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Abstract

Fischer-Tropsch synthesis is essential for converting CO, into hydrocarbons, creating
sustainable fuels and olefins. However, challenges in production yield and reaction
kinetics remain. This study introduces an artificial neural network (ANN) to predict FT
synthesis products from specific inputs, including temperature, pressure, GHSV, H,/CO,
ratio, and catalyst composition (Fe weight and K as a promoter). The ANN's ability to
predict outputs like CHy, Cs.4, Cs+, CO, conversion, and CO selectivity, without detailed
reaction mechanisms, is a key innovation. This approach circumvents complex kinetic
models. The network architecture is optimized for minimal error, and results are validated
against a comprehensive database.
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1. Introduction

Addressing climate change, reducing CO2 emissions from fossil fuels is crucial. The shift
towards sustainable initiatives like 'energy transition' presents both environmental and
economic opportunities for businesses. Strategies like Carbon Capture and Storage (CCS)
and Carbon Capture Utilization (CCU) are pivotal, with CCU gaining attention for
converting CO2 into valuable chemicals and fuels (Chung et al. 2023). Power-to-Liquid
(PTL) approaches in CCU are significant for producing high-energy-density fuels like
methanol, gasoline, and diesel, which are easier to store and transport. Fischer-Tropsch
Synthesis (FTS), since 1925, has been effective in generating hydrocarbons like alpha-
olefins and linear paraffins from various feedstocks, crucially without sulfur, nitrogen,
and aromatic compounds (Mohajerani et al., 2018). The adaptation of CO2-based FTS
for fuel production is a notable advancement under stringent environmental regulations
(Martin & Cirujano, 2022). Artificial Neural Networks (ANN) play a vital role in the
process industry, enhancing equipment failure prediction, maintenance (Nadai et al.,
2017), and system optimization. Their application in conventional FT synthesis for
process optimization and kinetic modeling has been successful (Adib et al., 2013;
Chakkingal et al., 2022; Sharma et al., 1998). This study applies ANN to FT synthesis
with CO2 feedstock, aiming to predict the selectivity of key species like CO, CH4, C2-4,
and C5+, using Fe-based catalysts promoted with K. To enhance predictions, five
networks were developed for each output, based on parameters like catalyst composition,
surface area (BET), temperature, and pressure, identified through Kendall correlation
coefficient analysis. The ANN's architecture was optimized using a mixed-integer genetic
algorithm methodology. Modelling
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2.1 Experimental set-up
In the continuous mixing setup employed, the flow rates of hydrogen (H», 30 Nml min™"),
carbon dioxide (CO,, 10 Nml min™'), and nitrogen (N>, 5 Nml min’!, internal standard)
were regulated using three Brooks mass flow controllers. These gases were introduced
from the top into a packed bed catalytic reactor, which had an internal diameter of 6 mm
and was charged with 1 gram of catalyst. The catalyst was held in position by two disks
of quartz wool. To ensure the reactor's internal surface was inert, a blank test was
conducted. The process of catalyst activation took place at a temperature of 623 K and a
pressure of 0.4 MPa over a duration of four hours. During this phase, the reagent flow
rate was maintained at 45 Nml min’!, employing the CO,/H, mixture. Following the
reaction, liquid products, including water and heavy hydrocarbons (Cs+), were condensed
in a cold trap equipped with an external cooling jacket set to 278 K. The condensed liquids
were then subjected to gas chromatographic analysis. Pressure within the system was kept
constant at 2.0 MPa by means of a pneumatic back pressure regulator. To compute the
CO; conversion rate and product selectivies , an Agilent 3000A micro gas chromatograph
was utilized. This device measured the peak areas of N> and CO; (AN, and ACO»), their
respective relative response factors (k), and the inlet flow rates of N, and CO; (Fin Ny,
and Fin CO;).Samples of the effluent were collected every two hours for analysis, using
the chromatograph equipped with molsieve and QPLOT columns.
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Figure 1: simplified experimental plant set-up for FT reaction.

2.2 Neural Network Architecture

The architecture of the ANN is based on the relations between the biases and weight of
each node, the neuron activation function, and the training function. Firstly, cascade
forward network has been considered, since it relates the output layer weights with an
additional weight evaluated from the values of the input variables. It has been seen that it
helps to better identify and exploit all the dependences between the input and output
variables, given the nature of the system (Zimmermann and Mattedi, 2022). The other
network characteristics have been chosen by optimizing the performance of the network.
This was done through a genetic algorithm, which selected through a random generation
of points (i.e., generation), the best one that minimize the mean square error (MSE) or the
network. Both activation functions (AF) and training functions (TF) have been labeled
with integers numbers, to be successfully read from the optimizer. Thus, a mixed-integer
approach has been used; and the hidden layer have been constrained between 1 and 10
layers. In fact, the variability and quantity of data in the dataset considered is not enough
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to achieve good performances with high hidden layers number (Ogunbo et al., 2020).
Table 1 shows the list of the activation and training functions. The modeling and
optimization have been performed through MATLABO, from which it has also been
chosen the type of activation and training function.

Table 1. Labeling of activation and training functions selected for the mixed-integer
optimization.

Label Activation function Training function Abbreviation
1 Pure linear Levenberg-Marquardt LM

2 Log-sigmoidal Bayesian regularization BR

3 Tan-sigmoidal Quasi-Newton BFGS QN-BFGS
4 - Resilient Back Propagation RBP

5 - Scaled conjugate gradient SCG

6 - Conjugate gradient with Powell/Beale restarts  P/B-CG

7 - Fletcher-Powell conjugate gradient F/P-CG

8 - Polak-Ribiére conjugate gradient P/R-CG

9 - One-pass secant OPS

10 - Gradient drop-down variable learning rate GDVLR
11 - Gradient disc with momentum GDM

12 - Gradient Discess GD

2.2.1 Input variable definition
The input variables to the model have been chosen accordingly to the nature of the catalyst
and of the process. Since the aim of the model is to predict the kinetic results and
performances of the process, the catalyst composition has been addressed, in terms of
density and (p.,;) and specific surface (BET). Since the active phase and promotor have
been fixed a priori, the density gathers
the information of the catalyst intrinsic
composition. Finally, the Kendall
correlation  coefficients  evaluation
(Figure 1) confirms the goodness of the
dependences between catalyst features
and products, which shows that at higher
catalyst density, higher chain products
are preferred, but at higher BET, lighter
hydrocarbons are favored, since increase
the selectivity of the catalyst itself in
terms of pore dimension and tortuosity.
Moreover, two more input variables

ACT |
wt.

have been selected: temperature (T) and pue YR v Fodhdh g €
pressure (P). By defining the state of the e

system, these are important information

since highlights both the sensitivity to Figure 2: Heatmap of the correlation
the process to produce a certain group of coefficients of the dataset features

species and the catalyst operational
window. At higher temperature, lower chain hydrocarbons are expected, and at higher
pressure higher chain hydrocarbons are favored (Chen and Yang, 2019).
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2.3 Dataset Compilation for Artificial Neural Network Training

To facilitate the modeling process through an artificial neural network (ANN), a
comprehensive dataset was necessary. This dataset was compiled from a combination of
12 articles (Qingxin Yang, 2021) and experimental results. From these articles, a variety
of data points were extracted, encompassing reaction conditions such as temperature,
pressure, gas hourly space velocity (GHSV) and ratios of reactants. Additionally, reaction
outputs were included, such as: CO, conversion and selectivities towards products. The
nature of the catalysts used in these studies was also a critical component of the dataset,
represented by their densities, which were calculated (Eq. 1)based on the amounts of

active metals, promoters and the porosity (). The latter was calculated as the average
between the experimental values of the catalysts used and literature values taken as
standard case (Yulan Zhang, 2015).

% K % Fe 100—% K—% Fe
Peat =@ (355 Pk T 150 " PFe T 105 PTiz0) (1)

In total, literature review yielded data for 70 different reaction conditions, providing a
robust foundation for the ANN. To complement this, experimental data reflecting similar
parameters were incorporated into the dataset. This experimental contribution added 25
unique data sets, ensuring a diverse and comprehensive pool of information for training
the neural network. This amalgamation of literature-derived and experimental data forms
the backbone of the ANN model, ensuring its relevance and applicability in the context
of Fischer-Tropsch synthesis.

2. Results and Discussion

The best architecture for the five networks is found from the optimization (Table 2). Two
activation functions, one for the hidden layers (HL) and one for the output layer (OL) are
selected. It must be said that the learning rate and normalization of input/output variables
are done automatically by the MATLABO algorithm used for the modeling. The
performances of these networks are assessed with the value of the MSE (Table 3). These
values are in line with the ones obtained in literature (Fernandes, 2006). As it is possible
to notice, the highest performances are reached for Xco2 and Scz-4 predictions, while the
worst one came from the modeling of the Scs-.

Table 2. optimization architecture from the genetic algorithm solution

Output Symbol N°HL AFHL AF OL TF
COz conversion Xcoz 9 Log-sigmoidal Pure linear P/B-CG
CO selectivity Sco 2 Pure linear Tan-sigmoidal F/P-CG
CHa selectivity Sch4 9 Log-sigmoidal Pure linear OPS
Ca4 selectivity Sc2-4 4 Log-sigmoidal Tan-sigmoidal OPS
Cs+ selectivity Scs+ 8 Tan-sigmoidal Tan-sigmoidal BR

However, despite the MSE gives to this the highest value, the mean prediction error
(MPE), evaluated as the relative error between the experimental data and the network
calculations, has its highest value on the prediction of the CO selectivity. This is
principally due to the intrinsic nature of the ANN when applied on chemical processes.
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Table 3. Performance indicators of the networks.

Network Total epochs Epoch at minimum MSE MSE MPE
CO2 conversion 16 10 92.87 0.30
CO selectivity 28 22 118.4 0.82
CHgs selectivity 12 6 112.3 0.58
C2.4 selectivity 20 14 81.62 0.19
Cs+ selectivity 45 44 167.3 0.37

On the other hand, other algorithms have been used for comparison; with particular focus
on Sco evaluation. To make the comparisons, MSE has been used as performance
indicator. Firstly, Multiple Linear Regression (MLR) and Decision Tree Regression
(DTR) are tested, using as independent variable the same used in ANN. Results are shown
in table 4.

Table 4. Performance indicators and comparison with other algorithm.

Algorithm Average MSE STD.DEV Sco MSE
ANN 114.5 33.00 118.4
MLR 157.3 36.75 193.1
DTR 138.6 44.30 172.5

As it possible to notice, ANN outperformance the other algorithm tested; MLR, the
simplest one, has the lowest score, and this is reasonable since the behavior of the species,
including CO, is strongly nonlinear, depending on the thermodynamic of the process. On
the other hand, DTR has better score with respect to MLR, but still not performing enough
well. This because decision tree can be overwhelmed from the variability of the data,
which led to a drastically change in the tree structure during the regression. In conclusion,
it is recommended to still use ANN as primary algorithm for the prediction of these
parameters and, if possible, evaluate the CO selectivity as a complementary to the other
parameters.

3. Conclusions

The application of artificial neural networks (ANN) in this Fischer-Tropsch synthesis
study demonstrates a balance of success and challenges. The ANN's ability in predicting
CO; conversion and C,4 hydrocarbon selectivity, in line with existing literature
(Fernandes, 2006), underscores its effectiveness in modeling specific aspects of the
synthesis process. However, the model's struggles with accurately predicting longer chain
hydrocarbons (SCs+), as reflected by a higher Mean Square Error (MSE), reveal
limitations in its capacity to handle the complexities of these reaction pathways. This
could stem from data variability, limitations in the network architecture, or insufficient
training data. The most significant Mean Prediction Error (MPE) in predicting CO
selectivity highlights a critical area of improvement. It suggests the model's limited
sensitivity to subtle variations in reaction conditions, a crucial aspect for precise chemical
process modeling. This finding calls for a deeper exploration into refining the ANN
architecture, possibly integrating more diverse and complex datasets or adopting more
sophisticated machine learning techniques. Overall, the study presents a promising yet
incomplete picture of ANN's capability in chemical process optimization. Future research
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should focus on enhancing the model's accuracy across a broader range of outputs and
delving into more complex reaction dynamics. Such advancements are essential for
realizing the full potential of ANN in this field.
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