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In the current industrial context, the importance of assessing and improving

workers’ health conditions is widely recognised. Both physical and psycho-

social factors contribute to jeopardising the underlying comfort and well-being,

boosting the occurrence of diseases and injuries, and affecting their quality of

life. Human-robot interaction and collaboration frameworks stand out among

the possible solutions to prevent and mitigate workplace risk factors. The

increasingly advanced control strategies and planning schemes featured by

collaborative robots have the potential to foster fruitful and efficient

coordination during the execution of hybrid tasks, by meeting their human

counterparts’ needs and limits. To this end, a thorough and comprehensive

evaluation of an individual’s ergonomics, i.e. direct effect of workload on the

human psycho-physical state, must be taken into account. In this review article,

we provide an overview of the existing ergonomics assessment tools as well as

the available monitoring technologies to drive and adapt a collaborative robot’s

behaviour. Preliminary attempts of ergonomic human-robot collaboration

frameworks are presented next, discussing state-of-the-art limitations and

challenges. Future trends and promising themes are finally highlighted,

aiming to promote safety, health, and equality in worldwide workplaces.
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1 Introduction

It is common knowledge nowadays that workers, worldwide, are exposed to

occupational risk factors that may have negative effects on their physical and mental

health. Activities such as heavy material handling, repetitive movements and prolonged

awkward sitting impose physical burden on workers’ bodies, resulting in the so-called

musculoskeletal disorders (MSDs) (Pascual and Naqvi, 2008). Despite the extensive

prevention efforts of the industrial world and the regulatory bureaus, these remain the

most widespread work-related health problem in the European Union (EU). According to

the European Agency for Safety and Health at Work (EU-OSHA), approximately three

out of five workers suffer from an MSD, among which backache and upper limb pain are
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the most common (de Kok et al., 2019). Recent studies have also

highlighted the importance of considering stress and

psychosocial factors along with the aforementioned physical

solicitations proposing a holistic approach. Indeed, results

from the sixth European Working Condition Survey (EWCS)

claim that 25% of European workers reported that their

occupations have negative impacts on their mental and

emotional state (Kubicek et al., 2019). Overall, besides the

harmful effects on workers themselves, physical and mental

health problems may lead to impressive costs to enterprises

and society, being one of the most common causes of

disability, sick leave and early retirement (Hassard et al., 2014;

James et al., 2018).

In light of this, it becomes crucial for enterprises, trade

unions and regulating authorities to address in an objective

manner the hazardous factors that may lead to physical and

mental distress among the workforce. Ergonomics studies and

interventions can be classified into “microergonomics” and

“macroergonomics.” The field of “macroergonomics”

concentrates on designing overall work systems and

determining how effective the technological and personnel

sub-systems are with respect to external demands (Hendrick

and Kleiner, 2002). In this review, we focus on the individual

dimension of the workers, namely the analysis of worker

postures, workplace productivity, work physiology and

biomechanics within the scope of “microergonomics.” It is

worth specifying that logistical and organisational aspects,

such as resources allocation, shift/turn planning, and outline

of the working environment, are not deeply examined in the text,

but their impact on “microergonomics” is presented in the

discussion.

A thorough ergonomics assessment builds the foundation for

a safer, healthier and less injury-prone workplace, resulting in an

overall improvement of operators’ well-being. The key objective

is to identify the risk factors and to quantify them, which can

serve as a valuable tool to train the workforce. To enhance the

ergonomic condition and awareness of the workers, researchers

investigated several possible solutions that may be grouped in the

following macro-areas: 1) effective design of comfortable and

adjustable workstations (Shikdar and Hadhrami, 2007; del Rio

Vilas et al., 2013; Peruzzini et al., 2019; Bongiovanni et al., 2022),

2) development of intuitive feedback interfaces that warn about

risks and hazards (Villani et al., 2018a; Kim et al., 2018b, 2021a),

and 3) creation of advanced human-robot shared workstations

for fruitful and ergonomic collaboration in hybrid environments

(Kim et al., 2018a; El Makrini et al., 2019). As conceptually

illustrated in Figure 1, the latter is the key topic of this article.

This last scenario falls within the general term human-robot

interaction (HRI) and is probably on the cutting edge among the

industrial research topics. This article is focused on human-robot

collaboration (HRC) as opposed to HRI since these two terms

hold different meanings. Interaction determines any kind of

action that involves another human being or robot, who does

not necessarily profit from it. On the other hand, humans and

robots collaborating on a shared task form a team. A team is

defined as a small number of partners with complementary skills

who are committed to a common purpose, performance goal,

and approach. The same holds for human-robot teams where the

partners are humans and robots, committed to reach a joint

objective through collaboration. The advent of collaborative

robots (CoBots) broadened the application possibilities

attracting the attention of research community. CoBots can

indeed support their human counterparts in performing

physical (e.g., relieving the workers from part of the effort

while handling heavy loads (Brosque et al., 2020)), cognitive

(e.g., visualising alternative behaviours to reduce operators’

mental stress (Krupke et al., 2018)) and hazardous (e.g.,

handling chemical material (Liu and Wang, 2020)) operations.

This relationship positively impacts productivity, flexibility, and

the creation of new jobs instead of replacing workers. The

FIGURE 1
A conceptual illustration of a worker accomplishing an industrial task without (A) and with (C) a collaborative robotic solution. The structure of
this article is also described in the schema (B), highlighting (blue) the research themes that we focus on.
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previous referred studies demonstrated a link between CoBots

and improved work conditions; however, the inclusion of

ergonomic criteria in the development and implementation of

these technologies is far from being well-known. In this article,

the authors are interested in understanding studies that included

ergonomics as a requirement in HRC systems, giving particular

attention to the segmentation between physical and cognitive

ergonomics, and presenting an offline or online application.

Multiple review articles on the integration of human factors

and ergonomics in engineering and manufacturing processes

design (Kolus et al., 2018; Sun et al., 2019) and, more in general,

within Industry 4.0 (Kadir et al., 2019; Sgarbossa et al., 2020) have

been proposed. Critical socio-technical factors for the successful

implementation of Industry 4.0 were examined by Sony and Naik

(2019, 2020). On the other hand, multiple review articles exist on

HRC frameworks in industrial environments but focus primarily

on technology development and determining and minimizing its

intrinsic safety risks. An exhaustive review on HRC in industrial

environment is provided by Villani et al. (2018a), with specific

focus on issues related to physical (safety) and cognitive

(intuitiveness-of-use) interaction. In fact, first, the safety

standards are recollected to discuss the permitted interaction

level between human and the robotic agents based on the

introduced measures. Second, they inspect the user-interfaces,

in the sense of cognitive workloads, claiming the traditional lead-

through and offline programming are still the most used

interfaces in industrial practice, despite the rise of more

intuitive methods such as multi-modal interaction and

extended reality technologies (e.g., virtual and augmented

realities). They conclude the review by listing the

commercially-available solutions, and their applications in the

industrial setups to improve the efficiency of the conventional

systems. Still, the roles and effects of HRC setups on the

improvement of ergonomics, especially physical ergonomics, is

not discussed in this article. Another interesting survey is

presented in Kumar et al. (2020). The authors abstractly

categorise the HRC setups into three main aspects, 1)

awareness: level of perception using sensor information

coming from human-operator, robots, and workspace, 2)

intelligence: development of algorithms to achieve the robot’s

actions and behaviours, and 3) compliance: dealing with the

management of human expectation and communication between

the agents. In particular, safety, trust-in-automation, and

productivity factors are comprehensively discussed in the

introduced intelligence category covering the latest research

done in these regards. Nevertheless, here, the ergonomics

aspects are not investigated. The available mechanisms to

assure safety of CoBot systems in manufacturing is also

discussed in Bi et al. (2021); Zacharaki et al. (2020). In

addition, Castro et al. (2021) mostly focus on the current

HRC research trends and their future directions. They claim

that better interactions, cognitive integration, and the presence of

effective metrics are the fundamental necessities of the future

developments. The ergonomics research trends are focused in

Gualtieri et al. (2021b); however, the corresponding ergonomics

assessment and monitoring tools, and their effects on the HRC

setups are not highlighted in this survey. Moreover, an

interesting survey is presented in Berg and Lu (2020) that

introduces the available user-interfaces for HRC but without

studying the inherent ergonomics factors. In summary, What is

missing is a review paper that tackle the inclusion and integration

of human ergonomics principles specifically into human-robot

collaborative solutions.

In an attempt to fill in the gap in the previously mentioned

surveys, in this article, we mainly focus on the works that

explicitly address human factors and ergonomics within HRC

solutions. Among all the HRC possibilities, we specifically

consider those frameworks in which a CoBot interacts with

the human to accomplish a shared task, by adapting online1

its behaviour to address the counterpart’s demands. As such,

teleoperation systems and exoskeletons are not covered here. The

foremost objective of this article is to provide a narrative review

of the current state-of-the-art in HRC to improve online human

ergonomics in the industrial sector, and to highlight the most

important and promising research themes identified for both

physical and cognitive ergonomics.

The process we implemented to carry out the review is the

following. We conducted an automatic search for papers that

contain the selected keywords (which will be specified for each

subtopic/Section) in Google Scholar and Scopus, since they are

the most well-known and used Database in the target audience.

Existing ergonomics assessment tools were investigated starting

from the earlier reports in the field. Instead, the papers on

ergonomics HRC were selected from 2011 until the moment

of paper preparation (August 2022). We then meticulously

examined the list of potentially relevant papers and excluded

those that did not explicitly use/study the topic of interest or

those that only mentioned it in the literature review part of the

introduction. When multiple papers presented the same/similar

idea, we selected the one published first, or in the case of evolved

idea, we chose the journal version. The exceptions were some

preliminary conference publications of the work that was later

evolved and published in a journal for the purpose of historic

narrative. In addition, we used several more general ergonomics

and HRC papers to establish a context, introduce basic concepts,

and support our statements.

The rest of the paper is organised as follows. Section 2

provides an overview of the of the existing ergonomics

assessment tools to evaluate both physical and cognitive

workload. The available technologies to monitor the human

1 With the term “online” we refer to methods and procedures that
respond in a timely manner, but with no particular limit on time
latency (which are instead required for “real-time” systems and can
be ensured only following specific technological requirements).
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state are presented in Section 3, which may be beneficial to

automatise ergonomics evaluation. In Section 4, preliminary

attempts of ergonomic HRC frameworks are illustrated and in

Section 5, state-of-the-art limitations and challenges are

discussed. Last, the future trends are highlighted and the

conclusions of the article are drawn in Section 6.

2 Ergonomics assessment in
industrial settings

Due to the alarming statistics on workers’ health conditions

in the industrial sector, various methods and approaches were

developed, in the last decades, to assess the exposure to risks in

the workplace. Chemical and environmental agents are not

covered here, but we tackle those short or long-term factors that

induce a hazardous workload on the operators. This section

provides an overview of the studies wherein tools to evaluate

ergonomics and human factors were developed and presented,

categorising them according to the class of risk factors they seek

to address. Specifically, the approaches that tackle physical

workload are illustrated in Section 2.1 while studies on the

psychosocial/organisational determinants, defined as

“cognitive” workload, are outlined in Section 2.2. To focus

the literature analysis on the assessment of workers’ ergonomics

in industrial settings, we combined terms associated with

workload (e.g., “physical,” “cognitive,” “workload,” “stress,”

“effort,” “workplace”) with terms related to its analysis (e.g.,

“human factors,” “ergonomics,” “assessment,” “evaluation”)

and we discard the studies dedicated to office work or

services sectors. Indeed, most of the literature concentrates

on factory jobs. Earlier reports (Burdorf, 1992; van der Beek and

Frings-Dresen, 1998) on the assessment of physical workload

conventionally categorised the methods in the following three

groups:

• subjective judgements: self-questionnaires from workers or

narrative interviews from experts;

• systematic observations: collected on-site at the workplace

or from video recordings;

• direct measurements: performed on-site at the workplace

or during simulations in laboratories.

Subjective measurements are surveys that can be completed

either by the tested subjects or by an interviewer but always

reflect the point of view of the former. With systematic

observations, we refer to those procedures (e.g., worksheet to

be filled in, parameters to be collected) that are carried out by

experts and are based on simple observations of the examined

subjects. In recent times, many of the methods belonging to this

category have been automatised by leveraging the benefits of

sensor technologies, but their use is not strictly necessary.

Conversely, the techniques pertaining to direct measurements

inevitably imply a sensor system due to the required accuracy and

online availability of the measurements. The ergonomics

assessment can then be extracted directly from the collected

data or estimated by integrating them within ad-hoc models. The

same categorisation may be applied and are adopted here for

cognitive load measurements. The trend of some peculiar

features, varying among these three groups in an orderly way,

is represented in Figure 2.

2.1 Physical workload

In the earliest studies on the assessment of physical

workload (Winkel and Mathiassen, 1994; Westgaard and

Winkel, 1996), the authors introduced the term

“mechanical exposure” to denote all the factors connected

to the biomechanical forces generated into the human body

when performing a work task. In this review, we embrace the

FIGURE 2
Overview of trade-offs among the different categories of methods for the assessment of physical and cognitive workload. The variation in
thickness indicates the feature trend, while the colours reflect the positive (blue) or negative (red) impact.
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same concept, thus not considering the full physical working

environment (lighting, noise, thermal environment, etc.).

Adopting the general model proposed by van der Beek and

Frings-Dresen (1998), which describes how the working

situation induces responses and health effects in the

workers, we can distinguish two types of physical exposure:

external and internal exposure. External exposure refers to the

work environment and the actual working method, i.e.

adopted postures, executed movements, and exerted forces

that workers exploit to perform an activity with their

anthropometric characteristics. The corresponding

moments and forces within the human body are instead the

internal exposure.

Among the groups defined above and illustrated in

Figure 3, subjective judgements and systematic observations

are determined to tackle external exposure. The vast majority

of tools employed in the current industrial scenario to assess

workers’ ergonomics relies on such two categories, which are

covered in Sections 2.1.1, 2.1.2. The methods that they gather

are presented building on some comprehensive reviews (Li

and Buckle, 1999; David, 2005; Marras, 2006; Andreas and

Johanssons, 2018), in which ergonomics tools were listed,

classified, and compared. On the other hand, direct

measurements can be employed to estimate internal

exposure. The corresponding category is addressed in

Section 2.1.3.

2.1.1 Subjective judgements
To assess physical workload, body discomfort, or job stress,

it is possible to directly query the workers, investigating both

physical and psychosocial factors. These methods take the form

of body map (Corlett and Bishop, 1976), rating scales (Shackel

et al., 1969; Borg et al., 1985), checklists (Drury and Coury,

1982; Cox and Mackay, 1985; Keyserling et al., 1992), and

questionnaires or interviews (Kuorinka et al., 1987; Bigos

et al., 1991; Dickinson et al., 1992; Wiktorin et al., 1993),

among which the National Aeronautics and Space

Administration—task load index (NASA–TLX) (Hart and

Staveland, 1988; Hart, 2006) is the most used. Almost all the

strategies for subjective judgements developed up to now were

built on the basis of the above-mentioned earliest attempts.

Traditionally, data were collected using written means, but

more recent innovations include web-based facilities. The

methods based on subjective judgements have the benefit of

being straightforward to use (no specific expertise is required),

applicable to a broad range of work situations and appropriate

for surveying high numbers of subjects at comparatively low

cost. Nevertheless, they are vulnerable to many influences and

several studies have shown that they have too low validity

(Burdorf and Laan, 1991) and reliability (Wiktorin

et al., 1993) with respect to the demands for ergonomic

interventions.

2.1.2 Systematic observations
Several approaches were developed in the last decade to

systematically record workplace exposure to be examined by

an observer and stored on ad-hoc sheets. These are commonly

referred to as “pen-and-paper”2 methods. Most of them have

been conceived on the basis of the two most relevant and

widespread normative aiming to establish ergonomic

recommendations for workers, i.e., the International

Organization for Standardization (ISO) 11228 and the

European Standards (EN) 1005. The postures and movements

FIGURE 3
Overview of the ergonomic assessment methods to address both physical and cognitive workload, applicable to industrial settings.

2 These methods are called “pen-and-paper” since they were originally
conceived as hand-written means, but, at present, their digital version
is available.
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of the workers can be carefully evaluated by a number of

indicators: Posturegram (Priel, 1974), Posture targeting

(Corlett et al., 1979), ovako working posture analysing system

(OWAS) (Karhu et al., 1977), rapid upper limb assessment

(RULA) (McAtamney and Corlett, 1993), hand-arm-

movement analysis (HAMA) (Christmansson, 1994), a

method assigned for the identification of ergonomics hazards

(PLIBEL) (Kemmlert, 1995), quick exposure check (QEC) (Li

and Buckle, 1998), and rapid entire body assessment (REBA)

(Hignett and McAtamney, 2000). These techniques are relatively

inexpensive to carry out and can be used in different work

situations without hindering the workers, but they are

applicable only to rather static or repetitive jobs.

Besides postures, other workplace factors such as load/force,

repetition, duration of movement, vibration, and their

interaction/combination have to be considered. Similar to

these techniques for posture analysis, muscle fatigue analysis

(MFA) (Rodgers, 2004) was proposed, whereby each body part is

scaled into four effort levels according to its working position, but

also to the duration of the effort and the frequency. Considering

lifting and carrying loads, National Institute for Occupational

Safety and Health (NIOSH) equations (Waters et al., 1993) were

introduced to define the suggested load weight limit to be lifted

by human operators considering gender, forces exerted on the

spine structure, and calories consumed during the effort. The

Washington Industrial Safety and Health Act (WISHA) lifting

calculator was then developed based on NIOSH. Mechanical

exposure can then be evaluated with respect to intensity (or

magnitude), repetitiveness and duration even with the strain

index (SI) (StevenMoore and Garg, 1995) and its revised versions

(Garg et al., 2017), the American Conference of Governmental

Industrial Hygienists—threshold limit values (ACGIH–TLV)

(ACGIH, 1981), an assessment technique for postural loading

on the upper body based on joint motion discomfort and

maximum holding time (LUBA) (Kee and Karwowski, 2001),

hand arm risk assessment method (HARM) (Douwes and

Kraker, 2009) and manual handling assessment charts (MAC)

(Monnington et al., 2003). Snook and Ciriello (1991) proposed a

detailed procedure to assess the exerted force to perform pushing

and pulling activities, taking into account the weight/distance of

the handled object, the frequency, and duration of the action.

Finally, some methods were focused on actions performed at

high frequency with low loads and consider even the recovery

time like occupational repetitive actions (OCRA), a concise index

for the assessment of exposure to repetitive movements of the

upper limb (Occhipinti, 1998). Although these indices are more

exhaustive and have been widely adopted both by practitioners

and researchers, they lack of precision and reliability and

subjective variability can influence their results. Moreover,

they do not provide a consistent and overall measure of the

ergonomic risk since every index focuses on a specific manual

material activity. In view of this, the ergonomic assessment

worksheet (EAWS) method (Schaub et al., 2013) was

developed to provide a unique and comprehensive ergonomic

analysis. The EAWS comprises different sections (postures and

movements, action forces, manual material handling, and upper

limb, respectively) whose outcome can be integrated into a final

score. Similarly, with the composite ergonomics risk assessment

(CERA) (Szabò and Dobò, 2018) technique, a unified evaluation

can be obtained after a separate determination of the different

ergonomic risks, also based on workplace history. Lastly, the key

indicator method (KIM) was introduced to tackle manual

handling operations (KIM-MHO) (Klussmann et al., 2017),

lifting, holding and carrying (KIM-LHC) and pulling and

pushing (KIM-PP) (Steinberg, 2012).

Nevertheless, all these pen-and-paper techniques must be

employed by trained experts as an offline procedure after

collecting observations/recordings, which is rather time-

consuming and does not provide immediate results. For this

reason, several attempts were made to automatise the completion

of some of the worksheets mentioned above to perform an online

ergonomics evaluation. Specifically, the RULA (Shaikh et al.,

2003; Ray and Teizer, 2012; Vignais et al., 2013; Haggag et al.,

2013; Puthenveetil et al., 2015; Plantard et al., 2017), the REBA

(Busch et al., 2017; Van de Perre et al., 2018) and the EAWS

(Bortolini et al., 2018; Malaise et al., 2019) were considered,

respectively, and combined with human motion data in both

virtual and real environments. However, the main limitation of

the observational methods still stand, i.e., the dynamics of the

tasks are considered to a limited extent (e.g., interaction forces

are considered constant).

2.1.3 Direct measurements
To address humans’ physical internal exposure, direct

measurements collected on the human subjects through

suitable sensor systems were generally integrated with more or

fewer complex models of the human body. Several algorithms

were proposed for estimating muscle tensions and joint loads

using detailed models of the human musculoskeletal system. One

of the most well-known is the algorithm underlying the open-

source software “OpenSim” (Delp et al., 2007). This platform

enables the creation of dynamic simulations of movement that

integrates off-the-shelf models describing the anatomy and

physiology of the elements of the neuromusculoskeletal

system and the mechanics of multi-joint movement. Similar

capabilities are offered by the simulation software “Anybody”

(Damsgaard et al., 2006), which is capable of analysing the

musculoskeletal architecture of humans as rigid-body systems.

Hence, standard methods of multi-body dynamics (i.e., inverse

kinematics and inverse dynamics) can be applied but integrating

into the model a reasonable representation of the muscle

geometry and the recruitment pattern of the muscles. An

analogous package is virtual interactive musculoskeletal

system (VIMS) (Chao et al., 2007). Besides the massive

studies behind the development of these platforms, there are

also some minor works whereby muscle models were introduced
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to account for internal exposure (Bhargava et al., 2004; Forster,

2004; Nakamura et al., 2005; Fraysse et al., 2009; Millard et al.,

2013). All the above-mentioned platforms and methodologies

account for joint reactions (forces and torques) frommotion data

by using inverse dynamics and then optimisation techniques to

compute the muscle tensions. Nevertheless, due to the actuation

redundancy (the number of muscles is greater than the number

of degrees of freedom (DoFs) of the system), a desired motion in

terms of joint torques can be achieved by an infinite number of

activation patterns of the muscles. Another drawback is that the

complex musculoskeletal models underlying require the

identification of numerous parameters (Ayusawa et al., 2014).

Alternatively, they can be obtained by means of anthropometric

standards and tables (Herman, 2007; Winter, 2009) thus they are

not subject-specific.

An alternative solution is to measure muscle activation using

electromyography (EMG) directly and exploit empirical models

(Hill, 1938; Stroeve, 1999) to convert such activation into muscle

tensions (Buchanan et al., 2004). One of the first attempts at

using an EMG-based technique for the monitoring of low back

physical exposure and cumulative compression was made by

Mientjes et al. (1999). Afterwards, experimentally recorded EMG

signals have been used in several studies to directly drive

simulations of upper (Manal et al., 2002; Village et al., 2005;

Nikooyan et al., 2012; Pau et al., 2012) and lower (Lloyd and

Besier, 2003; Kumar et al., 2012; Manal et al., 2012; Sartori et al.,

2012; Meyer et al., 2017) extremity musculoskeletal models.

Whole-body muscle tension estimation by means of optical

motion-capture and EMG measurements was enriched with a

visual feedback interface in (Murai et al., 2010). Nevertheless,

even EMG-based approaches incorporate numerous parameters

and the use of EMG presents several drawbacks. The correct

placement of EMG sensors is quite difficult and their relative

movement in dynamic conditions makes the estimates

questionable (Farina and Merletti, 2001). EMG signals are

inevitably affected by various noise signals or artifacts (De

Luca et al., 2010). Finally, many EMG-based techniques are

conceived for specific body parts. As such, due to the inner

complexity and reduced practicability, the methods based on

direct measurements have been implemented nearly entire in

laboratory settings.

Aiming to meet contemporary industry demands, some

innovative approaches have been recently proposed. The latter

evaluate human physical workload by relying on the online

monitoring of human kinodynamic3 state through reduced-

complexity estimation algorithms. The objective is to also

account for the workers’ internal exposure, which is neglected

by traditional ergonomic tools, while overcoming the limitation

of the laboratory-based methods, impractical and hardly

customisable. For instance, Maurice et al. (2017) proposed

multiple ergonomic indicators that are capable of quantifying

exhaustively and concisely the physical demands endured by a

worker when executing various manual activities, addressing

both postures/movements and forces/torques. By exploiting

the principles of humanoid robotics to model human

kinodynamics, Lorenzini et al. (2022) proposed an online

multi-index approach to account for multiple potential

contributors to MSDs, also giving importance to the subject-

specific requirements of the workers. In the same line, Gholami

et al. (2022) introduced a set of quantitative metrics to take into

account operators’ ergonomics in the assessment of teleoperation

interfaces. Still chasing a reduced-complexity approach but

adding a certain level of accuracy for more sophisticated body

districts, Ventura et al. (2021) developed a flexible model of the

human spine mechanics for assessing compressive loading.

Finally, Latella et al. (2019) presented a stochastic

methodology for the simultaneous floating-base estimation of

the human whole-body kinematics and dynamics toward online

ergonomics assessment. Nevertheless, this approach is thus far

rather limited.

2.2 Cognitive workload

The evidence that excessive cognitive demand at work can

harm the workers’ health and performance has led to a renewed

interest in cognitive load theory (CLT). CLT examines the

interaction of cognitive structures, information and its

implications (Sweller et al., 1998). Precisely, the term

“cognitive load” refers to the amount of processing that

performing a particular task imposes on the learner’s

cognitive system (Paas et al., 2003). Xie and Salvendy (2000)

provide a detailed conceptual framework of human information

processing. Definitions of instantaneous load, peak load,

accumulated load, average load, and overall load are presented

to investigate the trend of cognitive load over time as a response

to stimuli that an activity and/or environmental conditions are

imposing on the subject. The following sections investigate the

current state-of-the-art about mental workload modelling and

cognitive cost estimation for performing tasks, according to the

three main categories defined at the beginning of Section 2 and

displayed in Figure 3.

2.2.1 Subjective judgements
Thus far, narrative interviews and subjective rating scales

represent the most commonly used method to measure the

cognitive load both in laboratory and industrial settings

(Rubio et al., 2004; Leppink et al., 2013). NASA-TLX (Hart

and Staveland, 1988; Hart, 2006), subjective workload

assessment technique (SWAT) (Reid and Nygren, 1988) and

3 The term “kinodynamic” measurements is used, in this article, to
indicate the variables associated with both human kinematics
(i.e., positions, velocities, and accelerations) and dynamics
(i.e., quantities related to interaction forces).
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subjective workload technique (SWORD) (Vidullch et al., 1991)

are just a few of the available questionnaires in the literature. Self-

ratings nevertheless have many limitations (Naismith et al.,

2015). The main drawback is the assumption that people are

able to introspect on the cognitive processes and report the

amount of experienced cognitive effort (Naismith et al., 2015).

Additionally, they are often affected by many biases, such as

acquiescence and social desirability, and their outcome may

appear questionable. Lastly, they work offline and the deep

comprehension of collected data requires specific skills in the

field of cognitive ergonomics and cognitive science.

More recently, researchers presented tools intended to be

used directly by workers involved in the manufacturing domain.

For instance, the work in Thorvald et al. (2019) presented a factor

assessment tool and a handbook, denoted cognitive load

assessment for manufacturing (CLAM), to estimate the mental

workload that human operators were expected to employ within

specific assembly tasks and workstation layouts. End-users were

asked to reflect on different aspects of their daily activity and rate

factors on a scale from 0 to 8. A specific combination of them

resulted in the final cognitive load score.

2.2.2 Systematic observations
To assess the cognitive effort in performing industrial

activities, two strategies have been adopted based on direct

observations of the involved operators: 1) performance

measures on either the first or secondary task and the 2)

analysis of behavioural characteristics and modifications.

Task- and performance-based techniques involve

measurements on both the primary and secondary tasks. The

idea behind is that people have limited resources, so tasks

performed concurrently are supposed to reflect the level of the

cognitive load imposed by the primary task (Kaber and Riley,

1999; Paas et al., 2003; Wu and Li, 2013). State-of-the-art

measurements to assess the performance are task time, run

time, reaction time, accuracy, and error rate. Despite the high

sensitivity and reliability, this technique interferes considerably

with the usual task execution, making it rarely applicable, even in

laboratory settings.

In an effort to design less obstructive monitoring systems

and maximise users’ comfort, the applicability of external

sensory systems has been recently examined. Early studies

exploited camera sensors for automatic emotion recognition

(Glowinski et al., 2011; Karg et al., 2013; Kleinsmith and

Bianchi-Berthouze, 2013; Roy et al., 2020) and expression

synthesis (Karg et al., 2013; Kleinsmith and Bianchi-

Berthouze, 2013), as well as activity-related behavioural

indexes of stress (Giakoumis et al., 2012; Aigrain et al.,

2015). A quantitative and online framework was developed

by Lagomarsino et al. (2022b) to monitor the cognitive

workload of human operators by detecting patterns in their

motion directly from the input images of a low-cost RGB-D

camera. The method examined how industrial work affects

people relative to their attention distribution, decision-making,

mental overload, frustration, stress and errors. Head pose

estimation and skeleton tracking were exploited to

investigate the workers’ attention and assess hyperactivity

and unforeseen movements. Despite the growing interest in

the topic, assessing cognitive load through visual monitoring

systems is a moderately new topic (Bisogni et al., 2022) with the

potential to bring solutions from the laboratory to the actual

shop floor.

2.2.3 Direct measurements
A great deal of previous research into cognitive load

assessment explored direct measurements of physiological

signals. Physiological measurement of workload relies on the

physical reaction of the human body to an intense mental

demand (Sweller et al., 1998). The monitoring of brain

activity is the most direct and accepted form to investigate

cognitive processes. The electroencephalogram (EEG) provides

an online, continuous measure of fine fluctuations in

instantaneous mental load (Al-Shargie et al., 2016; So et al.,

2017; Yang et al., 2019). Nevertheless, motion artefacts and noise

due to electrical interference, breathing and heartbeat make the

EEG signal not deployable in industrial settings.

Work-related stress and strain were found to alter

sympathetic-parasympathetic nervous system balance and

raise the risk of heart diseases (Hughes et al., 2019).

Therefore, the short-term cardiovascular consequences of

mental work were investigated. In the literature, several heart

rate variability (HRV)-derived metrics were defined in the time,

frequency and non-linear domain. Typically, cognitive workload

leads to a decrease of time-domain measures (e.g. mean RR

intervals (Henelius et al., 2009)), as well as a reduction of low

frequency (LF, 0.04 − −0.15 Hz) and high frequency (HF,

0.15 − −0.4 Hz) powers, while the ratio LF/HF increases

(Durantin et al., 2014; Delliaux et al., 2019).

Besides, the galvanic skin response (GSR, also known as

electrodermal activity, EDA) has been widely studied for

indexing variations in sympathetic arousal associated with

emotion, cognition, and attention (Critchley, 2002; Poh et al.,

2010; Setz et al., 2010). GSR or EDA is the measurement of the

continuous changes in the skin’s electrical conductance arising

from the diverse sweating activity of the human body.

Researchers identified two components in high-resolution

EDA signal, i.e., the tonic (skin conductance level, SCL) and

phasic response (skin conductance response, SCR), and used

derived metrics to quantify cognitive states and stressful periods

(de Santos Sierra et al., 2011; Kyriakou et al., 2019; Han et al.,

2020).

More recent studies also included measures of respiratory

activity (e.g., respiratory rate, volume and concentration of CO2

in airflow) (Grassmann et al., 2016), eye activity (e.g., eye blink

rate, intervals of closure, horizontal eye movement, pupil dilation

and eye fixation) (Ahlstrom and Friedman-Berg, 2006; Coyne
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and Sibley, 2016), cortisol level (Carrasco and de Kar, 2003), and

speech measures (e.g., pitch, rate, loudness, jitter and shimmer)

(Yin et al., 2008).

Psychophysiological measurements provide objective and

quantitative information and permit the visualisation of

continuous trends and the identification of detailed

patterns of load. Nevertheless, signal acquisition requires

expensive and impractical systems that are highly sensitive

to human movements and often hinder users’ daily activities.

For the above-mentioned reasons, the adoption of the

technology in real-world scenarios is subject to certain

limitations.

3 Human monitoring hardware and
systems

In the previous sections, we went through the current

standards and methods for ergonomics assessment applicable

to the industry. All the presented indexes and algorithms need, to

a certain extent, monitoring of human state. We then inspect the

literature by searching for human monitoring hardware and

systems, by first selecting keywords related to broad concepts

(e.g., “human monitoring,” “human sensors,” “biosensors,”

“biosignals”) and then specific categories (e.g., “motion-

capture,” “electrocardiography,” “electromiography,”

“electroencephalography”). Within the scope of this review

article, we divide the monitoring systems into two separate

groups, based on the measured quantities, namely (i) body

kinodynamics data and (ii) biosignals and physiological

indicators (see Figure 4). In each group, the choices of sensors

and devices impose challenges that should comply with the rigid

rules imposed in industrial settings, namely:

• to guarantee task timing and data synchronization

requirements (online measurement);

• to ensure workers’ safety and avoid excessive

encumbrance, as well as physical and mental demand

(non-invasiveness4);

• to ensure the quality of measurement (accuracy and

precision).

It can be noted that these indicators have commonalities with

those introduced in Figure 2 about the workload assessment. The

challenges and the environmental limitations are in fact similar.

It is not our interest to address the economical cost comparison

of the devices market panorama.

3.1 Body kinodynamics

Biomechanical analysis requires data on the posture and forces

exerted by a specific worker during their duties. It means that online

FIGURE 4
Overview of the different available technologies for the measurement of kinodynamic variables as well as physiological parameters to account
for human ergonomics.

4 With the term “non-invasiveness” is intended the absence of physical
constraints or interference to the subject.
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monitoring of body posture and interaction forces is required to

estimate the time series data of physical workload.

Human postures are commonly obtained by motion-capture

(MoCap) systems. Indeed, realistic skeletal simulation is required to

perform the synthesis and analysis of the performed humanmotions

in time. In the synthesis phase, MoCap data leads to improvements

in the human model rendering, while the analysis aspects help the

researchers in obtaining critical insights into humanmusculoskeletal

systems, such as body joints angles and velocities, movements of

body center of mass, body segments poses, etc. Different

technologies and solutions have been developed to capture

motion, hereafter we analyse some of the most widespread

examples in the literature along with some industrial

applications. Camera-based systems with infrared (IR) cameras

can be used to triangulate the location of retroreflective rigid

bodies (markers) attached to the targeted subject (Nagymáté and

Kiss, 2018; Chatzitofis et al., 2021; Hu et al., 2021). In addition,

systems based on inertial measurement units (IMU) that track the

relative movements of articulated structures have become popular

for their versatility (Vignais et al., 2013; Caputo et al., 2018; Marín

and Marín, 2021). Moreover, at the time of writing, markerless

optical MoCap systems undergo significant research progress with

high application potential. These systems rely on image processing

and deep learning techniques to track human skeletal information

online using off-the-shelf and relatively cheap RGB-D cameras

(Bortolini et al., 2020; Kim et al., 2021c).

Let us now list some literature examples of MoCap applications

in industry. The aforementioned MoCap technologies were

exploited, for example in Maurice et al. (2019), where a dataset

of human motions in industry-like activities, fully labelled in line

with EAWS, is presented. First, this dataset is applicable for

classifying, predicting, or evaluating human motions in the

industrial environment. Second, it supports the robotics

communities to provide collaborative solutions aiming at

improving the workers’ ergonomics. In this study, the Xsens

MVN Link and Qualisys were used as inertial and marker-based

optical MoCap systems. Besides, the data collection procedure was

recorded with two video cameras to be further analysed with the

OpenPose library (Cao et al., 2021). A similar logistics-dataset was

also presented in Niemann et al. (2020) where picking and packing

scenarios were recreated to be used in recognition and analysis of

human activities in logistics applications.

Currently, the industrial exploitation of these technologies is

challenging due to their inherent limitations (Mündermann et al.,

2006; Damgrave and Lutters, 2009; Bailey and Bodenheimer,

2012; Lopez-Nava and Angelica, 2016; Patrizi et al., 2016; Colyer

et al., 2018; Yahya et al., 2019; Menolotto et al., 2020; Kanko et al.,

2021). The need for highly specialised equipment, regular

calibration routines, limited capture volumes, inconvenient

markers or specialised suits, as well as the significant

installation and operation costs of these systems, has so far

greatly impeded the adoption of the optical marker-based

systems (e.g., OptiTrack™, NaturalPoint, Inc.) in industry

despite their compelling accuracy performances (Menolotto

et al., 2020). This major drawback can be overcome using the

latest advancement in markerless depth-based optical MoCap

systems (e.g., RealSense™, Inter Intel Corp.). Accordingly, the

users can freely perform their activities and tasks without wearing

a suit or having attached markers on their bodies. Nonetheless,

up to now, they offer less accurate measurements with respect to

the marker-based systems, and they similarly suffer from the

occlusion problem. Above all, optical systems in general induce

visibility issues due to the limited range of installed cameras. As

an alternative, IMU-based systems can track a variety of postures

in the cluttered environment associated with both indoor and

outdoor applications, indicating higher portability and

deployability. In fact, it is not necessary to place or install any

fixed infrastructure to use the inertia-based solutions. However,

drift, i.e., divergence of the output values from their real values

that happens in time, is the common issue with the IMU-based

systems that does not ensure an accurate absolute position of the

limbs (Damgrave and Lutters, 2009). Besides, artifacts due to skin

movement can act as sources of measurement noise during the

acquisition of both IMU-based andmarker-based systems, which

can lead to errors that, in some cases, are of the same order of

magnitude as the motions of the studied joints.

On the other hand, to measure the force exerted by a worker,

force sensors and force plates are mainly applied (Hoffman et al.,

2007; Arjmand et al., 2009). Force sensors can measure the

interactions between workers’ hands and the tasks’ objects. In

addition, most of the available force plates can simultaneously

measure the external ground reaction forces (GRFs) in three

planes, i.e. vertical, anterior-posterior, and medial-lateral.

However, the installation of the former and the portability of

the latter are issues that undermine their industrial adoption. As

a solution, wearable alternatives are suggested in the form of

gloves (Park et al., 2019) and shoes (Bamberg et al., 2008;

Muzaffar and Elfadel, 2020) equipped with force/torque

sensors. Instrumented gloves, for example, remove the need to

equip handles and tools with force sensors or pressure mats.

However, force sensor mats embedded within gloves acquire only

normal forces, require calibration and may shift during

measurements (Ranavolo et al., 2018). Notably, the wearable

insole pressure system can acquire the GRF and plantar pressure

data under the foot. Moreover, they can be easily inserted or

attached to workers’ safety boots with a minimal hindering level.

3.2 Biosignals and physiological indicators

As we stated in Section 2.2, investigating physiological signals

can be helpful in understanding physiological-related aspects of

work, such as mental stress, mental fatigue, and physical stress.

The increased interest in these topics aroused from the recent

technological progress, making available wireless, off-the-shelf,

lightweight, and affordable biosensors.
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Biosensors can be classified as 1) traditional biosensors; 2)

portable biosensors; 3) noncontact biosensors.

Traditional modes of monitoring physiological quantities

rely on hospital-based diagnostics devices that, in a controlled

environment, guarantee high-quality signals. However, they

usually require trained staff and in most cases an offline post-

processing phase to extract meaningful features. In this context,

more portable wearable biosensors emerged with the specific

attempt to extend the biosignals’ gathering to nonclinical

settings. Recent advancements in technology made available a

vast number of biosensors convenient (e.g., headsets, chest straps,

and wristbands) that can be deployed to check the ergonomic

state of the workers in the field.

Chest-strap sensors were primarily used for monitoring the

cardiac activity (e.g., HRV) of workers. Chest straps offer an easy

and accurate alternative to traditional electrocardiography

(ECG) measurements. Although progress in technology design

has reduced the bulkiness of the sensor on the strap, the

acceptance and practicality of such a device are still in their

initial stages (Hinde et al., 2021). As stated in Section 2.2, a few

researchers attempted to assess workers’ mental stress and

cognitive load based on brain waves collected from EEG

headsets. The main advantage of these wearable devices is that

they show compelling rapidity performances in pointing out

changes in workers’ mental state fulfilling the online

requirements. Nevertheless, capturing high-quality EEG

signals in the field is more challenging compared with other

physiological signals due to several intrinsic artifacts (e.g., eye

blinking and facial muscle movement) (Mijović et al., 2017).

Among different wearable biosensors, wristband-type biosensors

allow researchers to acquire multiple physiological signals (e.g.,

photoplethysmography, EDA, and skin temperature) without

interrupting workers’ ongoing tasks. However, measuring

physiological signals using a wristband-type biosensor at the

industrial floor is still challenging because of the large number of

extrinsic signal artifacts and distortions that come from workers’

movements, sensor displacement, environmental noises, and the

lower quality of sensor electrodes compared with wired

biosensors (Jebelli et al., 2019).

Finally, we have noncontact sensors that are able to acquire

psychophysical signals without any contact between the sensor

probe and the human body, guaranteeing the best performances

in terms of non-invasiveness. Pupil diameter, gaze data, gaze

duration, and eyelid closure patterns can be remotely recorded

through infrared eye-gaze tracking systems. Eye-tracking is a

functional and highly neuro-ergonomic solution for gathering

both mental workload and relevant practical attentional

information. It is a non-invasive and easy to set up device,

allowing for consistent data collection. Moreover, it does not

impose any physical burden on users, and the calibration routine

is fast and straightforward. A variety of measures were described

in the literature that elucidates the efficiency of visual search

related to mental workload, including fixation count, fixation

duration, fixation rate, the fixation to saccades ratio, average

saccade distance and velocity, peak saccade velocity, number of

long fixations, and average pupil diameter (Ahlstrom and

Friedman-Berg, 2006). Online processing of the

aforementioned metrics does not require significant

computational power and is not as complex as EEG or other

brain imaging techniques.To recap, with the aim to assess

workers ergonomics in industrial environments, the preferred

sensor systems should be lightweight, easy to wear and/or set up

without hindering workers’ activities and ensuring user comfort

even for prolonged usage. Concerning body kinodynamics,

inertial-based devices provide accurate measurements but may

be impractical in some task conditions. On the other hand,

external sensor systems, such as cameras, offer non invasive

analysis of the human motion but suffer from occlusion and

feature limited accuracy. Besides, biosignals and physiological

indicators provide useful insight about the human state. These

have shown a good potential for offline validation of possible

ergonomic interventions, but may be not appropriate for online

application.

4 Ergonomics in human-robot
collaboration

This section presents the online compensatory measures and

strategies that a robotic partner, fed with the ergonomic

evaluation of an operator (Section 2) and/or with the data

collected with available monitoring technologies (Section 3),

can put in place to mitigate the human workload. To focus

the literature analysis on ergonomic collaborative robotics, we set

the conceptual boundaries on the terms describing HRC in

relation to the industrial sector (e.g., “human-robot,”

“collaborative robot,” “manufacturing,” “automation”) and

human ergonomics (e.g., “physical,” “cognitive,” “workload,”

“stress,” “effort”). The polar plot in Figure 5 illustrates the

production of papers linked to our research query over a ten-

year time window (from 2011 to 2022).

4.1 Physical ergonomics in human-robot
collaboration

Within the scope of this review article, we framed the

different approaches to address workers’ physical ergonomics

during HRC in two macro areas. On the one hand, several

authors elected some among the systematic observations

methods presented in Section 2.1.2 to either identify a more

ergonomic human posture or define a cost for task planning and

role allocation. Hence, the criteria to drive HRC were selected

directly among the gold standard ergonomic tools. On the other

hand, assumptions were made by some researchers to indirectly

achieve more ergonomic conditions for the workers, e.g. the
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reduction of human joint torque/fatigue or the optimisation of

the human field of view/arm kinematics would improve task

ergonomics. For sake of readability, in the following, these two

categories are addressed as standard-based and cost-based

approaches.

4.1.1 Standards-based approaches
The works that deem ergonomics in HRC in a direct way are

presented and grouped in the following according to the

observational method employed. Above all, the REBA method

was exploited by a bunch of researchers. Busch et al. (2017) first

adopted REBA to improve the workers’ comfort and safety

during a human-robot collaborative task. The human posture

that minimised the score returned by REBA was computed and

the robot pose was adjusted online to let the human perform the

task in the optimised body configuration. A graphical interface

was also developed here to inform the user about the ergonomics

evaluation results. The differentiable version of REBA was then

introduced in a later work (Busch et al., 2018) to simultaneously

design robot motion (in the same way as before) and plan the

sequence of actions in the task. The REBA technique was also

adopted in Van de Perre et al. (2018) to both predict and optimise

human ergonomics during an hybrid co-carrying task. First, the

human postures from hands poses were computed for a set of

states (i.e., possible configurations to manipulate the object) and

an ergonomic cost according to REBA was assigned to each state.

Next, the sequence of states was found that minimise this cost,

resulting in a joint plan for the two agents that was optimised for

human ergonomics. On the other hand, Zanchettin et al. (2019)

presented a control strategy to facilitate the human to assume a

more convenient body configuration while operating on a bulky

object held by the robot. The robot moved the workpiece so that

the human was induced to assume his/her most natural and

ergonomic posture according to REBA. Finally, El Makrini et al.

(2019) employed the REBA to set a criterion for task allocation in

a human-robot assembly operation. Each sub-task of the

assembly was assigned to either the robot or the human based

on the task requirements, the capability of the agents but also the

evaluation of the human body posture given by REBA.

Right after the REBA, the most commonly used standard

ergonomics tool within HRC is the RULA method, likewise

posture-based. Ferraguti et al. (2020) employed RULA within

the proposed architecture for human-robot co-manipulation.

Different objects were considered during the experiments and

positioned in the most comfortable way for the user to operate

them, estimated based on the postures with the lower RULA

score. In addition, the position of such objects could be

conveniently adjusted directly by the user thanks to the robot

admittance control. Similarly, Shafti et al. (2019) presented an

approach to continuously invoking cooperative robot

movements that meet the human partner’s ergonomic

postures according to RULA. Conversely, a simulation

presented in Zacharias et al. (2011) adopted RULA not to

identify ergonomic configurations for the humans but to plan

a more human-like robot motion, which appeared safer and

more interpretable from the human point of view. Human-robot

role allocation is instead addressed by Merlo et al. (2021), which

proposed a RULA-based model for physical risk prediction. The

developed online strategy can assign actions among the agents

(i.e., human or robot) according to a human physical state

indicator, called kinematic wear, that can account for the

usage of each joint based on RULA guidelines. From the same

research group, Fusaro et al. (2021) proposed a method to

generate robot plans for both autonomous and human-robot

FIGURE 5
Number of papers related to the main assessment variables in physical and cognitive ergonomics.
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cooperative tasks taking into account human ergonomics. The

developed approach allowed the robot to online adapt its plan to

the human partner, by choosing the tasks that minimize some

execution costs that entailed human availability, decisions, and

ergonomics. The latter was specifically addressed by using the

WISHA index which, unlike REBA and RULA, considers also the

task frequency, duration and the involved weights. Task planning

for human-robot collaborative tasks was also addressed in Faber

et al. (2016), Liau and Ryu (2020) and Pearce et al. (2018), by

determining the ergonomic cost with the OWAS, the RULA and

the SI, respectively, but in simulation or offline, at a later stage.

Lastly, it is worth mentioning some studies in which

observational methods were employed to evaluate HRC

workstations offline (Gualtieri et al., 2020; Colim et al., 2021;

Dimitropoulos et al., 2021; Palomba et al., 2021) or in simulation

(Castro et al., 2018; Heydaryan et al., 2018; Lietaert et al., 2019;

Mateus et al., 2019; Laudante et al., 2020).

4.1.2 Cost-based approaches
The studies that indirectly address human ergonomics

demands in HRC are illustrated hereafter, grouped according

to the quantity employed as a cost. In Bestick et al. (2016, 2015)

the most convenient robot configurations when handing over an

object to a human partner were investigated. A simple cost

function was assumed a priori considering the distance of

human joints from a neutral position. The higher this

ergonomic cost, the less likely the associated human body

configuration, leading to a specific robot pose. Instead, in

Bestick et al. (2018), the ergonomic cost was learned online

via Bayesian inference, based on implicit physical queries from

the robot. Katayama and Hasuura (2003) introduced five

different optimisation models to characterised human

comfort. Among the latter, the “medium joint angle index”

was selected by Sisbot and Alami (2012) to model arm

comfort, which, along with human safety and visibility, was

employed as a criterion to generate ergonomic robot paths

toward the object transfer point (OTP) for handover. The

extensions of this human-aware manipulation planner took

into account also HRC constraints (Mainprice et al., 2011) as

well as human mobility (Mainprice et al., 2012).

In these studies, the ergonomic cost selected only consider

the kinematics of the human actions. On the other hand, the

“joint torque model” proposed in Katayama and Hasuura (2003)

was instead employed by Parastegari et al. (2017) to predict an

OTP that matches the human receiver preferred position. The

overloading joint torque, i.e., the torque induced only by the

effect of an external load, were instead employed as a cost in Kim

et al. (2018a); Lorenzini et al. (2018); Kim et al. (2019, 2021b) to

optimise the human body configuration in co-carrying or co-

manipulation activities according to human stability, shared

workspace and task constraints. The cumulative effect of the

overloading joint torque, i.e., overloading fatigue, was then

considered in a later work (Lorenzini et al., 2019) to trigger

the adaptive robot behaviour at the onset of physical fatigue.With

the aim to plan a shared human-robot assembly task, in Michalos

et al. (2018) a multi-criteria method was proposed that employs a

set of quality, productivity but also ergonomics criteria to identify

the best planning scenario in a simulated environment. A fatigue

model as well as the NIOSH index were exploited here as costs for

the search algorithm. Lamon et al. (2019) introduced a set of

indexes to evaluate agents performance combined with an offline

allocation algorithm for optimal role allocation in an industrial

assembly task. Among these indexes, agent dexterity and effort

were proposed to consider human comfort and physical fatigue

thus ergonomics from both a kinematic and dynamic point of

view, respectively. In the last two studies, the fatigue model was

based on the one proposed in Ma et al. (2009).

The multiple ergonomic indicators defined by Maurice et al.

(2017) were employed to orient the design of a CoBot, but the

proposed set of variables, due to their ease of computation, may

be employed online for HRC. Similarly, in Rapetti et al. (2019) an

optimisation problem was formulated, where ergonomics targets

such as muscular effort and body posture were mapped to human

kinodynamic quantities such as joint torque and joint angles/

velocities, to develop a human-aware robot controller for HRC.

Alternatively, in Marin et al. (2018) the optimisation of

“contextual ergonomics models” was proposed to successfully

reduce the muscle activation of subjects performing a drilling

task. The presented models were Gaussian process latent variable

models trained offline with detailed musculoskeletal simulations

but can be employed in a low-dimensional latent space, featuring

potentially online capabilities.

Lastly, human effort can be expressed through physiological

measures. In this view, Peternel et al. (2017, 2018) presented a

method to adapt online the robot behaviour to human fatigue,

which was modelled based on human muscle activity measured

with EMG sensors.

4.2 Cognitive ergonomics in human-robot
collaboration

In addition to ensuring the operator’s physical safety

and comfort, the cognitive resources demand and mental

stress induced by the close interaction with a CoBot should

not be overlooked. Early interviews with the potential future

users (i.e., actual industrial workers) of these robots

revealed controversial attitudes and social cues

(Wurhofer et al., 2015; Elprama et al., 2016, 2017; El

Makrini et al., 2018). This underlies the need to gather

quantitative data giving insights about the mental

processing system.

A number of cross-sectional studies recorded the

physiological activity of the human during industrial-

mimicking tasks in laboratory settings and post-processed the

acquired biosignals to appraise how cognitive load develops
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during HRC. Novak et al. (2011) assessed physical and cognitive

load during haptic interaction with a robot by measuring ECG,

GSR, respiratory rate and peripheral skin temperature. The

combination of the last two measurements permitted

estimating the mental cost in physically demanding tasks with

haptic robots. Nevertheless, the proposed setup requires

impractical equipment (i.e., a thermistor flow sensor), making

the technique hardly deployable in the industrial sector. Arai

et al. (2010) measured the mental strain in human-robot

collaborative assembly tasks by recording the skin

conductance and asking participants to fill a subjective

questionnaire. An increase in psychophysiological conditions

was found when a robot moved closer to a worker, with high

approaching speed and without notifying its motion in advance.

Analogous results were achieved by Kulić and Croft (2005,

2007a,b) exploiting a more comprehensive range of

physiological measurements (i.e., heart rate, corrugator muscle

activity, GSR) and by Höcherl et al. (2017) and Bergman and van

Zandbeek (2019) through subjective judgements.

The interrelations between cognitive fatigue, operator sex

and robot assistance level were also examined to optimise HRC

system designs with respect to task performance and user

experience. According to Hopko et al. (2021), the cognitive

effort, measured by HRV signals, had a negative impact on

task efficiency but did not change accuracy or precision.

Instead, the assistance through automation was subjectively

perceived and rated in questionnaires as benefitting

performance in female subjects. Results of subjective

judgements and secondary-task performance in Kaber and

Endsley (2004) indicated that, when a more significant

percentage of primary task time was automated, operator

perceptual resources were freed-up and monitoring

performance on the secondary task improved. In addition,

Héraïz-Bekkis et al. (2020), Dragan et al. (2013), and Höcherl

et al. (2017) found that the feeling of perceived safety was

enhanced when the robot motion was fluent and predictable.

More recent attention has focused on the provision of smooth

trajectories to generate psychologically acceptable motions

without adding disturbances or uncomfortable sensations to

the worker (Rojas et al., 2019, 2021). However, variations in

perceived level of cognitive workload with the proposed robot’s

control strategies has not been tested yet.

Lately, three machine learning modalities were presented and

compared in Rajavenkatanarayanan et al. (2020) to extract relevant

features from ECG and GSR data, collected during robotic-assisted

assembly tasks. The support vector machine (SVM) provided the

best accuracy of 92.85% in classifying the cognitive ergonomic risk

(i.e., low or high) potentially online.

With the aim to not introduce an additional source of

discomfort for the worker (e.g., wearability constraints

introduced by biosensors) in manufacturing activities,

Lagomarsino et al. (2022a) monitored the mental effort and

stress level of human operators by detecting patterns in their

motion directly from the input images of a stereo camera. In

particular, the online and quantitative framework examined

operators’ attention distribution, high activity periods and

body language while interacting with an industrial CoBot. The

degree of robot’s transparency and observability provided to the

human worker had an influence on the development of cognitive

workload. Moreover, changes in experienced mental effort

between human and automated assistance were mainly

correlated to the operator’s familiarity with the technology

(Wurhofer et al., 2015). The transparency of robot behaviour

was also considered by Dragan et al. (2013), Faber et al. (2016)

and Gombolay et al. (2017) as criteria influencing cognitive

ergonomics and included in the algorithm for ergonomic role

allocation in hybrid industrial settings. In addition, Eimontaite

et al. (2019) explored the impact of graphical signage on

participants physically collaborating with a semi-autonomous

robot. According to data collected by questionnaires and facial

expression recognition, participants reported decreased anxiety

levels and negative attitudes toward the robot. On the other hand,

the task-relevant signage supported task performance accuracy

rate and response time.

All of the studies reviewed here aim to appraise the impact of

industrial CoBots and their actions on operators’mental states in

hybrid environments. The works of Lambrechts et al. (2021) and

Gualtieri et al. (2021a) identified multiple cognitive ergonomics

variables in human-robot collaborative systems and underlined

the importance of monitoring the human state and interpreting

nonverbal communication. Indeed, this information can be

exploited to design frameworks capable of enhancing the

interaction between humans and robots by adapting online

the behaviour of the robotic teammates to operators’ needs.

The HRC solutions would build the foundations for

improving cognitive ergonomics at work and mitigating the

burden of work-related mental disorders worldwide.

Research following this principle is usually referred to as

“affective robotics” (Braezeal et al., 2016), though current

approaches are mainly devoted to social or service robots.

Moreover, the researchers are encountering difficulties due to the

multidimensional construct and high subjectivity of cognitive

processing and the typical human attitude of being ashamed and

concealing about psychological state. In Nicora et al. (2021), a

human-driven control architecture including a CoBot and an

interactive virtual Avatar is envisioned for promoting good

mental health. Preliminary attempts of introducing affective

robotics in industrial settings were presented by Landi et al.

(2018); Villani et al. (2018b, 2020). The proposed system

estimated the user’s mental fatigue by analysing HRV and online

tuned the velocity of the slave, forbade hazardous manoeuvres or

provided assistive forces at the master interface. The interesting

study by Messeri et al. (2021) offered a novel HRC paradigm where

the CoBot adapted its behaviour online based on the mutual

evaluation of the operator’s stress and productivity. More

specifically, the actual HRV parameters and cycle time were
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compared to the reference values retrieved by a game theory

approach. The outcome was then exploited at each task

execution pipeline loop to vary the pace of interaction for

simultaneously mitigating the human cognitive workload and

maximising productivity. The trade-off between system

productivity and acceptable amount of human cognitive

workload in industrial tasks was also tackled by Lagomarsino

et al. (2022c). A multi-objective optimisation problem and an

online HRV-based decision-making algorithm were implemented

to tune the total execution time and smoothness of the trajectories

accomplished by the CoBot. This permits finding the most

appropriate pace of interaction for each specific user and online

adapting CoBot’s motion characteristics to fulfil changes in the

individual needs.

Despite the growing concern for employees and employers

worldwide in work-related stress and psychosocial risks, our

careful investigation identified Lagomarsino et al. (2022a,c);

Landi et al. (2018); Messeri et al. (2021); Nicora et al. (2021);

Villani et al. (2018b, 2020) as the only studies which attempt to

tackle the challenge of online assessing the cognitive demands

and mitigating pressures at work.

5 Discussions and outlook

The review shown in the previous section provides evidence

of the emerging and attractive interest in integrating ergonomic

appraisals, from both the physical and cognitive/organisational

points of view, with robotic strategies to mitigate the estimated

hazards. This section first presents the main scientific

contribution of this paper, i.e., the identification of the main

gaps and thus potential research topics in the integration of

ergonomics principles within HRC frameworks. Next, the

operational implications are discussed and the practical

contribution is highlighted. Then, some insights for possible

future studies are provided and last, the limitations of this

study are illustrated.

5.1 Identification of the gaps

Tables 1, 2 report the allocation of the leading research

themes according to the monitoring systems and the

ergonomic assessment method in the last 10 years (from

2011 to 2022). As can be seen from Table 1, posture-based

observational methods (such as RULA and REBA) are already

widely studied to assess physical ergonomics in HRC and

therefore known and consolidated from a research point of

view. Nevertheless, as already mentioned, such techniques are

limited to the kinematics of the workers’ actions. Just a couple of

researchers considered NIOSH/WISHA and SI, which take into

account also the task frequency, duration and the weight of the

involved objects. On the other hand, pen-and-paper

comprehensive techniques (i.e., including loads, action forces,

TABLE 1 Physical ergonomics in industrial HRC: distribution of works among main monitoring systems and ergonomic assessment techniques.

Physical ergonomics in
human-robot
collaboration

Systematic observations Direct measurements

Pen-and-paper Model-based

Posture-based Comprehensive Motion and forces Electromyography
(EMG)

Kinodynamics Inertial-based
Systems

Shafti et al. (2019), Van der Spaa
et al. (2020), Merlo et al. (2021)

Kim et al. (2018a), Kim et al.
(2021b), Kim et al. (2019), Lorenzini
et al. (2018), Lorenzini et al. (2019),
Rapetti et al. (2019)

Camera-based
systems

Bestick et al. (2015), Busch et al.
(2017), Busch et al. (2018), Pearce
et al. (2018), Zanchettin et al. (2019),
El Makrini et al. (2019), Ferraguti
et al. (2020), Fusaro et al. (2021)

Mainprice et al. (2011), Mainprice
et al. (2012), Sisbot and Alami.
(2012), Marin et al. (2018),
Parastegari et al. (2017)

Force sensors Kim et al. (2018a), Kim et al.
(2021b), Kim et al. (2019), Lorenzini
et al. (2018), Lorenzini et al. (2019)

Physiological Traditional
Biosensors

Peternel et al. (2017), Peternel
et al. (2018), Peternel et al. (2019)

Portable
Biosensors

Noncontact
Biosensors
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repetitions, etc., such as EAWS) have been already proposed in

an automatised version but have not found their practical

application so far as a policy for HRC. In general, however,

the existing standard ergonomic tools present the great limitation

of not plenty considering the dynamics of the workers’activities,

as discussed in Section 3. The authors who combined direct

measurements from motion and force sensors with human

models always proposed relatively simple metrics to address

subjects’ ergonomic demands (e.g., comfortable body

configurations or decreased joint torque/fatigue). Indeed,

reduced-complexity human models with a limited number of

parameters allow fast identification processes and ensure minor

computational costs.

By offering online monitoring of both human kinematics and

dynamics, this approach allows an exhaustive and off-the-shelf

evaluation of the worker physical workload, while meeting the

requirements of the real factories. A few works exploit muscle

activity measured by EMG sensors to model physical fatigue in

hybrid environments. Despite their application limits in

industrial settings, biosensors and bodily signals could provide

worthwhile information to enable the monitoring of the human-

robot pair.

Table 2 demonstrates that physiological indicators are

instead broadly explored for assessing cognitive workload,

even if no well-established methodologies or commonly

accepted metrics for the cognitive workload exist in the

literature. Review results reveal a growing interest in

unobtrusive sensing and wearable devices. The latter permits

the (i) simultaneous monitoring of multiple physical and

physiological signals, sensitive to distinctive aspects of

workload, and their (ii) fusion to obtain more reliable insights

into human fatigue and cognitive processes.

Behavioural analysis is generally less investigated but,

according to the growth of paper production in recent years,

it represents an emerging research field in the context of

automatic detection of stress, frustration and anxiety. This is

motivated by the advantages of low cost and operational ease of

the assessment techniques. However, some disadvantages such as

vulnerability to motion and lack of burden-free calibration

solutions have not been completely addressed yet. In addition,

due to their intrinsic properties, the authors identify noncontact

sensors and cameras, maturing awareness and protection of

privacy, as potential sensing systems that scientists should

concentrate and focus on to develop the next generation of

industrial CoBots taking into account workers’ ergonomics.

5.2 Practical implications

Crucial to the integration of what we would call “ergonomic

HRC frameworks” in real factories is the applicability and

acceptability of the proposed solutions. The applicability is

related to the compatibility of the employed sensor systems

within the industrial environment, which are often noisy,

cluttered, and subject to frequent modifications. As discussed in

Section 3, to monitor the human state, both wearable and external

devices are available, which can be preferable depending on the tasks

to be executed and the work place characteristics and requirements.

In general, the sensor technologies should be selected to ensure a

reliable monitoring of the workers’ state but also maximise their

TABLE 2 Cognitive ergonomics in industrial HRC: distribution of works among main monitoring systems and ergonomic assessment techniques.

Cognitive ergonomics in
human-robot
collaboration

Systematic observations Direct measurements

Performance
measures

Behavioural assessment Physiological measures

Electrocardiography (ECG) Galvanic
skin response (GSR)

Kinodynamics Inertial-based
systems

Camera-based
systems

Eimontaite et al. (2019),
Héraïz-Bekkis et al. (2020),
Lagomarsino et al. (2022a)

Force sensors

Physiological Traditional
Biosensors

Messeri et al. (2021) Novak et al. (2011), Rajavenkatanarayanan
et al. (2020), Hopko et al. (2021), Messeri
et al. (2021)

Novak et al. (2011),
Rajavenkatanarayanan et al.
(2020)

Portable
Biosensors

Lagomarsino et al. (2022c), Landi et al.
(2018), Villani et al. (2018b), Villani et al.
(2020)

Noncontact
Biosensors
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comfort without hindering daily activity. Indeed, the acceptability is

related to workers’ opinion. Since they will firsthand use and

experience the proposed technologies, their approval is

fundamental for an effective integration. Hence, parallel to the

development of HRC strategies, their evaluation with real

workers in real factories is a key requirement. To date, several

questionnaires are available for this purpose, e.g., the system

usability scale (SUS) (Brooke, 1996), Borg scale (Borg et al.,

1985), Positive and Negative Affect Schedule (PANAS)

(Thompson, 2007) and also the NASA-TLX (Hart and

Staveland, 1988; Hart, 2006), but should be updated to keep

apace with the technological advancements. Even the most

efficient and ergonomic equipment, without users’ approval,

become meaningless. We believe that this review paper can be

useful not only for researchers willing to discover new research

themes but also to business executives and employee representatives

to get an overview about the state-of-the-art of HRC solutions to

address human factors and ergonomics. A continuous dialogue of

robotics (but non only) researchers with these entities to gather

information about applicability and acceptability as well as make

them aware of the available possibilities in terms of technology is

fundamental for advancements in this field.

On the other hand, to work along the right lines, robotics

researchers should receive counselling and support from

ergonomics specialist and practitioners to ensure the correct

use and applications of ergonomics principles. The exchange of

information between these two domains is currently too scarse

while it would enhance and fasten the integration of human

ergonomics within HRC. By providing simultaneously an

overview of the current tools to assess human ergonomics

along with the available technologies to monitor the human

state, up to their combination in the design of HRC frameworks,

we hope to highlight the importance of the constant interplay

between the ergonomics and robotics communities.

5.3 Future research trends

Despite the growing enthusiasm to understand the

development of MSDs and the multidimensional construct of

the mental workload, the study of human ergonomics in

collaborative robotic workstations is relatively a new topic,

still looking for practical solutions. Most of the studies on

focus on the impact of industrial CoBots and their actions on

operators’ physical and mental states. The literature collection

and analysis presented in this article shows that the actual

research tends to rely on elaborate and time-consuming data

post-processing. Consequently, available tools can be used almost

exclusively by experts or merely provide subjective and offline

insights about human ergonomics, inhibiting their applicability

in real-world environments. Preliminary attempts to gather

online data and accordingly adapt robot behaviour are

investigated. Although limited to laboratory experiments,

results show excellent potentials in mitigating work-related

biomechanical and cognitive workload without introducing

new occupational safety and health hazards. From a physical

point of view, the existing literature offers a variety of ergonomic

metrics that became well-established tools in the industrial

environment. In parallel, advanced modelling and estimation

algorithms can make human kinodynamic variables available

online, but most of the underlying techniques are still confined in

laboratory settings. As such, the most significant and prominent

research themes for physical ergonomics are the integration and

transfer of these methods in the workplace. To this end, the

potential of wearable sensor technologies should be exploited to

maximise users’ comfort without hindering workers’ daily

activity. Moreover, future research should proceed with

implementing role allocation strategies in hybrid

environments and online planning and adaptation of robot

movements. All those solutions fall within the cutting-edge

principle of designing human-centred workstations supported

by automation and could build the foundation for a more

inclusive industrial environment. Thanks to the introduction

of ergonomics assessment in the control loop, the robot

behaviour could be adapted to workers’ physical condition

and characteristics (e.g., age, gender, dominant and vulnerable

limb, disabilities, fatigue) and enhance specific skills, mitigate

risks, fulfil required capabilities and fight inequalities.

To date, research on ergonomics in the industrial sector

mainly aims at mitigating the worker’s fatigue and discomfort

from a physical point of view. Future research should entail

cognitive ergonomics variables, whose implications are still too

often undervalued (HSE, 2020). Industrial collaborative

technologies provide unique opportunities, but they may

perilously increase operators’ mental demand when

inadequately handled and result in adverse health and safety

hazards. Assuring the acceptability of robotic systems from

human workers and guaranteeing perceived safety are the first

steps for a successful workplaces’ digitalisation. However, the

scientific and industrial communities still need to be provided

with a well-structured and validated set of models and metrics

for the cognitive workload. Then, in the near future, researchers

should concentrate on developing reliable methodologies of the

mental demand inflicted by industrial tasks. This could be

exploited afterwards in new research lines aimed to

maximise workers’ efficiency and workstation productivity

and facilitate the adoption of CoBots in real-world industrial

environments.

5.4 Limitations of this study

The review covered four out of five sub-parts identified by

Hendrick (1998); Hendrick and Kleiner (2002) within the field of

human factors/ergonomics, i.e., human-machine interface, human-

environment interface, human-software interface, human-job
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interface technologies. These technologies, which are primarily

focused at the individual level, are often referred to in the

literature as “microergonomics.” The exclusion of the structural

dimensions of work systems, i.e., human-organisation interface

technology or “macroergonomics,” was mainly motivated by the

desire to investigate ergonomic metrics that could be exploited to

drive and adapt the robot behaviour and potentially improve

ergonomics in hybrid environments. The boundaries of our

analysis permit to comprehensively investigate and discuss

existing ergonomics assessment tools and available monitoring

devices. Nonetheless, systematic macroergonomic methodologies

provide a larger perspective of the overall work system and could

increase the likelihood of the microergonomic interventions

presented in this review having a more significant impact and

effectiveness.

6 Conclusion

The goal of this article was to provide an overview of the

current state-of-the-art in ergonomic HRC in industrial settings.

Ergonomic assessment methodologies and available monitoring

technologies to online adapt robot control strategy according to

workers’ distress and needs were investigated, and the most

promising research themes were highlighted. Despite the

booming attention in physical and cognitive ergonomic HRC,

several challenges are still waiting to be solved. In particular,

when the technologies for ergonomics monitoring and HRC will

reach a more mature level, the challenges to be addressed include

the cost-effectiveness, the level of expertise needed to implement

and maintain them, and the multi-person examination capacity.

These challenges are not only limited to the technical aspects but

also to the regulatory ones, such as privacy issues when it comes

to monitoring of humans.
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