packages, and secondary 

packages 

 

Continuous 4.58 5.86 

CV4 Travel 

distance 

Distance in meters from pick location to pick 

location 

Continuous 

 

6.87 8.75 

CV5 pick level 

 

Pick level of the pick location Continuous 

 

1.20 0.44 

CV6 Pick 

position in 

the batch 

One batch consists of several picks. This 

variable quantifies the position of a pick 

within the respective batch 

 

Continuous 57.22 

 

48.21 

CV7 Picker 

experience 

Cumulative number of picks per order picker 

and in the dataset 

 

Continuous 8,511.48 6,222.92 
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note: Descriptive statistics for the dataset after the data cleaning process with N = 2,348,652 picks were performed by 192 order pickers. 

 

Next, we check for cross-correlation (Mills, 2011) and find no high correlations that 

would require excluding IVs (see Table 3). Thus, we can introduce all the presented variables 

into our econometric model.  

Table 3. Correlation matrix 

No. DV IV CV1 CV2 CV3 CV4 CV5 CV6 CV7 

DV  1.00          

IV  -0.02  1.00         

CV1   0.09  -0.08  1.00       

CV2   0.16  -0.01  0.02   1.00       

CV3   0.17  -0.07  0.19  0.18  1.00     

CV4   0.24  -0.04  0.10  -0.02  0.01  1.00    

CV5  -0.06  0.23  -0.18  -0.04  -0.21  -0.08  1.00   

CV6  -0.02  0.05  0.12  -0.03  -0.17   -0.06  0.16  1.00  

CV7  -0.06  0.01  -0.07  -0.15  -0.07   -0.01  0.04  0.01  1.00 
 

Note: *p < 0.05; **p < 0.01; ***p < 0.001; N = 2,348,652 picks and 192 order pickers included. 

4.2. Model development 

As the first research question addresses OP time, we propose an event history analysis, also 

known as time-to-event analysis or survival analysis, summarizing statistical models 

concerned with questions on the timing and the duration until a given event occurs (Mills, 

2011). Often applied in medical research, an event can be represented by mortality (death vs. 

still alive at last observation), for example, when studying the survival of patients according 

to their first referral decision in cancer treatment (Bouquet et al., 2021). An event is formally 

defined as the instantaneous transition from origin to destination (Oud, 2014). In a nutshell, 

such AFTMs are regression models with different likelihood estimators than ordinary least-

square regressions and use event time or survival time as the DV (Mills, 2011). 

We transfer this logic to the OP context and propose an AFTM to estimate the impact of 

different storage systems (IV) on OP time (DV). This is inspired by the landmark paper of 
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Batt and Gallino (2019). In AFTM, 𝑇 represents the time-to-event or survival time, which we 

translate to the general OP context as OP time. 𝑇 represents a random variable equal to or 

greater than zero (𝑇 ≥ 0). In parametric survival models, 𝑇 follows a particular distribution 

(e.g., exponential, Weibull, logistic, log-normal, or log-logistic). The choice of the parametric 

distribution assumed in the AFTM is made by comparing the model fit for a variety of 

different distributions through, for example, the Akaike information criterion (AIC), the 

Bayesian information criterion (BIC), or the log-likelihood ratio (LL). 

In the proposed econometric model, the DV is denoted as 𝑇 and is defined as the 

elapsed time between the beginning and end of a picking process performed by an order 

picker. Because AFTMs are log-linear regression models for 𝑇, the basic model is a linear 

function of the covariate(s) in the form of 𝑌 = log (𝑇) (Mills, 2011). We define 𝑛 independent 

predictor variables 𝑥𝑛 and their corresponding regression coefficients 𝛽𝑛. Additionally, ε 

represents the error term assumed to have a particular parametric distribution. 

 

ln(𝑇) = 𝑥1 𝛽1 + ⋯ + 𝑥𝑛 𝛽𝑛 +  𝜀                    (1) 

 

The coefficient in the parametric AFTM can be interpreted as follows: A positive 

coefficient indicates that the log duration time increases, leading to longer duration times. A 

negative coefficient indicates that the log duration time decreases, leading to shorter duration 

times. To ease the interpretation of our estimates, we need to transform them. In AFTM, this 

transformation depends on the assumption of the DV. With our log-logistic AFTM, we apply 

the following transformation (Mills, 2011):  

100 (exp(𝛽𝑛) − 1)                       (2) 

 

Our IV of interest is dummy-coded as either a pick from a high-density flow-rack 

storage system or from the other storage system. Integrating these variables into the AFTM, 
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we formulate and apply the following parametric model: 

 
ln(𝑝𝑖𝑐𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) =  𝛼0 +  𝑣𝑜𝑙𝑢𝑚𝑒 𝑝𝑒𝑟 𝑆𝐾𝑈 𝛽1 +  𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑆𝐾𝑈𝑠 𝛽2 +

 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟 𝑆𝐾𝑈 𝛽3 +  𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝛽4 + 𝑝𝑖𝑐𝑘 𝑙𝑒𝑣𝑒𝑙 𝛽5 +  𝑝𝑖𝑐𝑘 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝛽6 +

𝑝𝑖𝑐𝑘𝑒𝑟 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝛽7 +  𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝛽8 + 𝑜𝑟𝑑𝑒𝑟 𝑝𝑖𝑐𝑘𝑒𝑟 𝛽9 +  𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝛽10 + 𝜀, (3) 

 

where we dummy-code the storage system as 

 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 =  {
1  𝑖𝑓 𝑡ℎ𝑒 𝑝𝑖𝑐𝑘 𝑖𝑠 𝑟𝑒𝑡𝑟𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 ℎ𝑖𝑔ℎ − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑟𝑎𝑐𝑘 𝑠𝑦𝑠𝑡𝑒𝑚,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4) 

 

Additionally, we formulate a mixed-effects AFTM where we allow one regression line 

per order picker with random intercepts and fixed slopes. A similar approach was applied by 

Matusiak et al. (2017) when applying a multilevel model to an OP dataset similar to ours. 

Figure 5 illustrates the difference between simple AFTM and mixed-effects models, where we 

apply a methodological integration of individual order picker heterogeneity (see Section 2.3 

and the applied CV picker experience, for example). 

 

Figure 5. Methodological integration of order picker heterogeneity through a mixed-effects AFTM 

 

5. Results 

We estimate the model proposed in Formulas (3) and (4) for 2,357,976 observation points 

representing manual picks and apply the survival package in R (Therneau et al., 2022; 

Therneau & Grambsch, 2000). The results are presented in Table 4. 

Table 4. Results of the log-logistic AFTM for the impact of storage systems on OP time 
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Dependent variable: OP time 

 Model 1 Model 2 Model 3 Model 4 

HDFRSS   -0.0471***  

(0.0026) 

-0.0347***  

(0.0086) 

Volume per SKU 
0.0032***  

(0.0001) 

0.0030***  

(0.0001) 

0.0030***  

(0.0001) 

0.0027***  

(0.0001) 

Quantity of SKU 
0.0050***  

(0.00003) 

0.0052***  

(0.00003) 

0.0052***  

(0.00003) 

0.0054***  

(0.00003) 

Weight per SKU 
0.0185***  

(0.0001) 

0.0185***  

(0.0001) 

0.0185***  

(0.0001) 

0.0181***  

(0.0001) 

Travel distance 
0.0262***  

(0.0001) 

0.0264***  

(0.0001) 

0.0263***  

(0.0001) 

0.0260***  

(0.0001) 

Pick level 
0.0051***  

(0.0009) 

0.0076***  

(0.0009) 

0.0108***  

(0.0009) 

0.0098***  

(0.0009) 

Pick position  

in batch 

0.0007***  

(0.00001) 

0.0006***  

(0.00001) 

0.0006***  

(0.00001) 

0.0006***  

(0.00001) 

Experience 
-0.000004*** 

(0.000000) 

-0.000004*** 

(0.000000) 

-0.000004*** 

(0.000000) 

-0.000001*** 

(0.000000) 

HDFRSS ×  

Volume per SKU 
   0.0226***  

(0.0005) 

HDFRSS ×  

Quantity of SKU 
   -0.0089***  

(0.0003) 

HDFRSS × 

Weight per SKU 
   0.0340***  

(0.0009) 

HDFRSS × 

Travel distance 
   0.0155***  

(0.0004) 

HDFRSS × 

Pick level 
   -0.0105***  

(0.0037) 

HDFRSS × Pick  

position in batch 
   0.0023***  

(0.0001) 

HDFRSS ×  

Experience 
   -0.00003*** 

(0.000000) 

Temporal  

fixed effects 
included included included included 

Picker  

fixed effects 
not included included included included 

Constant 2.4619*** (0.0012) 2.4551*** (0.0012) 2.4554*** (0.0012) 2.4618*** (0.0012) 

Observations 2,357,976 2,357,976 2,357,976 2,357,976 

Order pickers 192 192 192 192 

AIC 18,133,437 18,074,234 18,073,913 18,061,955 

BIC 18,133,551 18,076,769 18,076,461 18,064,591 

LL -9,066,709 -9,036,917 -9,036,756 -9,030,769 

Deg. of freedom 7 199 200 207 

Chi-square 377,566 *** 384,923 *** 385,246 *** 397,219 *** 

note: HDFRSS = High-density flow-rack storage system; robust standard errors in parentheses; 192 order pickers included; *p < 0.05; **p 

< 0.01; ***p < 0.001; an additional test regarding the distribution assumption in our DV testing Weibull, Gaussian, logistic, log-normal, 

and log-logistics is attached in Appendix 1. 
 

We draw the reader’s attention to Model 1, where we integrate OP time as our DV 
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together with all CVs. The coefficients for volume per SKU, quantity of SKUs, weight per 

SKU, travel distance, pick level, and pick position in the batch are positive, indicating that 

they increase OP time and therefore decelerate the process (Table 4, Model 1, lines 2–6). 

With respect to travel distance, we can transform the estimator β4 by applying Formula (2), 

and we find that every additional meter of traveling increased OP time by up to 2.65% (β4 = 

0.0262, p < 0.001). In contrast, the coefficient for the cumulative experience of order pickers 

is negative, indicating that experience decreases OP time and therefore accelerates the 

process. With every additional 100 picks, the OP decreases by 0.039% (β7 = -0.000004, p < 

0.001). 

Next, we compare the impact of a methodological integration of order picker 

heterogeneity through a mixed-effects AFTM. While Model 1 is a simple AFTM, Model 2 

allows one regression line per order picker as a mixed-effects AFTM. We find that the model 

fit improves as the AIC (from 18,133,437 in Model 1 to 18,074,234 in Model 2) and BIC 

(from 18,133,551 in Model 1 to 18,076,769 in Model 2) decrease significantly. The LL is 

reduced from -9,066,709 in Model 1 to -9,036,917 in Model 2, validating the improvement of 

the model fit. Therefore, we note that order picker heterogeneity is an important variable for 

explaining the performance of manual OP systems. 

For the evaluation of storage systems, we draw the reader’s attention to Model 3, where 

we integrate our IV of interest into the mixed-effects AFTM and highlight two interesting 

findings. First, the fit of Model 3 (which differentiates between storage systems) improves 

compared to Model 2 (which does not differentiate between storage systems), and we 

conclude that the type of storage system used is an important predictor of OP time in manual 

OP systems. Second, when keeping all CVs constant, the high-density flow-rack storage 

system decreases the OP time by up to 4.60% (β8 = 0.0471, p < 0.001) compared to the full-
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pallet storage system and, therefore, is capable of accelerating the OP process. However, the 

drivers of this acceleration remain unknown until this point and require the investigation of 

interaction terms for subsequent moderation analysis, where the storage system represents our 

moderator. The results are presented in Model 4. 

Our starting point for the moderation analysis is the weight per SKU. The coefficient for 

weight per SKU is positive (β3 = 0.0340, p < 0.001), indicating that the heavier an SKU, the 

longer the pick time. This seems reasonable in light of the metabolic costs that increase with 

the load picked and carried by an order picker. We find a similar logic for the interaction term 

HDFRSS × weight per SKU (β = 0.0181, p < 0.001), indicating that when an SKU is retrieved 

from a high-density flow-rack storage system, the heavier an SKU, the longer the pick time. 

Thus, the direction of the effect is identical for the high-density flow-rack storage system and 

the full-pallet storage system. We visualize this through simple slopes in Figure 6, where the 

diagram on the left side includes the weight per SKU. In a nutshell, simple slopes are 

regression lines at one level of a predictor, which is the weight per SKU in this case. Because 

the regression lines have identical slopes, the storage system does not moderate the impact of 

weight per SKU on OP time. Weight per SKU is, therefore, relevant for both storage systems 

and is probably more dependent on human factors, such as physical strength or physical 

condition. 

Looking at the experience of order pickers, we find significantly different slopes in the 

right graph of Figure 6 and a moderating role of storage systems that we can interpret as 

follows: when picking from high-density flow-rack storage systems, the effect of order picker 

experience on OP time is stronger than for full-pallet storage systems. Figure 6 visualizes the 

simple slopes for the moderator storage system with weight per SKU (Figure 6a) and 

experience (Figure 6b). In Figure 6b, we identify a crossover effect in which the effect of 
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experience on the DV OP time switches at about 4,000 cumulative picks. We can derive that 

picking from high-density racks takes longer for inexperienced pickers (less than 4,000 

cumulative picks) than picking from full pallets. This can possibly result from the search task 

in the high-density racks, where 20 dissimilar SKUs are stored nearby. 

Figure 6. Simple slopes for the moderator storage system with weight (left) and experience (right) as IVs 

 

Next, we further investigate the pick level of the storage system and the interaction 

terms in Model 4, presented in Table 4. The coefficient for the pick level is positive for all 

picks (β5 = 0.0098, p < 0.001), indicating that the higher the pick level, the longer the OP 

time. However, the direction of this effect turns to a negative coefficient in high-density flow-

rack storage systems × pick level (β5 = -0.0105, p < 0.001), indicating that the higher the pick 

level, the shorter the OP time. At this point, we recall the four levels of the high-density flow 

storage system (0.00, 0.60, 1.20, and 1.80 meters from the floor). Level 2 at 1.20 meters 

represents the golden zone where SKUs are located at the height between most pickers’ waists 

and shoulders. Therefore, we assume a non-linear relationship and integrate a polynomial 

term for our moderation testing for a U-shaped moderation effect of the storage system by 
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(storage systems × pick level).2 We draw the reader’s attention to Figure 7 (left diagram), 

which verifies the previous assumptions. When picking from high-density flow-rack storage 

systems, the effect of pick level on OP time is non-linear and follows a U-shape. The ground 

level and Level 3, which are 1.80 meters in height, require time-consuming bending and 

stretching. The OP time decreases when retrieving SKUs from Levels 2 and 3 of the high-

density flow-rack storage system. 

 

Figure 7. Simple slopes for the mediator storage system with weight (left) and experience (right) as IVs 

 

Finally, the largest difference between the two storage systems under examination 

results from the number of SKUs to pick. In Model 4, the coefficient for the quantity of SKUs 

is positive for all picks (β5 = 0. 0.0054, p < 0.001), indicating that the higher the quantity of 

SKUs, the longer the OP time. However, the direction of this effect turns to a negative 

coefficient in high-density flow-rack storage systems × quantity of SKUs (β5 = -0.0089, p < 

0.001), indicating that the higher the quantity of SKUs, the shorter the OP time. The simple 

slopes for the moderating role of storage systems are visualized in Figure 7 (right diagram). 
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With an increasing quantity of SKUs to pick, the OP time increases for full-pallet flow-rack 

storage systems but decreases for high-density flow-rack storage systems. 

6. Further analyses 

6.1. Replenishment of different storage systems 

Although we find that high-density flow-rack storage systems can reduce the OP time by 

4.60%, this storage system may increase the replenishment time compared to full-pallet 

storage systems. This concern is motivated by the fact that replenishing high-density flow-

rack storage systems increases the number of manual activities—for separating SKUs from a 

unit load and sorting individual SKUs into the system. To assess the overall impact of the 

high-density flow-rack storage system on the OP process, we quantify the replenishment 

process through a second mixed-effects log-logistic AFTM. The formulation is as follows: 

ln(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑡𝑖𝑚𝑒) = 𝛼0 +  𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝛽1 +  𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝛽2 +

 𝑆𝐾𝑈𝑠 𝑜𝑛 𝑝𝑎𝑙𝑒𝑡𝑡𝑒 𝛽3 +  𝑣𝑜𝑙𝑢𝑚𝑒 𝑝𝑒𝑟 𝑝𝑎𝑙𝑒𝑡𝑡𝑒  𝛽4 +  𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒  𝛽5 +

 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝛽6 +  𝑓𝑜𝑟𝑘𝑙𝑖𝑓𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝛽7 +  𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝛽8 + 𝜀,    (5) 

where we dummy-code the storage system as follows: 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 =  {
1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑖𝑐𝑘 𝑖𝑠 𝑟𝑒𝑡𝑟𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑎 ℎ𝑖𝑔ℎ − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑟𝑎𝑐𝑘 𝑠𝑦𝑠𝑡𝑒𝑚,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (6) 

 

We empirically test our model with a second archival dataset on replenishment 

operations covering identical time frames and warehouses. The dataset includes 98,625 

retrieval operations performed by 31 forklift operators. Details of the operationalization of our 

variables and descriptive statistics are provided in Appendix 2. We also test for cross-

correlation in Appendix 3.  

We now draw the reader’s attention to Table 5. Similar to the OP case, we observe the 

best model fit with the methodological integration of order picker heterogeneity through a 
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mixed-effects AFTM. When keeping all variables constant, we find that replenishment 

operations of a high-density flow-rack storage system (β6 = -0.3848) are associated with a 

38.48% increase in the expected replenishment time and therefore decelerate the process. 

Table 5. Results of log-logistic AFTM for retrieval time 

Dependent variable: Retrieval time per pallet 

 Model (5) Model (6) Model (7) Model (8) 

Storage system (IV)  
 0.439233*** 

(0.006884) 
 0.384883*** 

(0.006788) 

Volume per pallet 
0.003511*** 

(0.000064) 

0.003446*** 

(0.000063) 

0.003648*** 

(0.000061) 

0.003583*** 

(0.000060) 

SKU on pallet 
0.023040*** 

(0.000727) 

0.026206*** 

(0.000714) 

0.019191*** 

(0.000684) 

0.021802*** 

(0.000679) 

Travel distance 
-0.000597*** 

(0.000060) 

-0.000795*** 

(0.000067) 

-0.000481*** 

(0.000063) 

-0.000665*** 

(0.000067) 

Storage height 
-0.000198*** 

(0.000005) 

-0.000093*** 

(0.000005) 

-0.000167*** 

(0.000005) 

-0.000082*** 

(0.000005) 

Forklift operator 

experience 

-0.000021*** 

(0.000001) 

-0.000020*** 

(0.000001) 

-0.000014*** 

(0.000001) 

-0.000012*** 

(0.000001) 

Operator fixed 

effect 
No Yes No Yes 

Constant 
4.834118*** 

(0.005991) 

4.689332*** 

(0.006232) 

4.834725*** 

(0.005723) 

4.715754*** 

(0.005979) 

Observations 98,625 98,625 98,625 98,625 

Forklift operator 31 31 31 31 

AIC 1,114,536 1,110,644 1,108,686 1,105,579 

BIC 1,114,603 1,110,720 1,109,037 1,105,940 

LL -557,261 -555,314 -554,305 -552,751 

Chi2 
6,789.161000***  

(df = 5) 

10,683.650000***  

(df = 6) 

6,547.251000***  

(df = 5) 

9,656.338000***  

(df = 6) 

note: Robust standard errors in parentheses; 31 forklift operators included; *p < 0.05; **p < 0.01; ***p < 0.001; an additional test 
regarding the distribution assumption in our DV testing Weibull, Gaussian, logistic, log-normal, and log-logistics is attached in Appendix 

4. 

 

Summarizing the best Model (8), high-density flow-rack storage systems can decrease 

the throughput time by up to 4.60% but increase the processing time for replenishments by up 

to 38.65%. Obviously, an economic metric is needed to evaluate and compare these 

interdependencies; the replenishment part is required to be able to complete a picking process. 

We discuss a possible connecting concept in the next section. 
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6.2. A holistic economic perspective on high-density flow-rack storage systems 

When setting both these material flow perspectives in contrast, it is possible to derive an 

optimal economic replenishment quantity (ERQ), representing the minimum replenishment 

quantity that makes the system economically feasible. In other words, we search for the 

quantity that offsets the increased replenishment times by the reduced picking times for each 

SKU stored in the high-density flow-rack system. For each SKU, the ERQ can be computed 

by considering the differences in both the replenishment and picking times between the high-

density flow-rack system and the full-pallet storage system. The notation used in the ERQ 

computation is introduced in Table 6. 

Table 6. ERQ notation 

 

Symbols Description 

𝑖 SKU index, 𝐼 = 1 … 𝑁 

𝐸𝑅𝑄𝑖 
Economic replenishment quantity for the high-density flow-rack system for 

SKUi  

#𝑃𝐿𝑖 Number of picking locations dedicated to SKUi in the traditional system 

𝑡𝑅,𝑖
𝐻𝐷 Unit replenishment time of the high-density flow-rack system for an SKU of i 

𝑡𝑃,𝑖
𝐻𝐷 Unit picking time from the high-density flow-rack system for an SKU of i 

𝑡𝑅,𝑖
𝑇𝑆 Unit replenishment time of the traditional system for a pallet of i 

𝑡𝑃,𝑖
𝑇𝑆 

Unit picking time from the traditional system for an SKU of i 

𝐷𝑖
𝑇 Demand of i in a reference time period T measured in SKUs 

#
𝑆𝐾𝑈𝑖

𝑃𝐿
 Number of SKUs of i per pallet 

𝑑𝐻𝐷 Channel depth in the high-density flow-rack system 

𝑑𝑖 Depth of i 

 

We propose a first ERQ formulation per SKUi, 𝐸𝑅𝑄𝑖, which we define as the minimum 

replenishment quantity for which the difference in the total picking and replenishment times 
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of the high-density flow-rack system and the traditional pallet-sized rack storage system is 

smaller or equal to zero (7). 

𝑡𝑅,𝑖
𝐻𝐷 ∙

𝐷𝑖
𝑇

𝐸𝑅𝑄𝑖 ∙ #
𝑆𝐾𝑈𝑖

𝑃𝐿

+ 𝑡𝑃,𝑖
𝐻𝐷 ∙ 𝐷𝑖

𝑇 − (𝑡𝑅,𝑖
𝑇𝑆 ∙

𝐷𝑖
𝑇

#𝑃𝐿𝑖 ∙ #
𝑆𝐾𝑈𝑖

𝑃𝐿

+ 𝑡𝑃,𝑖
𝑇𝑆 ∙ 𝐷𝑖

𝑇)  ≤ 0 (7) 

Interpreting (7) as an equation, the 𝐸𝑅𝑄𝑖 can be derived as follows: 

𝐸𝑅𝑄𝑖 =
𝑡𝑅,𝑖

𝐻𝐷 ∙ #𝑃𝐿𝑖

𝑡𝑅,𝑖
𝑇𝑆 +  (𝑡𝑃,𝑖

𝐻𝐷 +  𝑡𝑃,𝑖
𝑇𝑆) ∙ #𝑃𝐿𝑖 ∙ #

𝑆𝐾𝑈𝑖

𝑃𝐿

 (8) 

It is important to note that 𝐸𝑅𝑄𝑖 must be compared to the total shelf space available in 

the high-density flow-rack (9). In fact, the overall time performance improvement enabled by 

the high-density flow-rack system can only be achieved when the system can accommodate 

the 𝐸𝑅𝑄𝑖 for each SKU under analysis on the shelf. 

𝐸𝑅𝑄𝑖 ≤  
𝑑𝐻𝐷

𝑑𝑖
 (9) 

Picking and replenishment times are not the only factors that might affect the ERQ 

choice, as the ERQ affects the total warehouse space occupied by the high-density flow rack, 

and being related to the total size of the system, it also affects the rack investment cost. Thus, 

we introduce a more holistic economic evaluation when computing the ERQ that takes into 

account the different warehouse costs affected by this measure. 

For this purpose, a cost optimization model is proposed that accounts for the overall 

warehouse picking system. This is intended to support the decision of which SKU to store 

inside the high-density flow-rack system, and the correspondent 𝐸𝑅𝑄𝑖, to minimize the total 

cost of the warehouse picking area, including both the high-density flow-rack system and the 

full-pallet system. The additional notation used for the cost optimization model is introduced 

in Table 7. 
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Table 7. Cost optimization model notation 

 

Symbols Description 

𝑥𝑖
𝐻𝐷 

Binary variable equal to 1 if the SKUi is stocked in the high-density flow-rack 

system and 0 if the SKUi is stocked in the traditional system 

𝑁𝐿𝐻𝐷 Number of levels of the high-density flow-rack system 

𝑙𝐻𝐷 Channel length in the high-density flow-rack system 

ℎ𝐻𝐷 Channel height in the high-density flow-rack system 

𝑙𝑖 Length of SKUi 

ℎ𝑖 Height of SKUi 

𝑐𝑅 
Hourly cost of the operator and the material handling in the reserve area 

𝑐𝑃 Hourly cost of the operator in the picking area 

𝑐𝑆 Monthly cost per square meter of the warehouse 

𝑐𝐵
𝐻𝐷 Unit rack investment cost per square meter of the high-density flow-rack system 

𝑐𝐵
𝑇𝑆 Unit rack investment cost per square meter of the traditional system 

𝑅𝑇𝑚𝑎𝑥
𝑇  Total available replenishment time in hours in a reference time period T 

𝑃𝑇𝑚𝑎𝑥
𝑇  Total available picking time in hours in a reference time period T 

 

The total cost under analysis consists of four terms: replenishment cost, picking cost, 

space cost, and rack investment cost. The replenishment cost measures the cost associated 

with the replenishment of the picking area, including both high-density flow-rack and the 

traditional system (Calzavara et al., 2017)Klicken oder tippen Sie hier, um Text einzugeben.. 

This cost depends on the time required to replenish an SKU in the high-density flow-rack 

system 𝑡𝑅,𝑖
𝐻𝐷 on the time required to replenish a pallet in the traditional system, 𝑡𝑅,𝑖

𝑇𝑆, on the 

number of replenishment for both the high-density flow-rack system and traditional systems 

𝐷𝑖
𝑇

𝐸𝑆𝑄𝑖 ∙ #
𝑆𝐾𝑈𝑖

𝑃𝐿

 and 
𝐷𝑖

𝑇

#𝑃𝐿𝑖 ∙ #
𝑆𝐾𝑈𝑖

𝑃𝐿

, respectively, and on the hourly cost of the material handling 

equipment and the operator performing this task 𝑐𝑅. The picking cost consists of the time 

needed to physically pick the SKUs from the two systems 𝑡𝑃,𝑖
𝐻𝐷 and 𝑡𝑃,𝑖

𝑇𝑆, multiplied by the 
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operator hourly cost 𝑐𝑃 (Calzavara et al., 2019). Other fixed picking time components 

associated with activities such as reading the pick list, setting up the order, searching for an 

SKU, or scanning barcodes were excluded from this analysis, as they were not different 

between the two systems. Space cost refers to the space occupied by both the high-density 

flow-rack and the traditional systems, multiplied by the monthly cost per square meter of the 

warehouse 𝑐𝑠. The space occupied by the traditional systems consists of the sum of all the 

picking locations #𝑃𝐿𝑖 of the SKUs stored in this system, assuming one pallet per picking 

location. We assume only one picking level (i.e., picking from the ground level of the 

system). For the high-density flow-rack system, we assume a fixed number of levels per 

channel 𝑁𝐿𝐻𝐷, with a fixed channel size, and each channel dedicated to a single SKUi. Thus, 

the total space occupied by the high-density flow-rack depends on the number of SKUs stored 

at the ground level of the system. Finally, the rack investment cost refers to the cost of the 

building of the two systems, which depends on the space occupied by each system multiplied 

by the corresponding unit rack investment cost. 

The proposed optimization model is constructed as a mixed-integer programming model 

and is presented below.  

 

𝑚𝑖𝑛 
∑ (𝑐𝑅 ∙ (𝑥𝑖

𝐻𝐷 ∙ 𝑡𝑅,𝑖
𝐻𝐷 ∙

𝐷𝑖
𝑇

𝐸𝑅𝑄𝑖∗#
𝑆𝐾𝑈𝑖

𝑃𝐿

+ (1 − 𝑥𝑖
𝐻𝐷) ∙ 𝑡𝑅,𝑖

𝑇𝑆  ∙
𝐷𝑖

𝑇

#𝑃𝐿𝑖
𝑆𝐾𝑈𝑖

𝑃𝐿

) + 𝑐𝑃 ∙ (𝑥𝑖
𝐻𝐷 ∙𝑖

𝑡𝑃,𝑖
𝐻𝐷 ∗ 𝐷𝑖

𝑇 +  (1 − 𝑥𝑖
𝐻𝐷) ∙ 𝑡𝑃,𝑖

𝑇𝑆 ∙ 𝐷𝑖
𝑇) +  𝑐𝑆 ∙ (

∑ 𝑥𝑖
𝐻𝐷

𝑖

𝑁𝐿𝐻𝐷 ∙ 𝑙𝐻𝐷 ∙ 𝑑𝐻𝐷 + ∑ #𝑃𝐿𝑖𝑖 ∙ 𝑙𝑇𝑆 ∙

𝑑𝑇𝑆) + 𝑐𝐵
𝐻𝐷 ∙

∑ 𝑥𝑖
𝐻𝐷

𝑖

𝑁𝐿𝐻𝐷
∙ 𝑙𝐻𝐷 ∙ 𝑑𝐻𝐷 +  𝑐𝐵

𝑇𝑆 ∙ ∑ #𝑃𝐿𝑖𝑖 ∙ 𝑙𝑇𝑆 ∙ 𝑑𝑇𝑆)
 
  

(10)  

s.t. ∑ (𝑥𝑖
𝐻𝐷 ∙ 𝑡𝑅,𝑖

𝐻𝐷 ∙
𝐷𝑖

𝑇

𝐸𝑅𝑄𝑖∗#
𝑆𝐾𝑈𝑖

𝑃𝐿

+ (1 − 𝑥𝑖
𝐻𝐷) ∙ 𝑡𝑅,𝑖

𝑇𝑆 ∙
𝐷𝑖

𝑇

#𝑃𝐿𝑖∗#
𝑆𝐾𝑈𝑖

𝑃𝐿

)𝑖 ≤ 𝑅𝑇𝑚𝑎𝑥
𝑇   (11) 
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 ∑ (𝑥𝑖
𝐻𝐷 ∙ 𝑡𝑃,𝑖

𝐻𝐷 ∙ 𝐷𝑖
𝑇 +  (1 − 𝑥𝑖

𝐻𝐷) ∙ 𝑡𝑃,𝑖
𝑇𝑆 ∙ 𝐷𝑖

𝑇)𝑖 ≤ 𝑃𝑇𝑚𝑎𝑥
𝑇   (12) 

 𝑥𝑖
𝐻𝐷 ∙ 𝐸𝑅𝑄𝑖 ∙ 𝑑𝑖 ≤ 𝑑𝐻𝐷  ∀ 𝑖 ∈ 𝐼 (13) 

 𝑥𝑖
𝐻𝐷 ∙ 𝑙𝑖 ≤ 𝑙𝐻𝐷  ∀ 𝑖 ∈ 𝐼 (14) 

 𝑥𝑖
𝐻𝐷 ∙ ℎ𝑖 ≤ ℎ𝐻𝐷  ∀ 𝑖 ∈ 𝐼 (15) 

 

𝑥𝑖
𝐻𝐷 ∙ 𝐸𝑅𝑄𝑖 + (1 − 𝑥𝑖

𝐻𝐷) ∙ #𝑃𝐿𝑖

∙ #
𝑆𝐾𝑈𝑖

𝑃𝐿
=  𝐷𝑖

𝑇 

∀ 𝑖 ∈ 𝐼  

(16) 

 𝑥𝑖
𝐻𝐷 = {1; 0} ∀ 𝑖 ∈ 𝐼 (17) 

 𝐸𝑅𝑄𝑖 , #𝑃𝐿𝑖 ∈ 𝑁 ∀ 𝑖 ∈ 𝐼 (18) 

Model variables include a binary variable 𝑥𝑖
𝐻𝐷 equal to 1 if an SKU is stored in the 

high-density flow-rack or equal to 0 if the SKU is stored in the traditional system, the 𝐸𝑅𝑄𝑖, 

for each SKU stored in the high-density flow-rack system and the number of pallet locations 

per each SKU stored in the traditional system, #𝑃𝐿𝑖. 

The objective function (10) minimizes the total cost of the warehouse picking area, 

including both the high-density flow-rack system and the traditional system. Constraint (11) 

states that the total time needed for the replenishment activity for both the high-density flow-

rack system and the traditional system must be lower than the total available replenishment 

time, while constraint (12) indicates that the total picking time needed for the picking activity 

of both the high-density flow-rack system and the traditional system must be lower than the 

total available picking time. Constraints (13), (14), and (15) are space constraints, ensuring 

that the size of SKUi fits the channel size of the high-density flow-rack system. Constraint 

(16) ensures that the quantity of SKUi at stock is enough to satisfy the demand of SKUi in 

reference period T. Finally, constraints (17) and (18) set variable constraints, including the 
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binary variable, which can assume only 1 or 0 values, and 𝐸𝑅𝑄𝑖 and #𝑃𝐿𝑖  that can assume 

only integer values per each SKUi.  

7. Conclusions and further research 

7.1. Summary of this work 

This work evaluated the impact of two alternative storage system designs on the performance 

of OP systems. We were concerned with the high-density flow-rack storage system, where 20 

different SKUs were stored on the ground floor in an area corresponding to the size of three 

pallets. The final dataset included 2,348,652 operations performed by 192 operators over five 

weeks to answer RQ1 How does the use of flow-rack storage systems influence OP time? and 

RQ2 How does individual order picker heterogeneity influence the relative performance of 

flow-rack storage systems? 

The analysis showed that high-density flow-rack storage systems could accelerate the 

picking process, in the case of the B&M retailer investigated in this paper, by 4.60%, 

resulting in a smoother flow of materials compared to standard storage systems. The impact 

on replenishment time was quantified using a second log-logistic AFTM for forklift drivers 

with random intercepts and fixed slopes as a mixed-effects model. With a log-logistic 

distribution assumption of the dependent time variable and holding all other variables 

constant, we found that the replenishment operation slowed down the process by 38.65%.  

In an effort to balance both time tendencies we identified for the high-density flow-rack 

system, we specified which SKU should be stored in this system together with the optimal 

ERQ per SKU. In Section 6.2, a mixed-integer optimization model was proposed, which 

minimizes the total costs affected by these two variables, including replenishment cost, 

picking cost, space cost, and investment cost. 
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7.2. Implications to theory 

Our study relates to several streams of literature. First, we contribute to the literature on 

storage assignment decisions and investigate the trade-offs between full-pallet storage 

systems and high-density flow-rack storage systems. Battini et al. (2018) defined the unitary 

picking time for cases in which cartons are picked from racks or pallets as the major input 

variables for the storage assignment model. Using data collected in a case study, we show that 

picking from high-density flow-rack storage systems is 4.60% faster than picking from full-

pallet storage systems. Second, we contribute to the literature that has investigated the 

determinants of OP time, such as Finnsgård et al. (2011) or Finnsgård and Wänström (2013). 

Similar to Finnsgård and Wänström (2013), we find that height of exposure (in our case, the 

pick level) and part size (in our case, the volume of an SKU) increase OP time. We extend 

their model with the variable pick position in the batch, quantifying the complexity of the 

underlying packing problem (Dowsland & Dowsland, 1992; Dyckhoff, 1990). Third, we 

contribute to the literature on human learning in OP (e.g., Grosse et al. [2013], Batt and 

Gallino [2019], and Loske [2022]. Our empirical results for the underlying industrial case 

study indicate that when a picker completes 1,000 picks, OP time decreases by up to 0.45%. 

Additionally, we empirically verify that the storage system moderates the impact of 

experience on OP time. To the best of our knowledge, our study is the first to empirically 

validate such a moderating effect. 

By evaluating the performance of human pickers for two different OP systems, this 

paper contributes to an emerging stream of research that investigates human factors in a 

logistics context. The results provide evidence that human factors are crucial for the 

performance of work systems and that they therefore need to be a core part of research and 

business design initiatives. 
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7.3. Managerial implications 

This research has several implications for practice. First, the results of the AFTM models 

provide managers with warehouse and SKU attributes that have the potential to improve the 

performance of human order pickers—if considered appropriately in the design and operation 

of the warehouse. Second, the economic evaluation of the two types of picking systems 

suggests that the improvement in picking time offered by the high-density flow-rack 

compared to the traditional system might be offset by increased replenishment times. Thus, 

the system must be carefully sized to guarantee an improvement in the overall cost situation. 

This is relevant for warehouse managers when designing the warehouse picking area. To 

support warehouse managers in this task, a simple economic replenishment quantity model 

was proposed for a high-density flow-rack system that considers both replenishment and 

picking time.  

7.4. Limitations and further research 

The empirical analysis provided in this paper has broad transfer potential to several areas of 

human–technology interaction in production and logistics contexts. However, the empirical 

results presented in the previous sections have limitations that need to be considered. In turn, 

they spawn new research avenues for practice-relevant research for retail operations. Our first 

limitation is the varying level of employment time for each operator investigated in our 

analysis. Order pickers could have varying levels of experience obtained prior to the 

experiment, which was not captured in our dataset. Therefore, further research could be 

dedicated to the question of learning curves related to different storage systems when a 

temporary workforce is employed. 

Second, Finnsgård and Wänström (2013) provided empirical evidence of the critical 
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impact of SKU packaging on OP time. Although we integrated the volume and weight of 

SKUs, the secondary packing could have been designed differently (e.g., fully enveloping the 

secondary packing or varying the thickness of the carton box for the secondary packing). We 

did not integrate the secondary packing system design variables into our model, which could 

be another interesting extension of our empirical examinations. 

Specific attention should be paid to issues of technology design and application, for 

example, which systems are most efficient in which settings, including the characteristics and 

structure of the human workforce, as well as the order quantities and schedules involved. This 

would support a valuable theory modeling perspective as well as a business practice design 

configuration perspective on human–technology interaction in sociotechnical operations 

systems. Such an analysis could contribute to a larger economic sustainability perspective and 

should be complemented by social and ecological sustainability analyses on the issue at hand. 
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Appendix 

Appendix 1: Test for the distribution assumption of order picking time in the order picking 

model 

Dependent variable: Picking time 
 Weibull Tobit Logistic Log-normal Log-logistic 

Storage system 

(IV) 
0.0017 (0.0027) 

-0.7078*** 

(0.0603) 

-0.9861*** 

(0.0466) 

-0.0592*** 

(0.0026) 
-0.0471*** (0.0026) 

Volume per SKU 0.0052*** 

(0.0001) 

0.0839*** 

(0.0016) 

0.0554*** 

(0.0013) 

0.0034*** 

(0.0001) 
0.0030*** (0.0001) 

Number of picks 0.0051*** 

(0.00003) 

0.1355*** 

(0.0006) 

0.1358*** 

(0.0007) 

0.0043*** 

(0.00003) 
0.0052*** (0.00003) 

Weight per SKU 0.0144*** 

(0.0001) 

0.4132*** 

(0.0020) 

0.3755*** 

(0.0017) 

0.0177*** 

(0.0001) 
0.0185*** (0.0001) 

Travel distance 0.0103*** 

(0.00003) 

0.4899*** 

(0.0012) 

0.5324*** 

(0.0011) 

0.0241*** 

(0.0001) 
0.0263*** (0.0001) 

Pick level -0.0167*** 

(0.0010) 

0.0635*** 

(0.0221) 

0.2724*** 

(0.0169) 
0.0012 (0.0009) 0.0108*** (0.0009) 

Number of picks 

per batch 

0.0001*** 

(0.00001) 

0.0084*** 

(0.0002) 

0.0109*** 

(0.0002) 

0.0004*** 

(0.00001) 
0.0006*** (0.00001) 

Picker experience -0.000004*** 

(0.000000) 

-0.0001*** 

(0.000002) 

-0.00004*** 

(0.000001) 

-0.000004*** 

(0.000000) 

-0.000004*** 

(0.000000) 

Picker fixed effect Yes Yes Yes Yes Yes 

Constant 
2.9463*** 

(0.0013) 

13.6425*** 

(0.0295) 

10.9352*** 

(0.0236) 

2.5059*** 

(0.0013) 
2.4554*** (0.0012) 

Observations 2,357,976  2,357,976 2,357,976 2,357,976 

Picker 192 192 192 192 192 

AIC 18,611,897 19,844,348 19,232,064 18,130,474 18,073,913 

BIC 18,614,445 19,846,896 19,234,612 18,133,021 18,076461 

LL -9,305,748 -9,921,973 -9,615,831 -9,065,036 -9,036,756 

chi2 (df = 8) 204,813.0000*** 277,947.2000*** 365,177.7000*** 326,495.5000*** 385,246.6000*** 

Note: Robust standard errors in parentheses; 192 order pickers included; *p < 0.05; **p < 0.01; ***p < 0.001. 

Lowest AIC and BIC and best LL for log-logistic AFTM. 
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Appendix 2: Operationalization of variables and descriptive statistics for the retrieval model. 

No. Variable Description of operationalization Operationalization Mean SD. 

DV Retrieval time 

per palette 

Timestamps for the begin and the end of 

the retrieval process  

are used to set the borders of the total event 

time 

 

Continuous 138.51 78.99 

IV Storage system 0 = Pick from EUL1 storage system 

1 = Pick from high density storage system 

Binary dummy  

1 = chest level (7.85%), 0 = ground 

level (92.15%) 

 

CV1 Volume per 

palette 

Volume of a full unit retrieved from the 

reserve area 

Continuous 

 

922.65 443.23 

CV2 SKU on palette Number of SKU on the palette Continuous 

 

782.29 750.48 

CV3 Travel distance Distance in meters from location to location 

travelled by the forklift operator. 

 

Continuous 

 

22.71 39.48 

CV4 Storage height Height of the reserve area where the full 

palette is retrieved. 

Continuous 

 

5.04 2.53 

CV5 Forklift operator 

experience 

Cumulative number of retrieval operations 

per forklift operator  

in the dataset 

 

Continuous 2145 1508 

Note: Descriptive statistics for the dataset after the data cleaning process with N=98,625 retrieval operations performed by 31 forklift 

operators. 

 

Appendix 3: Correlation matrix for the retrieval model. 

No. DV IV CV1 CV2 CV3 CV4 CV5 

DV    1.00          

IV    0.19       1.00         

CV1    0.07       0.05       1.00        

CV2 -  0.12       0.08       0.13       1.00       

CV3    0.00    -  0.04    -  0.05       0.06       1.00      

CV4 -  0.01       0.00       0.03       0.03       0.01       1.00     

CV5 -  0.07    -  0.03       0.02       0.05    -  0.05       0.01       1.00    
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Appendix 4: Test for the distribution assumption of retrieving time in the retrieval model 

Dependent variable: Retrieval time per palette 
 Weibull Tobit Logistic Log-normal Log-logistic 

Storage system 

(IV) 

0.3426*** 

(0.0064) 

59.5147*** 

(0.9608) 

59.2009*** 

(0.9476) 

0.3914*** 

(0.0072) 

0.3849*** 

(0.0068) 

Volume per palette 0.0029*** 

(0.0001) 

0.3998*** 

(0.0062) 

0.5084*** 

(0.0083) 

0.0028*** 

(0.00005) 

0.0036*** 

(0.0001) 

SKU on palette 0.0160*** 

(0.0006) 

2.8675*** 

(0.0935) 

2.7698*** 

(0.0866) 

0.0238*** 

(0.0007) 

0.0218*** 

(0.0007) 

Travel distance -0.0005*** 

(0.00004) 

-0.0817*** 

(0.0067) 

-0.0841*** 

(0.0080) 

-0.0006*** 

(0.0001) 

-0.0007*** 

(0.0001) 

Storage height -0.0001*** 

(0.000004) 

-0.0090*** 

(0.0006) 

-0.0090*** 

(0.0006) 

-0.0001*** 

(0.000005) 

-0.0001*** 

(0.000005) 

Forklift operator 

experience 

-0.00001*** 

(0.000001) 

-0.0014*** 

(0.0002) 

-0.0014*** 

(0.0001) 

-0.00001*** 

(0.000001) 

-0.00001*** 

(0.000001) 

Operator fixed 

effect 
Yes Yes Yes Yes Yes 

Constant 
4.9580*** 

(0.0054) 

120.9959*** 

(0.8126) 

112.9810*** 

(0.7610) 

4.7080*** 

(0.0061) 

4.7158*** 

(0.0060) 

Observations 98,625  98,625 98,625 98,625 

Forklift operator 31 31 31 31 31 

AIC 1,108,801 1,127,140 1,120,972 1,106,186 1,105,579 

BIC 1,109,162 1,127,501 1,121,333 1,106,547 1,105,940 

LL -554,362 -563,532 -560,448 -553,055 -552,751 

chi2 (df = 6) 8,075.8220*** 10,011.5400*** 11,110.7800*** 8,787.5630*** 9,656.3380*** 

Note: Robust standard errors in parentheses; 192 order pickers included; *p < 0.05; **p < 0.01; ***p < 0.001. 

Lowest AIC and BIC and best LL for log-logistic AFTM. 

 


