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A B S T R A C T

There is a substantial amount of information embedded in images of two-phase flow captured through high-
speed video (HSV) or high-resolution photography. However, accurate image segmentation is necessary to
unlock a meaningful analysis of the data. In this study, we discuss how to estimate the flow void fraction in
chevron-type corrugated channels typical of compact plate heat exchangers (CPHE) from back-lit front-view
HSV images, using machine learning (ML) algorithms and data processing techniques. A U-Net neural network
was employed for image segmentation, demonstrating robust performance with evaluation metrics consistently
exceeding 0.9. The binary masks (indicating gas or liquid phases) derived from segmentation were processed
in MATLAB® to estimate void fraction through a 3D reconstruction algorithm of the gas cluster’s volume.
In contrast to conventional void fraction estimates based on the area ratio of binary masks, this algorithm
models the curvature of the liquid-vapor interface through the corrugated channel. When compared to other
methods, our algorithm predicts very similar void fraction contour maps. However, the average discrepancy
between our algorithm and the area-ratio approach can be as high as 80%, underscoring the importance
of the processing method in analyzing the data and developing correlations. Finally, a drift flux model was
introduced to predict the void fraction distribution using a two-part equation accommodating the dependency
of the distribution coefficient 𝐶0 on the liquid flow rate for a corrugation Froude number 𝐹𝑟∼ larger than 1.
The proposed model can predict the void fraction dataset with a mean average percentage error of 8.17%.
In summary, U-Net’s pixel-level accuracy facilitates deep and precise post-processing of HSV images, enabling
meaningful void fraction measurements. Thanks to its generality and minimal training effort requirements, the
discussed methodology can be applied to estimate void fractions in various two-phase flow experiments and
operating conditions.
1. Introduction

Compact plate heat exchangers (CPHEs) are very well known in
the industrial world. For decades they have been used effectively for
operations with single-phase fluids. When the brazing process started
to replace gaskets to seal the channels formed by the different plates,
this technology started to be used in the heating, ventilation and air
conditioning industry and operated with two-phase flows as evapo-
rators or condensers. Nowadays, given the performance of such heat
exchangers compared to their small volume footprint, they are actively
being investigated for different purposes like compact steam generators
for small modular reactors (Kang et al., 2022). This application is
rather new and so understanding the behavior of two-phase flow in
compact plate heat exchangers is crucial for optimizing their design.
Researchers and engineers could in fact develop more efficient designs

∗ Corresponding author.
E-mail addresses: stefano.passoni@polimi.it (S. Passoni), riccardo.mereu@polimi.it (R. Mereu), mbucci@mit.edu (M. Bucci).

by studying pressure drops, two-phase flow behavior and heat transfer
characteristics.

Flow regimes play an important role in the multiphase fluid dy-
namics of such components. The phase distribution can highly in-
fluence the thermal-hydraulic performance of single channels and
ad-hoc corrugations patterns and distribution sections are key to op-
timize performance (Ayub, 2003). Various research studies involved
the visualization and visual categorization of two-phase flow pat-
terns within chevron-type corrugated channels (Tribbe and Müller-
Steinhagen, 2001; Vlasogiannis et al., 2002; Nilpueng and Wongwises,
2010; Grabenstein et al., 2017; Buscher, 2019; Shiomi et al., 2004). The
standard way to categorize flow pattern is by naked-eye. This method
is inherently inaccurate especially near flow pattern transition due to
the subjectivity of the observation and scarce reproducibility of the
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results. Flow visualization is often performed with the aid of digital
imaging, using high-speed video or high-resolution photography. There
is a huge amount of information embedded in those data and using
it only to visually classify the flow pattern would not be fruitful.
Image analysis is therefore a very important step in the multiphase
flow data processing workflow. Although this has been the common
approach for different kind of geometries, image analysis has rarely
been performed for two-phase flow in plate heat exchangers. To the
best of our knowledge, the only two available works on the topic are
very recent. Wang et al. (2021) used a CNN-based YOLO (you-only-
look-once) algorithm for detection and tracking of bubbles in a dimpled
PHE channel whereas (Buscher, 2022) applied bubble detection and
texture analysis algorithms to images of air–water flow in a transpar-
ent cross-corrugated channel. Unfortunately, segmentation algorithms
based on standard image-processing techniques like edge-detection and
thresholding, do not provide an accurate output when applied to such
complex flows as the one established by the cross-corrugated pattern.
In addition, these methods may lack of generality as researchers are
often required to manually tweak some parameter to adapt the codes
to the different flow regimes or optical setups.

More advanced techniques are required to obtain a very precise
image segmentation therefore enabling an accurate post-processing.
To this cause, Convolutional Neural Networks (CNNs) have gained
significant attention and success in various computer vision tasks, in-
cluding image segmentation for two-phase flow analysis like IR images
of boiling surfaces (Ravichandran et al., 2021, 2023). While CNNs have
been widely used for image analysis tasks, their application to the
specific problem of multiphase flow in compact plate heat exchangers is
completely novel. Few of the advantages of machine learning for image
segmentation are a general improvement of accuracy and precision
of the outcome, possibility of automation and standardization thus
minimizing human error and potential for generalization to similar flow
configuration.

In this study we will discuss a methodology that integrates machine
learning (ML) algorithms and data processing techniques to perform
post-processing on back-lit front-view images of two-phase flow in
corrugated channels. We adopted a U-Net architecture described in Falk
et al. (2019) for image segmentation and leveraged its transfer-learning
capabilities to minimize the training dataset resulting in the manual
annotation of just few images per flow regime. This was the main
driver for selecting the U-Net architecture as alternative methods would
have required a complete training from scratch, thereby increasing
computational costs and time therefore reducing the effectiveness of
the proposed approach. The objective is to discuss a post-processing
methodology to estimate the void fraction from the binarized images,
highlighting how sensible the estimation is according to the different
approaches adopted. In Section 2, the data acquisition and prepro-
cessing, details of the network used for segmentation as well as the
post-processing algorithms will be thoroughly presented. In Section 3,
the results of the work are critically discussed. The validation of
the segmentation platform is addressed and the results of void frac-
tion estimation methodology are presented. Conclusions are drawn in
Section 4.

2. Methodology

2.1. Data acquisition and pre-processing

A schematic of the experimental loop used for image acquisition is
displayed in Fig. 1. The setup consists of a closed-loop water circuit
connected to an open-loop compressed air circuit. Adiabatic mixing be-
tween air and water is obtained before entering the corrugated channel
through a T-junction before feed the mixture to an inlet plenum. A com-
plete description of the experimental loop is reported in Passoni et al.
(2024). The facility was operated in upward configuration, and flow
visualization was possible thanks to the two transparent corrugated
2

Table 1
Geometrical parameters of present study’s plates.

Corrugation angle 𝜙 63◦

Corrugation depth 𝑏𝑝 2.5 mm
Corrugation qavelength 𝜆 9 mm
Plate width 𝐵𝑝 182 mm
Plate/Corrugation length 𝐿𝑝 320 mm
Enlargement factor 𝛷 1.1712
Frontal area 𝐴𝑓 455 mm2

Hydraulic diameter 𝐷ℎ 4.3 mm

plates made from resin casted directly in a silicon mold obtained from
the original steel plates. The chevron pattern on the plates featured
corrugation angles of 63◦ and grooves 2.5 mm deep. Table 1 reports all
the details about the corrugation geometry and Fig. 2 displays the main
ones. The grooved channel was back-illuminated by a flicker-free panel
of white LEDs powered by direct current (DC). A light diffuser sheet
was used to guarantee uniformity of illumination. High-speed videos
were filmed using a Phantom Miro C110 high-fps camera. The camera
sampling rate was configured at 1900 frames per second, allowing for
the detailed visualization of rapid shifts and intricate patterns with
exceptional time accuracy. The videos were captured in a resolution
of 1280 × 480 pixels. To achieve proper luminosity across the entire
frame, the camera exposure time was set to 40 𝜇𝑠. The recording
employed a NIKKOR AF-S Micro 60 mm lens, which was manually
calibrated for focus and aperture settings to maintain precise control
over image sharpness and depth of field. The dataset of the observed
flow conditions encompasses a liquid superficial velocity spanning from
0.006 m/s to about 0.5 m/s along with a gas superficial velocity ranging
between 0.007 m/s and 3.25 m/s. Additionally, the dataset maintains
a homogeneous volume fraction 𝑥𝑉 that varies from 1.8 to 99.8%. The
test matrix of the visualization data collected is displayed in Fig. 3.

Once the videos were acquired, before starting the post-processing
phase, the total number of frames to be considered for each video was
selected. For every video, we reduced the frame count by retaining only
one out of every hundred frames. This reduced the dataset size and the
computational load for processing each experimental point, resulting in
only 88 frames per condition. The determination of this specific frame
count was informed by an assessment of how statistical metrics related
to void fraction and total gas volume per frame responded to varying
frame numbers. Our chosen value ensured that the percentage differ-
ence in mean and standard deviation of these parameters, compared to
the maximum frame count, remained below 0.5%.

Prior to segmentation, a preliminary processing procedure is applied
to all experimental videos, enhancing and preparing the input images.
The input frames are read into a MATLAB® script where they are first
converted in 8-bit greyscale images and then intensity based image reg-
istration is performed to correct eventual misalignments between each
frame and the background before subtraction. This latter operation is
performed with the imregister function present in MATLAB®. The
process involves comparing pixel intensities to identify corresponding
regions within the images being compared. Then the algorithm can
determine spatial transformations needed to overlay the different im-
ages accurately. The resulting image is then cropped to the desired size
of 460-by-1180 pixels and contrast is enhanced by saturating the top
2.5% of darkest and brightest pixels by linearly remapping the contrast
levels of the input image to the required output ones. All the datasets
are then exported as a lossless multi-page tiff file each containing the
selected number of frame for each experimental point. The frames used
for training and validation of the U-Net were manually annotated with
the aid of the software Fiji (Schindelin et al., 2012) by marking the
areas where gas bubbles could be visually identified.

2.2. CNNs for image segmentation

The U-Net is an encoder–decoder-style neural network adept at
solving semantic segmentation tasks. It was firstly presented in Ron-
neberger et al. (2015) and implemented as an ImageJ (Schneider et al.,
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Fig. 1. Schematic of the loop adopted for the experiments with a detail on the flow visualization setup.
Fig. 2. Representation of the corrugation’s main geometrical parameters.

Fig. 3. Test matrix of the flow visualization campaign. Dotted lines represent iso-lines
of constant volumetric fraction 𝑥𝑣.

2012) plugin by Falk et al. (2019). U-Net was developed for single-cell
detection and segmentation in biomedical images. Its peculiar network
architecture depicted in Fig. 4 utilizes a multi-level arrangement of
up-sampling and down-sampling layers, enabling it to encompass the
3

complete image context while remaining trainable even with limited
datasets. As described in Ronneberger et al. (2015), the architecture
consists of a contracting (or encoding) path on the left side and an
expansive (or decoding) path on the right. The contracting path adheres
to the conventional convolutional network design. It involves itera-
tively applying two 3 × 3 convolutions, each succeeded by a rectified
linear unit (ReLU), along with a 2 × 2 max pooling operation. With each
step of downsampling, the number of feature channels is doubled. On
the contrary, each stage in the expansive path features an upsampling
of the feature map, followed by a 2 × 2 convolution (referred to as
‘‘up-convolution’’) that reduces the feature channel count by half. This
is followed by a concatenation with the corresponding cropped feature
map from the contracting path, and then two 3 × 3 convolutions, each
followed by a ReLU activation. In the final layer, a 1 × 1 convolution
is employed to map the feature vector to the desired number of classes.
A more in-depth description of the U-Net architecture and its features
is available in Falk et al. (2019) and Ronneberger et al. (2015).

The training process is the most important part of a workflow. It
is the process of teaching an algorithm to recognize patterns, make
predictions or perform tasks by exposing it to a dataset and allowing
it to learn iteratively. During training, the model adjusts its internal
weights based on the input data and the desired output, with the goal
of minimizing a loss function. To reduce the amount of training data
(i.e. manually annotated images) we exploited transfer learning (Torrey
and Shavlik, 2010; Weiss et al., 2016). This process leverages the prior
knowledge the U-Net has gained through training on a different dataset
by only performing a fine-tuning of the model’s weights and not a
complete retraining. By doing this, the authors in Falk et al. (2019)
claim that only a few annotated images are sufficient for a good fine
tuning, with the most complex cases requiring no more than ten. In our
particular case, we performed transfer learning from weights trained for
segmentation of front-lit HSV images of sub-cooled flow boiling (Seong
et al., 2023).

In order to train our model, we progressively fine-tuned the network
by exposing it to more and more complex flow regimes. The fine-tuning
process is generally halted after a certain number of iterations when
cross-validation ceases to show improvement. The learning rate was
set 1e-5 and the number of iterations was generally kept within 10
to 20 thousands. Training was performed on a NVIDIA Tesla V100
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Fig. 4. Example of the U-Net architecture. The computed feature hierarchy is visualized by the blocks. The numbers above each network block represent the count of feature
channels, while the numbers to the right of each block indicate the spatial dimension in pixels.
GPU with 32 GB of VRAM. The fine-tuning process started by feeding
the network with coarse bubbly flow images at low liquid flow rate
since they display mostly round and well-separated bubbles (Fig. 5(a)).
Increasing air flowrate, Taylor-like bubbly flow appears. This flow
regime exhibits larger, zigzag-shaped gas structures (Fig. 5(b)) so that
the network can start learning the characteristics of such gas patches.
Increasing liquid flowrate instead, the higher turbulence enhances bub-
ble breakup resulting in finer structures coexistent with bigger patches
(Figs. 5(c) and 5(d)). In the end, the last fine-tuning was performed
with heterogeneous flow (Fig. 5(e)) which is the most complex and
chaotic flow regime. Using this method, we observed an enhanced
accuracy in the final model, leading to a more precise segmentation of
various flow regimes, compared to the outcome achieved by conducting
a single fine-tuning using all the designated training images. While this
outcome might appear counter-intuitive, it may be due to the diverse
array of flow features present across the various images. Generally, the
loss function (weighted soft-max cross-entropy loss, described in Falk
et al., 2019) following the fine-tuning process was lower when we ex-
ecuted multiple successive training phases, indicating that the network
benefits from being exposed to similar flow features during training.
Final segmentation was achieved by applying the trained network to
the input frames exploiting the ‘‘rotation averaging’’ feature present
in the Fiji plugin to increase the accuracy of the output binary mask.
With this option the network segments different rotated variants of
the input data and the segmentation results are derived by calculating
an average softmax score across all predefined orientations, which
has been observed to enhance the overall quality of segmentation for
complex data sets.

The annotation procedure was refined to minimize the manual effort
and time requirement. When possible, a thresholding algorithm was
employed to convert the gray-scale image into binary form followed by
manual annotation adjustments to correct any inaccuracies in the mask
like improper segmentation of touching objects and small bubbles.
The same strategy was followed also for complex flow patterns even
though the initial binarization of images was achieved through the U-
net segmentation output adopting a model not yet trained for such
flow regime. For the various stages of fine-tuning a total of 13 images
were annotated, 8 of which were used for training and 5 for validation
purposes. In order to subsequently assess the network’s segmenta-
tion precision on entirely new images, another set of 10 images was
annotated, across the different flow regimes.
4

2.3. Data post-processing and void fraction estimation

After segmenting all the images, post-processing is needed to extract
all the available information. In particular, the segmented image is
processed with MATLAB® before proceeding with the analysis. First,
morphological operations were performed to fill small gaps in the bi-
nary mask and remove objects smaller than 4 pixels which are assumed
to be noise. Then, to measure all the most important geometric bubble
characteristics, the MATLAB® regionprops function was used to
perform blob analysis. With this function it is possible to directly
measure properties of connected components such as equivalent diam-
eter, minor and major axis length, orientation and coordinates of the
blob centroid, which will be useful for further analysis. Particularly,
the equivalent diameter, used to distinguish between small and large
gas clusters further in the analysis, is computed as the diameter of a
circle with the same area as the blob, mathematically computed as
√

4 ∗ Area∕𝜋.
A typical approach to estimate the void fraction is to approximate

it with the ratio of the total blobs area over the total area of the
image. This ‘‘area-ratio’’ approach benefits from the high accuracy of
the segmentation reached with the U-Net but it will be always an
overestimation of the actual void fraction as small bubbles that do not
occupy the entire channel depth and large gas patches that do, are
given the same weight in a 2D space. To overcome this limitation we
developed an algorithm to reconstruct bubble volumes in 3D exploiting
the pseudo-2D shape of the corrugated channel. To do so, we first
computed a channel depth map of the analyzed frame by recreating
the sinusoidal shape of the Chevron-type corrugation (according to the
geometrical parameters of the plate) and discretizing it on a mesh grid
with the same number of pixels as the processed frames. The pattern
position was then adjusted by carefully calibrating the location of the
contact points according to the experimental image as shown in Fig. 6.
The outcome of this process are three matrixes representing positive
and negative displacement, relative to the middle plane of the channel,
as well as the total channel depth.

Subsequently, the blobs within the labeled image are categorized
as either small or large based on their dimensions and their specific
placement within the channel. Precisely, a cluster is designated as small
if its equivalent diameter is less than the average channel depth across
its footprint. This classification is needed to choose the proper volume
reconstruction approach. A small bubble is confined entirely within an
individual corrugation pitch and it could be approximated using an
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Fig. 5. Details of some of the images used for training. Flow regime complexity increases from left to right.
Fig. 6. Example of contact points position calibration for the computation of the depth map. The red regions represents the contact points between the two corrugated plates
identified by a total depth lower than 0.2 mm for the sake of visualization. Due to the geometry of the corrugation, a double contact point is created at the pivot point when the
corrugation changes slope. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ellipsoid obtained by revolving its area along its minor axis. In this case,
the volume is then computed as

𝑉𝑠𝑚𝑎𝑙𝑙 =
4
3
𝜋𝑎𝑏2 (1)

where 𝑎 and 𝑏 indicate the length of the major and minor semiaxes.
On the contrary, for larger structures, the volume estimation could

be performed by coherently summing the values of the positive and
negative displacement maps (for each pixel within their 2D area) as
if each pixel were extruded according to the channel depth. This
technique assumes of course that the bubble is occupying the entire
channel therefore neglecting the thickness of the liquid film between
the bubble and the wall. In addition, to be able to account for the
curvature of the bubble at its boundary and render a more physical
representation of bubble shape, we introduced a smoothing function
that computes the pixel-wise percentage of volume to be subtracted
from the extrusion maps of large gas blobs. To serve this purpose, an
exponentially decaying function based on the solution of the Laplace
equation given in Gennes et al. (2004) for surface perturbations, was
chosen as a proxy to describe the curvature. This was implemented into
the post processing algorithm as shown in Eq. (2).

𝑠 = 𝑒𝑥𝑝(−𝑘 ∗ 𝑑𝑖𝑠𝑡𝑀𝑎𝑝) (2)

This equation describes the smoothing 𝑠 as function of the euclidean
distance from the border of the bubble (𝑑𝑖𝑠𝑡𝑀𝑎𝑝) and a length scale
(𝑘). The first parameter (i.e., 𝑠) is computed with the function bwdist
available in MATLAB® and, before applying to it the conversion factor
from pixel to millimetres, a value of 1 is subtracted from all elements
to set a value of exactly 0 for all the pixels of the perimeter of the gas
cluster. The parameter 𝑘 is instead a length scale equal to either the
capillary length 𝜆𝑐 =

√

𝜎
𝜌𝑔 (2.7 mm for water) or the mean channel

depth over the analyzed bubble footprint, depending on which of the
two is the smallest.

The volume of each blob is then stored in memory and the void
fraction of each frame is computed as the sum of the volume of all the
gas clusters over the total volume of the analyzed portion of channel
computed from the depth map (Eq. (3)). The value of void fraction
for the specific experimental point is calculated as the average of the
5

frame-specific void fractions over the number of frames analyzed (88)
for each video.

𝛼 =
∑

𝑉𝑔𝑎𝑠
𝑉𝑡𝑜𝑡

(3)

Fig. 7 shows the difference between the 3D shape of a single
bubble reconstructed with and without the smoothing function. Picture
7(b) shows not-so-physical vertical boundaries that lead surely to an
overestimation of the volume. Fig. 7(b) exhibits instead the effect of the
applied smoothing function on the same bubble. Fig. 8 displays then the
volume reconstruction using the smoothing function on an entire frame.
The reader can appreciate the different method used for small or large
gas bubbles. Finally, the entire processing algorithm is summarized in
the block diagram showed in Fig. 9.

3. Results and discussion

3.1. Validation and U-net performance

The U-Net’s segmentation performance was assessed by comparing
the segmentation results against 10 manually annotated ground-truth
images never used for model training. In this scenario, we performed a
1:1 comparison between the binary masks provided by the U-Net and
the ones extracted from annotation. We then classified pixels as true
positives (TP) when they were correctly segmented as gas phase, false
positives (FP) if falsely segmented as gas, true negatives (FP) when
pixels were correctly detected as background (i.e. liquid phase) and
false negatives (FN) when incorrectly segmented as such. According to
this classification, it is common practice to calculate pixel-based metrics
to assess the accuracy of the model. The definition and description of
such proxies is given in Table 2 and the results summarized in Table 3.
In the latter, the different images used for validation are ordered for
progressively increasing liquid superficial velocity.

It is easily noticeable how these metrics are generally high indicat-
ing an overall good segmentation quality. On average, all the metrics
have a value larger than 0.9 with recall being the one that achieves
the lowest value, stabilizing at an average score of 91.7%. This metric
is in fact impacted the most by the presence of false negatives which
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Fig. 7. Example of volume reconstruction for a large gas bubble. Dimensions in pixels.
Fig. 8. Example of gas volume reconstruction for an entire frame using the smoothing function. Dimensions in pixels.
Table 2
Description of the main metrics used to evaluate the segmentation results. (𝑇𝑃=True Positive, 𝑇𝑁=True Negative, 𝐹𝑃=False
Positive, 𝐹𝑁=False Negative).

Metric Expression Description

Accuracy 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Rate of correctly classified pixels to the total number of pixels

Precision 𝑇𝑃
𝑇𝑃+𝐹𝑃

Amount of true positive predictions among all the positive predictions

Recall 𝑇𝑃
𝑇𝑃+𝐹𝑁

Amount of true positive predictions among all actual positive pixels

F1-Score 2×𝑇𝑃
(2×𝑇𝑃 )+(𝐹𝑃+𝐹𝑁)

Harmonic mean of precision and recall, index of the overall model accuracy
Table 3
Evaluation of U-Net’s segmentation performance for different liquid (JL) and gas (JG) superficial velocities.

Image 1 2 3 4 5 6 7 8 9 10

JL [m/s] 0.006 0.012 0.031 0.031 0.031 0.031 0.061 0.061 0.092 0.092
JG [m/s] 0.020 0.107 0.007 0.010 0.020 0.041 0.010 0.020 0.007 0.014

True Positives 174 878 259 744 124 714 81 903 118 477 180 194 63 627 82 097 28 565 65 828
True Negatives 365 090 277 350 415 339 462 038 423 131 358 371 481 419 459 503 520 364 476 511
False Positives 750 2692 1397 260 648 1173 385 423 147 351
False Negatives 11 282 12 214 10 550 7799 9744 12 262 6569 9977 2924 9310 AVG

Accuracy 0.978 0.973 0.978 0.985 0.981 0.976 0.987 0.981 0.994 0.983 0.982
Precision 0.996 0.990 0.989 0.997 0.995 0.994 0.994 0.995 0.995 0.995 0.994
Recall 0.939 0.955 0.922 0.913 0.924 0.936 0.906 0.892 0.907 0.876 0.917
F1-Score 0.967 0.972 0.954 0.953 0.958 0.964 0.948 0.940 0.949 0.932 0.954
are largely more then the false positive predictions. Fig. 10 displays few
examples of the comparison between segmentation mask and ground-
truth images. In these frames, the false positive and false negative
pixels are highlighted in red and blue colors to visually highlight
the regions of falsely classified pixels. Instead, the correct foreground
segmentation (gas-phase) is shown in gray while the black background
represents the liquid phase. From this figure it clearly stands out that
6

the false negative predictions are mainly located at the borders of the
gas clusters, indicating that the U-Net tends to slightly shrink their
dimension by a few pixels.

Unfortunately, when the flow is too complex due to the high superfi-
cial velocity of the mixture, breakage and fluid-dynamic instabilities are
predominant and it becomes nearly impossible to manually annotate
the experimental images to evaluate numerically the segmentation
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Fig. 9. Flowchart of the algorithm employed to compute the void fraction for both area-ratio and volume reconstruction approaches. In the boxes, 𝑖 represents the number of
frames and 𝑘 the number of blobs in each frame.
quality. The only possible way to assess the segmentation accuracy is to
visually compare the original frame and the binary mask obtained. As
expected, at high water flow rates segmentation accuracy reduces. The
gas clusters start to present no clear borders and the bubbles become
so fine that superimpose one another leading to error in segmentation.
The binary mask though still captures the major flow characteristics.
The main concern is that the inaccuracy in the segmentation severely
impacts the prediction of the void fraction. Due to the impossibility of
quantifying such uncertainty, we decided to not report the results of
void fraction estimation for a liquid superficial velocity higher than
0.25 m/s. Figs. 11–13 display few examples of the post-processing
pipeline up to volume estimation for an increasing liquid superficial
velocity of 0.006, 0.061 and 0.183 m/s, respectively, to span across
the entire database. In these images, the four different post-processing
steps already described are showcased and the reader can appreciate
the quality of the segmentation task performed by the U-Net. At high
liquid and gas flow rates (Fig. 13, 𝐽𝐺 = 3.048 [m/s]), the segmentation
performance degrades according to the reasons explained above.
7

3.2. Void fraction

As introduced in Section 2.3, the most straightforward approach
to estimate the void fraction when in possession of a binary mask
is to make a simple area ratio between all the pixels labeled as gas
and the total number of pixels. This approach has strong limitations
as it implies that vertical footprint on the channel area has the same
weight for small and large bubbles which is very unphysical. In this
manuscript, this drawback is alleviated by reconstructing the volume
of gas clusters and calculating the void fraction as a volume ratio. Also,
to obtain more physical bubble curvature, we introduced a smoothing
function inspired by a particular solution of Laplace equation. In the
next paragraphs we present the results of void fraction estimation and
modeling considering the approach based on volume smoothing as the
baseline. To inquire about how sensitive this measurement is to the
processing approach, we also compare these results with those obtained
by estimating void fraction by area ratio and non-smoothed volume
ratio.
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Fig. 10. Examples of U-Net segmentation compared to ground-truth images for two different flow regimes. Entire frame on the left and detail on the right. Gray regions represents
the agreement between segmentation and manual annotations while red pixels represent false positives (𝐹𝑃 ) and blue pixels the false negatives (𝐹𝑁). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
The results of the algorithm described in Section 2.3 are reported in
the form of void fraction maps plotted against the superficial velocity of
both phases in Fig. 14. These contour maps were obtained by fitting the
data resulting from image analysis with a locally weighted smoothing
linear regression (LOWESS) approach. In particular, Fig. 14 showcases
three different maps obtained with the above-discussed methods for
void fraction estimation: ratio of smoothed volumes (Fig. 14(a)), ratio
of non-smoothed volumes (Fig. 14(b)) and the area ratio (Fig. 14(c)). As
visible, the shape of the contour lines is very similar between all three
maps but minor differences are present. The ratio of non-smoothed
volumes is the approach that gives the single maximum void fraction
value (0.94) while the other, smoothing or area ratio, give 0.80 and
0.83 respectively. The minimum value is instead very similar for the
two approaches that use the reconstructed volumes, close to 0.008,
while it is more than four times higher (0.036) for the area ratio
approach. This behavior underlines the fact that the simple area ratio
faces challenges in predicting very low void fractions beacause of its
intrinsic reliance on two-dimensional bubble footprints, neglecting the
crucial consideration of the actual three-dimensional volume occupied
by the bubbles. These differences are also visible from the parity plots
displayed in Fig. 15 where the baseline approach (ratio of smoothed
volumes) is benchmarked against the other two. The usage of non-
smoothed volumes has an almost constant deviation from baseline, with
an average percentage difference of about 32%. Whereas, the usage
of area ratio has a severe impact in the determination of the void
fraction, leading to important differences especially in the region of low
void fraction when pure bubbly flow is present for the reasons already
explained. Fig. 16 gives more insights on the percentage differences
when using these two approaches. Considering the area-based method,
the percentage difference spikes to about 700% for low values of 𝛼
and it decreases moving to higher void fraction while remaining still
quite scattered. Instead, the approach based on non-smoothed volumes,
exhibits a maximum discrepancy (∼40%) for void fractions of about
5% and it is typically between 20% to 40% although the discrepancy
8

can be smaller for small void fractions, (i.e., small bubbles) as the
smoothing has a little to no impact. This suggest the impact of smooth-
ing is almost constant across the different void fractions. Furthermore,
these data may be interpreted as representative of the upper bound of
uncertainty inherent in the application of the smoothing function to the
reconstruction of bubble curvature.

The void fraction data were then elaborated according to the drift
flux model theory proposed in Zuber and Findlay (1965). In Fig. 17, the
actual gas velocity (𝑈𝐺 = 𝐽𝐺∕𝛼 [m/s]) is plotted against the superficial
velocity of the mixture (𝐽𝑚𝑖𝑥 = 𝐽𝐺 + 𝐽𝐿 [m/s]) and colored according
to the liquid phase superficial velocity (i.e. liquid flow rate). The Drift
flux theory suggests these data could be fitted with a line in the form
of 𝑈𝐺 = 𝐶0 ∗ 𝐽𝑚𝑖𝑥 + 𝑈𝐺𝐽 where 𝐶0 is called the distribution parameter
and 𝑈𝐺𝐽 the drift velocity (i.e., the relative velocity of the gas phase
with respect to the superficial one of the mixture).

It is clearly visible from Fig. 17(a) that the higher the liquid super-
ficial velocity, the higher the slope of the interpolating line meaning
that the distribution parameter, which accounts for the non-uniform
distribution of the two phases, clearly depends on such quantity. In
addition, by looking more in detail at low mixture velocities, it can
be seen that all the data below a certain 𝐽𝑚𝑖𝑥 collapse on a unique line.
This particular threshold has been observed to be coincident with a
corrugation Froude number 𝐹𝑟∼ equal to one.

𝐹𝑟∼ =
𝐽 2
𝑚𝑖𝑥

𝑔 ⋅ 𝑏𝑝
(4)

This dimensionless parameter was introduced by Buscher (2019) to
quantify the relative effects of centrifugal and buoyancy forces on two-
phase flow patterns in cross-corrugated channels. Buscher stated that
a clear impact of buoyancy on flow patterns was observed only for
𝐹𝑟∼ < 1. In this case, the slip between phases is dominated by buoyancy
and so the distribution parameter is not dependent on liquid flow rate
as it is observed to be for higher mixture superficial velocities. To model
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Fig. 11. Example of post-processing pipeline. Data for 𝐽𝐿 = 0.006 [m/s] at different 𝐽𝐺 as indicated on the image. Step 1: original image, Step 2: background subtraction and
contrast normalization, Step 3: final binary mask, Step 4: connected component labeling. Images cropped to fit squared aspect ratio.
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Fig. 12. Example of post-processing pipeline. Data for 𝐽𝐿 = 0.061 [m/s] at different 𝐽𝐺 as indicated on the image. Step 1: original image, Step 2: background subtraction and
contrast normalization, Step 3: final binary mask, Step 4: connected component labeling. Images cropped to fit squared aspect ratio.
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Fig. 13. Example of post-processing pipeline. Data for 𝐽𝐿 = 0.183 [m/s] at different 𝐽𝐺 as indicated on the image. Step 1: original image, Step 2: background subtraction and
contrast normalization, Step 3: final binary mask, Step 4: connected component labeling. Images cropped to fit squared aspect ratio.
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Fig. 14. Comparison between the void fraction maps obtained from image analysis by estimating the void fraction 𝛼 with the three different approaches discussed. All plots have
the same colorbar 𝛼 ∈ [0; 0.85].
Fig. 15. Parity plot of void fraction prediction. Comparison between smoothed and non-smoothed volume ratio (a) and between smoothed volume and area ratio (b).
this behavior, two different equations are proposed to fit the database
obtained using the smoothed volume ratio (i.e., Fig. 17):

𝑈𝐺 =
𝐽𝐺
𝛼

=

{

2.16𝐽𝑚𝑖𝑥 + 0.0295 if 𝐹𝑟∼ ≤ 1
(1.25 + 4.54𝐽𝐿) ⋅

(

𝐽𝑚𝑖𝑥 −
√

𝑔 ⋅ 𝑏𝑝
)

+ 0.368 if 𝐹𝑟∼ > 1

(5)

The first one is casted simply as a drift flux model while the
second keeps into account the variability of the distribution coefficient
12
on liquid flow rate at corrugation Froude number greater than one.
A graphical representation of the model is given in Fig. 18 where
the lines corresponding to the above-mentioned equations are traced
on top of the data points. The goodness of the interpolation is very
high, with 𝑅2 values of about 0.94 and 0.96 for 𝐹𝑟∼ smaller and
higher than 1, respectively. Eq. (5) could be inverted to provide a
predictor for the void fraction given as 𝛼 = 𝐽𝐺∕𝑈𝐺. When this model is
benchmarked against the void fraction data obtained using smoothing
of the reconstructed volumes, it yields a mean absolute percentage error
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Fig. 16. Percentage difference of void fraction prediction from baseline method when using the two other approaches.
Fig. 17. Actual gas velocity against mixture velocity. Entire database (a) and detail at 𝐽𝑚𝑖𝑥 < 0.5 m∕s (b). Data colored with liquid superficial velocity 𝐽𝐿 [m/s]. Void fraction
data obtained using smoothed volumes ratio.
of 8.17% in predicting the parameter of interest. Fig. 19(a) displays
the parity plot comparing the set of results from the model against the
benchmark data.

When considering the two other methodologies for the calculation
of void fraction, the behavior of the database is observed to be still the
same even though some minor differences arise. It can be noticed from
Fig. 20 that when reporting on the 𝑈𝐺-𝐽𝑚𝑖𝑥 plane the data obtained
using the area ratio as a proxy for the void fraction, the results are more
scattered around 𝐹𝑟∼ = 1 and some points at high liquid superficial
velocities even fall below the dotted line that indicates the homoge-
neous flow model (representing absence of slip between phases). This
evidence suggests an unphysical prediction of the void fraction, as 𝛼
is even higher than its homogeneous counterpart. Eqs. (6) and (7)
report the fitting of the proposed drift flux equations with the two
different datasets obtained with area non-smoothed volumes and area
ratio respectively. By looking at the coefficients, it is of easy notice
how the dependance of the distribution parameter on 𝐽𝐿 for 𝐹𝑟∼ > 1
tend to diminish with the different approaches adopted. Figs. 19(b)
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and 19(c) show the parity plot that compares the performance of the
model in predicting the void fraction data obtained with these two
different approaches. The mean average percentage error increase from
the 8.17% of the baseline approach to 11.8% and 18.8% without the
use of smoothing and when adopting the area ratio respectively.

𝑈𝐺 =
𝐽𝐺
𝛼

=

⎧

⎪

⎨

⎪

⎩

1.57𝐽𝑚𝑖𝑥 + 0.0185 (𝑅2 = 0.92) if 𝐹𝑟∼ ≤ 1

(1.07 + 2.58𝐽𝐿)

⋅
(

𝐽𝑚𝑖𝑥 −
√

𝑔 ⋅ 𝑏𝑝
)

+ 0.264 (𝑅2 = 0.94) if 𝐹𝑟∼ > 1

(6)

𝑈𝐺 =
𝐽𝐺
𝛼

=

⎧

⎪

⎨

⎪

⎩

1.38𝐽𝑚𝑖𝑥 + 0.0297 (𝑅2 = 0.78) if 𝐹𝑟∼ ≤ 1
(1.30 + 0.998𝐽𝐿)
⋅
(

𝐽𝑚𝑖𝑥 −
√

𝑔 ⋅ 𝑏𝑝
)

+ 0.245 (𝑅2 = 0.97) if 𝐹𝑟∼ > 1

(7)
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Fig. 18. Actual gas velocity against mixture velocity. Entire database on the top and detail at 𝐽𝑚𝑖𝑥 < 0.5 m∕s on the bottom. Lines represent the proposed model used to fit the
data. Points colored with liquid superficial velocity 𝐽𝐿 [m/s].

Fig. 19. Parity plot of void fraction prediction when the proposed model is fitted void fraction data obtained from the different approaches discussed in the text.
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Fig. 20. Detail of actual gas velocity data against mixture velocity for 𝐽𝑚𝑖𝑥 < 0.5 when using area ratio (a) of non-smoothed volumes (b) for the calculation of void fraction. Data
colored with liquid superficial velocity 𝐽𝐿 [m/s].
4. Conclusions

In this work, we discussed a methodology that integrates machine
learning (ML) algorithms and data processing techniques to estimate
void fraction from back-lit front-view images of two-phase flow in
corrugated channels. We adopted an encoder–decoder style neural
network (U-Net) to perform image segmentation leveraging its transfer-
learning capabilities to minimize the training set. The model was
trained by exposing it to progressively more complex flow patterns
with a total of 13 annotated images. The quantitative benchmark of
U-Net performance in the segmentation task was numerically evaluated
by computed standard metrics (accuracy, precision, recall and F1-
score) that rely on the comparison between binary masks obtained
from the network and ‘‘ground truth’’ manually annotated images.
The performance showed to be very good, with a value higher than
0.9 for all the evaluation indexes. The binary masks obtained with
segmentation were then processed to estimate the void fraction. We
presented an algorithm to reconstruct the 3D volume of the gas clusters
starting from the 2D binary masks to be able to estimate the void
fraction as a volume ratio. To render a more physical bubble shape, a
smoothing function was introduced to account for bubble curvature. To
inquire about how sensitive this approach was, this method (i.e. usage
of smoothed volume ratio) was benchmarked against the use of non-
smoothed volumes and the simpler area ratio between the number
of pixels labeled as gas and the total number of pixels. The results
showed an agreement between all three methods in terms of the shape
of void fraction contour maps. The area ratio showed to be the one with
the highest discrepancy, with a mean average percentage difference
close to 80%. The highest discrepancy is presented in the low void
fraction region, where the use of area ratio is expected to give a strong
overestimation of the void fraction. A drift flux model was proposed to
fit the dataset. We introduced a two-part equation to account for the
dependence of the distribution coefficient 𝐶0 on the liquid flow rate for
a corrugation Froude number 𝐹𝑟∼ larger than 1. The model proved to
be a good predictor of the estimated void fraction with a mean average
percentage error of 8.17% when using the proposed approach based on
smoothed volume ratio.

The U-net-based approach we proposed can be applied to various
two-phase flow conditions and different pseudo-2D geometries given its
generality and minimal model training effort requirement. The U-net is
able to provide pixel-level accuracy in segmenting the images enabling
a more deep and accurate post-processing of the results. This techniques
enables the user to extract a lot more information from HSV images
than what is typically done with simpler segmentation algorithms that
15

fail at providing accurate segmentation masks. Thanks to binary masks
provided by the U-net, we were able to quantify the void fraction using
different approaches. The results revealed that the choice of processing
technique influenced the void fraction calculation. Future work can be
focused in exploiting the accurate binary masks to extract quantitative
information about the different flow patterns to, for instance, provide
a quantitative way to classify them.
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