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Abstract—Quantum computing enabled cryptanalytic tech-
niques are able to concretely reduce the security margin of
existing cryptographic primitives. While this reduction is only
polynomial for symmetric cryptosystems, it still provides a
reduction in their security margin.

In this work, we propose a detailed quantum circuit designed
to cryptanalyze both the Data Encryption Standard (DES)
cryptosystem, and its successor Triple-DES (3DES), currently
standardized in ISO/IEC 18033-3, and still widely employed in
satellite data and bank card encryption. To do so, we introduce
the first quantum circuit implementation of the 8 substitution
tables (a.k.a. S-boxes), applying a bitslicing strategy, which is
currently the most efficient classical combinatorial circuit design
in terms of number of two inputs Boolean gates. Secondly,
we present the complete quantum circuits required to attack
both DES and 3DES leveraging Grover’s algorithm. We provide
finite regime, closed form equations, delineating the circuits
complexities in terms of the number of qubits, gates, depth
and number of qubits multiplied by depth. The complexity
analysis is based on two distinct gate sets: a NOT-CNOT-Toffoli
(NCT) extended with the Hadamard gate; and the fault-tolerant
Clifford+T. Finally, akin to the classical attack to the 3DES, we
introduce a meet-in-the-middle strategy relying on an exponential
amount of Quantum Random Access Memory. Our findings
show that the 3DES with keying option 2, the most widely
employed variant of 3DES, can be attacked with a circuit depth of
approximately 267 and less than a thousand qubits. This is close
to the 264 value suggested by NIST for the depth achievable
sequentially by a single quantum computer in a decade. Our
technique can be further sped up parallelizing the approach onto
multiple devices, pointing to the practicality of cryptanalyzing
3DES in such a scenario.

Index Terms—Block-ciphers, Grover, DES, 3DES, quantum
cryptanalysis

I. INTRODUCTION

Quantum computing has emerged as a significant disruptor
in the field of cryptography, posing novel challenges to the
security of cryptographic algorithms. Shor’s proposal [1] in
1994 of a polynomial-time quantum algorithm marked a
significant advancement in quantum cryptanalysis, particularly
impacting modern public-key cryptography schemes such as
RSA, ECDSA, and ECDH. Conversely, symmetric cryptog-
raphy has been long assumed to be essentially immune to
quantum computing, with the only concern being the quadratic
speedup offered by the adaptation of Grover’s algorithm to
key-recovery attacks. To break a symmetric cipher, an attacker
possessing pairs of plaintexts and corresponding ciphertexts

encrypted with a given length-n key — a scenario classically
denoted as Known Plaintext Attack (KPA) model — can
embed the publicly available encryption routine as Grover’s
oracle. By creating a superposition of all the 2n possible
keys, the attack retrieves the correct key with an asymptotic
computational time complexity of O(

√
2n), that is, quadrat-

ically faster with respect to a brute-force attack performed
using a classical computer. While doubling the cipher’s key
size is a common countermeasure to achieve post-quantum
security, this approach overlooks the cost of the encryption
routine in terms of quantum gates. The adaptation is even
more challenging when considering that symmetric ciphers
rely on non-linear components — called substitution tables,
substitution boxes or S-boxes for short — making their quan-
tum circuit implementation non-trivial. Ensuring robust post-
quantum cryptography requires a more nuanced evaluation of
a cipher’s resistance to quantum threats, allowing for a precise
assessment of the practical feasibility of quantum-accelerated
attacks1.

In the recent literature, many works have been produced
trying to accurately assess the complexity of an attack to
different symmetric ciphers based on quantum computers.
While the majority of the works focuses on the quantum crypt-
analysis of AES [2]–[4], fostered by NIST standardization
calls for post-quantum asymmetric schemes [5] and digital
signatures [6] using the quantum computational complexity
of AES as the reference bar to assess the security of all
proposals, quantum attacks to other block ciphers are also
being investigated [7]–[10]. The ongoing effort to assess the
security of symmetric ciphers lead to the discovery of several
vulnerabilities, relying however on an attack model in which
both the encryption routine and the key are implemented in
the classical circuit [11]–[17]. Such kind of model, referred
to as Q2 model as opposed to the standard Q1 model previ-
ously described, exploits either Simon’s algorithm [18] alone
or in combination with Grover’s algorithm, and offers key-
recovery attacks going beyond the standard quadratic speedup.
Although of great theoretical interest, however, the Q2 model
does not pose a threat to already existing and deployed

1On the Practical cost of Grover for AES Key Recovery, Sarah D. - NCSC
https://csrc.nist.gov/csrc/media/Presentations/2024/practical-cost-of-grover-f
or-aes-key-recovery/images-media/sarah-practical-cost-grover-pqc2024.pdf



cryptographic schemes, as they are expected to be running
on a classical computer.
Motivations. To the best of our knowledge, the post-quantum
security of the Data Encryption Standard (DES), whose first
design dates back to the 1970s, and the Triple Data Encrpytion
Standard (3DES) symmetric cipher, created to overcome the
security weaknesses of DES while maintaining backward
compatibility with it, has not been explored before. Notably,
3DES is currently standardized in the ISO/IEC 18033-3, a
suite of symmetric encryption ciphers updated for the last time
in 2021.

While significant effort has been put in the quantum crypt-
analysis of other symmetric encryption algorithms, DES and
3DES still remain unexplored, with the only exception being
two distinct proposals attacking Simplified DES [19], [20], a
variant of DES used for educational purposes. The significance
of studying DES and 3DES ciphers is testified by their
extensive usage across critical systems. As an example, many
satellites continue to heavily rely on these standards for data
transmission2. Furthermore, popular applications like Mozilla
Firefox and Mozilla Thunderbird utilize 3DES for encrypting
login credentials3, and the vast majority of modern ATMs still
employ either DES or 3DES to encrypt PINs and send them to
remote servers for processing. The widespread usage of 3DES
in finance is further evidenced by its widespread usage in
the electronic payment industry, with card payment standards
like Europay, Mastercard, Visa (EMV) adopting 3DES for key
management4, justifying their choice with the 3DES inclusion
in the ISO/IEC-18033-3 suite of symmetric ciphers. Moreover,
AWS recently deployed a payment service allowing 3DES
usage5.

Finally, 3DES continues to be supported by several promi-
nent cryptography software libraries. These include Bouncy
Castle, a comprehensive collection of cryptographic APIs
utilized in Java and C#, including the Android operating
system; Crypto++, an open-source C++ library; OpenSSL,
a software library facilitating secure communications over
networks; and the Trusted Platform Module (TPM) standard,
essential for secure cryptoprocessors such as those mandated
by Windows 11.
Our contributions. We present the first ever design and
implementation of a Grover-based key-recovery attack to both
DES and 3DES in the Q1 model. We pose a special focus
on the quantum implementation of the 8 S-boxes employed in
both ciphers, for which we adapted the bitslicing technique to
rephrase their non-linear function in terms of the NOT-CNOT-
Toffoli (NCT) gate set. We report detailed costs for all of them.

2The N2YO satellite tracker lists 31 active Iridium satellites launched
before 2001 (the year in which AES superseded DES as a NIST standard) at
https://www.n2yo.com/satellites/?c=15

3The encryption/decryption routines source code is avaiable at https:
//searchfox.org/mozilla-central/source/security/nss/lib/pk11wrap/pk11sdr.c

4The EMV security and key management specifications are available at
https://www.emvco.com/specifications/book-2-security-and-key-management

5The official AWS tutorial is available at https://docs.aws.amazon.com/pa
yment-cryptography/latest/userguide/getting-started.html

For both attacks, we report the complexity metrics in terms
of number of qubits (a.k.a., width), number of gates and depth
in terms of two distinct gate sets: the NCT+Hadamard gate
set and the Clifford+T gate set, the latter considered to be the
most promising one for fault-tolerant quantum computation.
Additionally, we report the depth×width metric proposed
in [21], considered to be a more realistic characterization of
a quantum circuit complexity in a computational model in
which each qubit is independently controlled by a classical
device. In this respect, the limitations of quantum technologies
may come either by the availability of a reduced number of
qubits, or their coherence time, and for this reason we consider
both a low-depth and a low-width implementation. Moreover,
following [22], we also report the depth× number of gates,
which is considered more relevant when the computation must
be parallelized across multiple quantum devices limited by a
fixed value of depth.

Finally, we show an adaption of the classical meet-in-the-
middle (MITM) strategy to the quantum case. By using a
Quantum Random Access Classical Memory (QRACM) [23],
we report complexity measures when considering either a 3

√
M

or a
√
M access cost to the memory, M being the size of the

quantum memory.
Through a rigorous comparison with respect to the state-of-

the-art proposals offering a quantum implementation of sym-
metric block ciphers, we show how both DES and 3DES fail to
reach the same security margin of the others, failing below the
minimum level demanded by NIST for post-quantum security.

II. BACKGROUND

A. DES and 3DES block ciphers

DES. The Data Encryption Standard (DES), devised by IBM
in the early 1970s and established as a federal standard by the
US National Bureau of Standards in 1977, stands as one of
the earliest and most exhaustively examined symmetric block
ciphers. Operating on a 64-bit block of data and a 64-bit secret
key (of which only 56 bits are utilized), DES relies on a
Feistel-network structure, involving the iterative application of
16 rounds, each consisting of the same sequence of operations,
with the primary operation being the round function F . The
function F takes as input a round key Ki, derived from the
secret key k through a key scheduling algorithm, and a 32-bit
portion of the data block, producing as output another 32-
bit block. The Feistel structure enables both the encryption
routine Ek and the decryption routine Dk to rely on the same
sequence of operations, with the only difference being in how
the round keys are scheduled.

The encryption process of DES is depicted in Fig. 1. The
key scheduling algorithm, illustrated in the rightmost portion
of Fig. 1, operates on the input 64-bit key k to generate 16
distinct 48-bit round keys Ki. This operation relies on two
fixed permutation tables, known as PC− 1 and PC− 2. PC− 1

selects 56 bits from the 64-bit key k, with the remaining 8 bits
either discarded or used as parity-check bits. Subsequently,
each of the 16 rounds involves splitting the 56 bits into two
28-bit halves, independently left-rotating each half a number
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Fig. 1. DES encryption. p is the 64-bit plaintext, i.e., the message to be
encrypted; k is the 64-bit encryption key; c is the 64-bit ciphertext.

of times determined by the round number. PC− 2 then selects
24 bits from each half to compose the 48-bit round key Ki.

Conversely, the leftmost portion of Fig. 1 depicts the se-
quence of operations applied to the 64-bit plaintext p block
to obtain the ciphertext c. Initially, the plaintext undergoes an
Initial Permutation (IP), rearranging the bits according to a
predefined table. The block is then divided into two 32-bit
halves, the left portion L0 and the right portion R0. Subse-
quently, 16 rounds of identical operations ensue. Specifically,
at the end of each round i, with 0 ≤ i < 16, Li and Ri are
updated according to the following equations:

Li+1 = Li ⊕ F (Ki, Ri) Ri+1 = Li.

It is important to note that unlike previous rounds, at the end
of the last round the two halves are not swapped. Finally,
the final step of Ek applies the Final Permutation (FP) to the
concatenation of L16 and R16, corresponding to the reverse
of the initial permutation IP.

The security of DES encryption lies in the round function F ,
which, through its combination of linear and non-linear com-
ponents, provides both diffusion and confusion [24]. Specif-
ically, F consists of the following operations: 1) Expansion
Permutation (EP): expands Ri from 32 to 48 bits by dupli-
cating half of the bits; 2) KeyMix: XORs the round key Ki

into the 48 bits obtained in the previous stage; 3) Substitution
(S− boxes): applies 8 distinct S-boxes independently on a
6-bit portion of the previous stage, producing 8 4-bit outputs

according to a non-linear transformation; 4) Permutation (P):
rearranges the result according to a fixed permutation. The
8 S-boxes provide the essence of DES security since, without
them, the cipher would be linear, and trivially breakable. Their
implementation is often provided in the form of fixed lookup
tables, in which each of the 6 input bits are used to select an
independent cell element storing 4 bits.

With the evolution of cryptographic techniques and the
emergence of more advanced threats, DES faced limitations,
particularly in its susceptibility to brute-force attacks due to
its relatively small key size. Indeed, in the Known-Plaintext
Attack (KPA) model, an attacker having both the plaintext p
and its encrypted version c can perform an exhaustive search
through all the 256 (since only 56 out of 64 bits of the key are
actually used) possible keys, invoking each time the encryption
routine, and checking if the result is equal to c.
3DES. In response to the vulnerability of DES, the triple-
DES (3DES) cipher emerged as a successor, offering enhanced
security features while maintaining compatibility with existing
systems. Standardized for key management in ISO/IEC 18033-
3 among the others, 3DES employs a triple-encryption process
relying on DES building blocks. Specifically, given three 64-
bit keys k1, k2, k3, the DES encryption function Ek and the
DES decryption function Dk, the encryption of the plaintext
p is obtained as c = Ek3(Dk2(Ek1(p))).

The 3DES cipher offers three three keying options:
O1: k1=k2=k3, with a key-size equivalent to DES;
O2: k1=k3, k1 ̸=k2, with an equivalent key size of 112 bits;
O3: k1 ̸=k2 ̸=k3, with an equivalent key size of 168 bits.
Considering that, as for DES, only 56 out 64 bits of the keys
are actually used in the encryption process, the previous keying
options correspond to a computation complexity of 256, 2112

and 2168 for 3DES-O1, 3DES-O2 and 3DES-O3 respectively.
ISO/IEC 18033-3 does not allow 3DES-O1, and recom-

mends instead 3DES-O3 with respect to 3DES-O2 because
of its better security with respect to plain brute-force attacks.
Nonetheless, 3DES-O3 is susceptible to Meet-In-The-Middle
(MITM) attacks, capitalizing on the availability of an expo-
nential amount of memory to diminish the number of keys
searched through a brute-force attack. Indeed, by defining an
equivalent encryption function Ek23

= Ek3
(Dk2

(p)), 3DES-
O3 encryption can be represented as c = E′

k23
(Ek1(p)), with

k23 being the 112-bit key obtained from the two 56-bit keys
k2 and k3. The MITM attack first constructs a table containing
256 pairs (c′, k′1), each corresponding to an encryption of
the plaintext p using a distinct key k1. Subsequently, a key-
recovery attack on Ek23

can be executed using the same
plaintext p, wherein, after each encryption of p with k23,
resulting in the ciphertext c′′, a search is conducted for an
entry in the table for which c′ = c′′. This approach necessitates
256 + 2112 ≈ 2112 encryption operations and 256 data entries,
yielding a security level close to the one of 3DES-O2. Since
3DES-O2 uses 64 fewer bits for the key storage, and it does
provide almost the same security of 3DES-O3, it is still the
preferred keying option of choice for the majority of 3DES
ciphers.



B. Algebraic structure of S-boxes

To withstand linear cryptanalytic attacks, symmetric ciphers
must incorporate non-linear components, most often in the
form of substitution boxes or S-boxes. An S-box represents a
vectorial Boolean function {0, 1}x 7→ {0, 1}y , mapping input
bitstrings of length x to output bitstrings of length y. The
function is usually realized as a lookup table with 2x cells,
each storing an output bitstring. The embedding of S-boxes
into quantum circuits demands however their adaptation as
reversible functions.

In the literature, various tools have recently been pro-
posed to convert generic S-boxes to standard Boolean or
reversible gates, optimizing metrics such as gate count, depth,
or auxiliary bits or qubits. As an example, in [25]–[27] the
authors propose tools based on breadth-first search strategies
and graph meet-in-the-middle strategies, that however face
limitations with S-boxes having more than 4-bit inputs. An
alternative approach involves SAT-solvers [28], [29], although
their practicality diminishes for S-boxes with 6 or more input
bits. Notably, the quantum implementation of DES S-boxes
remains unexplored.

In classical settings, the first work analyzing DES S-boxes
in terms of standard Boolean gates was presented in [30]. The
technique, termed bitslicing in a later work [31], leverages a
Single-Instruction Multiple-Data view, wherein multiple pro-
cessors operate in parallel on independent bits of the data.
This method, relying solely on standard Boolean gates, offers
the most efficient implementations of DES S-boxes in terms
of gate count.

C. Grover’s framework

Grover’s original algorithm [32] can be restated as a quan-
tum framework searching for the unique value k for which the
vectorial Boolean function f : {0, 1}n 7→ {0, 1}q evaluates to
the all-1’s bitstring of length q. In the quantum formulation of
the function f through the operator Uf , the length-n bitstrings
composing the input domain are thought as the labels of the
2n basis states, stored on n input qubits, spanning the quantum
state of the system across the algorithm. The framework,
whose visualization in the quantum circuit model is given in
Fig. 2a, relies on three stages.
1) Domain superposition preparation (H⊗n). It corresponds
to n H gates, each applied, in parallel, on the n input qubits.
The application of the operator to the initial state |0n⟩ results
in the quantum state

|σ⟩ =
∑

i∈{0,1}n

1√
2n

|i⟩ ,

corresponding to the uniform superposition of all the 2n

orthonormal basis states labeled as bitstrings of the domain
of f .
2) Oracle (Uref⊥(k)). The operator changes the sign of the
amplitude of the basis state |k⟩ , while leaving all the other
ones unaffected. When applied to a superposition state, its
effect can be visualized as a reflection of the quantum state

around all the 2n−1 basis states orthogonal to |k⟩ . This
interpretation justify the use of the reflection notation to
represent such operator, as derived from [33].

The implementation of Uref⊥(k) in terms of standard quan-
tum gates is usually retrieved starting from two quantum
operators, that we denote as Uf and Uref⊥(1). The first
operator, Uf , corresponds to a reversible implementation of
the Boolean function f , and, for non-trivial functions, relies
on m ancillary qubits. The function stores on a subset of q
qubits, with q < n+m, the all-1’s bitstring if and only if the
basis state encoded in the input qubits is equal to |k⟩. Uref⊥(1),
on the other hand, corresponds to a reflection of the quantum
state around the 2n−1 basis states orthogonal to |1q⟩, and it
is implemented through a multi-qubit Z gate involving all the
q qubits containing the output of the f evaluation, as shown
in Fig. 2b (left).

Finally, since Grover’s oracle requires only a change of the
sign in the amplitude of |k⟩, all the qubits used by Uf for
the evaluation of f have to be restored to their initial state.
For this reason, following a widespread compute-uncompute
pattern, the Uref⊥(1) operator is followed by the U †

f operator,
corresponding to the application of the same sequence of gates
used in the reversible implementation of Uf , but applied in
reverse order.
3) Diffusion (Uref(σ)). It is the other main reflection operator
used in Grover’s framework, and it reflects the quantum state
around the initial superposition state |σ⟩. Its implementation
can be derived starting from its reformulation as Uref(σ) =
H⊗nUref⊥(0)H

⊗n. The Uref⊥(0) gate corresponds to a reflection
around the basis states orthogonal to the all-0’s basis state,
and can be implemented in terms of a multi-qubit Z gate and
2n X gate, as shown in Fig. 2b (right).

Number of Grover’s iterations. Repeating steps 2) and 3)
approximately

√
2n times results in a probability of measuring

the basis state |k⟩ close to 1. In [34], the authors showed that
the optimal number of iterations is ≈ 0.58

√
2n to obtain a

probability of observing |k⟩ close to 0.84. Additionally, they
generalized the framework to the case of r multiple solutions,
for which the number of iterations is reduced by a factor of√
r.

Grover’s algorithm parallelization. In [35] the authors dis-
cuss two distinct ways to parallelize Grover’s algorithm across
S quantum machines, denoted as inner and outer paralleliza-
tion. Inner parallelization divides the search space into S
disjoint subsets, assigning each subset to a distinct machine.
Since each machine’s search space is reduced, while the oracle
circuit stays unchanged, the number of iterations required by
each machine to observe the target solution is reduced by a
factor of

√
S. On the other hand, the outer parallelization runs

S instances of the full algorithm in parallel. Assuming that
the verification of the solution obtained through the quantum
circuit can be efficiently checked classically, which is the
case for quantum key-recovery attacks, only one out of the
S instances must succeed for the whole algorithm to succeed,
allowing to reduce the number of iterations of all the instances.
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Fig. 2. (a) Circuit representation of Grover’s framework in terms of the oracle reflection operator Uref⊥(k) and the diffusion reflection operator Uref(σ), and
their decomposition in terms of the quantum implementation of the Boolean function Uf and the two reflections Uref⊥(1) and Uref⊥(0). (b) Implementation
of the Uref⊥(1) and Uref⊥(0) reflection operators in terms of multi-qubits Z gate and single-qubit X gate.

The authors show that also in this case the number of iterations
required is reduced by a factor of

√
S.

III. QUANTUM CIRCUITS FOR KEY-RECOVERY

Notation. Following the notation of [36], we denote a quantum
register — i.e., a set of qubits— using a boldface, lowercase
font, additionally underlying its name, as in a. As common in
the literature, we assume that all qubits are initialized to |0⟩.
A. Grover-based key-recovery attack on DES

The Grover-based key-recovery attack on DES relies on the
availability of a plaintext p and the corresponding ciphertext
c = Ek(p) encrypted used an unknown secret key k. To
rephrase the attack in terms of a search procedure employing
the Uf operator required by Grover’s oracle, we define the
vectorial Boolean function f : {0, 1}56 7→ {0, 1}64. Such a
function takes as input a 56-bit candidate key k′ (remember
that, as seen in Sec. II-A, only 56 out of 64 bits of the cipher
key are actually used in DES encryption), and returns as output
the bitstring 164 on a quantum register of dimension 64 if
and only if Ek′(p) = c, which implies k′ = k. By accepting
as input all the possible keys in superposition, and thanks to
the realization of Grover’s oracle through the quantum circuit
implementation of Uf , the quantum exhaustive search can be
performed using a computational complexity proportional to√
256.
To ensure accuracy in our attack on DES, we must first

address the challenge of spurious keys — multiple keys that
yield the same ciphertext for a given plaintext. In [3], the
authors demonstrated that while multiple plaintext-ciphertext
pairs are typically required, even a single pair provides a 0.37
probability of identifying the correct private key. Furthermore,
parallelizing Grover’s algorithm across multiple instances di-
minishes the need for multiple pairs. Hence, our attack relies
on a single plaintext-ciphertext pair.

In the following, tracing the operators described in Sec. II-C,
we describe all the quantum circuits needed in our circuit
design. The quantum circuit representation of our proposal is
given in Fig. 3a, in which we denote as: k the quantum register
containing the superposition state representing the encoding
of all the possible keys k′; p the quantum register containing
the encoding of the plaintext p, and its changes across the

circuit; pE and pS two auxiliary registers used in the quantum
implementation of the EP block and the S-boxes, respectively.
1) Domain superposition preparation As explained in
Sec. II-C, this stage is used to generate a uniform super-
position of all the quantum states labeled as the bitstrings
composing the domain of f . In DES key-recovery attack, such
superposition contains all the possible length-56 bitstrings,
corresponding to all the possible choices of a candidate key.
This step is implemented through a depth-1 layer of 56
Hadamard gates, each applied on the 56 qubits of the quantum
register k.
2) Oracle As we described in Sec. II-C, the oracle can be
described in terms of two quantum operators: Uf and Uref⊥(1).
Since the Uref⊥(1) has already been discussed in Sec. II-C, and
it corresponds to a multi-qubit Z gates acting on 64 qubits, we
will focus in the following on Uf , whose realization relies on
several subcircuits.

The first subcircuit employed in Uf , denoted UBE(p) in
Fig. 3a, realizes a basis encoding of the known plaintext
bitstring p in the quantum register p. Such procedure involves
the application of an X gate on all the qubits of p for which
the corresponding bis of p has value 1. Since all the gates can
be applied in parallel, this procedure has a trivial depth of 1;
the average number of X gates is instead 32.

The second component of Uf is the UEk
operator, corre-

sponding to the quantum implementation of DES encryption
circuit. Our proposal for such a circuit, representing the core of
the quantum key-recovery attack to DES, is shown in Fig. 3b.
With respect to the classical implementation shown in Fig. 1,
we note the explicit representation of both the round function
F and the Swap operations swapping the left and right portion
of the plaintext at the end of each round. More importantly,
we note the absence of the PC− 1 block involved in the key-
schedule procedure. Indeed, while in the classical case this
publicly-available, fixed permutation is used to select 56 out of
the 64 bits of the input key, an exhaustive search algorithm has
no use for such 8 additional bits. As a consequence, both the
unneeded 8 qubits and the permutation PC− 1 can be avoided.
Finally, retracing the classical steps of the encryption routine,
we employ two quantum registers, pL and pR, corresponding
to the 32 leftmost and 32 rightmost qubits of p respectively.
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Fig. 3. The circuits execution flow is from top to bottom; boldface, underlined name denotes quantum registers. (a) Quantum key-recovery attack circuit for
DES, involving basis encoding (UBE(·)) of the plaintext p and the bitwise complement c̄, DES encryption UEk

, and reflection operators (Uref⊥(0) and
Uref⊥(1))(check Fig. 2b). (b) Quantum circuit for UEk

, tracing the components shown in Fig. 1, with shaded boxes indicating qubit relabeling. Note that
PC− 1 is irrelevant. (c) Quantum key-recovery attack circuit for 3DES-O3, using the decryption operator UDk2

relying on similar subcircuits as UEk1
.

All the shaded operations represented if Fig. 3b, namely
the Input Permutation (IP), the Final Permutation (FP), the
Permutation (P), the PC− 2, the Swap, and the ≪, correspond
to fixed, publicly available, permutations of qubits. Therefore,
they can be easily implemented at circuit generation time
through a simple relabeling of the corresponding qubits, and
hence have no gate cost in their quantum implementation. Note
that the previous reasoning imply that the 16 round keys Ki

are fully obtained by qubits relabeling.
On the other hand, the Expansion Permutation (EP), in the

classical case, copies half of the 32 input bits into 16 auxiliary
bits. In the quantum case, such a copy is performed through a
depth-1 layer of CNOT gates, each one having as control qubit
one of the 16 qubits of pR to be copied, and as target one of
the 16 qubits of the auxiliary register pE , initially thought in
state |016⟩.

The KeyMix stage XORs the bits of the round key Ki into
the expanded right portion of the plaintext stored in pR and
pE . Its quantum implementation involves a depth-1 layer of
48 CNOT gates, each one having as control a qubit taken from
k, and as target the corresponding qubit taken from either pR

or pE .
The S− boxes stage, involving non-linear operations on

the input, represents the most demanding part of the entire
quantum circuit. We recall that DES uses 8 non-linear S-boxes,
each of which takes 6 bits in input and produces 4 bits in

output. As explained in Sec. II-B, neither SAT-based tools nor
state-of-the-art breadth-first heuristic are capable of efficiently
explore these sizes. For this reason, to obtain a reversible
implementation for our quantum circuit design, we employed
the bitslicing technique of [31] detailed in Sec. II-A, obtaining
at the end a classical description of all the S-boxes in terms
of standard Boolean gates, namely NOT, AND, OR and XOR.
From the Boolean description provided earlier, we can derive
a quantum circuit implementation using the NCT gate set. In
this translation, classical NOT gates become quantum X gates
(that is, quantum NOT gates), XOR gates correspond to either
a single or two consecutive CNOT gates, depending on qubit
reuse. Similarly, AND gates are represented by Toffoli gates,
while OR gates are realized using a Toffoli gate and five X

gates, following De Morgan’s law. The described translations
are illustrated in Fig. 4.

Note that each S-box takes as input 6 qubits from pR and
pE , and produces its output on 4 auxiliary qubits belonging
to the auxiliary register pS , initially in state |032⟩. We report
in Tab. I the implementation results of the S-boxes in terms
of the NCT gate set.

Finally, the L− Xor− R gate XORs the result of the S-
boxes stages, stored in the pS register, into left portion of the
plaintext. This stage is implemented using a depth-1 layer of
CNOT gates, each one having as control a qubit of pS , and as
target the corresponding qubit of pL.
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Fig. 4. Translation of the Boolean operators AND (∧), OR (∨) and XOR (⊕)
in terms of the NOT-CNOT-Toffoli (NCT) gate set.

At the end of the L− Xor− R gate, the application of the
U †

F operator allows resetting the state of the auxiliary quantum
registers pS and pE to the all-0’s state, and brings back the
register pR to its original state, allowing the reuse the same
quantum registers across all the 16 rounds of encryption.

Finally, the third and last component of Uf , denoted
UBE(c̄), performs a basis encoding of the bitwise complement
of the bitstring c in the quantum register p. In this way, if the
UEk

operator produced on the quantum register p a quantum
state labeled as c, the application of UBE(c̄) will contain in
output a length-64 bitstring of 1’s, that can be used in the
next step to implement the reflection Uref⊥(1) of the oracle.
The operator involves the application of an X gate to all the
qubits of p for which the corresponding bit of c has value 0.
Since all the gates can be applied in parallel, this procedure
has a trivial depth of 1. The number of X gate applied is, on
average, equal to 32.
3) Diffusion As explained in Sec. II-C, this stage involves the
application of a depth-1 layer of 56 Hadamard gates on the
qubits storing the input superposition prepared in stage 1) on
k, followed by the Uref⊥(0) gate performing a reflection around
the basis states orthogonoal to |056⟩, followed by another stage
1) layer. We remark that the Uref⊥(0) operator is implemented
as a three layer circuit on the qubits of k, the first and the last
one consisting in the parallel application of 56 X gates, while
the second one being a 56-qubit Z gate.
Number of Grover’s iterations. DES exhibits the comple-
mentation property, meaning that Ek(p) = c ⇐⇒ Ek̄(p̄) =
c̄, in which x̄ is the bitwise complement of x. For this reason,
the expected number of solutions is 2, and the complexity of
the key-recovery attack on DES is equal to

√
256

2 =
√
255.

B. Quantum key-recovery attack on 3DES

The quantum circuit for 3DES, visualized in Fig. 3c, derives
directly from the one of DES detailed in the previous section.
In 3DES, indeed, the encryption follows a three-stage process,
encryption, decryption, and encryption again, necessitating
three distinct keys, k1, k2, and k3. Both the encryption and
the decryption routine are the ones used in DES.

Compared to DES, the key difference lies in the use of
three quantum registers: k1, k2, and k3, each comprising
56 qubits, as opposed to the single 56-qubit register k. The

stage 1) of Grover, responsible for input preparation, now
demands 168 Hadamard gates applied in parallel across the
key registers. Consequently, the Uref⊥(1) operator in Grover’s
diffusion phase features a 168-qubit Z gate. Additionally,
owing to the Feistel-network structure of DES, the decryption
operator UDk2

mirrors the encryption routine, with the only
change being in the reversed order of round keys generated
by the key scheduling algorithm.

While the circuit illustrated in Fig. 3c represents the general
key-recovery attack for 3DES-O3, it can be easily adapted for
3DES-O2, where k1 = k3, by simply omitting k3 and using
k1 in all the places in which k3 is required. As a consequence,
the Grover’s diffusion stage features a 112-qubit Z gate.

Finally, since 3DES inherits from DES the complementa-
tion property, the number of Grover’s iterations expected to
measure the keys with high probability is equal to

√
2111 for

3DES-O1 and
√
2167 for 3DES-O2.

Meet-in-the-middle (MITM) strategy for 3DES-O3. In the
classical case, an interesting aspect of 3DES-O3 is the pos-
sibility of using a MITM strategy to speedup a key-recovery
attack at the expense of an exponential amount of memory.
Assuming the physical feasibility of the realization of the
Quantum Random-Access Memory (QRAM), we can adapt
this technique to the quantum case.

In the quantum attack on 3DES-O3 employing a MITM
strategy, the starting point is the generation and storage, on
the QRAM, of all the 256 ciphertext-key pairs (c′, k′1) obtained
by repeating the encryption procedure Ek1

on the same input
plaintext p, but using each time a distinct key k′1 out of the
256 possible ones.

After that, we can reuse the circuit components shown
in Fig. 3c for the MITM strategy, with the main notable
difference being the absence of the operators UEk1

and U †
Ek1

.
Additionally, the quantum register k1 is thought in state |056⟩,
and it is not included in stage 1) of Grover’s framework (and,
as a consequence, in stage 3) neither). Finally, in place of the
UBE(c̄), the MITM adaptation relies on random access to the
memory. Indeed, after the operator UEk3

, the quantum register
p holds a candidate ciphertext c′′, that can be used to access
the QRAM and store the corresponding k′1 on k1 if present,
additionally setting an auxiliary qubit to 1 to signal success,
while leaving the register untouched if not present.

In this scenario, the number of Grover’s iterations required
by the 3DES-O3 approach is equal to the ones required by
3DES-O2. However, each iteration must also account for the
QRAM access cost.

IV. EXPERIMENTAL EVALUATION

In this section, we conduct a detailed analysis of the
computational costs involved in our design, considering both
the NCT+H and the Clifford+T gate sets. Additionally, we
present designs optimized for low-qubit and low-depth de-
vices. Furthermore, we offer a comparative assessment against
state-of-the-art proposals for various block ciphers. All the
components of our quantum circuit design have been validated



TABLE I
S-BOXES COMPLEXITY MEASURES IN TERMS OF THE

NOT-CNOT-TOFFOLI (NCT) AND THE CLIFFORD+T GATE SET.

Metric S1 S2 S3 S4 S5 S6 S7 S8
Width 63 56 57 42 62 57 57 54
NOT 99 72 82 33 79 59 77 59

CNOT 58 52 58 47 62 58 54 54
Toffoli 32 29 27 17 29 26 29 25
Depth 51 38 41 29 62 43 51 37

Remark : The 6 input and 4 output qubits are not included in the width
count. The depth is obtained considered an equal weight for all gates.
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Fig. 5. (a)Multi-qubit Z decomposition into a logarithmic-depth circuit, with
linear amount of Toffoli gates and ancillary qubits, as reported in [22]. (b)
Decomposition of QAND into T-depth 2 circuit without ancillae [37]. (c)
Decomposition of QAND T-depth 1 circuit with one ancilla [3]. (d) QAND†

T-depth 0 implementation [38].

using the Atos Quantum Learning Machine simulator. The
entire source code will be made available upon publication.

A. Component design under different metrics and gate sets

Low-width vs low-depth circuits. To offer a comprehensive
view of the computational complexity of our proposal, we
fine-tuned the design of our quantum circuit considering both
the number of qubits (referred to as width) and the depth.
In our approach, the segment of the circuit that allows for a
significant trade-off between depth and width is the S-boxes
stage of the UEk

unitary. In the design optimized for low-

depth, all 8 distinct S-boxes operate simultaneously. To enable
full parallelization, all the auxiliary qubits required for each
S-box must be available at this stage. Hence, the number of
auxiliary qubits needed is the sum of those required by each S-
box, as shown in Tab. I. The depth, conversely, is determined
by the deepest S-box circuit, which is 62 for the S5 box. In
contrast, the low-width implementation executes the 8 S-boxes
sequentially, utilizing the same ancillary qubits to reduce the
total width. Thus, the number of qubits needed is determined
by the widest S-box circuit, which is 63 for the S1 box. The
depth is calculated by summing the depths of all the S-boxes,
with limited potential for parallelization across them.
NCT+H gate set. The first gate set targeted in our exploration
is the reversible NCT gate set augmented with the Hadamard
H gate. Such set necessitates the translation of the multi-
qubit Z gates used in the implementation of the Uref⊥(0) and
Uref⊥(1) operators employed in Grover’s algorithm’s oracle
and diffusion stages. For instance, the diffusion stage entails
a 56-qubit Z gate for DES, a 112-qubit Z gate for 3DES-
O2 and 3DES-O3 with MITM, and a 168-qubit Z gate for
3DES-O3. Moreover, the oracle stage demands a 64-qubit
Z gate for all variants, except 3DES-O3 with MITM, which
only requires a single-qubit Z gate. We employed the strategy
detailed in [22] and shown in Fig. 5a for both low-depth and
low-width translations of the multi-qubit Z gates. Although
such strategy is used to translate a generic multi-controlled
gates in terms of Toffoli gates, plus an additional single qubit
gate, nevertheless the multi-qubit Z gate can be thought as a
multi-controlled Z gates on which all qubits are thought as
control, and there is no target qubit. Specifically, the proposal
suggests a translation requiring at most m−2 ancillary qubits,
2m− 4 Toffoli gates, and 2 log2 (m) depth for an m-qubit Z.
For the low-depth translation, the strategy can reuse all the
ancillary qubits previously used by the S-boxes. For low-width
translation, instead, we made minor adjustments considering
that, besides the 63 ancillary qubits already required by the S-
boxes, the pS and pE quantum registers (sized 32 and 16,
respectively) are in the all-0’s state before applying either
the oracle or the diffusion reflection operators. Consequently,
we could borrow up to 111 already available ancillary qubits
for the multi-qubit Z translation. Although this sufficed for
the logarithmic-depth decomposition for all oracle and most
diffusion reflections, 3DES-O3 without MITM required 55
additional qubits for its diffusion reflection. Nonetheless, we
can still employ the same strategy devised in [22] by first
dividing the qubits involved in the multi-qubit Z gates in two
distinct portions, and then operate two independent logarithmic
decompositions on them, one after the other. This strategy
results in a depth that is almost twice with respect to the low-
depth one, but at the same time does not incur in any auxiliary
qubit requirements.
Clifford+T gate set. The Clifford+T gate basis, introduced
in [39], is deemed the most promising for fault-tolerant
quantum computation. However, implementing the T gate in a
fault-tolerant manner incurs considerable overhead compared
to other gates [40]. Therefore, computational complexities are



TABLE II
COMPARISON OF THE GROVER-BASED KEY-RECOVERY ATTACK ON DES
AND 3DES WITH RESPECT TO THE OTHER STATE-OF-THE-ART CIPHERS

USED IN ISO/IEC-18033-3 HAVING A 128-BIT KEY-SIZE. ALL THE
RESULTS ARE EXPRESSED IN BASE-2 LOGARITHM.

Cipher NCT + H Clifford + T
W G D D

×
W

D
×
G

W T TD TD
×
W

TD
×
T

DES♢ 8 43 41 48 84 8 41 40 48 83

DES♦ 9 43 39 48 82 10 41 37 46 80

3DES-O2♢ 8 72 70 78 142 8 71 69 77 141

3DES-O2♦ 9 72 68 77 140 10 71 66 75 138

3DES-O3♢ 8 100 97 106 197 9 98 97 105 196

3DES-O3♦ 9 100 95 105 195 10 98 94 103 193

3DES-O3- 3
√
M♢ 8 72 74 82 146 - - - - -

3DES-O3- 3
√
M♦ 9 72 74 83 146 - - - - -

3DES-O3-
√
M♢ 8 72 83 91 155 - - - - -

3DES-O3-
√
M♦ 9 72 83 93 155 - - - - -

AES-128 [38] 12 83 75 88 157 12 79 71 83 151

Camellia-128 [8]♢ 9 80 77 85 157 9 80 78 87 158

Camellia-128 [8]♦ - - - - - 10 79 69 87 148
SEED [9] 15 84 79 95 164 15 84 76 91 94

HIGHT [7] 9 82 75 85 158 9 84 78 87 96

♢Low-width implementation.
♦Low-depth implementation.
Remark: Shaded rows refer to 3DES-O3 with MITM strategy measures

for a cubic-root 3
√
M and square-root

√
M access cost to the size-M

QRACM. The access cost is thought as having impact on the overall
circuit depth, leaving the gate count and number of qubits unaffected.

often assessed based on the T-count, i.e., the number of T

gates, and the T-depth, the maximum number of T gates acting
sequentially on a single qubit.

In our design, the gates necessitating T gates are only
the Toffoli gates used in S-boxes and multi-qubit Z gate
decompositions. Notably, our approach exclusively utilizes
QAND gates, that is, Toffoli gates for which the target qubit
is assumed to be in state |0⟩. To implement the QAND gate
efficiently, [3] offers a T-depth-1 circuit using a single ancillary
qubit. Additionally, [37] proposes a QAND† gate without T

gates, employing only a measurement gate. This approach
involves applying a H gate on the qubit containing the QAND

gate’s result, followed by measurement. If the measurement
outcome is 1, the qubit is reset to |0⟩, and a phase change is
applied to the global quantum state using a decomposed CZ

gate. Regarding the low-width translation of the QAND gate,
[37] presents an approach achieving a T-depth of 2 without
any ancillary qubits. Furthermore, the QAND† circuit can be
implemented using measurement-based uncomputation as for
the previous case.

B. Quantum computational complexity measures

Our analysis, presented in Tab. II, compare the performance
of our designs under different optimization strategies and gate
sets. Using the NCT+H gate set, we quantify the computational

complexities in terms of qubit count (W), gate count (G),
and depth (D). For the Clifford+T gate set, we provide both
the T-count (T) and the T-depth (TD). From the table, we
observe that considering plausible gate execution times of
approximately 100 nanoseconds [41], DES’s depth of 239

suggests that the key can be retrieved within 15 hours. Even
with NIST’s estimate of executing 240 in about a year [5],
the time to break DES is of approximately half a year.
Additionally, NIST’s estimates of 264, being the number of
gates that a quantum computer having gate execution times
comparable to classical Boolean gate execution times can
execute in a decade, implies a potential breach of 3DES-O2
within 160 years.

In the same table, we additionally report the metrics of
depth×width (D×W) and the T-depth×width (TD×W). The
aggregation of depth and width measures, proposed in [21],
addresses the challenge of estimating the quantum circuit
complexity in terms of the different resources used. Indeed,
the standard view of quantum gates as analgous to the static
Boolean logic components used in the classical paradigm of
computation do not directly apply to quantum computing,
in which it seems more plausible to think of qubits as
static components, upon which quantum gates are dynamically
applied by a classical controller. For this reason, considering a
classical controller attached to each qubit, the authors of [21]
evaluate the quantum complexity of a circuit in terms of total
interventions by all the classical controllers.
Grover’s parallelization under depth constraints. As we re-
ported in Sec. II-C), Grover’s algorithm does not significantly
benefit from parallelization, as it only reduces the number of
iterations of a single quantum device by a factor of

√
S when S

quantum devices run in parallel. Since the number of gates and
depth required by each quantum device remains approximately
the same, the parallelization strategy increases the overall
number of quantum gates required across all devices by

√
S.

When the depth achievable by each quantum device is fixed
to a maximum value, called MAXDEPTH in NIST stan-
dardization call [5], we can compute the number of quantum
devices required for a full parallelization of Grover’s algorithm
as S = (D/MAXDEPTH)2, with D being the depth
required by a single device in the original, non-parallelized
version. Using the value MAXDEPTH = 264 reported by
NIST, 3DES-O2 requires almost (24)2 = 256 devices to be
parallelized, and hence retrieve the key in approximately a
decade.

As shown in [22, Eq.10], under these hard depth constraints
the overall number of gates can be expressed as the depth of a
single quantum instance multiplied by the number of gates of
a single quantum instance. The result of such multiplication,
denoted as QAES in [5], [6], justify the use of depth×number
of gates (D×G) and T-depth×number of T gates (TD×T) as
complexity metrics to take into account.
3DES-O3 MITM with QRAM. As discussed in Sec. III-B,
the 3DES-O3 with MITM strategy, both in classical and quan-
tum scenarios, heavily relies on the availability of substantial
memory resources.



While standard definitions for Quantum Random Access
Memory (QRAM) are not universally established, [23] offers
a comprehensive survey of QRAM models. Firstly, the authors
distinguish between circuit-based and gate-based QRAM, de-
pending on whether standard quantum circuit gates or special-
ized gates are utilized in implementation. Additionally, they
categorize QRAM as either Quantum Random Access Classi-
cal Memory (QRACM) or Quantum Random Access Quantum
Memory (QRAQM). In the former, a fixed list of entries that
can be queried in superposition, while in the latter, the entries
themselves can exist in superposition. The authors argue that
the most optimistic scenario regarding storage requirements
greater than 250 is the gate-based QRACM model. In this
scenario, the overhead scales with o(M), where M represents
the size of the quantum memory.

In the key-recovery attack against 3DES-O3, the memory
size required to perform a MITM strategy is of 256. To
avoid overly optimistic constant-depth costs, which would
yield complexity similar to 3DES-O2, and pessimistic (yet
not unrealistic) linear access costs, for which the 3DES-O3
with MITM would have no benefit with respect to the plain
3DES-O3, we consider in our analysis both cubic-root and
square-root access costs memory in our analysis. While the
latter increases the overall depth by ≈ 213 with respect to
3DES-O2, the former has a more modest impact of ≈ 24.

C. Comparison with state-of-the-art symmetric ciphers

To gauge the security robustness of DES, we conduct a
comparative analysis of computational complexities obtained
from our design against other symmetric ciphers standardized
in ISO/IEC-18033-3, all requiring a key-length of 128 bits
and purportedly offering the same security level as 3DES-O2,
which is at the moment the most adopted variant of 3DES.

Since NIST assesses the security level of submissions
for post-quantum asymmetric cryptography and post-quantum
signatures by referencing the quantum implementation of AES,
recent literature proposals have predominantly targeted AES,
which, like DES, is based on a Feistel-network structure. The
best-known quantum attack on AES, as outlined in [38], serves
as a benchmark for NIST evaluations. It is worth noting that
the preprint updated version corrects the inaccuracies present
in the published version [3] due to programming framework
errors.

In [8], the authors present low-depth and low-width quan-
tum circuits for Camellia, a cipher operating on a 128-bit
block with an 18-round Feistel structure. Although only the
encryption complexity measures are provided, we extrapolate
the overall Grover-based key-attack complexity using similar
assumptions as our work. The study by [9] presents instead
a quantum key-recovery attack for SEED, a Feistel-based
cipher with a 128-bit block size. SEED’s round function
involves XOR gates, modular additions, and S-boxes, with
exponentiation in a finite field. Finally, in [7], the authors
analyze the HIGHT cipher, a Korean block cipher with a 64-
bit block size, based on a modular Addition-Rotation-XOR
(ARX) architecture.

Comparing these results reveals that 3DES-O2, the most
commonly used cipher in the DES family, requires signifi-
cantly less effort to compromise compared to ciphers with
the same key-size. According to NIST’s criteria for eval-
uating cryptographic proposals based on AES computation
complexity, 3DES-O2 fails to meet the threshold required
for post-quantum security. The same holds true for 3DES-
O3 with the MITM strategy, for which both square-root and
cubic-root access costs result in computational complexity
below the threshold. Finally, DES cannot be deemed secure
against quantum attacks, echoing its vulnerability in classical
scenarios.

V. CONCLUSION

In this study, we conducted an in-depth analysis of a
Grover-based key-recovery attack targeting DES and 3DES,
which continue to be widely utilized for data security. Our
approach leverages the bitslicing technique to construct a
reversible implementation of the non-linear S-boxes, a novel
exploration in the literature to the best of our knowledge.
Our findings reveal that 3DES with keying option 2, the
most prevalent option, is more susceptible to quantum attacks
compared to other ciphers purportedly offering equivalent
security levels. Specifically, it fails to reach the minimum
security level demanded by NIST for post-quantum security,
since, compared to the AES proposal used as a reference, it
requires a computational complexity lower by factors ranging
from 211 to 217. Additionally, 3DES with keying option 3,
when combined with QRAM to facilitate a Meet-In-The-
Middle strategy, exhibits a similar vulnerability.

Looking ahead, this work can lay the starting point for
several future researches. Firstly, delving into the security
resilience of DES and 3DES within the Q2 model [17] could
provide valuable insights. Additionally, investigating the sus-
ceptibility of these ciphers to quantum differential and linear
cryptanalysis attacks [42] warrants attention. Furthermore,
extending our research to encompass all ciphers standardized
in the ISO/IEC suite would offer a comprehensive assessment
of their respective security strength.
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