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ABSTRACT

The problems of speech separation and enhancement concern the
extraction of the speech emitted by a target speaker when placed in
a scenario where multiple interfering speakers or noise are present,
respectively. A plethora of practical applications such as home as-
sistants and teleconferencing require some sort of speech separation
and enhancement pre-processing before applying Automatic Speech
Recognition (ASR) systems. In the recent years, most techniques
have focused on the application of deep learning to either time-
frequency or time-domain representations of the input audio signals.
In this paper we propose a real-time multichannel speech separation
and enhancement technique, which is based on the combination of a
directional representation of the sound field, denoted as beamspace,
with a lightweight Convolutional Neural Network (CNN). We con-
sider the case where the Direction-Of-Arrival (DOA) of the target
speaker is approximately known, a scenario where the power of the
beamspace-based representation can be fully exploited, while we
make no assumption regarding the identity of the talker. We present
experiments where the model is trained on simulated data and tested
on real recordings and we compare the proposed method with a
similar state-of-the-art technique.

Index Terms— Multichannel Speech Separation, Speech En-
hancement, Neural Beamformer

1. INTRODUCTION

Speech separation and enhancement refer to the tasks of suppressing
background noises or interfering speakers, respectively, while leav-
ing intact the target speech generated by the desired speaker, also
denoted as Signal Of Interest (SOI). These techniques are of the ob-
ject of a consistent amount of research since they are usually applied
during pre-processing steps of the now ubiquitous Automatic Speech
Recognition (ASR) models [1].

In recent years, deep learning-based models for speech separa-
tion and enhancement have rapidly beaten previous state-of-the-art
techniques [2]. Impressive results have been obtained by applying
different deep learning techniques in the field of monaural speech
separation [3, 4, 5, 6] becoming the state-of-the art approach. In
the multichannel scenario, instead, the more commonly used meth-
ods are still based on spatial filtering, i.e. beamforming [7]. Re-
cently, however, several methods combine deep learning with mul-
tichannel signal processing exploiting deep neural networks in or-
der to compute the beamformer weights [8, 9, 10, 11]. Other solu-
tions aim at directly using the neural network in order to perform
spatial processing, without explicitly modeling beamformer-like fil-
ters [12, 13, 14, 15].

More recently, another line of research follows the combination
of the beamspace model of the sound field with the power of deep
learning [16]. The beamspace transform, proposed in [17], projects
the multichannel input signal into a set of steered directions, through
a beamforming operation. The obtained feature is then used as in-
put to a deep learning model, which is able to take advantage of the
directional representation of the acoustic scene. Moreover, the main
advantage of the beamspace is that when applied to different micro-
phone array configurations, it generates representations retaining the
same dimensionality, which effectively enables the training of mod-
els that are agnostic from a geometry point of view.

In this paper we propose a real-time model for speech separation
and enhancement, following a similar approach to the one proposed
in [17]. It is important to note that our model is extremely more
lightweight with respect to the one proposed in [17], containing 33
times less parameters and being 187 times computationally cheaper.
The system is able to separate the signal of the SOI from the one of
other speech interferers and from both additive and diffuse noises.
We consider the Direction-Of-Arrival (DOA) of the speaker to be
approximately known a priori, which gives us the possibility of fully
exploiting the directional representation given by the beamspace.
More specifically, we propose a convolutional neural network that,
taking as input few frames of the beamspace-transformed signals of
a Uniform Linear microphone Array (ULA) is able to retrieve the
Ideal Ratio Mask (IRM) [18]. The SOI is therefore estimated by ap-
plying the obtained IRM on the beamspace signal associated to the
source DOA.

We present results, where we show that the proposed model,
trained on simulated data, is able to generalize and perform sepa-
ration and enhancement over real recordings. We train and test the
model on multiple array geometries at the same time, showing the
independence of the proposed method from the chosen setup, an ex-
tremely important characteristic for the application of deep learning-
based models to real-world scenarios. We compare the obtained re-
sults with the model proposed in [16] and with the well-known su-
perdirective beamformer [19] used to compute the beamspace.

The rest of this paper is structured as follows. In Sec. 2 we
present the signal model and the necessary beamspace background.
Sec. 3 describes the proposed speech separation technique, while
Sec. 4 presents the results. Finally, in Sec. 5 we draw some conclu-
sions.

2. SIGNAL MODEL AND BACKGROUND

Let us consider a ULA with I microphones having inter-sensor spac-
ing d, acquiring the acoustic scene of a noisy and reverberant envi-
ronment where J speakers are present. Then, the Short-Time Fourier
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Fig. 1. Setup of the system. The ULA is composed by I microphone
with distance d. The SOI is placed in a predefined region in front of
the array (shown in filled grey), thus θb̄ = 90◦. Other interferers are
present in the room (outside the SOI region and the one with gray
lines) along with diffuse noise components.

Transform (STFT) representation of the signal acquired by the ith

microphone can be written as:

yi[t, f ] =

J∑
j=1

hj,i[t, f ]sj [t, f ] + γi[t, f ] + vi[t, f ]

=

J∑
j=1

xj,i[t, f ] + γi[t, f ] + vi[t, f ],

(1)

where t = 1, . . . , T and f = 1, . . . , F are the STFT time and fre-
quency indexes, respectively, yi is the signal acquired at microphone
i, hj,i is the acoustic transfer function from source j to the ith sen-
sor, sj is the signal emitted by the jth speaker, while γi and vi are
the diffuse and additive noise components, respectively, measured at
microphone i and xj,i is the reverberant speech emitted by speaker
j and measured at microphone i. The overall setup of the system
is depicted in Fig. 1. Notice that the SOI is placed in a region of
interest in front of the array. Therefore the DOA of the SOI is ap-
proximately known in advanced as θb̄ = 90◦. Moreover, multiple
interfering talkers are present in the reverberant environment along
with diffuse noise components.

3. PROPOSED METHOD

In this section we describe the proposed lightweight speech separa-
tion and enhancement technique. Given that in the proposed method,
we consider the DOA of the SOI to be approximately known a-priori,
we exploit this information by applying to the mixture STFT the
beamspace transform [17], which is based on a plane-wave decom-
position of the signal in B directions θb, b = 1, . . . , B [20]. More
specifically, the beamspace transform used in the proposed method
is based on the application of a superdirective beamformer [19].

Let us define Y ∈ CT×F×I as the 3D tensor created by stacking
together the STFTs of the signals acquired by the I microphones. If
we define W ∈ CI×B as the beamspace transform matrix, we can
then compute, for each STFT frame t, the beamspace Ỹ of the signal
acquired by the microphones

Ỹt = YtW. (2)

Given the desired speaker j̄, whose DOA from the region of interest
corresponds to the beamspace channel b̄, the desired output of the

network then consists of the Ideal Ratio Mask (IRM) [18] M ∈
RT×F . The mask is computed by considering as the target signal the
one that corresponds to direction θb̄ of the beamspace of the matrix
Xj̄ , built by stacking together the STFTs of the signal emitted by
speaker j̄, acquired by the I microphones.

In order for the network to be both lightweight and able to op-
erate in real-time we output the Mt ∈ R1×F mask relative to one
STFT frame t at a time, using as input Tctx frames of Y. More for-
mally, the function U(·) modeled by the proposed network can be
written as

M̂t = U(Ỹt−Tctx/2:t+Tctx/2), (3)

where M̂t is an estimate of the ground truth IRM mask Mt at frame
t. Finally, an estimate X̂j̄,t of the desired signal Xj̄,t at frame t can
be simply obtained through

X̂j̄,t = M̂t ⊙ Ỹb̄,t, (4)

where ⊙ denotes the Hadamard product and Ỹb̄,t corresponds to
channel b̄ of the beamspace of the acquired signals pointing at θb̄ =
90◦ at frame t. The network pipeline is depicted in Fig. 2.

3.1. Network Architecture

The proposed network architecture is defined as follows. We first
compute the Power Spectral Density of Ỹ and then convert it into a
64-bands log-mel spectrogram representation, before feeding it into
three convolutional blocks, each consisting of two convolutional lay-
ers. The three blocks compute the following number of feature maps:
i) 16, ii) 32, iii) 64. While the first convolutional layer in each block
has stride (1, 1), the second one has an asymmetric stride (1, 2) in
order to compress the representation along the frequency axis. We
apply no padding along the time axis, while we adopt a symmetric
padding for what concerns the frequency axis, in order to avoid spu-
rious artefacts. All convolutional layers have kernel size (3 × 3),
and are followed by Batch Normalization and a ReLU activation.
The output of the convolutional blocks is averaged along the time
axis and is then flattened before being fed into a fully connected
layer with 64 neurons, followed by Batch normalization and ReLU.
Finally the output Mt is obtained through a fully connected layer
with F neurons, followed by a sigmoid activation.

3.2. Training Procedure

During the training phase, the beamspace-transformed mixture Ỹ is
computed along with the ground truth IRM mask M. Then for a
STFT frame t the corresponding Tctx frames are extracted. Finally,
the estimated mask M̂t is used in the loss computation at frame t as

L(t) = 1

F

F∑
f=1

(Mt,f − M̂t,f )
2, (5)

where the batch index is omitted for simplicity.

4. RESULTS

In this Section, we present results obtained with real recordings in or-
der to show the speech separation capabilities of the proposed model
and we compare them with the Neural Beamspace-Domain Filter
(NBDF) 1 method proposed in [16] and with the beamformer used

1https://github.com/lucacoma/NeuralBeamspaceDomainFilter

https://github.com/lucacoma/NeuralBeamspaceDomainFilter
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Fig. 2. Schematic representation of the proposed speech separation and enhancement pipeline operating at frame t.

to compute the beamspace fed as input to the proposed model. Audio
examples are contained in the accompanying website 2.

4.1. Training Setup

The signal model reported in Eq. (1) considers a recorded sound
scene consisting of J different speakers. Among all possible config-
urations of the J speakers we also consider two possibilities, namely
having either a SOI only or no SOI at all. When the SOI is present
in the acoustic scene, the number of sources considered in Eq. (1) is
J = R + 1, and the objective is to extract the single SOI from the
R interfering speakers, where R ∈ {0, . . . , 4}. Instead, if no SOI
is active in the scene, then J = R and the estimated IRM should
completely remove all the R active interferers. We considered a
wide range of acoustic conditions in which the overall system is re-
quired to operate. The training set has been generated through an
extensive simulation campaign by sampling with a uniform distri-
bution the operational ranges of each room parameter and consid-
ering five different array configurations, for a total of 10 000 differ-
ent simulated rooms. We used gpuRIR [21] to compute the Room
Impulse Responses (RIRs) of rectangular rooms with dimensions
Lx ∈ [3, 8]m, Ly ∈ [3, 8]m, Lz ∈ [2.6, 4]m, and reverbera-
tion time T60 ∈ [0.2, 1.4]s. We considered different ULA config-
urations by changing I and d parameters, while keeping fixed the
elevation along the z−axis to 1.3m. In particular, we used the fol-
lowing ULA configurations: I = 3 and d = 20mm or 30mm,
I = 4 and d = 20mm or d = 30mm and I = 4 and d = 26mm.
In order to take into account the calibration error related to the mi-
crophone positioning, we applied a random error by randomly sam-
pling uniform distributions defined in the ranges ±3mm, ±0.5mm,
and ±1mm for the x, y, z coordinates of the sensors, respectively.
The SOI was randomly placed in the region of interest as shown in
Fig. 1. We defined the area of this region as xSOI ∈ [−0.2, 0.2]m,
ySOI ∈ [0.35, 0.65]m, and zSOI ∈ [1.3, 1.9]m. The microphone
signals are then computed as the convolution between the RIRs and
clean speech signals extracted from the LibriSpeech corpus [22] both
for SOI and interferers. In the 80% of the generated scenarios the
SOI is present while in the remaining 20% there are only interfer-
ers. When both SOI and interferers are active we applied different
Signal-to-Interferences Ratio (SIR), with SIR ∈ [−3, 3]dB, to sim-
ulate the SOI loudness with respect to the acoustic energy of all the
interferers. We simulated diffuse sound field components of differ-
ent noises, e.g., babble speech and canteen noise, with the algorithm
presented in [23] by varying the Signal-to-Diffuse Ratio (SDR) [24],
with SDR ∈ [−3, 60]dB. Finally, in order to simulate different mi-
crophone arrays we varied the Signal-to-Noise Ratio (SNR) of the

2https://polimi-ispl.github.io/beamspace cnn speech separation.github.io/

sensors, SNR ∈ [30, 70]dB, and the array gain G ∈ [−40, −1]dB,
which serves the purpose of modeling the possible different dynam-
ics of the array recordings. The beamspace transform matrix W
used in (2) is composed by B = 5 predefined directions. Given
the center of the ULA as reference, we steered the beamformer to
θb = {0◦, 45◦, 90◦, 135◦, 180◦}. Therefore, b̄ = 3 is the desired
beamspace channel corresponding to the SOI at θb̄ = 90◦. We ap-
plied a 512 point STFT resulting in F = 257, with 16ms of Ham-
ming window, 50% overlap and 16 kHz of sampling frequency. The
input of the network consisted of slices of length Tctx = 50 frames,
resulting in tensors of dimensionality 50 × 257 × 5, corresponding
to a total of 400 ms splitted into 200 ms for both the look-ahead and
past frames. The proposed network was trained for approximately
300 epochs, using the Adam optimizer [25], with a learning rate of
1e− 3, following an exponential decay schedule.

4.1.1. Baseline and computational complexity

We used the same audio pipeline for training the NBDF baseline,
which outputs an STFT of the same dimensionality of the input. The
NBDF baseline was trained for 120 epochs (60 for each module)
using the Adam optimizer with a learning rate of 5e − 4, which
was halved after two consecutive epochs with no validation loss im-
provement, as in [16]. The proposed network consists of roughly
120, 000 parameters, and requires 1.06 millions of MACs per frame,
while NBDF consists of 4, 006, 236 parameters and requires 198.5
millions of MACs per frame. Since we have 125 frames per second,
NBDF requires 24.81 billions of MACs per second, while the pro-
posed network requires 132.5 million of MACs per second, about
187 times computationally cheaper.

4.2. Metrics

The following metrics have been used in order to evaluate the
separation and enhancement performances, namely: Signal-to-
Interferences Ratio (SIR), Signal-to-Artifacts Ratio (SAR), Signal-
to-Distortion Ratio (SDR) [26], Perceptual Evaluation of Speech
Quality (PESQ) [27], and Extended Short-Time Objective Intelli-
gibility (ESTOI) [28]. We also defined the rejection of the signal
energy in decibel as Rsoi and Rinterf for the cases when only the
SOI or only interferers are present in the room, respectively. More
specifically, let us denote Esoi and Einterf as the signal energies
coming from the beamformer pointing to θb̄ = 90◦ when only the
SOI or only interferers and noise are present, respectively, and Ê the
energy of the signal estimate coming from network, then

Rsoi = 10 log10

(
Ê

Esoi

)
,Rinterf = 10 log10

(
Ê

Einterf

)
. (6)

https://polimi-ispl.github.io/beamspace_cnn_speech_separation.github.io/


ULA setups I = 4, d = 26mm I = 3, d = 52mm I = 4, d = 52mm Average over test sets
Metrics Proposed NBDF Ỹ90◦ Proposed NBDF Ỹ90◦ Proposed NBDF Ỹ90◦ Proposed NBDF Ỹ90◦

SIR 9.46 8.5 1.62 8.5 10.48 0.93 6.47 10.84 0.97 8.31 10.05 1.18
SAR 7.73 2.99 - 9.34 6.05 - 7.58 3.08 - 8.29 4.29 -
SDR 4.15 0.04 1.6 4.63 3.29 0.92 2.28 0.75 0.96 3.79 1.59 1.17

PESQ 1.66 1.19 1.71 1.86 1.39 1.79 1.66 1.24 1.79 1.73 1.27 1.76
ESTOI 0.57 0.44 0.58 0.61 0.52 0.61 0.6 0.44 0.62 0.59 0.46 0.6
Rsoi -5.75 -4.7 - -2.61 -1.77 - -6.81 -3.81 - -4.67 -3.25 -

Rinterf -17.54 -13.47 - -14.31 -14.48 - -15.7 -15.2 - -15.65 -14.32 -

Table 1. Comparison of the average metrics between the proposed method, the NBDF approach and the beamformer Ỹ90◦ for the different
test sets and for the average results.

Notice that, although the optimal Rsoi corresponds to 0 dB, this con-
dition cannot be practically achieved due to the presence of sensor
noise in Esoi. On the contrary, Rinterf should be as low as possible,
ideally −∞ in the optimum working condition, since the network
should completely attenuate all interfering sources and noises.

4.3. Evaluation

The test set was built by measuring RIRs in an acoustically treated
room, according to the standard ETSI ES 202 396-1, with dimen-
sions Lx = 6m, Ly = 4.8m, Lz = 2.6m, and T60 = 0.8 s.
We evaluate the performances on three test sets with different array
configurations. We consider an array configuration with I = 4 and
d = 26mm, seen also during training. Moreover, to assess the sys-
tem robustness we consider two array configurations unseen during
training, with I = 3, I = 4 and d = 52mm. The audio pipeline
is the same as the one used for the training procedure. Therefore,
we compare the results of the proposed method with the NBDF ap-
proach [16] and the beamformer steered to θb̄ = 90◦, denoted as
Ỹ90◦ . Notice that Ỹ90◦ corresponds to comparing the solution with
the beamformer used for computing the input beamspace filter. In
Table 1 we report the average metrics obtained by applying the pro-
posed method and the baselines to the three different datasets. In
general, the proposed approach is able to extract the SOI speech in
all the test sets, hence proving that the network is independent from
the array configuration used to record the acoustic scene. By inspect-
ing Table 1, we can notice that the proposed method outperforms
the beamformer Ỹ90◦ when applied to all the test sets. In particular,
when using the proposed method, the SIR and SDR increase of more
than 5.5 dB and 1.3 dB, respectively, and in average by 7.13 dB and
2.62 dB, with respect to Ỹ90◦ . SAR values for Ỹ90◦ have not been
reported, since they tend to infinity. In fact the beamspace processing
applied to the mixture and the desired target is the same, so no addi-
tional artifacts are added. When applied to the test sets unseen during
training, NBDF reaches higher SIR than the proposed method, with
an increment limited to 1.98 dB and 4.37 dB for the datasets with
I = 3 and I = 4, respectively. However, this comes at the cost
of more distortions in the estimates, that reduce the SAR value by
4 dB and the SDR value by 2.2 dB, on average. In Fig. 3 we report
the average SDR as a function of the number of interferers R. It is
worth noticing that SDR incorporates both SIR and SAR [26]. As
expected, the performances of all methods decrease as the number
of interferers increases. However, the SDR of the proposed method
is steadily above NBDF and Ỹ90◦ . Inspecting the PESQ and ESTOI
values in Table 1 we can notice similar results for all the three ap-
proaches and for the different test sets. In general both PESQ and
ESTOI present moderate results due to the fact that we tested on real
data, while the networks have been trained on simulations. Notice
that, Ỹ90◦ reaches the best PESQ results due to the limited filter-
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Fig. 3. Average SDR as function of the number of interferers R.

ing process responsible of signal distortions. However, the general
perceptual intelligibility of the devised solution outperforms both
NBDF and the input beamformer Ỹ90◦ . Indeed, although the use
of the beamspace is similar to [16], the network architectures are
very different in terms of layers and overall dimensions. In fact the
proposed method has less than 30 times the number of parameters
used in NBDF. Thus, we obtain better generalization results using
an extremely more lightweight model, which is a highly sought after
characteristic for the application of such models to real-world hard-
ware devices. As far as the scenarios when only the SOI is active,
results show that the system is able to let unfiltered the SOI signal
with no distortion while attenuating the background noises. As a
matter of fact, we achieve an average Rsoi = −4.67 dB for the three
test sets. On the other hand, when only interferers are present in
the rooms, the network correctly suppresses the energy when filter-
ing the recordings, obtaining an estimate close to a signal consisting
of silence. For these cases, we achieved a mean Rinterf grater than
−14.31 dB for all the test sets. Notice that Rsoi and Rinterf cannot
be computed for Ỹ90◦ since their values are used as reference in the
definition (6).

5. CONCLUSIONS

In this paper we proposed a lightweight CNN architecture for speech
separation and enhancement of a main talker placed in a region of in-
terest in noisy and reverberant environments. The system is able to
work in real time and is independent from the geometry of the array,
in terms of number of microphones and inter-sensor distance, thanks
to the adoption of the beamspace representation of the sound field.
To prove the effectiveness of the proposed method, we present re-
sults where the network is trained on simulated data generated with
different array configurations and tested on real data. We compared
the proposed approach with respect to the beamformer used to com-
pute the input beamspace and with a recently proposed approach
based on the beamspace domain. Results show the superiority of the
devised approach and its ability to generalize to different setups.
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