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ABSTRACT 

 

The use of adhesively bonded joints has increased considerably due to their lightweight, relevant 

strength-weight ratio and possibility to join multi-materials. Nevertheless, there are still some 

challenges in the application of this kind of joints in primary structures, such as guaranteeing their 

reliability during the components’ useful life

Structural health monitoring methods are suggested to ensure in-service safety and reliability of 

adhesive joints. The acoustic emission appears promising because it can detect the elastic waves 

produced within the material when it is under damage or straining. 

This research focuses on mode I fatigue damage monitoring metallic double cantilever beam 

adhesively bonded joints using the acoustic emission method. Digital image correlation and visual 

evaluation were applied during fatigue interruptions to track the crack-tip position within the 

adhesive and correlate them with the acoustic emission outcomes. 

The acoustic emission method is susceptible and different kinds of waves (background, friction 

and damage) can be easily assessed during the tests, producing an immense amount of data. So, 

unsupervised artificial neural networks for patterning recognition were proposed. Self-organising 

maps and k-means algorithms were used for data clustering and then classified regarding their 

sources. Finally, the acoustic emission results, digital image correlation and visual evaluations 

were compared.  
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1. Introduction  

  

The use of adhesively bonded joints has increased in recent years due to the global interest in 

producing lighter structures with the implementation of advanced multi-materials and the necessity 

of high-performance joining solutions for different types of interfaces. The adhesively bonded 

joints present the main advantage of producing low impact in the adherends mechanical properties, 

reducing stress concentration compared to traditional fasteners [1]. 

Nonetheless, the single use of adhesively bonded joints is still challenging for the application in 

primary structures since it is difficult to ensure joint reliability during a components in-service life, 

under fatigue and critical environmental conditions. To overcome these drawbacks and ensure the 

joint’s integrity and safety, some solutions can be implemented, such as the enhancement of the 

adhesives’ mechanical properties, development of optimized finite elements analysis to better 
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predict the joint’s mechanical behaviour in critical loading-bearing conditions, and the use of Non-

Destructive Testing (NDT) [2] Structural Health Monitoring (SHM) methods [3]. 

Since SHM methods can assess the joints’ integrity under in-service life, giving the possibility of 

their on-demand or real-time diagnosis and prognostic, implementing a condition-based 

maintenance system that saves time and maintenance costs of the structures, the interest of the 

scientific community in their application is increasing. 

Among the different SHM methods, Acoustic Emission (AE) is a promising alternative due to its 

possibility of assessing the elastic waves produced within the monitored material when their strain 

energy is released during the deformation or damage initiation and propagation (even in small 

increments) [4]. The assessed elastic waves are then recorded and have their time-domain features 

(i.e., amplitude, duration, counts, energy and rise time) and waveform saved by the acquisition 

system as detailed in the flowchart of Figure 1. 
 

 
 

Figure 1: Flowchart of the acoustic emission system. 

 

The AE method is susceptible also to background noise and elastic waves produced by friction 

within the material, recording a massive amount of data that requires a well-designed post-

processing methodology for clustering and classifying the data related to damage sources from the 

ones related to noise. Time-domain or frequency-domain features filtering and, most recently, big-

data algorithms such as supervised and unsupervised Artificial Neural Networks (ANN) are 

applied to clustering and AE sources classification. 

The use of unsupervised ANN was applied in previous work to monitor the crack propagation 

within the bondline of metallic Double Cantilever Beam (DCB) specimens under quasi-static mode 

I crack propagation by using complementary algorithms (k-means and Self-Organised Maps) for 

the waveform’s classification of the data related to the damage propagation from the background 

noise. In the same work, the AE results were compared with visual evaluation and Digital Image 

Correlation (DIC), where it was possible to localise the crack-tip position and the waveforms 

associated with the beginning of the onset of plasticisation ahead of the crack-tip (corresponding 

with the DIC outcomes). These interesting results can open new alternatives for using the AE 

method for monitoring adhesively bonded joints and help better understand the relationship 

between the AE signals and the damage mechanisms within the joints, possibly also under fatigue. 

Only a few studies in the literature are dedicated to using the AE method for fatigue crack 

monitoring of adhesively bonded joints, particularly the relationship between the AE features and 

the damages mechanisms within the bondline [5]. J. A. Pascoe et al. 2018 [6], studied the use of 

acoustic emission to understand the fatigue crack growth within a single load cycle in adhesively 

bonded DCB joints. They focused on answering when damage occurs within single cycle fatigue 

tests, based on peak amplitude analyses of each signal. They could address the feasibility of this 

SHM method to monitor fatigue crack growth and its relationship with AE signals. However, still 

challenging to establish a well-defined link between the physical mechanisms correlated to the 

crack growth and the AE features and consequently do better filtering of the AE signals. 

So, this work aims to study a clustering methodology based on unsupervised ANN using Self-

Organised Maps (SOM) and k-means algorithms for classifying the AE signals assessed during 

mode I fatigue crack growth tests of metallic adhesively bonded DCB specimens. Principal 

Component Analysis (PCA) was also implemented to individuate the most significant time-

domain, or frequency-domain AE features to be used during the clustering process. DIC and visual 

evaluation analysis were then performed to track the crack growth during the tests and compare 

them with the AE features. 



 

2. Methodology 

 

2.1 Materials and sample fabrication 

DCB specimens were produced following the ASTM D3433, and dimensions are detailed in Figure 

2 (a). The adherends were produced with a high-strength steel DIN 40CrMoMn7, and the 3M 

Scotch-WeldTM 9323 B/A structural adhesive was used to join them, whose mechanical properties 

can be found in [7].  

Before bonding, the adherends were sandblasted and cleaned with acetone to remove impurities 

and waxes. After that, a Teflon tape was applied at the beginning of the specimens to ensure a non-

bonded region. Moreover, a razorblade was introduced to guarantee a sharp notch at the beginning 

of the specimens. Then, the adhesive was manually mixed and applied to the cleaned surface of 

the adherends from the razor blade until the free edge of the sample. A minimum adhesive 

thickness of 0.3 mm was ensured by adding a 2% weight of glass microspheres (250 – 300 µm of 

diameter) within the adhesive layer.  

The specimens were cured in an oven for a total of 5.5 hours following three main steps: linear 

increase of the temperature until 65°C for 1.5h, followed by a hold at 65°C for two hours and, 

finally, a linear decrease of the temperature for two hours until the room temperature. For the 

present work, two specimens (S1 and S2) were tested with an initial crack length (a0) equal to 65 

mm. 

        

(a) 

 
 

Figure 2: (a) DCB dimensions (drawings out of scale) and (b) testing setup. 

(b) 

 

For the crack growth measurement during the tests, both lateral surfaces of the specimens were 

previously whitely painted. The lateral surface used for the DIC analysis was furtherly painted 

using arbitrary black aerosol paint to create a fine speckle pattern. 

 



 

2.2 Fatigue crack growth tests 

A uni-axial MTS 810 servo-hydraulic testing machine with a load cell of 15 kN was used to 

perform mode I fatigue cracking growth tests. A constant amplitude load controlled test with a 

fatigue ratio (R = minimum load/maximum load) of 0.1. A testing frequency of 5 Hz and a 

maximum load equal to 850N was applied, as shown in Figure 2 (b). 

The tests were interrupted every 5000 cycles to perform a monotonic loading ramp up to the 

maximum load applied during the fatigue cycles with a 0.5 mm/min speed rate. The maximum 

load was held for 10 seconds to allow crack length measurements by visual evaluation and DIC. 

After that, the machine unloads until the minimum load of the fatigue tests and the cycles then 

initiate again. The tests were performed until the specimen’s complete failure. 

A Dino-Lite digital microscope with a magnification of twenty times was used to take pictures of 

the white painted surface of the DCB specimens during the interruptions. The DIC analysis was 

made using the GOM – 3D Aramis adjustable system with an acquisition frequency of 3 Hz. The 

Aramis system’s main characteristics are detailed in [8]. It is worth mentioning that the DIC 

acquisition system was synchronised with load and displacement input values from the testing 

machine. 

The free post-processing software for image analysis FIJI – Image J (version 2020) and GOM 

Correlate (version 2020) were used for the visual evaluation and DIC pictures, respectively. 

The acoustic emission analyses were performed during the cyclic and monotonic loading ramps 

using the Vallen ASMY-6 acquisition unit, two piezoelectric sensors units of type VS150-M 

(operating peak frequency in the range of 100 – 450 kHz) and a 34 dB Vallen AEP5 preamplifier, 

all connected by low-noise cables. Before the tests, a coupling silicon agent (OKS-110) was 

applied in the interface between samples and sensors to guarantee continuity during the AE signals 

transmission from the specimens to the acquisition system. The sensors were fixed on the 

specimen’s surface by magnetic holders at a fixed distance of 180 mm between them, as shown in 

Figure 1 (a).  

A sampling rate for acquiring the AE features and AE transient waveforms of 10MHz and 5MHz 

were set in the acquisition system, respectively. Moreover, an amplitude threshold (concerning a 

reference voltage amplitude of 1µV) of 45 dB and a minimum acquisition frequency equal to 

25kHz were applied. It is worth mentioning that the amplitude threshold was selected based on a 

baseline ramp, where AE signals were detected in a condition where no damage started to 

propagate, assessing mainly signals related to background noise. 

The Vallen AE-Suite Software and Vallen Control Panel (R2017.0504.1) were used to acquire and 

record the assessed AE data. 

 

 

3. Acoustic emission post-processing analysis 

 

The acoustic emission raw data of specimen S1 at the first 5000 cycles and the ninth bath of cycles 

(40000 – 45000) are shown in Figures 3 (a) and (b), respectively. 

As shown in Figure 3 (a), the AE amplitude values are very spread during the whole group of 

cycles with a higher density of signals between 45 to 50 dB and an amount of AE signals around 

78000 was recorded. Drawing attention to Figure 3 (b), other areas with a high density of AE 

signals can be observed. A wavy behaviour was observed in the region between 45 – 60 dB, and a 

signal’s high-amplitude group was noticed at around 70 dB during this batch of cycles. Almost the 

same amount of AE hits was recorded in this group, about 70000. 

No further conclusions can be taken from this raw data. At this point, it is hard to accurately 

understand if still there are AE signals related to background noise, friction or only hits 

corresponding to damage initiation and propagation. So, it is crucial to implement an efficient 

post-processing methodology. 

 



 

  
(a) (b) 

 

Figure 3: Specimen’s S1 raw data at (a) 0 – 5000 cycles and (b) 40000 – 45000 cycles. 

 

3.1 Classification and Clustering procedure 

First, a selection of the most relevant AE features that can be used for the clustering procedure was 

done by applying the Principal Component Analysis (PCA). Time-domain (Amplitude, Duration, 

Energy, Rise Time and Counts) and Frequency-domain features (Peak frequency and Centroid 

frequency) of each recorded waveform were used as input for the PCA, whose calculation 

procedure is summarized in [9]. 

In general lines, the PCA is a multivariable data reduction method by creating new minimally 

correlated features called principal components and forming a symmetric covariant matrix. From 

the most significant principal component analysis and the variability of the related data, it is 

possible to determine the main features to increase the clustering procedure’s efficiency, as seen 

in Figure 4. The PCA analysis made it possible to select the duration, energy and frequency as the 

primary input features for the unsupervised ANN clustering procedure based on creating a 2D 

topological map that classifies the data using neighbourhood functions (SOM algorithm), as 

described in [10]. 

Only by using the SOM it is not possible to divide the classified data into groups, so an additional 

k-means iterative algorithm was applied. The optimal number of clusters was determined by a 

combined evaluation of the performance of different indexing criteria such as Davies-Bouldin, 

Silhouette, and Calinski-Harabasz. An optimal number of 5 clusters was given after the analysis, 

as seen in the last graph of Figure 4. 

Figure 5 shows the specimen S1 at the ninth block of cycles (40000 – 45000) after the clustering 

procedure. As can be observed, the wavy behaviour was well divided into two main clusters (3 

and 4) that present different frequency signatures (cluster 3 – around 150 kHz and cluster 4 – about 

100 kHz). The AE hits concentrated in the region of high amplitude values (approximately 70 dB) 

were grouped in a single cluster (number 5 – colour pink) and present frequency values around 

100 kHz, and the highest values of cumulative energy highlighting the direct relationship between 

amplitude and energy values as stated in [6]. 

 



 

 
 

Fig. 4: AE clustering and classification procedure. 



 

 

(a) 

 

(b) 

 

Fig. 5: Specimen S1 at 40000 – 45000 cycles after clustering procedure. (a) Cumulative energy 

and amplitude values of the clusterised AE data and (b) Frequency signature of each created 

cluster. 

 

Clusters 1 and 2 instead are very scattered during the whole block of cycles and present the lowest 

frequency values around 50 kHz. Even if cluster 1 presents high amplitude values, it can be 

associated with noise or some friction during the tests due to its noisy representative shape shown 

in Figure 5 (b). So, the main representative clusters that can be used for further analysis are clusters 

3, 4 and 5, with frequency signatures in the range from 80 to 150 kHz for the specific studied 

adhesive. Nonetheless, further research still has to be done to link better the possible damage 

mechanisms observed during the fatigue crack growth cycles and each classified cluster. It is worth 

mentioning that similar clustering results were found for specimen S2. 

 

 

 



 

4. DIC, visual evaluation and AE final results 

 

The visual evaluation and DIC crack length measurements obtained during the monotonic ramps 

for specimens S1, and S2 are shown in Figures 6 (a) and (b). Their results were also compared 

with the total cumulative energy obtained during the entire fatigue crack growth tests with a total 

of about 50000 and 100000 cycles for specimens S1 and S2, respectively. Figures 6 (c) and (d) 

show the total number of hits and the cumulative number of counts for the tests. 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 6: Comparison between DIC, visual evaluation crack length measurements and AE 

cumulative energy for specimens: (a) S1 and (b) S2, and cumulative hits and counts versus the 

number of cycles also for specimens: (c) S1 and (d) S2. 

 

First, it is essential to mention that the main difference between the specimen’s total number of 

cycles can be associated with the interfacial failure that occurred in specimen S1 compared to the 

cohesive failure observed in specimen S2. This can also explain the higher cumulative number of 

counts obtained for specimen S2, in which waveforms were observed with increased duration and, 

consequently, the number of counts (number of times that the waveform crosses the threshold) at 

the last blocks of cycles.  

Another difference observed between both specimens is that the cumulative energy of specimen 

S2 is higher than specimen S1, as observed by S. T. de Freitas et al. 2018 [11]. They observed that 

the DCB adhesively bonded joints testes under quasi-static mode I that had obtained interfacial 

failure presented lower cumulative energy than those that underwent a cohesive failure. 

As observed in Figures 6 (a) and (b), the crack length measured by the visual evaluation and DIC 

increase with the number of clusters. The DIC results represents the onset of the plasticisation 

within the adhesive layer, while the visual evaluation measured the crack-tip position. It was also 

observed that the cumulative energy of both specimens is almost constant for the whole test and 



 

presents a huge increase next to the last stages of the tests when a high-speed crack propagation 

was observed. So, the cumulative acoustic emission energy can be useful to identify the fatigue 

ending the life of the specimens independently of the failure type. 
 

 

5. Conclusions 
 

This work aimed to study a methodology for acoustic emission clustering and classification of 

mode I fatigue crack growth within adhesively bonded joints. Moreover, a comparison between 

the crack growth measured by DIC, visual evaluation and AE features such as the cumulative 

energy. The main conclusions could be obtained: 

 The proposed clustering procedure was able to classify the AE waveforms based on three 

main features: duration, energy and frequency. Suggesting that some groups can be 

associated with noise and/or friction. However, further studies should be pursued to 

understand better the damage mechanisms within the adhesive layer and the AE features; 

 High cumulative energy was observed in the specimen that underwent a cohesive failure; 

 A massive increase in the AE cumulative energy was observed at the final stages of the 

fatigue crack growth tests, a promising feature to identify high-speed crack propagation of 

the joints before its complete failure. 
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