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Abstract—This paper presents an approach to address the
diffusion equation in scenarios involving multiple absorbing
boundary conditions, commonly found in diffusive molecular
communication (MC) channels. Instead of using multiple mirror
images of the source, we introduce fictitious sources with time-
varying release rates to replace the boundaries. This transfor-
mation enables us to calculate the expected cumulative number
of absorbed particles (CNAP) by multiple absorbing boundaries
with finite volume. To compute the expected CNAP, we introduce
the concept of barycenter, which represents the spatial mean of
particles the receiver absorbs. Substituting absorbing objects with
their barycenters allows us to model the CNAP in scenarios with
convex geometry of absorbers. In a one-dimensional (1D) space,
our approach yields the same expression as the method of images
for describing the expected CNAP by an absorber. However, in
three-dimensional (3D) space, where using the method of images
is challenging or even impossible, our approach allows us to
model objects with fictitious sources and compute the expected
CNAP. In 1D, we extend this approach to the case in which one
boundary exhibits an absorption characteristic while the other
has zero-flux characteristic. This research direction is valuable
for modeling channels where not all objects are particle receptors.

Index Terms—Molecular communication, diffusion, channel
modeling.

I. INTRODUCTION

Communication and information exchange have always
played an essential role since the beginning of the universe.
Matter, energy, and information are the essential three el-
ements that construct the universe. Communication extends
beyond the realm of human interaction, and it encompasses
the information exchange in nature. The propagation of waves
has always been the core methodology for exchanging in-
formation. Electromagnetic and acoustic waves have been
extensively studied, whereas particle-based propagation has
received comparatively less attention in research pertaining
to communication studies. One of the primary forms of
propagation of particles is diffusion. In this work, we dedicate
our attention to the diffusive propagation of particles and
attempt to investigate the expected cumulative number of
absorbed particles (CNAP) by the boundaries with absorption
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characteristics. Diffusion is a fundamental mechanism that
enables molecule movement and interaction in biological
environments. Hence, it has received the most attention among
the propagation mechanisms existing in information exchange
at the biological level utilizing particles.

Recent advancements in synthetic biology and bionanotech-
nology have catalyzed transformative prospects across diverse
domains, including medicine, tissue and materials engineering,
and environmental monitoring [1]. Central to these strides is
the burgeoning potential of cooperative interactions among
bionanomachines, an achievable feat necessitating network
organization and viable internode communication [2]. Bio-
nanomachines can exchange information in fluidic environ-
ments using the molecular communication (MC) paradigm,
which involves the exchange of signaling particles [3].

Examples of micro-scale communication [4] include com-
munication among cells [5] or bacteria [6], [7], while
macro-scale [8] examples include the olfactory system [9]
pheromonal communication among animals [10]. The bio-
compatibility and energy efficiency of MC make it a promis-
ing information transmission paradigm in the sub-millimeter
range. MC applications have been mainly focused on the
health sector, where it has shown potential for smart drug
delivery [11]–[13], health monitoring [14], and disease diag-
nosis [15], among other areas. By bridging the gap between
theory and reality, MC holds promise for a variety of practical
applications.

The presence of multiple receivers is the crucial element
in the MC domain. Due to the existing interactions between
the receivers and particles, which are mainly interpreted as
an absorption effect, the receivers exhibit interaction among
themselves. The interaction reveals itself by comparing the
CNAP associated with the receiver in the presence and ab-
sence of the second receiver in its proximity. As always, to
investigate and characterize the communication aspect of such
a system, the knowledge of the channel impulse response
(CIR) would be necessary and helpful. Another motivation
in investigating the presence of multiple receivers is that such
systems are closer to reality since an individual receiver alone
cannot afford the complexity of the task. In natural MCs that
are occurring around us, multiple receivers always cooperate
as a unique system. Therefore, it would be a considerable
achievement to study multiple receivers and consider their
interaction.
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A. Related Literature

There has been interest in MC literature to move toward
crowded environments where there are multiple objects with
absorbing features in the physical channel. From the differen-
tial equations perspective, these objects are equivalent to the
boundary conditions that must be considered mathematically.

Numerous channel models for MC with diffusive propa-
gation of the particles considered the impact of neighboring
multiple absorbing receivers [16]–[19]. In order to count
differences in the number of particles absorbed in the case
of two fully absorbing (FA) receivers compared to one, a
preliminary investigation is conducted in [16]. Authors in [17]
derived the identical analytical closed-form expression for
the fraction of particles absorbed over time by each receiver
using the same one-dimensional (1D) environment. Of course,
the point transmitter is always positioned between the two
absorbers, which is a feature of the 1D space. Consideration of
the two FA receivers in a three-dimensional (3D) environment
is suggested in [18], from which the fraction of absorbed
particles by each receiver is computed.

In an effort to deduce an analytical formulation adjusted to
the complex 3D geometry with two FA receivers, an endeavor
is launched in [20]. This formulation tackles encapsulating
the influence of a second receiver by conducting a scaling
coefficient that influences the number of particles absorbed
by the intended receiver up to a certain time instant. The
scaling factor is determined by curve-fitting empirical data
and is a function of the geometrical characteristics with certain
adjustment coefficients unique to each receiver’s position. The
main technical drawback of the approach is that it makes
the assumption that the effect of the interfering receiver can
be described by a straightforward decrease in the number of
particles released by the source, but in reality, the shape of the
CIR can be disrupted. Additionally, it is difficult to generalize
the procedure to any quantity of receivers. Another similar
approach of expressing the interaction between receivers by
finding constant coefficients from the empirical data can be
found in [21]. The main focus of [21] was investigating a
modulation technique, but at first, they looked for a model
to capture the effect of multiple receivers in the channel.
Authors in [22] followed a similar approach as in [20]. They
modeled the CIR using a function similar to the single-input
single-output (SISO) system response by applying curve-fitting
algorithms. Specifically, they used control coefficients over the
SISO model to describe the MIMO system. The control co-
efficients were selected to comprehend system characteristics
and be time-independent. Then, nonlinear regression models
were used to fit simulation data.

Authors in [23] derived an analytical model for a single-
input multiple-output (SIMO) system operating under con-
ditions of negligibly small mutual interaction between the
transmitter and receivers. Such a configuration is tantamount
to a scenario wherein the distances separating the receivers
from the transmitter, as well as between the receivers them-
selves, are sufficiently large. Recently, a semi-analytical model
proposed in [24] for arbitrary geometry of channel including
a first order chemical reaction. By employing the numerical

method of moments, they transform the problem of concentra-
tion Green’s function (CGF) derivation from the CGF linear
integral equation (CLIE) into an inverse matrix problem.

Previously in [25], we proposed an analytical model to
describe the impulse response of the diffusive channel between
a point transmitter and a given number of FA receivers in an
MC system. The presence of neighboring FA receivers in the
physical channel was taken into account by describing them as
point sources of negative particles. However, replacing a volu-
metric object with a point requires extra attention about where
to locate the point. We proposed the concept of barycenter as
the spatial mean of the particles that are absorbed by each
receiver, and developed an empirical expression to describe
the position of the barycenter at the time of observation t=2 s
by applying curve fitting and finding an empirical expression.
We found that, if there is a source and a receiver in the
environment, then the position of the barycenter lies between
the center and the surface-point of the spherical FA receiver.
The surface-point is defined as the closest point on the surface
of the receiver to the transmitter. We proposed a parameter γ
that varies between 1 and 0. When γ is equal to 1, it means
that the spatial average of the absorbed particles are all
concentrated at the surface-point of the receiver, while when
γ equal to 0 means that the absorbed particles are distributed
around the receiver, and their spatial average coincides with
the center of the receiver. After [25] authors in [26] proposed
a channel model similar to the concept proposed previously
based on the concept of missing particles by the absorbing
boundaries, and they obtained solutions with good accuracy
when there is no strong shadowing effect in the system.

Recently, we focused on modeling the barycenter in 3D
space with multiple FA receivers in [27]. We derived a
heuristic analytical expression that serves to determine the
location of the barycenter within a spherical FA receiver as a
function of time. Furthermore, the resulting model affords the
opportunity to gain insights into the specific conditions under
which simplifying assumptions can be employed. In certain
cases, it becomes feasible to circumvent the intricacies of
barycenter computations and instead adopt an approximation
where the barycenter is assumed to be positioned at the
center of the receivers, which means that the parameter γ
from [25] is set to zero. To demonstrate the importance of
computing the barycenter, we also considered the case where
the negative source is assumed to be at the center of the
receivers. Comparing the expected CNAP from two cases with
the results from the particle-based simulation (PBS) depicted
the importance of computing the barycenter.

B. Motivation and Contribution

Most of the papers discussed in Sec. I-A attempt to describe
the system model from the probabilistic approach. However,
in this work, we demonstrate and analyze a method to solve
the diffusion equation with different boundary conditions
(absorbing and zero-flux conditions). In certain scenarios, we
demonstrate that our proposed method yields identical results
to the method of images [28] for solving the diffusion partial
differential equation (PDE). Moreover, for scenarios where the
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method of images fails, we show how the proposed approach
gives accurate approximation to the solution of the diffusion
PDE. First, we discuss the method of images. We demonstrate
that this method requires considering multiple mirror images
of the source with respect to the boundary. The absorbing
feature of the boundary results in the reduction of the particles
from the environment. This observation inspired us to investi-
gate the possibility of replacing the absorbing boundaries with
fictitious sources that release negative particles.

The advantage of using fictitious sources in place of the
method of images is twofold:

• Introduction of a finite number of fictitious sources,
equal to the number of boundaries, compared to the
introduction of infinite replicas of the main source as
suggested by the method of images;

• In the presence of 3D convex bodies, the position of the
fictitious source is always inside the volume of the body,
thus allowing to formulate a model that approximates the
expected CNAP in the receivers because we are confident
that barycenter is inside the receiver (i.e., equivalent to a
finite space/domain).

Finally, for scenarios where there is also a zero-flux bound-
ary condition in addition to the absorbing boundary, we obtain
the expected CNAP in 1D space. We demonstrate that our
proposed approach results in the same solution as that obtained
from the method of images. This last example demonstrates
the power of the proposed method to open the doors towards
modeling complex environments when not necessarily all the
boundaries are the receptors of the particles.

We first compute the CNAP from the PBS simulation. Then,
we compute the barycenter according to its definition from
the distribution of the absorbed particles over the surface of
the receivers and substitute the coordinates of the barycenters
into the proposed model as the locations of the fictitious
negative sources. By comparing the CNAP from PBS and
the proposed method, we verify the proposed system model
and the concept of barycenter. We deliberately considered
a complex topology of the receivers’ configuration where
five spherical receivers with different sizes are close to one
another and to the source. To the best of our knowledge,
such a complex scenario has never been considered in the
MC literature to verify the channel models. One should note
that the arrangement of the spherical boundaries in a crowded
biological environment is unpredictable; hence, to ensure the
generalization of the concept, a complex scenario dominant
with a shadowing effect is desirable to be assessed. Moreover,
we devise another simulation scenario to demonstrate that
there are cases where we can skip the computation of the
barycenter and replace it with the center of the receivers. The
latter case, can be regarded as the simple scenario.

C. Outline

The rest of the paper is organized as follows. Section II
discusses the method of images and then obtains the CNAP
in 1D space, starting with a single absorber and extending to
the two absorbers. In the same section, we also introduce the
proposed modeling approach of replacing the absorbers with

negative sources and demonstrate that it results in the same
solution as the one attained from the method of images. In
Sec. III, we take advantage of the fictitious source method and
demonstrate how to model the system when there are multiple
spherical receivers in a channel with 3D geometry. Section IV
depicts the power of the proposed approach in taking into
account the effect of the zero-flux boundary. It is proved that in
1D space when there is a zero-flux boundary and an absorbing
boundary, the CNAP from the method of images is the same
as the one obtained from the proposed method. In Sec. V, we
depict and discuss the simulation results. First, we show that
the idea of the barycenter is valid and that it is the best position
where to place the negative source. Then, we place receivers
randomly in space with a certain minimum distance from one
another and show that even approximating the barycenter as
the center of the receivers results in a promising accuracy in
such a scenario. Finally, Sec. VI provides the conclusion of
this paper.

II. 1D SPACE WITH ABSORBING BOUNDARIES

In this section, we discuss the method of images first to
obtain the solution of the diffusion equation and then to
attain the rate of the absorbed particles by the absorbing
boundary. Then, we describe the other possible interpretations
to represent the model and show that we can achieve the
same solution in terms of the expected rate of the absorbed
particles by the boundary as the one attained from the method
of images.

A. 1D Model with Single Absorber

Before initiating the investigation on modeling the system
that contains multiple boundaries, let us start with the case
of a single boundary that allows us to introduce the method
of images briefly. We start the modeling of the 1D diffusion
in space with an absorbing boundary condition located at the
origin of the coordinate system (x = 0) and a dimensionless
source with an impulsive release feature at x = L. Diffusion
equation is a parabolic PDE that connects the first-order
temporal variation to the second-order spatial variation of
the desired variable with a diffusion coefficient D. Here,
we consider the normalized concentration C(x, t) that is the
number of particles per unit of time and space divided by
the total number of released particles by the source. The
normalized concentration C obeys the diffusion equation

∂C

∂t
= D

∂2C

∂x2
, (1)

with boundary and initial conditions

IC: C(x, t = 0) = δ(x− L) ,

BC: C(x = 0, t) = 0 ,
(2)

where δ(·) is the Dirac delta function, IC and BC stand for
the initial condition and boundary condition, respectively.

One of the common approaches to devise a solution for the
diffusion equation is the method of images. In the method
of images, we can separate the effect of the source and
boundaries. The solution of the diffusion equation excited by
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Fig. 1. Image method representation of the solution to the diffusion equation
with a single absorber placed at x = 0 (the vertical black dashed line) in 1D.

an impulsive source in an unbounded environment is described
by a Gaussian function. Then, to satisfy the presence of an
absorbing boundary condition, an image of the source with
the opposite effect at x = −L needs to be considered to force
the concentration to be zero at the boundary, see Fig. 1. We
can write the solution with an absorber as the superposition of
the two sources with opposite signs at two specular locations
with respect to the absorber. Hence, the solution of (1) subject
to (2) can be written as

C(x, t) =
1√
4πDt

(
e

−(x−L)2

4Dt − e
−(x+L)2

4Dt

)
, (3)

where x ≥ 0 and t > 0.

The fraction of free particles at time t (fraction of particles
not absorbed by the time t with respect to the total number
of released particles) in the space can be found by the spatial
integration of the normalized concentration in the free space
domain [0,∞] (see Appendix A)

F (t) =

∫ ∞

0

C(x, t) dx = erf

(
L√
4Dt

)
. (4)

In this specific example, if we multiply 1− F (t) by the total
number of particles instantaneously released from the source,
we obtain the expected CNAP by the absorber. The rate of
change in normalized concentration of the particles in free
space can be obtained by taking the derivative of (4) with
respect to time. Obviously, adding a negative sign is required
to allow us to achieve the rate of fraction of particles being
absorbed from the absorber’s perspective. We can write the
absorption’s rate of normalized concentration at the boundary
with distance L from the source in 1D space as

f(L, t) = −∂tF (t) =
L√
4Dt3

e
−L2

4Dt . (5)

If we assume the particles’ movements are independent and
the impulsive source is able to release NT particles, then we
define

n(t) = NTf(L, t) , (6)

where n(t) is the rate of absorption by the corresponding
boundary.

==

== =

==

Fig. 2. Image method representation of the solution to diffusion equation
with two absorbers (vertical dashed black lines) at x = L and x = −L in
1D space.

B. 1D Model with Two Absorbers

After defining the rate of absorption in the case of a
single absorber in the channel, we want to obtain the rate of
absorption when two absorbers are present. We demonstrate
the solution from the method of images and then show that
the approach proposed in this work results in the exact same
expression.

Similar to the previous example with one absorber, from
the method of images, the goal is to force the concentration
to be zero at the absorbing boundaries. With reference to the
geometry shown in Fig. 2, to neutralize the concentration at
x = L we place a negative source at x = 2L. Note that
the tail of the Gaussian kernel of this negative source also
affects the concentration at boundary x = −L. Then, to
compensate this side effect, we are forced to place a positive
source at x = −4L, i.e., in the symmetrical viewpoint of
the negative source at x = 2L with respect to absorber at
x = −L. With similar reasoning, the same methodology must
be applied to satisfy the presence of the other absorber. Hence,
the concentration between the two absorbing boundaries can
be seen as a superposition of the effect of infinite negative
and positive sources. These sources are essentially mirror
images of the original source with respect to the boundaries,
as depicted in Fig. 2.

The solution of the diffusion equation, according to the
method of images, can be written as

C(x, t) =
1√
4πDt

∞∑
k=−∞

e−
(x+4kL)2

4Dt − e−
(x+(4k−2)L)2

4Dt , (7)

where x ∈ [−L,L] and t > 0. The rate at which the
normalized concentration of absorbed particles changes is
equal in magnitude but opposite in sign to the rate of reduction
in the normalized concentration of free particles. The reduction
rate can be obtained by taking the spatial derivative of (7) at
x = L (we are interested in the absorption rate at the boundary
located in x = L) multiplied by D according to

f(L, t) = −∂t

∫
C(x, t)dx = −D∂xC(x, t)|x=L , (8)

which is based on (1). Hence, we write the rate of absorption
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at the boundary x = L as

n1(t) =
NT

2
√
4πDt3

∞∑
k=−∞

− (4k − 1)Le−
((4k−1)L)2

4Dt

+ (4k + 1)Le−
((4k+1)L)2

4Dt .

(9)

After obtaining the result with the interpretation of mirror
images, we would like to discuss and introduce another inter-
pretation to obtain the absorption rate of the boundary in the
same physical environment. Instead of considering the image
reflection of the main source, the other way of looking at the
problem is to replace the absorbing boundary with sources that
release negative particles. Hence, one can describe the model
in terms of a coupled system of equations as{

n1 (t) = NTf(L, t)− n2 (t) ⋆ f(2L, t)

n2 (t) = NTf(L, t)− n1 (t) ⋆ f(2L, t)
, (10)

where ⋆ is the convolution operation. Each equation in (10)
describes the rate of absorbed particles at the specific bound-
ary. The rate of absorption at boundary x = L and x = −L
is indicated by n1(t) and n2(t), respectively. The rate of
absorbed particles at x = L can be seen as the contribution of
the real (positive) source at distance L from the absorber and
the fictitious (negative) source to capture the effect of the other
absorber at x = −L. The contribution of the positive source
is the impulse response of the absorption rate as if there were
not the second absorber around. Due to the absorption feature
of the left side boundary that is equivalent to reducing the
particles from the environment from the perspective of the
right side receiver, a fictitious source is assumed that releases
negative particles. The release rate of negative particles by
the fictitious source is exactly equal to the rate of absorbed
particles by the absorber. It is important to note that the system
of equations in (10) is consistent with [18, Eq. (29)], which
explains a similar system in its integral form that was derived
using a probabilistic approach. In Appendix B, we show that
the solution of (10) is equal to (9).

After ensuring that our system of equations allows us
to capture the interaction between the absorbers in 1D, we
would like to step further for complex boundaries in higher
dimensions.

III. 3D SPACE WITH SPHERICAL ABSORBING
BOUNDARIES

In reality, objects have a finite volume that does not dis-
sect the space, and the 3D geometry of the space must be
considered. We desire to find an approach that allows us to
obtain the rate of absorbed particles and, consequently, the
expected CNAP associated with the absorbers when multiple
objects with absorbing surfaces are present in the environment.
These objects can be recalled as receivers from the communi-
cation perspective. Let us assume a 3D space with spherical
absorbers. This geometry is consistent with real bacteria
with coccus cell morphology (e.g. Staphylococcus species,
Streptococcus species, etc.), i.e., round-shaped bacteria whose
diameter vary in the range [0.25, 1] µm [29].

In this case, we cannot rely on the image method to
create multiple mirror images of the source with respect to
the absorber, because the absorbing boundary condition no
longer dissects the space. Intuitively, the dissection of the
space by the boundary allowed us to have mirror images of
the source, but in the case of finite volume objects, devising
the image of the source with respect to the boundary is
complicated and unimaginable. However, by following the
proposed method (10), we can substitute the receivers with
fictitious negative sources of particles and solve the system
of equations. According to [30], the rate of absorbed particles
by the spherical absorber for t > 0 when there is no other
absorber in the space reads

f
(
d(C,T ), t

)
=

R
(
d(C,T ) −R

)
d(C,T )

√
4πDt3

e−
(d(C,T )−R)

2

4Dt , (11)

where d(C,T ) is the distance between the center of the spher-
ical absorber C and the source/transmitter T . The radius of
the receiver is denoted as R.

In the case of 1D space, we simply replace the absorber
with the negative source. This substitution is consistent with
the definition of the barycenter. The barycenter is defined as
the spatial mean of the particles that hit the surface of the
absorber. Obviously, in 1D space the mean of the position
of the particles that hit a certain absorber is exactly where
the absorber is located. Unlike the 1D space, in 3D with
finite volume boundaries, replacing the volumetric objects
(receivers) with negative sources is challenging.

In [25], the concept of the barycenter was investigated to
solve the system of equations and obtain the expected CNAP
by the spherical receivers. We showed that to obtain the
expected CNAP for a fixed time t = 2 s, the best position
to place the fictitious negative source is the barycenter of the
absorber. The difficulty in solving the system of equations in
3D space with finite volume receivers is that the barycenter
of the receivers varies with time because the distribution of
the particles that are hitting the surface of the receivers varies
with time [27].

Even though the position of the barycenter is expected to
vary with time, we separate the dynamic in the variation of
the position of the barycenter and the expected number of
absorbed particles. To model the barycenter exclusively, one
can rely on the proposed expressions in [25], [27] or implicitly
compute the distribution of the absorbed particles over the
surface of the boundary and compute the mean according
to the barycenter’s definition. Demonstrations regarding the
barycenter dynamic can be found in the aforementioned refer-
ences. Note that the barycenter is the best position to place the
negative source to obtain the expected CNAP. Hence, while
applying the Laplace transform to the system of equations
to solve it, we treat the position of the barycenter as an
unknown parameter independent of time. We separately focus
on where to put the barycenter and model it. In Sec. V,
we demonstrate that if we compute the barycenter at every
time instant from the PBS data, which is the ground truth
of the position of the barycenter, and substitute it in the
integral form of the system of equations or its closed-form
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solution, the result accurately describes the expected CNAP
by the receivers. Hence, solving the system of equations
and modeling the position of the barycenter as two separate
problems is a reliable solution. Decoupling the two problems
of solving the system of equations and of placing the position
of the barycenter is another advantage that the fictitious source
method provides us.

We start writing the system of equations to express the
rate of absorbed particles by the receivers with the final goal
of computing the CNAP. In the integral form, the system of
equations is{
N1 (t) =

∫
NTf

(
d(C1,T ), t

)
− n2 (t) ⋆ f

(
d(C1,B2), t

)
dt

N2 (t) =
∫
NTf

(
d(C2,T ), t

)
− n1 (t) ⋆ f

(
d(C2,B1), t

)
dt

,

(12)
where B1 and B2 are referring to the barycenter points of the
receivers R1 and R2, d(C1,B2) is the distance between the cen-
ter of spherical receiver R1 and barycenter B2, and d(C2,B1)

is the distance between the center of spherical receiver R2

and barycenter B1. However, we take the derivative (12) and
write it in terms of interaction between the rate of absorption
by the receivers. In (12), N1 (t) and N2 (t) are the expected
CNPAs corresponding to the two receivers.

The first receiver sees the other one as a negative point
source located at its barycenter. The absorption effect of the
receivers from one another perspective is seen as a reduction
of the particles from space. This feature is replaced with a
negative source such that its rate of releasing negative particles
is equal to the rate of absorbing particles. Finally, we take
the derivative of (12) with respect to time and neglect the
dependency of the barycenter on time for the moment. The
reason behind this assumption has roots in the time scale
separation of the two variables (i.e., rate of the absorption and
the barycenter). According to the definition of the barycenter,
it is the temporal integration of the distribution of the particles
that are being absorbed by the boundary from time zero, while
the rate of the absorption considers the rate of particles being
absorbed for the moment. Hence, these two concepts are not
from the same temporal scale. For this reason, we assume
that the Barycenter position can be seen as time-invariant
within short time intervals with respect to the variation of
the absorption rate. However, this should not imply that the
barycenter is time-invariant in general because, as we showed
in [27] it depends on the particles’ distribution through time.
Accordingly, this strong assumption allows us to decouple the
problem of locating the barycenter from the problem receivers’
interaction with each other to some extent. The expected rate
of the absorbed particles by the spherical receivers is described
by{

n1 (t) = NTf
(
d(C1,T ), t

)
− n2 (t) ⋆ f

(
d(C1,B2), t

)
n2 (t) = NTf

(
d(C2,T ), t

)
− n1 (t) ⋆ f

(
d(C2,B1), t

) ,

(13)
The solution of (13) is (14) (see Appendix C).

In general, we are interested in the CNAP. This concept
is equivalent to taking the integral of the rate of absorbed
particles in the time domain starting from the time zero. The
integral operation is equivalent to divide the rate by s in the

Laplace domain.

N1(s) =
n1(s)

s
. (15)

The CNAP by the spherical absorber is (16). The intro-
duced approach can be extended to multiple receivers in the
environment by expanding the superposition principle and
the coupling effect of the boundaries on each other (please
check [27] for the generalization of the model); however,
the closed-form solution to the system of equations is not
obtained, and we rely on numerical integration.

In the case of convex-shaped receivers, the barycenter is
always inside the volume of the receiver based on its definition.
Hence, it is possible to investigate and apply the assumptions
to neglect the computation of the barycenter as hypothesized
in [27] and [31]. The method of fictitious sources allows us,
instead of looking at the whole space to place the mirror
images of the source with respect to the boundaries, to deal
with a finite space inside the volume of the absorber to
place the negative source. This feature allows us to find
the asymptotic position of the negative source subject to the
geometry of the receivers and the topology of the channel.

IV. 1D SPACE WITH ABSORBING AND ZERO-FLUX
BOUNDARIES

In general, different boundaries can exist in the biological
channel where some can be interpreted as the receiver or their
presence affects the intended receiver’s observation. The most
commonly studied one is the transparent receiver, which is
called the perfect monitoring receiver in biophysics [32]. In
transparent receivers, the boundary does not interact with the
particles; hence, it is just a volumetric integration in time over
the concentration of particles in space. An interesting problem
that requires more attention in MC studies, to the best of
our knowledge, is when some objects in the environment are
not the receptors of the particles. This assumption is another
step to allow researchers to investigate complex and crowded
environments. The absorption feature of the receivers actually
comes from the assumption that the reaction rate between
the receiver’s surface and the particles goes to infinite. So,
the preliminary assumption is that the receiver is capable of
having the desired reaction with particles, but this assumption
does not always hold in reality. There are surfaces that do
not react with the particles. A common assumption to model
the behavior of the particles at this type of boundary is the
zero-flux characterization. The zero-flux boundary indicates
that the variation of the concentration with respect to time is
zero where the boundary is located. Hence, the particles cannot
pass the barrier or be absorbed. The zero-flux boundary can
be described as

BC: ∂xC(x, t)|x=−L = 0 , t > 0. (17)

Let the absorbing boundary be located at x = L and the
zero-flux boundary be at x = −L.

From the method of images, in order to satisfy the effect of
the zero-flux boundary at x = −L we place a positive source
at x = −2L to create the particles accumulation effect at the
boundary x = −L. Subsequently, we place a negative source
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n1(t) = NT

∞∑
i=0

(Ri+1
1 Ri

2

(
(d(C1,T ) −R1) + (d(C2,B1) −R2)i+ (d(C1,B2) −R1)i

)
d(C1,T )d

i
(C2,B1)

di(C1,B2)

√
4πDt3

× e−

(
(d(C1,T )−R1)+(d(C2,B1)−R2)i+(d(C1,B2)−R1)i

)2
4Dt

−
Ri+1

1 Ri+1
2

(
(d(C2,T ) −R2) + (d(C2,B1) −R2)i+ (d(C1,B2) −R1)(i+ 1)

)
d(C2,T )d

i
(C2,B1)

di+1
(C1,B2)

√
4πDt3

× e−

(
(d(C2,T )−R2)+(d(C2,B1)−R2)i+(d(C1,B2)−R1)(i+1)

)2
4Dt

)
.

(14)

N1(t) = NT

∞∑
i=0

(
Ri+1

1 Ri
2

d(C1,T )d
i
(C2,B1)

di(C1,B2)

erfc

(
(d(C1,T ) −R1) + (d(C2,B1) −R2)i+ (d(C1,B2) −R1)i√

4Dt

)

− Ri+1
1 Ri+1

2

d(C2,T )d
i
(C2,B1)

di+1
(C1,B2)

erfc

(
(d(C2,T ) −R2) + (d(C2,B1) −R2)i+ (d(C1,B2) −R1)(i+ 1)

√
4Dt

))
.

(16)

==

== =

=

= =

=

Fig. 3. Image method representation of the solution to diffusion equation with
an absorber (vertical dashed black line) at x = L and a zero-flux boundary
(vertical solid black line) at x = −L in 1D space.

at x = 4L to neutralize the contribution of the aforementioned
imaginary positive source at the absorbing boundary in x =
L. Then, to describe the effect of the absorber, we place a
negative source at x = 2L, and to capture the effect of this
negative source at the zero-flux boundary, we need to add a
negative source at x = −4L. Then, to neutralize the effect
of the negative source at the absorbing boundary, we place a
positive source at x = 6L and so on (see Fig. 3). In the end,
we can describe the normalized concentration of the particles
in terms of an infinite series as

C(x, t) =
1√
4πDt

∞∑
k=−∞

e−
(x−8kL)2

4Dt + e−
(x−(8k−2)L)2

4Dt

− e−
(x−(8k+4)L)2

4Dt − e−
(x−(8k+2)L)2

4Dt .

(18)

According to the definition and discussion from (8), we obtain

the rate of absorbed particles by the absorbing boundary as

f(L, t) = −D∂xC(x, t)|x=L

=
1

2
√
4πDt3

∞∑
k=−∞

−(8k − 1)Le−
((8k−1)L)2

4Dt

− (8k − 3)Le−
((8k−3)L)2

4Dt + (8k + 3)Le−
((8k+3)L)2

4Dt

+ (8k + 1)Le−
((8k+1)L)2

4Dt .
(19)

This problem can also be formulated from the coupled
system of equations approach by replacing the boundaries with
fictitious sources. Actually, the zero-flux boundary can be seen
as a positive source from the perspective of the absorber at
the distance 2L from it, because the zero-flux boundary is
performed like a solid wall that a particle cannot cross and
remains in the free space i.e. x ∈ [−L,L]. This behavior is
equivalent to assuming that a particle has passed the zero-flux
boundary, and the fictitious source generates a new particle.
On the other hand, the absorber can be seen as a negative
source from the perspective of the zero-flux boundary due to
its feature in reducing the particles from space.

First, from the perspective of the absorber, there is a source
at the center of the coordinate system at distance L from it.
Then, the zero-flux boundary effect is described as a source
that releases positive particles with a time-varying rate. A
similar intuition holds to describe the rate of particles passing
the absorbing boundary. In this case, the system of equations
requires a slight change compared to (10) as{

n1 (t) = NTf(L, t) + n2 (t) ⋆ f(2L, t)

n2 (t) = NTf(L, t)− n1 (t) ⋆ f(2L, t)
, (20)

The solution of (20) is (19) (see Appendix D).
We showed that the new approach allows us to simply obtain
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the expected rate of the absorbed particles and, consequently,
the expected CNAP by the receiver in 1D space. Consideration
of the zero-flux boundary is another part of investigating
diffusive channels, as not all the boundaries are receptors of
the particles. Similar to the previous example, the boundaries
here are dissecting the space, and the positions of the fictitious
sources are fixed. However, we found that in 3D space with fi-
nite volume objects featuring zero-flux properties, the concept
of barycenter does not results in an accurate solution. Hence,
a new concept is required to be defined for future works to
allow us to investigate complex environments containing finite
volume objects with both absorbing and zero-flux surfaces.

V. SIMULATION AND RESULTS

In this section, we verify the concept of barycenter and the
accuracy of the proposed approach for obtaining the CNAP
by the spherical receivers over time when the barycenter is
known.

For the simulation scenario, we consider the most complex
receiver topology compared to those found in the existing
literature on channel modeling with multiple FA spherical
receivers. This is done to demonstrate the validity of the
barycenter concept and the effectiveness of our proposed
approach. The propagation medium has a diffusion coefficient
D of 79.4 µm2/s, which is equivalent to a water-based
diffusive environment in the human body [33]. Note that
D affects the propagation speed of the particles. Hence,
the particles’ distribution on the boundary’s surface rapidly
converges to a steady state, which implies that the barycenter
reaches a fixed value according to its definition. The ground
truth of our theoretical evaluation was obtained from the PBS
data. The simulation step time is 10−7 s. Every simulation
scenario is repeated for 100 times, and then we take the
average of the CNAP by each receiver. To verify our system
model, we compute the barycenter of each receiver according
to its definition from the PBS data, and then substitute it
in the extended version of (12). Due to the simplicity of
extending (12) to more than two receivers and in order to
save space, we skip writing the extended form, although it is
straightforward from intuition. It is important to note that no
closed-form solution has been devised yet for the extended
version of (12). However, it can be solved simply by using a
numerical integration method.

Figure 4 depicts the first simulation scenario we considered
in this paper. The source is located at the center of the 3D co-
ordinate system. Receiver R1 is at (3×10−6, 0, 0) with radius
1 µm. Receiver R2 is at (7 × 10−6, 0, 0) with radius 2 µm.
Receiver R3 is at (0, 3×10−6, 0) with radius 2 µm. Receiver
R4 is at (0, 0,−5×10−6) with radius 3 µm. Receiver R5 is at
(0, 7×10−6, 0) with radius 1 µm. We deliberately considered
a case where receivers are in the shadowing area of the other
receivers. Moreover, in one case, we put the smaller receiver in
the shadow area, while in the other case, we located the bigger
receiver in the shadow area. Furthermore, we also located a
big receiver close to the source and other receivers. Despite
previous works, we considered the case where receivers are
very close to the source to verify the concept’s validity. Note

Fig. 4. Topology of the simulation scenario.
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Fig. 5. Cumulative number of the absorbed particles by the receivers
according to the simulation scenario shown in Fig. 4.

that since the receivers are very close to the source, the CNAP
corresponding to each receiver reaches its asymptotic value in
a short time. In order to better demonstrate the accuracy of
the model, we consider a simulation time of 0.6 s.

Figure 5 shows the expected CNAP by the receivers. The
solid lines represent the results obtained from the PBS. The
color of the curves is chosen to be the same as the spheres
in Fig. 4. The circular markers correspond to the results
obtained by solving the system of equations and substituting
the barycenter computed from the PBS data. We can see
that there is an excellent match between the results in such
a complex scenario. This numerical experiment validates the
idea of the barycenter to express the position of the negative
source. Note that without the concept of the fictitious negative
source, we could not have reached this stage to model the
receivers’ observations. At this stage, researchers can focus
on modeling the barycenter or find scenarios where they
can approximate its position. By relying on the method of
images, one could not have reached this stage to attack the
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Fig. 6. Topology of the simulation scenario that is possible to skip the
barycenter computation.

problem of multiple objects in 3D space. Moreover, to show
the importance of the role of the barycenter in modeling, we
substitute the barycenter with the center of the receivers to
show the difference (see dotted lines with squared markers).
We observe that by misplacing the negative sources in the
center of the receivers, the receivers’ observation becomes
negative, which does not have any physical interpretation. In
the realm of fictitious sources, this negative observation can
be interpreted as the negative particles absorbed by the fifth
receiver being more than the positive particles.

In order to demonstrate the possibility of skipping the
computation of the barycenter, we designed the simulation
scenario where the five receivers with the same radius of 1 µm
are distributed in space such that their minimum distance from
one another and the source is 4 µm (see Fig. 6). Receivers
R1 to R5 are located at (−1×10−6,−1×10−6,−4×10−6),
(−3×10−6, 4×10−6, 2×10−6), (4×10−6, 2×10−6, 4×10−6),
(4 × 10−6, 0,−1 × 10−6), and (−4 × 10−6, 0,−1 × 10−6),
respectively. Despite the scenario depicted in Fig. 4 in Fig. 6,
the receivers are relatively farther away from the source, hence
we consider a simulation time of 3 s to allow the CNAP to
get close to the asymptotic value.

Figure 7 reports the CNAP by the receivers according to the
simulation scenario shown in Fig. 6. The solid lines correspond
to the CNAP obtained from the PBS. The dotted lines with
squared markers correspond to the solution of the system of
equations if we neglect the role of the barycenter and simply
replace it with the center of the receivers. We can observe
that in this scenario, disregarding the barycenter is a valid
approximation because the receivers are not extremely close
to one another or to the source.

VI. CONCLUSIONS

This paper introduces and discusses a new approach to
solve the diffusion equation with absorbing and zero-flux
boundary conditions. Inspired by the method of images to
solve the diffusion equation, instead of considering multiple
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Fig. 7. Cumulative number of the absorbed particles by the receivers
according to the simulation scenario shown in Fig. 6.

mirror images of the source with respect to boundaries, we
replace the boundaries with fictitious sources featuring a time-
varying release rate.

We showed that in 1D space, the proposed approach results
in the same expression as we can obtain from the method of
images when two absorbers are present in the channel. Then,
we discussed a similar problem in 3D geometry while the ab-
sorbers do not dissect the space and they have a finite volume.
In this case, the position of the corresponding fictitious source
varies with time because the spatial mean of the particles
hitting the surface of the absorbers is time-varying. However,
at this point, the advantage of the proposed approach comes
in handy. In the method of images, we consider reflections
of the source with respect to the boundaries, and due to the
interaction between the boundaries, this results in considering
infinite mirror images of the source, but in the proposed
approach, we replace the boundaries with a single fictitious
source. Hence, in an environment with a finite number of
absorbers, we have a finite number of fictitious sources.

In computing the expected CNAP, the best place to locate
the fictitious source is the barycenter, which is always inside
the volume of the absorber with convex geometry. Knowing
that the position of the source is inside the volume of the
absorber allows us to investigate scenarios where we can
approximate the position as the center of the spherical object,
especially when we are interested in the CNAP after a long
time passes from the release moment.

Lastly, we discussed a scenario that includes a zero-flux
boundary and an absorbing boundary. We demonstrated that
for 1D problems, the proposed interpretation results in the
exact same solution that can be obtained from the method of
images. However, extension of the fictitious source method to
3D space has not been solved yet, because the position of the
fictitious positive source that is supposed to be replaced with
the zero-flux boundary is unknown and worth investigating in
the future. In general, we believe that this new approach allows
researchers to obtain the expected CNAP in a physical channel
where the particles’ movement is governed by the parabolic
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PDE (diffusion equation) and multiple objects are present
in the channel. Furthermore, it is worth investigating the
applicability of the proposed approach in solving hyperbolic
PDEs (wave equation).

APPENDIX A
The fraction of the particles in free space by the time t

with respect to the total particles released by the source
instantaneously is the spatial integral of the concentration over
the free space domain

F (t) =

∫ ∞

0

1√
4πDt

(
e

−(x−L)2

4Dt − e
−(x+L)2

4Dt

)
dx . (21)

Let us change the variable

y =
x√
4Dt

, (22)

then

F (t) =
1√
π

∫ ∞

0

e−(y−yL)2 dy − 1√
π

∫ ∞

0

e−(y+yL)2 dy

=
1√
π

∫ ∞

−yL

e−y2

dy − 1√
π

∫ ∞

yL

e−y2

dy

=
1√
π

∫ yL

−yL

e−y2

dy

=
2√
π

∫ yL

0

e−y2

dy

= erf

(
L√
4Dt

)
.

(23)

where yL = L√
4Dt

. We can also write the fraction of the
absorbed particles with respect to the total number of released
particles as 1− F (t), which is erfc

(
L√
4Dt

)
.

APPENDIX B
Let us take the Laplace transform of (10) to get rid of

the convolution operation and convert it into multiplication.
Hence, we can write (10) in Laplace domain as{

n1 (s) = NTf(L, s)− n2 (s) f(2L, s)

n2 (s) = NTf(L, s)− n1 (s) f(2L, s)
. (24)

The solution of this system of equations for n1(s) is

n1(s) =
NTf(L, s)

1 + f(2L, s)
. (25)

We substitute 1
1+f(2L,s) with its power expansion series

n1(s) = NTf(L, s)

∞∑
j=0

(
− f(2L, s)

)j
. (26)

The Laplace transform of f(L, t) is

f(L, s) = e
−L

√
s√

D . (27)

Thus n1(s) is

n1(s) = NT

∞∑
j=0

(−1)je
− (2j+1)L

√
s√

D . (28)

The inverse Laplace transform of n1(s) is

n1(t) = NT

∞∑
j=0

(−1)j
(2j + 1)L√

4Dπt3
e−

((2j+1)L)2

4Dt . (29)

Let us decompose the series in terms of even and odd
increments of the summation.

n1(t) =NT

∞∑
k=1

(4k + 1)L√
4Dπt3

e−
((4k+1)L)2

4Dt

+NT

∞∑
k=1

−(4k − 1)L√
4Dπt3

e−
((4k−1)L)2

4Dt

+
NTL√
4Dπt3

e−
L2

4Dt .

(30)

We multiply and divide (30) by 2

n1(t) =
NT

2

( ∞∑
k=1

(4k + 1)L√
4Dπt3

e−
((4k+1)L)2

4Dt

+

∞∑
k=1

−(4k − 1)L√
4Dπt3

e−
((4k−1)L)2

4Dt

+

∞∑
k=1

(4k + 1)L√
4Dπt3

e−
((4k+1)L)2

4Dt

+

∞∑
k=1

−(4k − 1)L√
4Dπt3

e−
((4k−1)L)2

4Dt

+
L√

4Dπt3
e−

L2

4Dt +
L√

4Dπt3
e−

L2

4Dt

)
.

(31)

We change the sign of the increment in two summation series

n1(t) =
NT

2

( ∞∑
k=1

(4k + 1)L√
4Dπt3

e−
((4k+1)L)2

4Dt

+

∞∑
k=1

−(4k − 1)L√
4Dπt3

e−
((4k−1)L)2

4Dt

−1∑
k=−∞

−(4k − 1)L√
4Dπt3

e−
((4k−1)L)2

4Dt

+

−1∑
k=−∞

(4k + 1)L√
4Dπt3

e−
((4k+1)L)2

4Dt

+
L√

4Dπt3
e−

L2

4Dt +
L√

4Dπt3
e−

L2

4Dt

)
.

(32)

Combining the summations, we obtain

n1(t) =
NT

2

( ∞∑
k=−∞

(4k + 1)L√
4Dπt3

e−
((4k+1)L)2

4Dt

− (4k − 1)L√
4Dπt3

e−
((4k−1)L)2

4Dt

)
.

(33)

In the end, (9) and (33) are exactly the same.
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APPENDIX C

Applying Laplace transform to (13){
n1 (s) = NTf

(
d(C1,T ), s

)
− n2 (s) f

(
d(C1,B2), s

)
n2 (s) = NTf

(
d(C2,T ), s

)
− n1 (s) f

(
d(C2,B1), s

) .

(34)
The solution of the system of equations (34) is

n1(s) = NT

f
(
d(C1,T ), s

)
− f

(
d(C2,T ), s

)
f
(
d(C1,B2), s

)
1− f

(
d(C2,B1), s

)
f
(
d(C1,B2), s

) .

(35)
In a similar way as before, we write the power expansion series
equivalent to the inverse of the denominator in fraction (35)

n1(s) =

(
f
(
d(C1,T ), s

)
− f

(
d(C2,T ), s

)
f
(
d(C1,B2), s

))
NT

∞∑
i=0

(
f
(
d(C2,B1), s

)
f
(
d(C1,B2), s

) )i
,

=

∞∑
i=0

(
f
(
d(C1,T ), s

)
f
(
d(C2,B1), s

)i
f
(
d(C1,B2), s

)i
− f

(
d(C2,T ), s

)
f
(
d(C2,B1), s

)i
f
(
d(C1,B2), s

)i+1

)
NT

(36)

The Laplace transform of (11) is

f
(
d(C,T ), s

)
=

R

d(C,T )
e
−

d(C,T )−R
√

D

√
s
. (37)

Substituting (37) results in

n1(s) = NT

∞∑
i=0

(
R1

d(C1,T )
e
−

d(C1,T )−R1
√

D

√
s

Ri
2

di(C2,B1)

e
−

d(C2,B1)−R2
√

D
i
√
s Ri

1

di(C1,B2)

e
−

d(C1,B2)−R1
√

D
i
√
s

− R2

d(C2,T )
e
−

d(C2,T )−R2
√

D

√
s Ri

2

di(C2,B1)

e
−

d(C2,B1)−R2
√

D
i
√
s

Ri+1
1

di+1
(C1,B2)

e
−

d(C1,B2)−R1
√

D
(i+1)

√
s

)
.

= NT

∞∑
i=0

(
Ri+1

1 Ri
2

d(C1,T )d
i
(C2,B1)

di(C1,B2)

e
−

(d(C1,T )−R1)+(d(C2,B1)−R2)i+(d(C1,B2)−R1)i
√

D

√
s

− Ri+1
1 Ri+1

2

d(C2,T )d
i
(C2,B1)

di+1
(C1,B2)

e
−

(d(C2,T )−R2)+(d(C2,B1)−R2)i+(d(C1,B2)−R1)(i+1)
√

D

√
s

)
.

(38)

The time domain solution of the rate of absorbed particles by
the receiver one is (14).

APPENDIX D

We follow the same procedure as of Appendix B. We apply
the Laplace transform to (20){

n1 (s) = NTf(L, s) + n2 (s) f(2L, s)

n2 (s) = NTf(L, s)− n1 (s) f(2L, s)
. (39)

The solution of this system of equations for n1(s) is

n1(s) = NT
f(L, s) + f(L, s)f(2L, s)

1 + f2(2L, s)
. (40)

Substituting 1
1+f2(2L,s) by its equivalent power expansion

series

n1(s) = NT

(
f(L, s) + f(L, s)f(2L, s)

) ∞∑
j=0

(
− f2(2L, s)

)j
.

(41)

n1(s) = NT

∞∑
j=0

(−1)j
(
f(L, s)f2j(2L, s)

+ f(L, s)f2j+1(2L, s)
)
.

(42)

We use the Laplace transform (27)

n1(s) = NT

∞∑
j=0

(−1)j
(
e
− (4j+1)L

√
s√

D + e
− (4j+3)L

√
s√

D

)
. (43)

n1(t) =
NT√
4πDt3

∞∑
j=0

(−1)j
(
(4j + 1)Le−

((4j+1)L)2

4Dt

+ (4j + 3)Le−
((4j+3)L)2

4Dt

)
.

(44)

n1(t) =
NT√
4πDt3

(
+

∞∑
j=1

(8j + 1)Le−
((8j+1)L)2

4Dt

+

∞∑
j=1

(8j + 3)Le−
((8j+3)L)2

4Dt

−
∞∑
j=1

(8j − 3)Le−
((8j−3)L)2

4Dt

−
∞∑
j=1

(8j − 1)Le−
((8j−1)L)2

4Dt

+ Le−
(L)2

4Dt + 3Le−
((3L)2

4Dt

)
.

(45)
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n1(t) =
NT

2
√
4πDt3

(
Le−

(L)2

4Dt + 3Le−
((3L)2

4Dt

+

∞∑
j=1

(8j + 1)Le−
((8j+1)L)2

4Dt + (8j + 3)Le−
((8j+3)L)2

4Dt

+

∞∑
j=1

(8j + 1)Le−
((8j+1)L)2

4Dt + (8j + 3)Le−
((8j+3)L)2

4Dt

−
∞∑
j=1

(8j − 3)Le−
((8j−3)L)2

4Dt + (8j − 1)Le−
((8j−1)L)2

4Dt

−
∞∑
j=1

(8j − 3)Le−
((8j−3)L)2

4Dt + (8j − 1)Le−
((8j−1)L)2

4Dt

+ Le−
(L)2

4Dt + 3Le−
((3L)2

4Dt

)
. (46)

n1(t) =
NT

2
√
4πDt3

(
Le−

(L)2

4Dt + 3Le−
((3L)2

4Dt

−
−1∑

j=−∞
(8j − 1)Le−

((8j−1)L)2

4Dt + (8j − 3)Le−
((8j−3)L)2

4Dt

+

∞∑
j=1

(8j + 1)Le−
((8j+1)L)2

4Dt + (8j + 3)Le−
((8j+3)L)2

4Dt

−
∞∑
j=1

(8j − 3)Le−
((8j−3)L)2

4Dt + (8j − 1)Le−
((8j−1)L)2

4Dt

+

−1∑
j=−∞

(8j + 3)Le−
((8j+3)L)2

4Dt + (8j + 1)Le−
((8j+1)L)2

4Dt

+ Le−
(L)2

4Dt + 3Le−
((3L)2

4Dt

)
.

(47)

n1(t) =
NT

2
√
4πDt3

( ∞∑
j=−∞

(8j + 1)Le−
((8j+1)L)2

4Dt

+

∞∑
j=−∞

(8j + 3)Le−
((8j+3)L)2

4Dt

−
∞∑

j=−∞
(8j − 3)Le−

((8j−3)L)2

4Dt

−
∞∑

j=−∞
(8j − 1)Le−

((8j−1)L)2

4Dt

)
.

(48)

As we can see, the solution equals to (19).
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