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Abstract——This study presents the assumptions and strategies
for the practical implementation of the dynamic mode decompo‐
sition approach in the wide-area monitoring system of the Ital‐
ian transmission system operator, Terna. The procedure set up
aims to detect poorly damped power system interarea oscilla‐
tions. Dynamic mode decomposition is a data-driven technique
that has gained increasing attention in different fields; the pro‐
posed implementation can both characterize the oscillatory
modes and identify the most influenced areas. This study pres‐
ents the results of its real-life implementation and operational
experience in power system monitoring. It focuses on the main
characteristics and solutions identified to reliably monitor the
interarea electromechanical modes of the interconnected Euro‐
pean power system. Moreover, conditions to issue an appropri‐
ate alarm in case of critical operating conditions are described.
The effectiveness of the proposed approach is validated by its
application in three case studies: a critical oscillatory event and
a short-circuit event that occurred in the Italian power system
in the previous years, and a 15-minute time interval of normal
grid operation recorded in March 2021.

Index Terms——Power system control, power system dynamics,
wide-are monitoring system (WAMS), dynamic mode decompo‐
sition.

I. INTRODUCTION

THE growth of non-programmable renewable energy
sources (RES) (likely to accelerate in the next few

years owing to the de-carbonizing policies adopted in Eu‐
rope and worldwide) has enabled transmission system opera‐
tors (TSOs) to identify the most suitable functions to guaran‐
tee the security of power systems. Accordingly, the signifi‐
cant deployment of phasor measurement units (PMUs) for
wide-area monitoring systems (WAMSs) may be of para‐
mount importance, provided suitable methods and algorithms

to elaborate the massive stream of data are available to both
extract significant information in real-time and provide
alarms in the case of critical operating conditions.

Presently, interarea oscillations are critical because they
are likely to move a large amount of power across intercon‐
nections unless they are immediately damped. Consequently,
these oscillations can trigger cascading events, potentially
leading to large blackouts.

Moreover, the occurrence of poorly damped interarea os‐
cillations is increasing (for example, in the European power
system [1], [2]). Hence, to preserve system stability, it is nec‐
essary to ① promptly identify them in both perturbed and
normal operating conditions, ② characterize them in real-
time, and ③ determine and establish suitable countermea‐
sures.

The characterization of the electromechanical modes aims
to estimate their magnitude, frequency, and damping. Many
algorithms are available in the technical literature to simulta‐
neously perform these three goals, starting from PMU data
with different properties in terms of accuracy and robust‐
ness. For instance, they can be based on the Hilbert trans‐
form [3]-[5], which enables the estimation of the damping of
the oscillatory modes with high accuracy, particle swarm op‐
timization [6], characterized by a good accuracy of the esti‐
mated parameters, or the wavelet-based method [7], which
decomposes signals into functions of both time and frequen‐
cy domains. However, a complete characterization of the os‐
cillatory modes, identifying the areas involved and the phase
displacement of oscillations (mode shapes) cannot be per‐
formed using the aforementioned methodologies. Other meth‐
ods have also been investigated, for example, those based on
principal component analysis [8], which can provide a ro‐
bust and accurate evaluation of magnitude, frequency, and
damping of oscillatory modes, giving at the same time infor‐
mation on the areas more affected by each mode. However,
this methodology cannot completely characterize the mode
shapes associated in terms of phase displacement.

Dynamic mode decomposition (DMD) has recently gained
the interest of power system researchers, both for post-distur‐
bance and ambient data analysis, owing to its accuracy, ro‐
bustness, and information content, resulting from optimiza‐
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tion over a time window. In addition, the computational com‐
plexity of DMD is limited, which enables the real-time ex‐
ploitation of its properties. DMD provides modal decomposi‐
tion, where each mode comprises spatially correlated struc‐
tures that have the same linear behavior over time. First ap‐
plied to fluid dynamics in [9] and deeply studied in [10],
DMD has been proposed in many alternative algorithms,
mainly developed to overcome some of its intrinsic weak‐
nesses, particularly in the case of noisy datasets.

References [11] and [12] proposed the first version of the
DMD to monitor electromechanical modes; the "exact DMD
formulation", presented in [10], has been adopted for modal
estimation of power systems in [13]. Optimized DMD [14]
or robust DMD, based on robust principal component analy‐
sis [15], are alternative methods of avoiding corruption and
noise in datasets. Block-enhanced DMD [16], which is based
on the Hankel matrix, improves the ability to capture mode
information from ambient data. This approach (also called
data stacking) was proposed in [17] and combined with an
optimal hard threshold to select the best model order to deal
with noise. Nonlinear observables [18] can extend the DMD
to better capture the system dynamics. Randomized DMD
combined with data stacking [19] can increase the comput‐
ing efficiency without losing accuracy. In [20], the output-on‐
ly observer/Kalman filter identification was used to process
the ambient data, followed by the DMD to characterize the
frequency and damping.

Finally, DMD was applied to identify synchronous ma‐
chine coherency in post-fault conditions [21]. In [22], the ro‐
tor angle and acceleration of synchronous machines during a
fault were predicted using DMD. In [22], extended-DMD
was used for dynamic state estimation in real time, whereas
DMD was used for inertia estimation in [23]. In [24], the
output results of the DMD were used as a reference to vali‐
date a machine learning approach.

Based on a review of the technical literature, research on
DMD theory has developed and has been applied to both
synthetic and real data (e. g., [11], [13], [16], [18], [19]
based on the analysis of real ring-down events and ambient
data). Particularly, DMD proved its effectiveness in the anal‐
ysis of data recorded during oscillatory events.

However, its ability during fast transient such as short cir‐
cuits or normal load variation and the possibility of issuing
alarms in case of critical operating conditions is yet to be re‐
ported. Moreover, real-life DMD implementation in a TSO
control room is still undocumented. This study aims to fill
this gap by providing the operational experience of using
DMD in a TSO control center where the data stream from
WAMS is processed. The DMD output was used to monitor
and control the Italian power system in its interconnected op‐
eration with the European power system.

The main contributions of this study are as follows:
1) Application of DMD to detect and characterize oscilla‐

tory interarea modes (frequency, amplitude, damping, and
mode shapes), which must be reliable and robust under both
transient (under different types of perturbations) and normal
operating conditions.

2) Determination of conditions to issue alarms for the con‐

trol room to trigger possible countermeasures.
3) Analysis of DMD properties in the presence of ambient

signals characterized by factors such as noise, changes of op‐
erating conditions, and topology.

The aforementioned contributions were identified after a
one-year test campaign conducted on the Italian power sys‐
tem. The results presented in this study show very good ro‐
bustness under all different power system conditions and
very good accuracy compared with other DMD approaches
tested. In addition, the identification of mode shapes was ac‐
curate and in agreement with the operational experience of
control room engineers and ENTSO-E studies.

The remainder of this paper is organized as follows: the
DMD theory is presented in Section II, whereas Section III
focuses on its practical implementation in Terna control cen‐
ter, with the underlying criteria to issue alarms and trigger
control actions. Section IV presents some selected results fo‐
cusing on the operating conditions and perturbations that can
be critical to accurately identifying modal power system
properties. Two events occurred in the Italian power system
in the last few years, and a 15-minute time interval of nor‐
mal grid operation recorded in March 2021 were analyzed.
The results show very good robustness and accuracy of the
adopted technique and implementation.

II. DMD THEORY

This section presents the theory of the DMD implemented
for the security monitoring module and the identification of
the dominant modes and their features. The DMD utilizes
singular value decomposition (SVD) to obtain dimensionali‐
ty reduction in high-dimensional systems [25]. The DMD ad‐
opted uses the exact DMD [10], [13] combined with the
block-enhanced formulation, as proposed by [16], [17] for
power systems.

A. Exact DMD Architecture

This subsection briefly discusses the theory of exact DMD
[10], [13]. Data are collected from a generic nonlinear sys‐
tem with unknown dynamics. The data from the measure‐
ments are used to approximate the dynamics with locally lin‐
ear systems:

dx
dt

=Ax (1)

where x is a vector representing the states of the dynamic
system at a generic time t; and A is the constant matrix de‐
scribing the dynamic system. Discretizing (1) with sampling
time ∆t, we can obtain:

xk + 1 =Bxk (2)

B = eA∆t (3)

Matrices A and B have the same eigenvectors ϕj and their
eigenvalues are such that λk = eωkDt, where λk is the kth eigen‐
value of B and ωk is the kth eigenvalue of A.

The DMD performs a low-rank projection of B, indicated
by B͂ which optimally fits the measured data by minimizing
the error ε:

ε =  xk + 1 - B͂xk
2

(4)
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This approximation holds only over the sampling window
where B͂ is built. To compute B͂ and minimize ε across all
snapshots k = 12m, the n measurements for each of the
m snapshots can be arranged into two data matrices X and
X ' and the exact DMD can be carried out. The measure‐
ments are stored in a matrix X organized as follows: data re‐
lated to the same snapshot are stored in the same column
and data from the same PMU are stored in the same row. X '
has the same structure; however, data are time-shifted by ∆t.

X =
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Thus, (2) can be rewritten as:

X '=BX (7)

Hence, matrix B is written as:

B =X'X † (8)

where † represents the Moore-Penrose pseudoinverse [26].
Thus, rank truncation can be performed to consider only a
limited number r of dominant modes; the exact DMD ap‐
proach computes a rank-reduced representation in terms of a
proper orthogonal decomposition (POD) projected matrix B͂.
Hence, the data matrix can be approximated using its SVD:

X »UrΣrV
*

r (9)

where Ur, Σr, and Vr have the dimensions of n ´ r, r ´ r, and
(m - 1)´ r, respectively; and * denotes the conjugate trans‐
pose. Thus, B can be efficiently projected onto the POD
modes, and the upper triangular matrix B͂ is obtained as:

B͂ =U *
r (X'VrΣ

-1
r U *

r )Ur =U *
r X'VrΣ

-1
r (10)

B͂ defines the low-dimensional linear model of a dynamic
system. To identify the mode properties, frequencies, damp‐
ing, and mode shapes, the eigenvalue problem for B͂ is
solved as:

B͂Wr =WrΛr
(11)

where the columns of matrix Wr (r ´ r) are the eigenvectors;
and Λr is a diagonal matrix (r ´ r) containing the eigenvalues
λj of B͂. Finally, B can be reconstructed from Wr and Λr; a
subset of the eigenvalues of B is provided by Λr, whereas a
subset of its eigenvectors ϕj is provided by the columns of
Φr (n ´ r) (the "exact DMD modes"):

Φr =X'VrΣ
-1
r Wr (12)

Finally, the approximated solution for all future time is:

x(t)»∑j = 1

r ϕj exp(ωjt)brj =Φrexp (Ωrt)br (13)

where ωj = ln(λj )/∆t is the jth eigenvalue of A in the continu‐
ous-time domain; br is a vector, whose elements brj are the
initial amplitudes of each DMD mode. This can be comput‐
ed from the first snapshot x1 at t = 0 in (13).

x1 »Φrbr (14)

Because Φr is generally a non-square matrix, br is comput‐
ed by finding the best-fit solution using the least-squares
method:

br =Φ
†
r x1 (15)

The frequency f and damping ratio ξ of the identified
modes are computed from the continuous-time eigenvalues
(ωj = α ± iβ):

f =
β

2π
(16)

ξ =
-α

α2 + β2 (17)

Finally, the mode shapes of the processed measurements
are obtained from the columns of Φr in (12).

B. Block-enhanced Formulation Considering Time-delay Co‐
ordinates for DMD

This study adopts a block-enhanced formulation using an
augmented set of coordinates built by considering the time-
delay coordinates. Time-delay coordinates [25] are used to
reconstruct the dynamics of systems that do not have suffi‐
cient measurements, even allowing the estimation of modal
parameters from a single PMU. They can be obtained by
stacking s times the vector of measurements x, building the
((n ´ s)´(m - s + 1)) Hankel matrix H:

H =
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Thus, the block-enhanced formulation involves applying
the exact DMD to matrices X and X 'derived from H:

X =
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If the measurement set is low-dimensional, the rank of H
may be increased using more time-delay coordinates. The
number of time-delay coordinates s may be increased until
the system reaches full rank [10].

C. Mode Ranking

The DMD can extract the most important spatio-temporal
patterns and eigenvalues from a dataset; however, the mode
ranking resulting from the DMD is not necessarily in agree‐
ment with the energy content. Therefore, a criterion should
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be determined to select the dominant modes (accordingly,
[27], [28] first identify dominant modes from data-driven es‐
timation methods). In [10], the initial mode amplitude evalu‐
ation is proposed according to (15); however, this solution
only considers the initial conditions and not the mode evolu‐
tion over time. Different solutions can be found in previous
studies to associate each mode with a pseudo-energy. For ex‐
ample, in [11], the ranking is based on a combination of the
right eigenvectors, the right singular vector, and its singular
values. The method based on [29] is instead adopted in [13]
to rank the modes and identify the dominant modes. For
each mode j the associated energy Ej is computed as:

Ej = |brje
ωjT | (21)

where T is the time window considered. Here, the ranking is
not based on the behavior of a single point in time but takes
into account the whole time window; modes are finally
ranked according to their energy and those presenting the
largest values are assumed to be dominant. As confirmed by
simulations and tests, the DMD can generate spurious modes
with damping and frequency similar to actual modes [13] for
different system orders and different sizes of the time win‐
dow considered. This is the only drawback observed during
all the tests performed on the DMD implemented.

Finally, another criterion to identify dominant modes in re‐
al-time is based on [30], which utilizes the Riccati equation,
searching for the optimal mode amplitude brj that minimizes
the l2 error between X and the approximation in (22) (more
details are provided in [30]).
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The computed optimal brj is then associated with each
identified mode. This index is selected for the final imple‐
mentation because the tests reported in Section IV indicate
that the first two approaches may result in false alarms.

III. PRACTICAL IMPLEMENTATION OF DMD APPROACH

This section describes the practical implementation of the
DMD approach in Terna control center. The practical choice
of the most suitable type of DMD, filtering of input data, se‐
lection of the most suitable index to issue alarms, and infor‐
mation visualization to control room operators are described.

As the DMD approach implemented is tailored for the Ital‐
ian power system within continental Europe, the main inter‐
est of the Italian TSO is to detect the interarea modes involv‐
ing the Italian power system. The modes with the highest
participation factors of Italian power plants are the principal
focus, especially those characterized by a frequency ranging
from 0.24 to 0.35 Hz, as involved in real events [2] and pre‐
vious studies [13]. This mode, also known as the South-
North (S-N) European mode, shows that the Italian power
system is in phase opposition to the rest of the northern Eu‐
ropean power system. Because the largest oscillatory events
are better observable in southern Italy ([2], [13]), most of

the processed PMUs are placed in this portion of the system.
The DMD implemented in Terna control center uses the

exact DMD with the block-enhanced formulation and elabo‐
rates the data stream (sampled at 50 Hz, i.e., a sample every
20 ms) from the n PMUs available from the WAMS system
(generally, 20 PMUs are processed). The input data stream
is a 20 s sliding window; this time-window length has been
selected as a good compromise between the stability of the
results over time and the quick response of the monitoring
tool. It can be changed by the user if necessary.

Data streams from the field are properly processed to ad‐
dress issues such as noise or missing elements that could in‐
fluence the real data flow: ① data detrending; ② data pack‐
et reconstruction, i. e., fill missing values; ③ data filtering
via a Hilbert bandpass filter to maintain only typical frequen‐
cies of the main European interarea modes (0.10-0.50 Hz),
discarding slower (control) modes and faster modes (lo‐
cal) [31]).

All available voltage, frequencies, magnitudes, angles, and
real and reactive power flows (measured by PMUs) can be
used as inputs to the DMD. However, rank truncation typi‐
cally detects and discards redundant information. Busbar fre‐
quencies alone can be used for this application and provide
good observability of the interarea mode (thus saving compu‐
tation time, according to the real-time requirements of the
tool). Moreover, as power systems generally present a low-
rank pattern [13], based on experience, a rank truncation to
the first eight singular values is sufficiently accurate to ob‐
serve the main interarea modes of the interconnected Europe‐
an power system.

The knowledge of mode shape is among the key factors
and very good property of DMD compared with other ap‐
proaches, as it enables the understanding of the coherency
properties of the system. This knowledge is important, partic‐
ularly in the case of re-dispatching actions, power reduction,
or even disconnection of the generator(s). Generators with
the highest participation factor have the highest damping ef‐
fect on ongoing oscillation. The main goal of the proposed
application is to issue an alarm for control room operators in
the case of critical interarea oscillations. Hence, the ob‐
served modes should be ranked and a suitable index should
be selected to be compared with a threshold to generate an
alarm or apply an automatic control action. The monitoring
of individual mode amplitudes and the relevant damping
alone might lead to false alarms; adopting as indices, the ini‐
tial amplitude from (15) shows unsatisfactory performance,
whereas the choice of (21) shows unstable behavior, as dem‐
onstrated in Section IV.

Based on the aforementioned findings, the monitoring sys‐
tem triggers an alarm if all the following three conditions
are fulfilled for each 20 s window processed:

1) The DMD detects the presence of at least one mode
with a frequency within the aforementioned range (0.24-0.35
Hz). Notably, the control room displays continuously show
modal frequency, amplitude, and associated mode shapes.

2) The optimal amplitude bm for the 0.24/0.35 Hz mode
computed according to (22) is higher than the threshold set
according to experience. This threshold is currently set at
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0.10 p.u., a compromise between the need to capture all criti‐
cal events and, simultaneously avoiding false alarms. Many
tests have been conducted on real power systems to fix this
threshold. It has been selected after long-term validation,
considering the different operating conditions of the Italian
power system (low/high demand), different grid topologies,
generation patterns (traditional vs. renewable), and side ef‐
fects such as PMU noise (estimated with a signal-to-noise ra‐
tio of 45 dB according to [32]), number of PMU processed,
packet losses, and outliers in the main data stream.

3) The peak-to-peak frequency deviation is higher than 60
mHz for at least 3 cycles, proving an ongoing event.

If all these conditions are fulfilled, the alarm is set to ON,
and the operator is aware that a critical interarea oscillation
is in place. Manual control actions will be performed (reduc‐
tion of the real power flows in critical sections or tie-lines,
generator re-dispatching/disconnection, load reduction, and
network topology changes, based on the system condition
and operator knowledge). Automatic control actions based
on wide-area power oscillation damping control activation
[33], [34] (control of the active power generated) will also
be implemented soon in Terna control center.

Figure 1 shows the overall flowchart of the proposed pro‐
cedure.

IV. TESTS AND RESULTS

In this section, the main results obtained from the practi‐
cal DMD implementation are presented and discussed, with
reference to three different operating conditions, to prove
both its reliability and robustness to operating conditions: a
significant oscillatory event, a short-circuit event, often erro‐
neously understood by monitoring tools as an oscillation,
and a 15-minute time interval of normal grid operation. Par‐
ticularly, the results of the exact DMD and block-enhanced
DMD are compared with three different ranking approaches
([10], [13], [30]) in terms of detection speed.

Frequency measurements are known to be influenced by
significant noise. In the preliminary tests, frequency, voltage,

and power measurements are employed to feed the DMD, as
heterogeneous measurements can be used for mode identifi‐
cation. An increasing number of signals might improve the
detection of a critical oscillation if the added signals exhibit
high observability for this mode. Meanwhile, highly correlat‐
ed signals do not always improve identification but increase
computing time [27]. Presently, the procedure is based on
frequency measurements only, suitably filtered, also because
the alarm is set to be ON based on a peak-to-peak frequency
deviation. Moreover, not all Italian critical tie lines are cur‐
rently covered by the PMU to provide real and reactive pow‐
er measurements and to feed the approach.

A. Oscillatory Event of December 2017

The oscillatory event that occurred on December 3, 2017
was first extensively discussed and presented in [2] and [13]
and was characterized by an undamped frequency oscillation
up to approximately 300 mHz in southern Italy. It began at
01:09 and reached its maximum deviation at 01:15 Figure 2
shows the frequencies of the oscillatory event recorded at
different locations of the Italian power system.

These oscillatory events can lead to emergencies. There‐
fore, the monitoring system should correctly classify the
event, provide proper interpretations to operators, and sug‐
gest the most suitable corrective actions.

The frequency, damping, and amplitude of the first three
modes identified by the block-enhanced DMD are shown in
Fig. 3. Mode 2 presents a frequency close to 0.29-0.30 Hz
and damping less than 5% all the time, as shown in Fig. 4;
its amplitude, i. e., the optimal brj computed according to
(22), shows an increasing pattern from 00: 10 until 00: 14.
The corresponding mode shapes during the maximum fre‐
quency deviation are shown in Fig. 5. With regard to the cor‐
rectness of the approach, the estimated mode shapes result‐
ing from the DMD were compared in [13] with the tradition‐
al modal analysis results, thereby successfully validating the
approach. Moreover, regarding the European power system,
Fig. 5 is consistent with the studies conducted by the Sys‐
tem Protection and Dynamics Group of ENTSO-E [2].

This event is used as a benchmark and to tune the imple‐
mented DMD; if in 2017 the DMD had been online in Terna

Fig. 1. Flowchart of the proposed procedure.

 
Fig. 2. Frequencies of the oscillatory event of December 3, 2017.
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control center, it would have issued an alarm (the trigger sig‐
nal Fig. 3) at 00:11, a few seconds after the beginning of the
oscillatory event in a pronounced manner. This trigger would
have been possible because all the tripping conditions de‐
scribed in Section III are verified. A mode with the frequen‐
cy characteristics of the S-N mode is identified, the optimal
brj exceeds the 0.10 threshold, and PMU frequency measure‐
ments deviate by more than 60 mHz from 50 Hz for three
cycles. Hence, the DMD would have enabled prompt control
by control room operators.

The other two modes identified by the block-enhanced
DMD, i. e., one around 0.40-0.45 Hz (mode 1) and one
around 0.20 Hz (mode 3), both show negative or zero damp‐
ing values. Nevertheless, their amplitudes are not sufficient
to trigger an alarm. These modes suggest the presence of un‐
stable behavior, as their damping fluctuates significantly,
even showing high negative values. However, Fig. 6 con‐
firms that these modes are not physical because the relative
frequencies do not appear in the signal spectrum; they are
spurious modes caused by the DMD approximating the non‐
linear system dynamics in a least-squares manner over a cer‐
tain time span [13]. The proposed analysis of the optimal brj

can filter these modes, and it is also useful in practical im‐

plementations. Further, damping alone cannot be used as a
reliable index for grid monitoring (associated amplitude,
mode shapes, and frequency must also be considered).

Other DMD-based approaches were tested on the same
event shown in Fig. 2 and compared. During this assess‐
ment, attention was paid to the trigger signal to evaluate the
ability of the monitoring tool to capture the alarm conditions
in a timely manner.

Figure 7 shows the result of applying the exact DMD ap‐
proach (not block-enhanced) using (22) as the amplitude to
trigger the alarm. Two modes (1 and 2) are identified in the
range of 0.24-0.35 Hz; a third mode close to 0.10 Hz some‐
times appears. Furthermore, the amplitudes, i.e., the optimal
brj, of modes 2 and 3 present spikes that render the identifi‐
cation of spurious modes possibly generated by the DMD ap‐
proximation difficult. Finally, the trigger signal presents dis‐
continuities, thus putting the operator in trouble about the de‐
cision to issue a control action.

Figure 8 shows the results obtained by the procedure ap‐
plying the block-enhanced DMD adopting Ej of (21) to trig‐
ger the alarm [13]. Even if the trigger signal is correctly set
to be 1 at the beginning of the oscillatory event at 00: 11,
Terna discards this approach for the mode amplitude evalua‐
tion, as the threshold to be compared with Ej over time can‐
not be easily defined. Ej is indeed dependent on the value of

 
Fig. 3. Frequency, damping, and amplitude of first three modes identified
by block-enhanced DMD along with trigger status.

 
Fig. 4. Frequency and damping of Mode 2.

 
Fig. 5. Mode shapes during the maximum frequency deviation.

 
Fig. 6. Power spectrum of oscillatory event of December 3, 2017..
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T considered and the number of processed PMUs; that is, it
depends on the structure of the monitoring system (energy in
Fig. 8 ranging from 0 to 10). Hence, fixing a threshold to
trigger the alarm on Ej would be difficult, whereas the use of
(22) has proven to be more efficient.

Figure 9 shows the results obtained by applying the block-
enhanced DMD combined with the initial amplitude (15) pro‐
posed by [10], where the trigger signal presents discontinui‐
ties, particularly at 00:13, as the mode amplitude (red line)
is reduced below the threshold, which causes Terna to also
discard this approach and adopt the block-enhanced DMD,
together with the optimal amplitude from (22).

B. Short-circuit Event of February 2019

The second event analyzed in this study differs significant‐
ly from the first event and is a short-circuit event that oc‐
curred in the high-voltage network of the Italian power sys‐
tem in February 2019, as shown in Fig. 10. This event is
studied to verify the selectivity of the oscillation detection,
as the monitoring tool aims to issue alarms only in the case
of interarea oscillation. Therefore, it is crucial to validate
that the monitoring tool can distinguish interarea oscillations
from other types of oscillations.

The power spectrum of short-circuit event in February
2019 is shown in Fig. 11, where a small peak can be ob‐
served at approximately 0.25 Hz.

The results obtained by the proposed approach are shown
in Fig. 12.

The monitoring system identifies three modes ranging
from 0.20 to 0.40 Hz, characterized by low or even negative
damping. However, despite their negative damping, the sys‐

 
Fig. 7. Frequency, damping, and amplitude identified by exact DMD
adopting optimal brj along with trigger status.

 
Fig. 8. Results obtained by procedure applying block-enhanced DMD
adopting Ej of (21) to trigger the alarm.

 
Fig. 9. Results obtained by applying block-enhanced DMD combined with
initial amplitude proposed by [10].

 
Fig. 10. Short-circuit event in February 2019.

 
Fig. 11. Power spectrum of short-circuit event in February 2019.
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tem correctly does not issue any alarm (as the S-N mode am‐
plitude does not exceed the predefined threshold (0.1)), thus
providing the correct interpretation of the phenomenon moni‐
tored.

C. Normal Grid Operation of March 2021

The third case considers all possible issues that might oc‐
cur in a power system in the interval of 15 min of normal
grid operation in March 2021, as shown in Fig. 13. The goal
is to assess the ability of the adopted implementation to cor‐
rectly identify the modes in place, although their amplitudes
are not sufficiently high to make the situation critical. It can
be observed that the frequency deviates around the nominal
value by a maximum of 40 mHz. This deviation does not
represent a critical condition; therefore, it is needless issuing
an alarm to the operator. However, a poorly damped mode
(purple oscillation) is present, which should be tracked by
the monitoring tool. The power spectrum of the time win‐
dow considered is shown in Fig. 14, which shows a peak at
0.29 Hz.

The proposed approach accurately identifies a mode at ap‐
proximately 0.30 Hz (mode 2 in Fig. 15), whose energy con‐
tent (measured by the value of the optimal brj from (22)) os‐
cillates close to the threshold of 0.10. Even if its associated

amplitude sometimes exceeds the defined threshold, no
alarm signal is issued because the peak-to-peak frequency de‐
viation is less than 60 mHz. Other modes are identified at
approximately 0.40 and 0.20 Hz; however, their energy is
very low and hence they are filtered out.

D. Range of Effectiveness of Proposed Approach

Concerning the assessment of the suitability of using a
fixed threshold, Fig. 16 and Fig. 17 present the probability
density function of the modal amplitude and frequency esti‐
mated in 2021 (S-N mode). The average modal amplitude is
well below the threshold of 0.10 p.u., whereas the frequency
is centered at approximately 0.30 Hz. These two figures
prove the quality of the selected approach and settings
against the variability of the operating conditions such as the
topology and generation pattern.

Table I lists the average computational time of 20 s slid‐
ing window (computed considering data detrending, data
packet reconstruction, data filtering, and mode identification)
of the events shown in this study and two additional events
(events 1 and 2). Computations have been performed on an
Intel® Core™ i7-9750H CPU @ 2.60 GHz laptop. The aver‐
age values are always less than 100 ms, making the pro‐
posed approach suitable for real-time monitoring using a rea‐
sonable number of inputs.

 
Fig. 12. Results obtained by proposed approach along with the trigger sta‐
tus.

Fig. 13. Frequencies acquired in March 2021.

 
Fig. 14. Power spectrum of time window considered.

 
Fig. 15. Frequency, damping, and amplitude identified by the proposed ap‐
proach along with trigger status.
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V. CONCLUSION

This study presents the practical implementation of the
block-enhanced DMD approach adopted by Terna in its con‐
trol room for the real-time monitoring of frequency oscilla‐
tions in the Italian power system and presents the approach
along with the criteria set to generate a reliable alarm signal
in the case of critical interarea oscillations in a real power
system. Such criteria are the outcome of a massive testing
campaign conducted in 2020 and 2021. Its adoption in the
control room makes it possible to alert operators in the case
of sustained interarea oscillations. The approach utilizes the
most interesting properties of the DMD approach, such as
decomposition over time and space, optimization over a time
window, accuracy, robustness, information content, limited
computational complexity, and the possibility of exploiting
its properties in real-time. Different variants are tested and
the best approach is set and tuned. The performance is vali‐
dated using the presented results and analyses. The adopted

indices, threshold set, and overall monitoring system are
demonstrated to be very reliable and robust under different
operating conditions, e. g., such as low/high load, low/high
RES penetration, and network topology changes.
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TABLE I
AVERAGE COMPUTATIONAL TIME OF 20 S SLIDING WINDOW

Event

Oscillatory event
of 2017

Short-circuit event
of 2019

Normal grid opera‐
tion of 2021

Event 1

Event 2

Number of
processed

PMUs

12

17

19

22

33

Length of data
analyzed (min)

25

17

15

10

16

Average computa‐
tional time of 20 s

window (s)

0.06

0.07

0.07

0.07

0.10
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