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Abstract. Mixed Precision techniques have been successfully applied
to improve the performance and energy efficiency of computation in em-
bedded and high performance systems. However, few solutions have been
proposed that address precision tuning of both GPGPU code and its cor-
responding CPU code, limiting the gains achievable by mixed precision.
‘We propose an extension to the TAFFO precision tuning toolset that en-
ables Mixed Precision across the space of floating and fixed point data
types on GPGPUs, leveraging static analysis and providing seamless in-
terface adaptation between host and GPGPU kernel code. The proposed
tool achieves speedups exceeding 2Xx by exploiting the optimization of
both kernel and host code.
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1 Introduction

General-Purpose Graphics Processing Units (GPGPUs) are nowadays the most
popular class of accelerators for a variety of computationally intensive tasks
in both High Performance Computing (HPC) and high-end embedded systems.
There has been a steady increase in the GPGPU hardware support for low-
precision data types, with modern GPGPUs offering “short float” formats such
as BF16 (bfloat16) and half-precision (binary16), which can be used to achieve
greater speedups in error-tolerant kernels, through the Mixed Precision comput-
ing approach. Mixed Precision is a branch of a more general class of techniques,
known as Approximate Computing, which aim at trading off computation ac-
curacy for other quality metrics, including performance and energy. Recent sur-
veys [4,9] show that a significant number of tools have been developed to auto-
matically analyze and transform codebases to exploit Approximate Computing.

However, such tools need help to cross the host/GPGPU barrier, as many of
them cannot analyze GPGPU code directly due to restrictions of the input source
code. Some specialized only in tuning GPGPU code [8]. This is particularly
true for tools that automatically detect the region of code to be affected by
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the precision tuning transformation, as the analysis of such a program requires
the tool to understand the implementation details of the heterogeneity-aware
programming paradigm (CUDA, OpenCL).

Our contribution In this work, we address the research question of what is the
most effective way to obtain a mixed precision application in an heterogeneity-
aware context, either automatically or semi-automatically. More specifically, we:
1. prove that compiler-based automatic and semi-automatic approaches to pre-
cision tuning can be applied in multi-source file applications;
2. analyse the benefits of applying precision tuning to the accelerator code with
respect to the joint combination of host code and accelerator code;
3. discuss the impact of precision tuning on the data transfer overhead and on
the data processing costs;
4. provide a proof of concept implementation of semi-automatic multi-source
precision tuning framework for accelerator-aware programming paradigms;
5. assess our solution on two different accelerator-aware programming paradigms,
using two different runtime environments.
To this end we introduce a new methodology based on TAFFO, called Delayed
Analysis (DA). This new methodology allows TAFFO to perform precision tuning
in a heterogeneous context where GPGPUs are involved. The choice of TAFFO,
in contrast with existing tools, allows both the GPGPU and host code to be
converted to exploit mixed precision, easing the programmer’s workload. Using
TAFFO and the Polybench/ACC [7] benchmark suite, we evaluate the time-to-
solution and error figures of mixed-precision applications, comparing optimiza-
tion of the entire program and optimization of the kernel alone. By optimizing
the entire program we achieve speedups exceeding 2x, with a minimal impact
on the error for most benchmarks, while optimizing the kernel alone limits the
speedup to at most 1.19x.

2 Methodology for GPGPU Precision Tuning

Our solution for precision tuning with GPGPUs exploits the well-established
TAFFO framework [3,6]. The five pipeline stages of the TAFFO architecture are
called Initializer (INIT), Value Range Analysis (VRA) Data Type Allocation (DTA),
Conversion (CONV), and Feedback Estimator (FE). The INIT pass of TAFFO reads
annotations and generates the internal metadata structure required by the other
passes. VRA conservatively derives from the metadata the numerical intervals
of each variable in the program. DTA then determines which reduced-precision
data type to use. The DTA pass comes in two operation modes: a peephole-
based algorithm in which each variable is assigned a fixed-point data type with
the highest valid point position; and an ILP-based technique [I]. cONV modi-
fies the LLVM-IR accordingly with the data type chosen by the previous passes,
optionally replacing trigonometric function calls with higher-efficiency custom
implementations [2]. FE statically analyses the error using state-of-the-art esti-
mation methods [5]. The design of TAFFO makes it independent from the source
language as well as easy to expand.
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Fig. 1: Ilustration of the different use cases for Delayed Analysis in TAFFO. The
vertical arrows illustrate the order in which host or kernel code is tuned, while
horizontal arrows illustrate the dependency relationship between the code being
tuned and the auxiliary file used by DA.

To achieve the precision tuning of both host code and kernel code, the pre-
cision tuning tool must have some visibility of both TUs at the same time, in
order for analyses on one piece of code to be able to influence the analyses on
the other. Therefore, to share information between different runs of TAFFO, we
introduce the Delayed Analysis methodology or DA in brief. By exploiting DA,
TAFFO is able to match scalar variables or buffers present in one compilation
unit with other variables or buffers present in another compilation unit. If the
relationships between compilation units is known, the match can be performed
automatically. This is the case for extern symbols in host programs consisting
of multiple source code files. When it is not possible to assess in a conservative
way if a compilation unit is related to another one, the programmer can register
a given variable or buffer for DA manually by exploiting a new kind of anno-
tation, called buffer ID annotation. The buffer ID is a string value associated
with a given variable or array. The data type allocation and range information
of variables or arrays with the same buffer ID is kept synchronized by TAFFO,
even if the variables are part of different compilation units.

When using DA, at every full compilation TAFFO collects the currently known
value range and data type information for all variables having a buffer ID, and
stores it into an auxiliary file which is then read and updated by subsequent
passes of TAFFO. Depending on the way in which TAFFO is invoked on each TU,
the DA methodology can operate either in three ways: open loop mode, closed
loop mode, or user controlled mode. In open loop mode, the final ranges for
every buffer subject to DA are already known, therefore the only analysis being
suspended is the data type allocation. Since the data type allocation depends
primarily on the ranges [1], the first execution of TAFFO decides the data types
for all variables, while the subsequent executions read the correct types from the
auxiliary files. In closed loop mode, the value ranges of the buffer ID variables are
not known a-priori. Therefore TAFFO computes the final ranges of all variables
only after two executions: the first one on the host code, the second one on the
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kernel code. In the second run, the final ranges are known and the data type
allocation is computed and applied to the kernels. One last execution of TAFFO
closes the loop and applies the data type allocation to the host code as well.
Finally, in user controlled mode the user establishes a-priori the data type to use
for all shared variables between host code and kernel code by writing the DA
auxiliary YAML file by hand. Therefore the role of TAFFO— with respect to the
shared variables — is simply to apply the data type choice selected by the user.
These three modes are illustrated in Figure 1. Other modifications were required
to allow TAFFO to detect which buffers are used to send or retrieve data for the
GPGPU, and to automatically adjust the sizes of the buffers sent or received
from the GPGPU in case the sizes of the reduced precision data types differ from
the originals.

2.1 Comparison with the state-of-the-art

Our approach to GPGPU automated mixed-precision tuning bears the most re-
semblance to the one presented in GPUMizer|3]. While our approach is able
to leverage TAFFO to perform data type selection and selection of the mixed-
precision configuration, GPUMizer is a ground-up solution and therefore also
includes a graph-based methodology for data type selection via a dynamic graph
search. This dynamic search intrinsically takes more time and effort than the
static analyses utilized by TAFFO. Additionally, GPUMizer supports only double-
precision or single-precision data types, while TAFFO also supports fixed point
types and half-precision floats. Finally, the code conversion approach in GPUMixer
does not allow for the minimization of casts in the generated code, and it is
explicitly discussed how the number of casts influence the register pressure and
therefore produce non-optimal performance. On the contrary, TAFFO always min-
imizes the number of casts in the transformed program, producing code that is
equivalent in all respects to changing the data types in the source code.

3 Experimental Evaluation

In order to demonstrate the effectiveness of our approach for automated mixed
precision computation in a GPGPU environment, we evaluate our solution on the
Polybench/ACC benchmark suite [7]. Polybench/ACC provides implementations
of the same set of kernels for both OpenCL and for CUDA which exploit the best
programming practices for both APIs. It also provides CPU-based implementa-
tions which were disabled for the purpose of this evaluation. All comparisons are
performed between GPGPU-based implementations.

Our TAFFO-based solution is tested on two separate machines, one featuring
CUDA, one using OpenCL. The machine used for evaluating OpenCL is an HP
72 G8 tower workstation, with 64 GiB of RAM, a Intel 11th Gen Intel Core
i7-11700K running at 3.60 GHz and a NVidia GeForce RTX 3070 GPGPU with
Compute Capability 8.6. This machine runs Ubuntu 22.04.2 LTS with LLvM
version 15.0.0. The machine used for evaluating CUDA is a tower workstation
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Fig. 2: Error/Speedup graphs of the benchmarks in Polybench/ACC when op-
timized by TAFFO in different configurations on the OpenCL machine. Each
configuration is shown as a blue cross. Configurations which are Pareto-optimal
are shown in orange and are connected by lines.
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Table 1: Comparison of the speedup and the error between exposing the float
type or the half type to the host. The kernel always performs the computation
in half precision.

OpenCL CUDA

Benchmark ARE Speedup Speedup

float half float half float half
2mm 0.8 % 0.8 % 0.98 1.54 1.02 1.88
3mm 1.1 % 1.1 % 0.99 1.26 1.01 1.21
adi 0.0 % 0.1 % 0.99 1.00 0.96 1.01
atax 3.3 % 3.3 % 0.98 1.06 1.00 0.99
bicg 5.4 % 5.4 % 0.98 1.01 0.99 0.98
convolution-2d 0.4 % 0.4 % 0.85 1.45 1.00 1.36
convolution-3d 0.1 % 0.1 % 1.00 1.19 1.00 0.87
correlation 3.4 % 3.4 % 0.98 1.05 0.99 1.04
covariance 1.7 % 1.7 % 0.98 1.04 0.98 1.06
doitgen 0.0 % 0.0 % 0.97 1.01 1.01 1.02
fdtd-2d 0.0 % 0.0 % 1.00 1.89 1.00 1.76
gemm 0.1 % 0.1 % 1.00 1.40 1.19 1.36
gemver 0.0 % 0.0 % 0.98 1.05 0.99 1.06
gesummyv 2.3 % 22 % 0.97 1.03 0.95 0.98
gramschmidt 9.2 % 9.2 % 0.96 1.01 0.98 1.13
jacobi-1d-imper 0.0 % 0.0 % 1.01 1.75 1.04 1.06
jacobi-2d-imper 0.3 % 0.3 % 1.00 2.05 1.10 1.82
lu 13.5 % 13.5 % 1.00 1.47 0.99 1.32
mvt 50.4 % 50.4 % 0.99 1.32 1.00 1.01
syr2k 0.0 % 0.0 % 1.02 1.00 1.00 1.00
syrk 0.0 % 0.0 % 1.00 1.00 1.00 1.00

with 16 GiB of RAM, an AMD Ryzen 5600X Processor running at 3.7 GHz
and a NVidia GeForce RTX 3070 Ti GPGPU with Compute Capability 8.6.
This machine runs Ubuntu 20.04.6 LTS with LLvM version 15.0.0. These two
hardware configurations will be called OpenCL machine and CUDA machine in
the following discussion.

In both machines TAFFO was exploited using the closed loop DA methodology,
in order to compile the entire set of benchmarks in the Polybench/ACC suite.
Multiple compilations were performed in order to characterize various ways of
using reduced precision. In particular, we examine both the case in which the
kernel code also performs the conversion of the data to the original non-reduced-
precision type, and the case in which the kernels return the data in reduced-
precision formats. The time-to-solution is measured by the test fixtures included
in Polybench/ACC, which also measure the time required for data transfer to
and from the GPGPU. We compute the error by comparing the contents of the
buffers produced by the evaluated configuration compiled using TAFFO and the
unmodified benchmark.

3.1 Analysis of the results

We show the results of our experiments in Figure 2, and in Table 1. In particular,
Figure 2 shows the speedup and Average Relative Error (ARE) in percentage of
all the configurations and all the benchmarks in the Polybench/ACC suite. For
brevity, the figure only shows the data for the OpenCL machine, but the data
for CUDA is similar. The figure highlights and labels the configurations that are
Pareto-optimal with respect to the speedup and the error.
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Table 1 compares the speedup and the error when the buffers exposed to
the host code are reduced precision (specifically employing the half data type)
or not (employing the float data type). In both cases the kernel performs all
computation in the half data type. The data points with the best speedups
are reliably the ones employing 16-bit sized data types, although they often
have measurably higher errors than other types, especially for benchmarks such
as atar, gesummu, lu and muot. This is particularly evident in Figure 2 as the
progression of the Pareto frontier follows the decrease in size of the data types
selected. The specific configuration choices that obtain the best speedup differ
between the two machines, with the CUDA machine having lesser speedups
overall. The highest speedup reached is on the OpenCL machine, on the jacobi-
2d-imper benchmark. The same benchmark achieves the second highest speedup
on the CUDA machine, behind the 2mm benchmark.

It can also be observed that smaller 16-bit data types also provide a speedup
when they are employed simply for data storage. This can be seen in the case
of convolution-3d, which by exploiting 16-bit-sized buffers achieves a speedup
of about 1.2x with a very small error. This is conclusively demonstrated in
Table 1, where it is evident that most of the speedup would not appear if the
kernels also converted the data from reduced precision to single precision (float).
We believe that most of the speedup is due to time saved when transferring the
benchmark data to and from GPGPU-exclusive memory, as the amount of bytes
to transfer is reduced to a similar ratio to the speedup. The variation amongst
different benchmarks is due to the fact that some benchmarks cannot use reduced
precision data types for some or all of the buffers because the range of the values
contained in the buffers are not representable with those types.

With respect to the error, amongst 16-bit data types, half-precision floating
point appears to behave better than 16-bit fixed point, as it delivers similar
speedups with a lesser impact on the error. This is again visible from Figure 2,
as the highest errors are always observed when exploiting 16-bit fixed point, the
most extreme case being the lu benchmark whose ARE is 45.3%. Examination
of the results of the intermediate computations performed by the benchmark
highlighted that the error is due to the amplification of the quantization error due
to the high dynamic range of the results and the long chains of multiplications
performed. This is not a solvable issue without changing the algorithm employed
by the benchmark and shows the intrinsic limitations of a compiler-based tool.
32-bit fixed point types appear to not provide any significant benefits over any
16-bit data type for most of the benchmarks, except for convolution-3d, jacobi-
1d-imper and mut.

4 Conclusion

We introduced the Delayed Analysis methodology for the TAFFO precision tuning
LLVM plugins, which enables TAFFO to address the problem of automated Mixed
Precision in GPGPU architectures. With the proposed approach, TAFFO sup-
ports the tuning of host and kernel codes written in both OpenCL and CUDA,
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enabling precision tuning to be employed to leverage half-precision floating point
data types as well as integers. Speedups can be obtained from both reduced
computation and data transfer times, at a limited cost in accuracy. Through the
utilization of TAFFO we also analyze the benefits of applying precision tuning on
accelerator code, finding that the data transfer overhead is greatly reduced by
applying reduced precision. Future works include the extension of TAFFO to sup-
port bfloat16 types, which currently are not fully implemented in LLVM backends
for GPGPUs. Beyond GPGPUs, there is space for Mixed Precision computing
in a variety of accelerator architectures, such as application specific accelerators
for AT as well as reconfigurable architectures. The ability to customize the archi-
tecture can open interesting opportunities for a co-design approach, where the
computation precision is tuned with greater freedom, while minimizing hardware
area by entirely removing support for unused (wide) data types.
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