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Abstract: We begin a systematic study of unitary representations of minimal W-algebras.
In particular, we classify unitary minimal W-algebras and make substantial progress in
classification of their unitary irreducible highest weight modules. We also compute the
characters of these modules.
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1. Introduction

In the present paper we study unitarity of minimal W-algebras and of their representa-
tions. Minimal W -algebras are the simplest conformal vertex algebras among the simple
vertex algebras Wi (g, x, f), constructed in [18,20], associated to a datum (g, x, f) and
k € R. Here g = g @ g7 is a basic Lie superalgebra, i.e. g is simple, its even part g is
a reductive Lie algebra and g carries an even invariant non-degenerate supersymmetric
bilinear form (.|.), x is an ad-diagonalizable element of g5 with eigenvalues in %Z,

f € gpis such that [x, f] = —f and the eigenvalues of ad x on the centralizer g/ of
f in g are non-positive, and k # —h", where 1" is the dual Coxeter number of g. The
most important examples are provided by x and f to be part of an sl triple {e, x, f},
where [x, e] = e, [x, f] = —f, [e, f] = x. In this case (g, x, f) is called a Dynkin
datum. Recall that Wi (g, x, f) is the unique simple quotient of the universal W-algebra,
denoted by WX(g, x, f), which is freely strongly generated by elements labeled by a
basis of the centralizer of f in g [20].

We proved in [16, Lemma 7.3] that if ¢ is a conjugate linear involution of g such that

¢x) =x, ¢(f) = fand (¢(a)lp (b)) = (alb), a,b € g, (1.1)

then ¢ induces a conjugate linear involution of the vertex algebra W¥(g, x, f), which
descends to Wi (g, x, f).

We also proved in [16, Proposition 7.4] that if ¢ is a conjugate linear involution of
Wi (g, x, f), this vertex algebra carries a non-zero ¢-invariant Hermitian form H (-, -)
forall k # —h" if and only if (g, x, f) is a Dynkin datum; moreover, such H is unique,
up to a real constant factor, and we normalize it by the condition H (1, 1) = 1. A module
M for a vertex algebra V is called unitary if there is a conjugate linear involution ¢ of
V such that there is a positive definite ¢-invariant Hermitian form on M. The vertex
algebra V is called unitary if the adjoint module is.

For some levels k the vertex algebra Wy (g, x, f) is trivial, i.e. isomorphic to C; then
it is trivially unitary. Another easy case is when Wi (g, x, f) “collapses” to the affine
part. In both cases we will say that k is collapsing level.

In the case of a Dynkin datum let g° be the centralizer of the sl, subalgebra s =
span{e, x, f}in gg; it is a reductive subalgebra. If ¢ satisfies the first two conditions
in (1.1), it fixes e, x, f, hence ¢ (g%) = g°. It is easy to see that unitarity of Wj (g, x, f)
implies, when k is not collapsing, that ¢4 4 is a compact involution.
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In the present paper we consider only minimal data (g, x, f), defined by the property
that for the ad x-gradationg = € ¢ ;j one has

je%Z
g; =0if[j[>1, andg_; =Cf. (1.2)

In this case (g, x, f) is automatically a Dynkin datum. The corresponding W -algebra
is called minimal. The element f € g is a root vector attached to a root —0 of g, and
we shall normalize the invariant bilinear form on g by the usual condition (£16) = 2,
which is equivalent to (x|x) = % Recall that the dual Coxeter number i of g is half of
the eigenvalue of its Casimir element of g, attached to the bilinear form (.|.). We shall
denote by W,""(g) the minimal W-algebra, corresponding to g and k # —h", and by
Wr’fﬁn(g) the corresponding universal W-algebra.

We proved in [ 16, Proposition 7.9] that, if W,?‘i“ (g) is unitary and k is not a collapsing
level, then the parity of g is compatible with the ad x-gradation, i.e. the parity of the
whole subspace g; is 2j mod 2.

It follows from [18], [20] that for each basic simple Lie superalgebra g there is at
most one minimal Dynkin datum, compatible with parity, and the complete list of the g
which admit such a datum is as follows:

sl2lm) form > 3, psl(2|2), spo(2|m) form > 0, 13

osp(4|m) form > 2even, D(2,1;a)fora € C, F4), G(@3). (1.3)
The even part gg of g in this case is isomorphic to the direct sum of the reductive Lie
algebra g* and s = s5.

One of our conjectures (see Conjecture 4 in Sect. 8)! states that any unitary W!flin (9)-
module descends to W,ﬁni“ (g). In fact, it is tempting to conjecture that for any conformal
vertex algebra V any unitary V-module descends to the simple quotient of V.

It turns out (cf. Proposition 7.2) that a conjugate linear involution of the universal
minimal W-algebra erflm (g) at non-collapsing level k is necessarily induced by a conju-
gate linear involution ¢ of g. Moreover, by Proposition 8.9, if erf]in (g) admits a unitary
highest weight module and k is not collapsing, then g has to be semisimple. As ex-
plained above, the involution ¢ of g must be almost compact, according to the following
definition.

Definition 1.1. A conjugate linear involution ¢ on g is called almost compact if

(i) ¢ fixes e, x, f;
(ii) ¢ is a compact conjugate linear involution of g°.

Indeed (i) is equivalent to the first two requirements in (1.1), and the third requirement
in (1.1) follows from Lemma 3.1 in Sect. 3.

So, in order to study unitarity of highest weight modules, it is not restrictive to
assume that the conjugate linear involution of leflin (g) is induced by an almost compact
conjugate linear involution of g.

We prove in Sects. 3 and 4 that an almost compact conjugate linear involution ¢
exists for all g from the list (1.3), except that @ must lie in R in case of D(2, 1; a), and
is essentially unique.

1 See Note added in proof.
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It was shown in [20] that the central charge of W,Ti“ (g) equals

clk) = — 6k +hY — 4, where d = sdimg. (1.4)

k+hY

Here is another useful way to write this formula:

(k+h" — /7)? [dh
=7hY —4—-12 —6———— wh = . (1.
ctky=Th" +d / 6 PanY , where _/ 6 (1.5)

Recall that the most important superconformal algebras in conformal field theory are
the simple minimal W-algebras or are obtained from them by a simple modification:

(a) W,E“i“ (spo(2|N)) is the Virasoro vertex algebra for N = 0, the Neveu-Schwarz
vertex algebra for N = 1, the N = 2 vertex algebra for N = 2, and becomes
the N = 3 vertex algebra after tensoring with one fermion; it is the Bershadsky-
Knizhnik algebra for N > 3;

(b) WM (psl(2]2)) is the N = 4 vertex algebra;

(©) W,?lin(D(Z, 1; a)) tensored with four fermions and one boson is the big N = 4
vertex algebra.

The unitary Virasoro (N = 0), Neveu-Schwarz (N = 1) and N = 2 simple vertex
algebras, along with their irreducible unitary modules, were classified in the mid 80s.
Up to isomorphism, these vertex algebras depend only on the central charge c(k), given
by (1.4). Putting k = % — 1 in (1.5) in all three cases, we obtain

6
c(k) = 1 — ———— for Virasoro vertex algebra, (1.6)
pp+1)
3 8
clk) == (1 — —) for Neveu-Schwarz vertex algebra, (L.7)
2 p(p+2)
2
ck)y =3 (1 — —> for N = 2 vertex algebra. (1.8)
p

The following theorem is a result of several papers, published in the 80s in physics and
mathematics literature, see e.g. [5] for references.

Theorem 1.2. The complete list of unitary N = 0, 1, and 2 vertex algebras is as follows:
either c(k) is given by (1.6), (1.7), or (1.8), respectively, for p € Z=2, orc(k) > 1, % or
3, respectively.

The above three cases cover all minimal W-algebras, associated with g, such that the
eigenspace g of ad x is abelian. Thus, we may assume that g is not abelian.

In order to study unitarity of the simple minimal W-algebra W;™"(g), one needs to
consider the more general framework of representation theory of universal minimal W -
algebras Wr’;in(g). Of course, unitarity of errclin (g) is equivalent to that of W;™"(g). It is
therefore natural to study unitarity of irreducible Wr]flin (g)-modules. For that purpose, we
take, in Sect. 6, a long detour to develop a general theory of invariant Hermitian forms on
modules over the vertex algebra of free bosons, which will be eventually applied to our
main object of interest. As a byproduct we obtain a field theoretic version of the Fairlie
construction, which yields explicit models of unitary representations of the Virasoro
algebra for certain values of the highest weight (cf. [17, 3.4], Example 6.9).
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We consider in Sect. 9 the free field realization W : mm (g) - Yk = ykh Cx®
V% (g% ® F(g /2) introduced in [20] (here V¥ (a) denotes the universal affine vertex
algebra associated to the Lie algebra a and to a 2-cocycle y, «y is the 2-cocycle defined in

(7.24), and F'(g; /) is the fermionic vertex algebra “attached” to gy ). Let M (1) be the

Verma module of highest weight u € C for the bosonic vertex algebra vk (Cx) and
consider the V¥-module N(u) = M(pn) Q Ve (g”) ® F(g1,2)- Applying to N (1) results
from Sect. 6, we obtain in Proposition 9.2 a generalization of the Fairlie construction to
universal minimal W-algebras.

The conformal vertex algebras (W[];lln (9), L) and (VF, L(O)) (see (6.29)) both admit
Hermitian invariant forms H(-,-)w and H (-, -) fre., respectively. Unfortunately, the
embedding W is not conformal, i.e., W (L) # Z(O), in particular W is not an isometry
(which was erroneously claimed in [14]). So, though the vertex algebra Vk is unitary,
this does not imply the unitarity of W, (g). A few explicit computations suggest the
following conjecture, which we were unable to prove.

Conjecture 1. For each w € mln(g) H(w, w)w > H(V(w), ¥(w)) free. In particu-
lar if V¥ is unitary, then Wmn1 (g) is unitary.

We start the study of unitary modules over minimal W-algebras in Sect. 8 by intro-
ducing the irreducible highest weight W mm (g)-modules LY (v, £y) with highest weight
(v, £p), where v is a real weight of gu and ¢y € R is the minimal eigenvalue of Lg. We
prove that L% (v, £9) admits a ¢-invariant nondegenerate Hermitian form (unique up to
normalization), see Lemma 8.1. In Sect. 8 we also determine necessary conditions for the
unitarity of LY (v, £g). Part of the necessary conditions is displayed in Proposition 8.5.
They say that unitarity of LY (v, £y) implies that the levels M; (k) of the affine Lie al-
gebrasﬁf in W mm (g) (given in Table 2, Sect. 7), where g are the simple components of
g”, are non-negative integers, v is dominant integral of levels M; (k), and the inequality
(1.9) below holds. Proposition 8.8 provides a further necessary condition, which says
that (1.9) must be an equality when v is an “extremal” weight. See Theorem 1.3 (1)
below for a precise statement.

In Sect. 10, using the generalization of the Fairlie construction, developed in Sect. 9,
we prove a partial converse result: if M; (k) + x; € Z,, where x; are negative integers,
displayed in Table 2, and v is dominant integral weight for g which is not extremal, then
the erflm(g)—module LY (v, £o) is unitary for Iy sufficiently large, see Proposition 10.2.

In Sect. 11 we prove our central Theorem 11.1, which claims that actually Proposi-
tion 10.2 holds for [ satisfying the inequality (1.9), provided that v is not extremal. This
is established by the following construction. Let g be the affinization of g. We introduce
in (11.4) a highest weight module M (V},) over g, whose highest weight v, depends on
h € C, with the following two properties

(1) M () is irreducible, except possibly for an explicit set J of values of . o
(2) For the quantum Hamiltonian reduction functor Hy, the W!;lin (g)-module Hy(M (V))
admits a Hermitian form, depending polynomially on /.

Using the irreducibility theorem by Arakawa [2], we deduce that Ho(M (D)) =
LW (v, €(h)) for h ¢ J, where £(h) is defined by (11.45). It turns out that, miracu-
lously, if 2 € J, then £(h) does not satisfy (1.9). Moreover LY (v, £o) is unitary for
Ip > 0. By continuity, the determinant of the Hermitian form on LY (v, £¢) is positive
if the inequality (1.9) holds. See Theorem 1.3 (2) below for a precise statement.
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Let us state our main results. First of all, if g = s/(2|m) with m > 3 or osp(4|m)
with m > 2 even, then none of the Wr];in (g)-modules LY (v, £p) are unitary for a non-
collapsing level k. For the remaining g from the list (1.3) the Lie algebra g is semisimple
(actually simple, exceptforg = D(2, 1; a), when gu = shh®sly). Let Giv be the coroots of

the highest roots 6; of the simple components g? of g°. Let 2p” be the sum of positive roots
of g%, and let & be a highest weight of the g*-module g_, /2 (this module is irreducible,

except for g = psl(2]2) when itis C> @ C?). Let v be a dominant integral weight for g°
and lp € R. We prove the following theorem.

Theorem 1.3. Let LY (v, £o) be an irreducible highest weight W!flin (g)-module for g =
psl(212), spo(2|m) withm > 3, D(2, 1; a), F(4) or G(3).

(1) This module can be unitary only if the following conditions hold:
(a) M;(k) are non-negative integers,
(b) v(6,") < M; (k) for all i,
(c)
v +2p%)  (E[v)
02 S a e (€ k=D, (1.9)
and equality holds in (1.9) ifv(@iv) > M;(k) + xi fori =1or?2.
(2) This module is unitary if the following conditions hold:
(a) Mi(k) + x; € Z4 forall i,
(b) v(0.") < M;(k) + xi for all i (i.e. v is not extremal),
(c) inequality (1.9) holds.

Conjecture 2. The modules LY (v, o) are unitary if v is extremal and ly = R.H.S. of
(1.9). In other words, the necessary conditions of unitarity in Theorem 1.3 (1) are
sufficient.

We were able to prove this conjecture only for g = ps/(2|2) and spo(2|3), obtaining
thereby a complete classification of unitary simple highest weight Wllr‘lin(g)—modules
in these two cases. Note that papers [3,4,21] respectively claim (without proof) these
results.

Since v = 0 is extremal iff k is collapsing, we obtain the following complete classi-
fication of minimal simple unitary W-algebras:

Theorem 1.4. The simple minimal W -algebra Winli“ (g) withk # hY and g non-abelian
is non-trivial unitary if and only if

(1) g =sl(2lm), m > 3, k = 1 (in this case the W-algebra is a free boson);

(2) g = psl(2]2), k e N+ 1;

(3) g =spo2I3), k € J(N+2);

(4) g = spo2lm), m > 4, k € (N + 1);

(5)g=DQ2,1; %), k e r;"an, where m,n € N are coprime, k # %;

(6)g=F@), ke z(N+1);

(7)g=G@3), ke 3(N+1).

This result, along with all known results on unitarity of vertex algebras, leads to the
following general conjecture.

Conjecture 3. A CFT type vertex operator algebra admitting a invariant Hermitian form
and having a unitary module is unitary.
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In the final Sect. 14 we provide character formulas for all unitary Wr’;m(g)—modules
L%Y(v, £p), which are obtained by applying the quantum Hamiltonian reduction to the
corresponding irreducible highest weight modules over the affinization g of g. There are
two cases to consider. In the first case, called massive (or typical), when inequality (1.9)
is strict, this character formula is easy to prove (see the proof of Proposition 11.5), which
leads to the character formula (14.5). In the second case, called massless (or atypical),
when the inequality (1.9) is equality, there is a general KW-formula for maximally
atypical tame integrable g-modules, conjectured in [19] and proved in [7] for all g in
question, exceptforg = D(2, 1; %), v # 0, which leads to the character formula (14.6).
Character formulas were also given in [4] (resp. [21]) for the N = 4 superconformal
algebra (resp. for erflin (spo(2]3)), hence for the N = 3 superconformal algebra). The
proofs given in these papers are incomplete since they assume that their list of singular
vectors is complete and that in the usual argument of inclusion-exclusion of Verma
modules subsingular vectors cancel out. Their formulas for both massive and massless
representations coincide with (14.5) and (14.6), respectively.

In our next paper of this series we will study unitarity of twisted representations of
minimal W-algebras.

Throughout the paper the base field is C, and Z, and N stand for the set of non
negative and positive integers, respectively.

2. Setup

2.1. Basic Lie superalgebras. Let g = gp @ gi be a basic finite-dimensional Lie su-
peralgebra over C as in (1.3). Choose a Cartan subalgebra b of g. It is a maximal
ad-diagonalizable subalgebra of g, for which the root space decomposition is of the
form

g=b®Pa.. @.1)

aeA

where A C h* \ {0} is the set of roots. In all cases, except for g = psi(2]2), the root
spaces have dimension 1. In the case g = psl(2|2) one can achieve this property by
embedding in pgl/(2]2) and replacing (2.1) by the root space decomposition with respect
to a Cartan subalgebra of pgl(2|2), which we will do.

Let A* be a subset of positive roots and IT = {«1, ..., «,} be the corresponding
set of simple roots. We will denote by IT, Iy, the sets of even and odd simple roots,
respectively. Foreacha € A* choose X, € g, and X € g_, suchthat (Xo|X_y) = 1,
and let hy = [Xo, X_ol. Lete; = Xy, fi = X, i =1,...,r. The set {e;, fi, hy; |
i =1,...,r} generates g, and satisfies the following relations

lei, fil =dijha;, lha;,ej]l = (ilajej, lhe, fj]=—(aila;)f;. (2.2)

The Lie superalgebra g on generators {e;, fi, hy; | i = 1,...,r} subject to relations
(2.2) is a (infinite-dimensional) Z-graded Lie algebra, where the grading is defined by
deghy, = 0,dege; = —deg f; = 1, with a unique Z-graded maximal ideal, and g is

the quotient of g by this ideal. We assume that (o;|e;) € R for all o;, o € II.
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2.2. Conjugate linear involutions and real forms. In the above setting, given a collection
of complex numbers A = {\Aq, ..., A} such that A; € «/—IR if «; is an odd root and
Ai € Rif ¢; is an even root, we can define an antilinear involution wp : g — g setting

-1 )

wA(el‘):)‘iﬁs a)A(ﬁ):)‘l eis a)A(h(Xl‘)z_hC{is 1 Sl Sr' (23)
Since wp preserves relations (2.2), it induces an antilinear involution of g, and, since
wp preserves the Z-grading of g, it preserves its unique maximal ideal, hence it induces
an antilinear involution of g.

Set oy, = —1 if « is an odd negative root and o, = 1 otherwise, so that (X, |X_y) =
oy. Let

£, = sgn(a|a) if o is an even root,
—

1 if o is an odd root.

Then in [8, (4.13), (4.15)] it is proven (using results from [9]), that one can choose root
vectors X, in such a way that

wp(Xg) = —04baha X, (2.4)

where
.
o = [ [(—Er)" fora =Y nia;. (2.5)
i i=1

We shall call this a good choice of root vectors.

2.3. Invariant Hermitian forms on vertex algebras. Let V be a conformal vertex algebra
with conformal vector L =}, L,z "2 (see [16] for the definition and undefined
notation). Let ¢ be a conjugate linear involution of V. A Hermitian form H(. , .)on V
is called ¢-invariant if, for all @ € V, one has [16]
H(v,Y(a,2)u) = HY(A@Ra, z Yo, u), u,veV. (2.6)
Here the linear map A(z) : V — V((z)) is defined by
A(z) = etb1772og, (2.7

where

1
gla) = einﬂ(ip(“)*ﬂ”)(l)(a), aeV, (2.8)

A, stands for the Lg-eigenvalue of a, and

0eZ ifa € gp,

pla) = leZ ifaeg;.
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3. The Almost Compact Conjugate Linear Involution of g

From now on we let g be a basic simple finite-dimensional Lie superalgebra such that
=50 3.1)

where 5 = sl and g is the centralizer of s in g.

This corresponds to consider g as in Table 2 of [20]. We will also assume that g is not
abelian; this condition rules out g = spo(2|m), m = 0, 1, 2. The explicit list is given in
the leftmost column of Table 1. Note that s/(2|1) and osp(4|2) are missing there since
sI2|1) = spo(2|2) and osp(4]2) = D(2, 1; a) witha = 1, =2 or —%.

First, we prove the simple lemma mentioned in the Introduction, which states that
the first two conditions of (1.1) imply the third one.

Lemma 3.1. Let g be a simple Lie superalgebra with an invariant supersymmetric bi-
linear form (.|.), let x € g, and let ¢ be a conjugate linear involution of g, such that

(x|x) is a non-zero real number, and ¢ (x) = x. (3.2)

Then

(p(a)|p (b)) = (alb), foralla,b € g. 3.3)

Proof. Note that (¢ (a)|¢ (b)) is an invariant supersymmetric bilinear form as well, hence
itis proportional to (a|b) since g is simple. Due to (3.2) these two bilinear forms coincide.
0

We now discuss the existence of an almost compact involution of g (see Defini-
tion 1.1).

Proposition 3.2. For any slp-triple s = {e, x, f}, such that [e, f] = x,[x,e] =
e, [x, f1=—f, and (3.1) holds, an almost compact involution exists.

Proof. Choose a Cartan subalgebra t of g5. We observe that if we prove the existence of
an almost compact involution ¢ for a special choice of {e, x, f}, then an almost compact
involution exists for any choice of the sip-triple. Indeed, if {¢/, x, f'} is another sl-
triple, then there is an inner automorphism v of s mapping {e, x, f}to {¢’, x’, f’}, which
extends to an inner automorphism of g. Therefore ¢’ = ¢y ! is an almost compact
involution for {¢’, x’, f’}. The construction of {e, x, f} and ¢ and the verification of
properties (i)—(iii) in Definition 1.1 will be done in four steps:

(1) make a suitable choice of positive roots for g with respect to t;

(2) define ¢ by specializing (2.3);

(3) construct {e, f, x} and verify that ¢ (f) = f, p(x) = x, p(e) = ¢;
(4) check that ¢ is a compact involution for g;

Step 1. We need some preparation. Let A" be the set of roots of g* with respect to the
Cartan subalgebra t N g°. Let {6} be the t N s-roots of s. Then Ry ={£0} U Al is the
set of roots of gg with respect to t.
Let R be the set of roots of g with respect to t, let R* be the subset of positive roots
whose corresponding set of simple roots S = {«q, ..., «;} is displayed in Table 1.
Note that 0 is the highest root of R.
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Table 1. Simple roots, invariant form, and highest root of g

g S 1) 0
psl(2]2) {e1—681,81—82,82— (€ilej) = i,j =~ (Bild;) €] — €
(€16;) =0
€} P
sI@lm),m > 2 fer - b8 - (é"'éf)(jfg?)ig(a""sf) [ -e
82y, Sm — €2} ey
osp(4lm),m > 2 {e1 —€2, 62 —61,81 — (€ilej) =di i—(3i|5j) €1 +e
(€i16;) =0
82 """ (SWL71 - J
Sm» 28m}
spo2m+1m>1 {81 — eer — (le)) =—158 ;. G51160) = 5. (€181) =0 28,
€2, -1 €m—1 -
€ms €m}
spo(2]2m),m = 3 B — ea.er — (lep)=—18 ;. 61180 =1 (181) =0 23
€250, €m—1 -
€ms €m—1+€m} . .
_ 1 — — —_ —a
D2, 1;a) {e1—€2—€3, 2¢€2, 23} (e1]er) = 2 (e2]€2) = 2(T+a)’ (e3]€3) = 2(1+a) ¢
(€1|€22) = (€1]€3) = (e2]€3) =0
F(4) e —e — e — (¢jlej) = f§85i,j;(31|51) =2 5
€3),€3,€) — €3, €] — o) =
) 1-38
35 ; L
GB3) 81 +e3.¢1, 60 —ey)  (Eile)) =—7L (G116 = 5 25,

(€i161) =0, €1 +€ex2+€e3 =0

Step 2. Define

—sgn(aila;) if o is even,

Ap = )\.,...,)\ , A= : :
0=1{M r : —J4 if ¢ is odd.

(3.4)
Set ¢ = wp,, (see (2.3)).
Step 3. Consider a good choice of root vectors X, for Ag. Set

X = @(X@ —X_p),e= %(Xg +X_ g+ —1lhg), f = %(Xg +X_g —~—1hy).
(3.5)

If0 = >"I_, mia;, then, by our special choice of A*, we have either m; = 2 for exactly
one odd simple root «;, or m; = mj = 1 for exactly two odd distinct simple roots «;, a;
(this corresponds to the fact that R is distinguished, in the terminology of [8]). By (2.4)
we have

$(Xo) = —(V=1)’X_4 = X 4. (3.6)
Since hy = Z?:l mihg, and ¢ (hy,) = —hy,, itis clear from (3.5) that ¢ fixes e, f, x.

One checks directly that {e, f, x} is an s/,-triple.
Step 4. Endow g with the Z-grading
s=Pa (3.7)

ieZ
which assigns degree 0 to 7 € t and to ¢; and f; if «; is even, and degree 1 to ¢; and
degree —1 to f;, if «; is odd.
A direct check on Table 1 shows that q, = g”. Recall from [8, Proposition 4.5] that
the fixed points of ¢ in ¢ are a compact form of g if and only if A; (¢ |e;) < O for all
ao; € S\ S1. Step 4 now follows from (3.4). O
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4. Explicit Expressions for Almost Compact Real Forms

In this section we exhibit explicitly an almost compact involution ¢ in each case and
discuss its uniqueness. If ¢ is an almost compact involution of g, we denote by g*¢ the
corresponding real form (the fixed point set of ¢). We can define g“¢ by specifying a
real form ggc of g5 and a real form g%’” of g7.

(1) g =spo(2|m). Then g5 = sly ® so,, and g; = C2®C™ as gg-module. We set
g5 = sh(®) ®son®), o =R @R".

Explicitly, let B be a non-degenerate R-valued bilinear form of the superspace R>/"
0 1|0

with matrix | —1 0| O |. Then for g = spo(2|m) we have:
0 0|,

0% = {A € sl(m|n; R) | B(Au, v) + (=1)PMPW By Av) = 0.

(2) g = psl(2]2). Let H be a C-valued non-degenerate sesquilinear form on the super-
space C?12 whose matrix is diag(~/—1,—+/—1,1,1). Set

§° ={A €s1212:C) | H(Au,v) + (—1)P PO H (u, Av) = 0}.
Then
gac — guC/R /_11

Explicitly, we have g5 = sl @ sl and g7 = {(g Ig) | B,C € Mz’z((C)} as a

gp-module. Then

0 0 u
f;‘fcz 0 0 v | ju,veC?
V=Ti' —/=T1¢"|0

(3) g = D(2,1; a). Then g5 = sh®sh®sly = so(4, C)@slyand g; = C2QC?QC? =
C* ® C? as gyg-module. We set

08¢ =s0(4,R) @ spangle, f,x}, gi° =R'@R.

To get an explicit realization, consider the contact Lie superalgebra (see [11] for
more details)

K(1,4) =Clt, &1, &2, &3, §4]

where ¢ is an even variable and &;, 1 < i < 4, are odd variables. Introduce on the
associative superalgebra K (1, 4) a Z-grading by letting

deg’'t =2, deg'& =1,
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and the bracket
4 4 4
(F,.GY=Q=) &)F,G—,FQ—Y &3G+y (~)"79FyG,
i=1 i=1 i=1

where 9; = 9g. This is a Z-graded Lie superalgebra with compatible grading
deg F = deg’ F — 2. We have

K(1.4)= @ K(1.4);,

j==2
where
K(1,4)-, =Cl, K(1,4) -1 =spanc(& |1 =i <4),
K(1,4) = spanc(&i§j,t | 1 <i, j <4, K(1,4)1 = g| ® g/, where
g) =spanc(t§ | 1 <i <4, o) = spanc(&&i& | 1 < i, j,k <4).

Note that spanc(&&; | 1 <i,j < 4) = A*C* = s50(4, C), that g is isomorphic to
the standard representation C* of so(4, C) and that g{ is isomorphic to A3C?, so that
K(1,4); = C*@®C* as so(4, C)-module. Also notice that {g7.0)} = Cr?, {g]. 97} =0.
Fix now a copy §, of an so(4, C)-module C* in C* @ C*, depending on a constant b € R,
as follows. Set, for 1 <i < 4,

a; = t& +bé;, where & = (—1)*! Héj,
J#
and define

4
ﬁb = Z(Ca,-.
i=1
Let b € R. Note that, setting & = £1£,£3&4, we have
{18 + i 18 + bE ;) = 81 (—1% +206).
Hence, if we set
e=—1>+2b¢, f=—-1, x=1/2,

then {e, x, f} is an sl,-triple. Set

4 4 4
g““ =R.1® (ZR&) | RagoR: | @ <2Rai> ® R(—12 +2b§).
i=1 i,j=1 i=1
Then g“¢ is an almost compact form of D (2, 1; %). To prove this, it suffices to calculate
the Cartan matrix for a choice of Chevalley generators of the complexification of g#¢. Fix
a Cartan subalgebrain g° = so(4, C) as the span of vy = —v/—1£1&, v3 = —/—1£3£4.
Set vy = t; then {vy, v2, v3} is a basis of a Cartan subalgebra of g. Let {€, €3, €3} be the
dual basis to {vy, v2, v3}. One can choose {&] = €) — €1, ) = €] — €3, a3 = €] + €3}
as a set of simple roots. The associated Chevalley generators are
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el = —v/—=laj +ay ey = 183+ Erbs +V/—1(E164 — £283) 3 = E183 — Eody — V—1(E164 + £283)

fi=vV-1& +& fr =88 +6E —V-1(E1E — 60E) f3 =68 — & +V/-1(E & +5E)
hy = —=2v1 +2vp +2bvy hy =4v] —4v3 h3 = 4vy +4uv3
1+b
. . o (01
and the corresponding Cartan matrix, normalized as in [11],is | =12 0 |. Hence
—-10 2

a= 11+le and therefore all a # —1 occur in this construction. Since this subalgebra is

17-dimensional, it is isomorphic to D(2, 1; a).

Remark 4.1. Note that ¢ = 0 for b = —1. In this case, D(2, 1; 0) contains a 11-
dimensional solvable ideal generated by f1, which is spanned by /1 and the root vectors
relative to roots having o in their support. If we replace a; by a; /b and hy by h1 /b, and
let b tend to +00, we recover also the Lie superalgebra of derivations of psl/(2]2), and
its almost compact real form.

(4) g = G@3). Then g5 = sl ® Gz and g7 = C? ® Lumin, where L, is the complex
7-dimensional irreducible representation of G, and we let

g3 = sh(R) & G20, 9 =R>® Lumin.o-

where G is the real compact form of G, and Ly o is the real 7-dimensional
irreducible representation of G2 ¢ whose complexification is L.

(5) g= F@4).Then g5 = sl ®so7and g7 = C?® spiny, where spiny is the complex
spinor representation of so7, and we let

85 =sh®) ®s07(R). g{° = R* ®@spin(R),

where spin(R”) is the spinor representation of the compact group so7(R).

It is proved in [11, Proposition 5.3.2] that in both cases (4) and (5) g*¢ = ggc ® g‘i‘c
is an almost compact form of g.

4.1. Uniqueness of the almost compact involution.

Proposition 4.2. An almost compact involution is uniquely determined up to a sign by
its action on g, provided that the gy-module g, 5 is irreducible.

Proof. 1f there are two different extensions of the compact involution, then their ratio
¥, say, is identical on gy, hence, by Schur’s lemma, ¥ acts as a scalar on g_j . Since
¢ (f) = f, we conclude that this scalar is %-1. O

It remains to discuss the cases g = sl(2|m), m > 3, and psl(2|2), since in all other
cases of Table 1 the go-module g, is irreducible. In this cases g is of type L, that is

gi = g*f &) gi_ where g%t are contragredient irreducible gz-modules and [g%, g%[] =0.
Let 6, be the linear map on g defined by setting

-1
Siigy = 1d. Sjgr =11d. 8 =17'1d. @.1)

Then §;, is an automorphism of g for any A € C. Suppose that ¢’ is another conjugate
almost compact linear involution such that ¢|’% = ¢. Then ¢’ = ¢ o y with y an
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automorphism of ¢ such that yjg; = Id. If g = s/(2|m), by [22, Lemmas 1 and 2], we
have y = §,. Since ¢(g¥) = gI_ and (¢')? = Id we have that A € R. If g = psl(2]2),
then y belongs to a three-parameter family of automorphisms explicitly described in [8,
§4.6], and contained in SL(2, C). This SL(2, C) is the group of automorphisms of g
corresponding to the Lie algebra s/, of outer derivations of g.

Remark 4.3. Note that if ¢ is an almost compact involution, then

pla) = (-1 (), a e g,

is again an almost compact involution.

5. The Bilinear Form (-, -) ong_y,

Lets = {e, x, f} be ansly-triple as in Proposition 3.2. Consider the following symmetric
bilinear forms on g_, and g respectively:

(u,v) = (ellu, vD), u,v € gy, (6.1
(M, v)ne = (f'[uv U])v u,v e 91/2' (52)

Note that, since [ f, 9_1/2] =0, we have

(le, ul, [e, V)ne = — A (u, v), u,v € g-1/2- (5.3)
We want to prove the following

Proposition 5.1. We can choose an almost compact involution such that the bilinear
Jorm (., .) is positive definite on g°“ N g_y 5. In particular, the Hermitian form (¢ (u), v)
(resp. (¢ (u), v)ne) is positive definite (resp, negative definite) on g*“ N g_y, (resp.
g N gyp)

The proof requires a detailed analysis of the action of an almost compact involution on
g_1/2- Define structure constants Ny, g for a good choice of root vectors (see Sect. 2.2)
by the relation

[ch» Xﬂ] = Na,ﬁXcH/S-
Observe that {X_4, Xy, %h@} is a slp-triple in s. Let
0=CXo®810®80Dd_12DCX

be the decompositioninto ad %he eigenspaces. By the s/, representation theory, ad X 1y :

9+1/2 = 8+1,2 is an isomorphism of g”-modules. Moreover, by our choice of R* in
Sect. 3, the roots of g_j, (resp. g;,,) are precisely the negative (resp. positive) odd
roots. In particular, the map o — —6 + « defines a bijection between the positive and
negative odd roots. We shall need the following properties.

Lemma 5.2. For a positive odd root a we have
N_g.aNooa—p =1, (5.4)
Ny = 1. (5.5)

In particular Ny 4 is real.
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Proof. Relation (5.4)is proven in [8, Lemma 4.3]. Equation (5.5) follows from [8, (4.8)],
noting that the —6-string through « has length 1. O

Arguing as in Proposition 3.2, we can assume in the proof of Proposition 5.1 that
{e, x, f}is the sl>-triple defined in (3.5); ad x defines on g a minimal grading

9=Creog_1p®9 @91 ®Ce. (5.6)
Set, for an odd root @ € R*
g = Xo +V—1IN_g o Xa—s. (5.7)
Note that
[x. e = S Xp — X_g. Xo+ v/~ IN_g.0Xa—o]
Z%N—O,aNﬁ,a—GXa - @N—G,axa—é = —%ua,
hence {uy | @ € R*, a odd} is a basis of g_ 5.
Lemma 5.3. If « is a positive odd root then
¢(Ug) = —N_gqUg—q- (5.8)

Proof. By (2.4),¢(X,) = —+/—1X_4 if @ is an odd positive root, hence, by (5.5), since
N_g o is real,

¢(ua) = ¢(Xo +vV—1IN_poXa—0) = —(V—1X_q + N_g o Xo—¢)

= —N-g.a(Xg-a +V=INT} X o). e

Note that, since ¢ (x) = x, ¢ (uq) has to belong to g_; ». This forces
N_9gaN_go—a=1, (5.10)
and (5.9) becomes (5.8). |

Proof of Proposition 5.1. Set vy, = %(ua + ¢ (uy)) + —Vz_l (uqg — ¢(uy)), where o runs
over the positive odd roots. It is clear that v, € t. We want to prove that the vectors vy
form an orthogonal basis of t. We need two auxiliary computations:

e, uq] = V_1Xa+N79,aXa79a (5.11)
(Ug,upg) = —(N_g,o + N9, 8)80—q,p8- (5.12)

To prove (5.11) use (5.4):
le, ua] = 3[Xo + X—g + v —1hg, Xo + V~1IN_g ¢ Xa—o]

= %(V _1N—6,aN9,oz—9Xa + N—@,aXa—B + _1XOl + N—G,otht—G)
=v—1Xg+N_g.oXo—0-
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To prove (5.12) use (5.11):

(g, ug) = (ellug, ugl) = (le, ugllug)
= (W—1Xq+N_goXa—o|Xp+~—1N_gpXp_g) =
=00-0N-0,480—-a,p — 0alN—9,80—a.p
=—(N—g,a+ N—9,8)80—a,p-

Set
Mypg=—(N_go+N_gpg).

Then, using (5.12)

<v0(7 vﬂ)
SRS P S VNS Vs (PR S § VR
V=1

= Y ug, ug) — ¥N_o.o(Uo—a, up)

- %Nfe,ﬁ@ia? ug—pg) — \/T_TNfe,aNfe,ﬂWGfa, ug—pg)
L,

- @N—e.aN—a,ﬂ My—o.0—pda.0—p-

Therefore by (5.4) and (5.10)

B0—a.p — %N—Q,aMﬁ—a,ﬂ(Sa,ﬁ - %N—Q,ﬂMa,G—ﬂ(S@—a,@—ﬁ

(Vs vﬂ) = 28a,ﬂ~

In particular, the restriction of (-, -) to g*“ N g_j, is positive definite. The final claim
follows immediately from (5.3), using that [e, g_1 2] = g1 5. O

6. A General Theory of Invariant Hermitian Forms on Modules Over the Vertex
Algebra of Free Boson and the Fairlie Construction

Consider the infinite dimensional Heisenberg Lie algebra H = (C[t, 7~!1® Ca) ® CK
with K central and bracket

["®a, " ®al =8y, —mnk.

Let Hy = Ca +CK, and, given . € C, define u* € Hj by u*(a) = pu, u*(K) = 1.
Let M () be the Verma module for the Lie algebra H with highest weight u*. Let v,
be a highest weight vector, i.e. (" @ a)v, = 0forn > 0, hv, = pu*(h)v, for h € Hy.
It is well known that M (0) carries a simple vertex algebra structure, called the vertex
algebra of free boson, which we denote by V!(Ca), and that M (i) is a simple module
over the vertex algebra V!(Ca). Moreover, V! (Ca) is the universal enveloping vertex
algebra of the nonlinear Lie conformal algebra R = C[T] ® Ca with A-bracket

layal = A.

We introduce conformal weight A on V!(Ca) by letting A, = 1, and for v € V1(Ca)
we write the corresponding quantum field as Y (v, z) = ZjeZ vjz’f’Av.
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Fix t € C and set

L(t) = % aa :+tTa € V'(Ca). (6.1)

It is an energy-momentum element for all z. Set H(t) = L(t)g = % T aa g —tag. Since
ap = 0 as operator on V! (Ca), H(t) = % : aa 9. (Note that the conformal weights on
V1(Ca) are the eigenvalues of H(r) = H(0)).

If b € V1(Ca), write b for b ™. By the —1-st product identity

Taa O—ZZa_ja] +(a
jeN

In particular
Taa :g vy, = sz“. (6.2)
On the other hand, by the commutator formula,

1 1 1
2[ aa : 0, “] 22<r)(: aa iy a); =(Ta).’;+a7=—jal’;. (6.3)

Recall that a basis of M (u) is

f@ @y == > 0} (6.4)

Let M (), be the eigenspace for the energy operator H(t) corresponding to the
eigenvalue n + %,uz — tu. Since

1 1
5 raa :g +t(Ta)g = > Taa :’5 —tag
and [ag, afj] = 0 for all j, it follows from (6.2) and (6.3) that
M (), = span{(a” ;)1 -+ @ )" v, | Y ijs = n).
N

Thus

M(/'L) = ®neZ+M(M)rz-

This shows that M () is a positive energy V!(Ca)-module, i.e. real parts of the eigen-
values of H(¢) are bounded below. Moreover its minimal energy subspace is

M(w)o = Cuy.

Lemma 6.1.

9]
LT = O TT e ~an. (6.5)

n=1
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Proof. 1dentify V! (Ca) with the polynomial algebra in infinitely many variables using

(6.4) with 1 = O:

P=Cla_1,a_p,...,a_,,...].

Since L(t)11 = 0 and a,1 = 0if n > 0, both L(¢); and a, for n > 0 act as deriva-
tions of the algebra P under our identification. It follows that both sides of (6.5) are
automorphisms of P. It is therefore enough to check the equality only on the generators

a—p.
We need the following formulae:

[a; L(1)] = ra + 1221,
[an, L(t)1] = naps + ‘Sn,flztla

lan, a_p] = Sn,mnlo
Applying these formulae we find

2 _
e—ﬁlZnan (aim) —=e 2

It follows that

J
Zn _—
Van (a_y) = a_m — Sp.m2t7"I.

(6.6)
(6.7)
(6.8)

(6.9)

o0
L0 l_[ ¢ 5 an (a—p) = O, —2:7"1) = O, — 2t71.(6.10)

n=1
To conclude we only need to check that, if n > 1, then
L) (a—m) = L(0)[a—y —2n!8, mt1.
We prove this by induction on n. If n = 1 the formula reads
L(t)1(a—m) = LO)1a—m — 281mt1.
Using (6.7) with t = 0 we see that the latter formula is equivalent to
L(t)1(a—m) = ma_ms1 — 281 mt1,

which is just (6.7).
Ifn > 1andm = 1, then

L)1 (a—1) =L} L)1 (a—1) = L)1~ (=21) = 0 = L)} (a1).

Ifn > 1andm > 1, then

L)1 (@) =L "Lt 1 (@) = L@ (ma_ms1)

=L(O0)]" ' (ma_p1) =200 — D!md, 1 111

=L(0)!a_p — 2n!8, 1.
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Let ¢ be the conjugate linear involution of the vector space Ca defined by ¢ (a) = —a.
Assume from now on that # € /—1R. This assumption is necessary since, in order to
apply the results of [16], we need to assume ¢ (L(¢)) = L(t). Set (cf. (2.7))

Az, 1) = 17200 o 6.11)

where g is defined in (2.8). Let 7z : V!(Ca) — ZhuH(o)(Vl((Ca)) be the canonical
projection to the Zhu algebra (see e.g. [16, Section 2]). Let @ be the conjugate linear
anti-homomorphism of Zhu g ) (VK" (Cx)) defined by

w(wz(v)) = mz(A(, Nv)
It is proven in [16, Proposition 6.1] that w is indeed well-defined.

Lemma 6.2.

w(mz(a)v, = (n—2t)v, (6.12)
Proof. By Lemma 6.1, since g(a) = a and L(0);a = 0,
w(mz(@)vy =(A1, Da)f v, = (D1 a)iv, = (" V1 (a) — 2t1)h v, = alyv, — 2tv,
=(u — 2)vy,.
0

Recall from [16, Definition 6.4] that if V' is a conformal vertex algebra and ¢ is a
conjugate linear involution of V, a Hermitian form H(. , .) ona V-module M is called
¢-invariant if, forallv € V,m,m, e M

(m1, Yy (a, 2)ma) = (Yar(A(R)a, 2~ Yymy, my).

By abuse of terminology, we shall call H(-,-) an L-invariant Hermitian form, where
L is the conformal vector of V. If © € C we denote by R () and J(u) the real and
imaginary part of u, respectively.

Proposition 6.3. There is a non-zero L(t)-invariant Hermitian form on M(u) if and

only if t = /—13(p).

Proof. Let (-, -) be the unique Hermitian form on Cv, such that (v,,v,) = 1. By
Proposition 6.7 of [16], there is a non-zero L(¢)-invariant Hermitian form on M ()
if and only if (-, ) is an w-invariant Hermitian form on Cv,,. By Lemma 6.2, that is
equivalent to

1= (v, agvy) = (v, Tz(@vy) = (@(rz(@) vy, vu) = @ — 2t.
Thus
—27 = 2/—13(w),
hence the statement. O

We denote by H,, the unique L(+/—13())-invariant Hermitian form on M () such
that H, (v, vu) = 1.
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Lemma 6.4. If m,m’ € M(u), then
Hy(m,al'm’) = Hy,(@",m, m") + 8,02« —13(w)Hy (m, m').
Proof. By invariance of the Hermitian form,
H, (m,a,m") =Res;z"H, (m,Y"(a, z)m")
=Res.Z"H,(Y*(A(x)a,z~ " ym, m')
=ResZz”HM(Y“(eZL(mz_zL(t)Og(a), 7 Hm, m)
=Res,z" 2 H, (Y* (e P1g — 2/ =13(w)z1, 2z~ Hym, m")
=Res,z" 2 H, (Y*(a — 2v/=13(w)zl, 2~ Hym, m").
The last two steps follow by (6.10) and the fact that L(0);a = 0. As
Yia, 27 =Y al v ) =) 80l
r r
we get the result. O

It is now easy to compute the invariant form in the basis (6.4):
Hy ((a“ @l ) @ @ j;)ff-’.vu)
= Hy <(a;j,>"i’ @) )@ ) vu) : (6.13)
It follows that the basis is orthogonal and
|, = TToti
s

In particular the form is positive definite and its values on the chosen basis do not depend
on /.

Letiu € Candr € «/—1IR. Let M (i, t)V be the conjugate dual of M (u) with action
given by, for b € VI(Ca), m € M(p), f € M(u, 1),

YMID" (p 2 Fym) = F(Y*(A(, 2)b, 2~ ym),

where A(z, t) is defined by (2.7), (2.8).

Using the L(v—13 (u))-invariant form on M (w) (see (6.13)), we can identify M (u)
and M (u, )" (as vector spaces) by indentifying m with f,,, : m" +— H,(m’, m).

We now want to describe explicitly the action of V! (Ca) under this identification.
We need the following result:

Lemma 6.5. Ift € /—1R, then
Z2H(O)eznanz—2H(0) — eZ_nan (6 14)

etz"ang _ get(—z)’lan (6.15)
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Proof. If b € V!(Ca) then,

n 1
2zH(0) ,2"ay ,—2zH0)y, __ =24
e et e b=z E 3

Z2Ab72rnznra;b

r

1 —n
= Z —z ajb =e* b.

For the second formula note that
glalb) = (=DM "¢ (alb) = (=DM (=1 alp(b) = (=1) " (=1) d,g(b)

so, since ¢ is purely imaginary,

n 1 1 u
ez ang(b) = Z r_'trznra;g(b) = Z r_'(_l)fnrznrg(trarrlb) — ez(fz) anjp,

r r
O
Proposition 6.6. Ifm € M(u) and f,, € M(u, 1) is defined by fn,(m') = H,(m’, m),
then
yMu.nY b,z — /s
( )fm fY# (H'OIC’:I 62< Iih/nil‘ () (—2)"ap b,7)m
In particular the fields
ad 2(—t+/=13()
- —135(p —n
Y*i(b, 7) :=TYH (1—[ e n 9™ anp, z) (6.16)
n=1

define a V1 (Ca)-module structure on M ().
Proof. By definition,
(MU0 (b, 2) fr) (') =H, (Y (A(t, )b, 2~ ym' m)
Z(Yﬂ(eZL(t)lZ—2L(t)0g(b)’ Z_l)m/, m)

Using (6.5) we can write

o0 o0 5 \/7
O = ZLON T e~ wan _ LT3 I1 o A
n=l1 n=lI
so, by Lemma 6.5,
\2
(YMED" (b, 2) fin) (m)
o0

~ 20=v—=13(W) _n
:HM(Y“(EZL(“/TI“(“))‘ 1_[ e~ e “”Z—ZL(t)Og(b), Z_l)m/, m)

n=1

ad 2(=t+vV/—13(w)
~ VIS —n
=HM(Y”(eZL( —1~\(M))1Z—2L(t)og | | e n (=9 a”b,z_l)m/,m)

n=1
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Since the form H), is L(+/—13(u))-invariant, we find that

2(—t+/—13(n)) _
2 R0) gy

(YMD" (b, ) fo) (') = Hy, (', Y“(l_[ e b, z)m)

n=1
_ /

=f 2—t+/=13() , (m").
YR em i D an oy

O

To simplify notation writea = (a_1, a_», ...).If I is aninfinite sequence (i, i2, . . .),

with i; € Z, almost all zero, then set a! = [0, a’.. We can regard b € V1(Ca) as a
polynomial b(a). More precisely, we write

b(a) = chall, ¢; €C.
1

We also set
p(z) = (zlo, 2210, 210, ...) = (21, 221, 2°1, ..).
Lemma 6.7. Write Y (b,z) = 3, ., bl 27"~ Then

. 0 .
bt = (b(a””ft))  where 2T = a £ 2(—t + V=13()p(—1).
r
Proof. Since bl" = Res.z*20~1 (Y1 (b, 7)), we need to check that
Res,2 ™1 (Y1 (b, 2)) = b(a+ (—1 + V—13()) p(— )L
It is enough to check this for b = all. Using (6.9), we can write

o0
2(—t+/=13() —n
[Te = 9" al1=@+2(—r + V=13 (-2~ )1

n=1
It follows that
Y (b, 2) = YH(b(a+2(—t +/=13(u)p(=z "), 2)
hence we need to check that
Res;z"* % “H(Y (@ + 2(=1 + V=13(W)p(—z~ )1 ® v, 2))
= ((aShift)Il ® v)r .

Indeed, setting 9 = 2(—f++/—13(u)) and letting g be the number of j such thati; # 0,

Y*(@a+1top(—z~ )1, 2))

=) > ﬁ (i'p> <<f§>p)ip_jp al 1,77 Lp=1 Plp

S JISilen g <ig p

p=1
9 S

N e G
p=1

. o J
S J1=i1,JgSlg p
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SO
Res,z "N (YH @ +19p(—2 1)1, 2))
ki i
= ) H<<—1>Pro>’f"’(.”) a’l,
J1<i1sejg<iy \p=1 Ip
= (@+n0p(-=1'1) |,
r
as wished. O

In particular,
a! = (a_ )M = at —2(—t + N —=13())8r01 (6.17)
o)
ah’ = (= 2=t + V=131 = (T+20)1.
Hence we have an isomorphism of V!(Ca)-modules
M, )Y = M +2t). (6.18)

Let M[u, t] denote the vector space M (1) equipped with the V! (Ca)-module struc-
ture given by b — Y*(b, z) so that

M, t] >~ M(u, )" ~ M +2t).

LetY, ,: M[u,t] — M (jz+2t) denote such anisomorphism. By (6.17), Y, ;(v,) €
Cvz42:. We can therefore normalize Y, ; so that v, — vgy2;. It follows from (6.17)
that, if j1 = jo = -+ = Jr,

Yya(a; oa v = Tpa@s atv) =a e a T g,
Note that, by (6.13),
Hyzsor (Xpu e (m), Y e (m")) = Hy(m, m'). (6.19)
Moreover
oo 2 VTS
YIS (b, 7) = Yu(l—[ ew(*z)w“nb’ 2)
n=1
o0 oy B
=y ([ Jen T b, 2), (6.20)
n=1

and,if m € M () and m’ € M (i + 2s),
Hﬁ+25 (Tu,s Yﬂ’t(b’ z)m, m/) = Hﬁ+25 (Tu,s YMJ_F(I?S) (b, 2)m, m/)
o
“20=5) (__y-n
= Huas (X Y ([T e 97" %b, ym, ')

n=1

o0
o —2(t=5) (__\-n
= Hyo, (Y2 ([Te 9" b, )Yy s (m), m')

n=1

= Hypypy (Y205 —V=3W (5 3, (m), m').
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It follows that
Yy Yl (b, z) = YIRS —V=IRW oy, ¢ (6.21)
In particular, if u is real,
Yy s YN (b, 2) = Y2 (b, )Y (6.22)
Lemma 6.8. If m, m’ € M(w) and b € V'(Ca), then
Hy(m, Y™ (b, 2)m") = HM(YM’S(A(—\/—_IANS(,LL) +1+5,2)b, 27 Yym, m'). (6.23)
In particular, if b is quasiprimary for L(—/—13(w) + t + 5), then
H, (m,b™'m’y = H,,(g(b)" m, m"). (6.24)
Proof. We first prove that
H, (m, Y (b, 2)m’) = HM(Y“”(A(—\/—_IS(M) +21,2)b, 2" Hm, m'). (6.25)
Indeed,

Hy(m, Y™ (b, 2)m") = Hyaor (Yyu 1 (m), Yy s (Y (b, 2)m"))
= Hyor (Yyi 0 (m), Y (b, 2) Y0 1 (m))
= Hyuor (Y2 (A(—V=13(w) +2t, 2)b, 27 )Ty s (m), Ty (m))
= Hios (Vs (VP (A(=V=13(1) + 21, 2)b, 27 HYm), Yyue(m)),

so (6.25) follows.
To prove (6.23) write
ad —2(t—s)
Hyu(m, Y*! (b, ym'y = Hy(m, Y3 ([T e 097" b, 2ym).

n=1
By (6.25), setting so = —+/—13(u) + 2s,

—2(t—s)

o
Hy(m, Y (b, ym') = H, (Y (AGs0.2) [ e 97" b, 27 ym, m')

n=1
ad —2(t—s)
— HM(Y“’S (ezL(So)1Z—2L(So)0g H e~ (=9 anp. Z_l)m, m')
n=1
iy
— HM(Y“’S (eZL(SO)l l_[ efz”anz—ZL(So)og(b), Z_l)m, m’).

n=1

Since, if p € V—1R,

o0
L1 — ,zLO) l—[ o an

n=1
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we find that
H/L (m, Y** (b, Z)ml)

2R
x[l. +5+ a
= H, (Y"S (sl O | |e nz 2L Oog by, 27 Hym, m")

n=1

_ Hﬂ(yu,s(ezL(—ﬁ;‘s(u)ﬂmlZ—zL(O)og(b), Z—l)m, m')

oo
. 2(—V/=IS(W+s+0) _n
= H, (Y (@O Tl e 0 a2 O0g () 2~ ym )

n=1
= H, (Y (A(—V=13() + s +1,2)b, 2~ ym, m").
O

Example 6.9 (The Fairlie construction). Since L(s) = 2a 1+sa_»1,by (6.17) we have
L) = $ay +2t = 2¢/=13(w)?1, +s(a—y — 2t +24/=13(u))1,
= 302 1, +2(t = V=13(0)a-11, +2( = V=13())*1,,
+sa_nl, —2s(t — vV/—13(u)1,
=L raa s +2(t — V=13()ay +s(Ta),
+2(t = V=13t — V=13() — )1,
In other words
L)' = Jraa t +s(Ta)l +2(t — V/=13(w)al* +2(t — vV/=13(1))
(t — V=13(p) — )1 (6.26)
In particular, if © € R, we have
L(s)i"' = ; aa * +s(Ta)" +2tal +2(> — sH)1¥, (6.27)
and, setting s = 2¢, (6.27) becomes
L(s)L S22 aa H+s(Ta)kt + salf — szlﬁ = L(s)l +sal — %szlﬁ. (6.28)
By the —1-st product identity,

_ Zlezaﬁ] ﬁ_n ifn £0,
"2 jewd ja + (ag)? ifn = 0.

Moreover, (Ta)ly = —(n + 1)a};, hence, substituting in (6.28), we obtain

L(s )”S/2 Za_j j+n—sna,’jifn7é0,
jeZ
while

2
ws/2 _ wop M8
Loy =) aiaf + = 1.

jeN
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Since b > Y*$/2(b, z) gives a V! (Ca)-module structure to M (1) and

3
[L(s)3L(s)] = (T +2))L(s) + %(1 — 12s%),

by the Borcherds commutator formula,

[L(s)?, L)) = (n — m)L(s)530 +

12528 .
Finally, since L(s) is quasiprimary for L(s) and g(L(s)) = L(s), by (6.24) we have
Hyu(m, L(s)i*m') = Hy(L(s)") *m, m).

We now extend the previous analysis of invariant Hermitian forms on bosons to the case
of the vertex algebra V!(Ca) ® V where V is a conformal vertex algebra.
Let L be the conformal vector of V. Set

L(s)=L(s)+L. (6.29)

If M is a V-module, then M (u) ® M is a ViCa)® V- module and, if M is equipped
with a L-invariant form (.,.),then H,(.,.)®(.,.)isa L(\/ 13())-invariant form
on M(u) ® M that we keep denoting by H,L( o).

The arguments developed in this section for V! (Ca) can be carried out in the same
way in the more general setting of the vertex algebra

viCa)®V, (6.30)

where V is any conformal vertex algebra. In particular, we have

Proposition 6.10. Ifb € V! (Ca) ® V and M is a V-module, then the fields

.t " e 2(=1+/=13 () (—z)*"a
Yl b, =Y ([ Tem "b, 2)

n=1

define a V(Ca) ® V-module structure on M (i) @ M.

As before, we can regard b € V!(Ca) ® V as a polynomial b(a) with values in V.
More precisely, we write

b(a) = Za’ ®cy, c; € V.
1

The following is the generalization of Lemma 6.7. The proof is the same.

Lemma 6.11. Write Y*'(b,2) = Y, _a, .z b2 2. Then

bt = b(a+2(=1 + V/=13(w)p (=)
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7. Minimal W-Algebras

7.1. A-brackets and conjugate linear involutions. Let, as before, g be a basic classical
Lie superalgebra, and x € g be an element, for which ad x is diagonalizable with
eigenvalues in %Z, the ad x-gradation of g satisfies (1.2) with some f € g_; and is
compatible with the parity of g. Then for some e € gy, {e, x, f} is an slp-triple as in
Proposition 3.2, i.e. (3.1) holds with g’ the centralizer of f in g. Recall that the invariant
bilinear form (.|.) on g is normalized by the condition (x|x) = % and we have the
orthogonal direct sum of ideals

go=(Cx®g“. (7.1)

Choose a Cartan subalgebra b of g, so that, by (7.1),h = Cx& h%isa Cartan subalgebra
of gy (and of g).
Let

s
=P (7.2)
i=0

be the decomposition of g” into the direct sum of ideals, where gg is the center and the
gf are simple for i > 0. Let 2" be the dual Coxeter number of g, and denote by ﬁiv half

of the eigenvalue of the Casimir element of g? with respect to (.|.) JENE when acting on

g?. Note that 2§ = 0.

In [18] the authors introduced (as a special case of a more general construction) the
universal minimal W-algebra W!;in (9), whose simple quotient is W;™"(g), attached to
the grading (5.6). This is a vertex algebra strongly and freely generated by elements L,
J} where v runs over a basis of g, G!*} where u runs over a basis of g_1/2, with the
following A-brackets ( [20, Theorem 5.1]): L is a Virasoro element (conformal vector)
with central charge c(k) given by (1.4), J! are primary of conformal weight 1, G}
are primary of conformal weight %, and

[]{M}AG{U}] = Gl foru € gu, vVeEg_in, (7.3)
(g, gl = gllwol + AP (u|v) foru,v e gu, (7.4)
where
]v_/'z_v ..
Brlu, v) = 8 j(k+ D) wl), weg veg i j=0. (75)

Furthermore, the most explicit formula for the A-bracket between the G} is given in
[1, (1.1)] and in [20, Theorem 5.1 (e)]. We will need both formulas:

dim g*
[G")GM ] = =20k +hY)u, v)L + (u, v) » o JW el - g
a=1
dimg»
3 o Jlew? B pllwy 0F) . o g 4 1)p g (eul v
y=I

k
+41) —pli ) ltte. i) +22%(u, v) p(i)1, (7.6)
- i
]



V. G. Kac, P. Moseneder Frajria, P. Papi

dim g*
(GG = =20k + RY) (. v) L+ (u,v) Y o JU gl

a=1

23 lutge ], [o, ) T T8 4200+ 1)@ + 2 g TP
a,B

+20> g, ul, v, PT84 2220, v) p(h)1, (7.7)
a’ﬂ

where {uq} and {u®} (resp. {w, }, {w”}) are dual bases of g’ (resp. g1/2) with respect to
(.].) (resp. with respect to (-, -)pe), a aiu (resp. a — a?) fora e g is the orthogonal
projection to g? (resp g%), p(k) is the monic quadratic polynomial proportional to (7.28),
introduced in [1, Table 4], and thoroughly investigated in [15], and k; = k+ %(hv — l_zl.v),
i =1,...,s (see Table 2 below for the values of hiv).

The following proposition is a special case of [ 16, Lemma 7.3], in view of Lemma 3.1.

Proposition 7.1. Let ¢ be a conjugate linear involution of g suchthat ¢ (f) = f, ¢(x) =
x, ¢(e) = e. Then the map

p(Jy = JOWI (G = G gLy =L, ueg veg n (18

extends to a conjugate linear involution of the vertex algebra WIIT‘I-ln (9).
The following result is a sort of converse to Proposition 7.1.

Proposition 7.2. Assume that k € R is non-collapsing. Let \ be a conjugate linear
involution of erl‘ﬁn (@). Then there exists a conjugate linear involution ¢ of g satisfying
(1.1) such that \ is the conjugate linear involution induced by ¢.

Proof. If a, b € g”, define ¢ (a) by
Iﬂ(.]{a}) — Jlop@}
Then

YA IO = g U +apia. by = SNV L apa by (1.9)
[J{¢(a)}AJ{¢(b)}] — jle@.o®N 4 ABk(¢(a), ¢ (b)) (7.10)

Since i is a vertex algebra conjugate linear automorphism, (7.9) equals (7.10), so that
¢ is a conjugate linear involution of g?, and we have

Br(a, b) = Br(p(a), d(D)). (7.11)
Since k is not collapsing, relations (7.22), (7.28) and (7.11) imply that
(alb) = (p(a)|¢ (b)) fora, b € g". (7.12)

‘We now prove that there is a unique extension of ¢ to a conjugate linear automorphism
of g fixing e, x, and f. Note that ¢(g_;,2) C g_1/, and that g;» = [e,g_;/]. In
particular, setting ¢ (x) = x, ¢(f) = f, ¢(e) = e, p(u) = [e,p(v)]foru € g;)p, u =
[e, v], v € g_1/2, we extend ¢ to a conjugate linear bijection g — g. In particular, ¢ is
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unique. It remains to prove that it is a conjugate linear automorphism. Note first that, by
(7.1), equation (7.12) holds for a, b € g,. Consider elements

g=ae+ut+a+v+pBf+yx, g=de+u+d+vV+B f+y'x,

where a, o', B, By, ¥ € C, u,u’ € gy, v,v €g_y)p, a,a’ € g?. Then

o(lg. &' =

o (e, v/] + aﬁ/x — oty/e + [u, u/] + [u, a/] + [u, v/] + ﬁ/[u, f]

— 3y u+la, w1 +[a, a1 +[a, v+ [v, el + [v,u') + [v, a'] + [v, V]

+ 3y — o' x+ BLL T4 BY fye+ by — Iy — By, (7.13)
[$(2). (gl =

ale, g +ap'x —ap'e+[pw), g +[pw). p(@)]+[pw). p()]+ B[ (). f]

— 37 ¢w) +[p(a), p)] +[p(@), p(a")] + [¢(a), p(W)] +& [P (v), €] + [p(v), P (u)]
+[p (). p@)] +[pW). W)+ 37 P () — pa'x + BLL. ¢ ()] + By  f + péae

+370W) = 3760 = B'7f). (7.14)

Hence (7.13) equals (7.14), provided the following equalities hold

¢ ([u,u']) = [pu), p(u")], (7.15)
¢([u,a'l) = [pu), pa")], (7.16)
¢ ([u, V']) = [pu), p(V)], (7.17)
(v, V') = [p(), p(V)], (7.18)
¢([v.a']) = [p(v), p(a))], (7.19)
é([u, f1) =[d@), f]. (7.20)

Relation (7.3) implies at once (7.19). To prove (7.18) note that [v, v'] = (v, V') f, s0

it is enough to prove that (¢ (v), ¢ (V")) = (v, V). By (7.7),
G GO = 4p(k)(p(v), p(W))T = Apk) (v, v')1) = 4p(k) (v, V)1

Since p(k) # 0 (k is not collapsing) and £ is real, we have the claim.
Now we prove (7.20). Here and in the following we write u = [e, v], v € g_;),.
Then

¢([u, f1) = ¢(le, v], fD = —¢(lx, v])
=30 =—[x, ¢ =[le.p(V)]. 1= [pw), 1.

Next we prove (7.17). We have to prove that
¢ (lle, v1, V'] = [le, p()], (V"]
By (7.6)

’ Nl
GO G0 = 37 B8 g0,

1
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On the other hand

’ 21
¢(G{v}1/2G{v }) — Z %ﬁ‘)]{d)([[eyv],v 1D}

1

Since ¢ is an automorphism of g’ there is a permutation i — i’ such that ¢(g§) = g?,. It

follows that ¢(lle,v], V') =  ¢(lle,v],v'D} hence [le, )], g1,
= ¢([[e, v], v’]E) for all i, and also

lle. o ()], )" = [le. p )] pW)]; =Y p(Ile. vl V']})

i’ i

=Y ¢(le. v]. v'D;, = p(lle. v]. V']

To conclude we have to check the x-component:

(xIlle, )1, WD) = (Ix, [e, pWNIP (V) = L (Le, pW)1IP (V)
= o), p()) = L{v, V).

Since (1.1) holds on g, we have

(xlp (e, v],v']) = @ @)[[[e, v], V'] = (x][[[e, v]. v']) = $(v, V).

Next, we prove (7.16). We have

¢(lle, v],a']) = ¢(le, [v,a'T]) = [e, ¢([v, a'DI=le, [$(v), P (a)]]
= [le, ()], ()] = [$ (), p(a)].

Next, we prove (7.15). Consider u = [e, v], u’ = [e, V'], v,V € g_j 5.
¢ ([u, u']) = ¢([le, v1, [e, V'I]) = p([e, [[e, v], V') = [e, ¢([le, v], v'D].
By (7.17), we obtain
o ([u, u']) = e, [p([e, v]), p(W)ID] = e, [¢ W), (W)]] = [p(u), ¢ (u")].
It remains to check that
(@ (@)|¢ (b)) = (alb)

for a, b € g. We already observed that this relation holds for a, b € g, and it is obvious
that (¢ (e)l¢(f)) = (el f). We now compute for u € g ,, v' e 9_1/2

@)l )) = (le, p(WIP(V) = (p(v), p(W)) = (v, V) = (u|v).
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By Proposition 3.2 there is a conjugate linear involution ¢ on g such that ¢ (x) =
x, ¢(f) = f and (g%)? is a compact real form of g“, hence, by Proposition 7.1, ¢ induces
a conjugate linear involution of the vertex algebra erflin (g9), and descends to a conjugate

linear involution of its unique simple quotient W,?“in (g), which we again denote by ¢.

By [16, Proposition 7.4 (b)], erflin(g) admits a unique ¢-invariant Hermitian form
H(-,-) such that H(1,1) = 1. Recall that if k + #¥ # O then the kernel of H(, -)
is the unique maximal ideal of WIII‘lin (g), hence H (-, -) descends to a non-degenerate

¢-invariant Hermitian form on W,ﬁ“i“(g), which we again denote by H (-, ).

We need to fix notation for affine vertex algebras. Let a be a Lie superalgebra equipped
with a nondegenerate invariant supersymmetric bilinear form B. The universal affine
vertex algebra VZ(a) is the universal enveloping vertex algebra of the Lie conformal
superalgebra R = (C[T] ® a) & C with A-bracket given by

la,b] = [a, b]+ AB(a,b), a,b € a.

In the following, we shall say that a vertex algebra V is an affine vertex algebra if it is a
quotient of some V2 (a). If a is simple Lie algebra, we denote by (.|.)® the normalized
invariant bilinear form on a, defined by the condition («|«)® = 2 for a long root . Then
B = k(.].)%, and we simply write Vk(a). If k # —h", then Vk(a) has a unique simple
quotient, which will be denoted by Vi (a).

Let ¢ be a conjugate linear involution of a such that (v (x)|¥(y)) = (x|y). By [16,
§5.3] there exists a unique -invariant Hermitian form H, on Vk(a). The kernel of H,
is the maximal ideal of V¥ (a), hence H, descends to Vi (a).

7.2. Some numerical information. Recall the decomposition (7.2) of the Lie algebra g,
and that we assume that g” is not abelian, i.e. s > 1 in (7.2). Let 6; be the highest root

of the simple component g? fori > 0. Set
2 hY —hY )
Mik)=— [k+——], i>0, (7.21)
u

where

. ifi =0,
"1 ifi > 0.

Let (.| .)E denote the invariant bilinear form on g?, normalized by the condition (6; |6; )? =
2 fori > 0,and let (.].)) = (-1, gi gz - Note that, for i > 0, (alb); = & ;%% (ayp),

hence, formula (7.5) can be written as

(6:16:)
Bx(a,b) = 8 i M; (k)%(mb) (7.22)
=8 jMi(k)(alb); ~foraeg], beg) ij>0. (7.23)

In other words, the vertex subalgebra of err‘lin generated by J lad g4 ¢ g”, is® y Mi (k) (g;).

i=0
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Table 2. Numerical information

g g Ui hY hy M (k) Xi

sl2lm), m > 2 Cesly 2,-2 2—m 0,—m kf”’Td,fkfl 1—-m/2, -1
psi(2]2) sh -2 0 -2 —k—1 -1
osp(4lm),m > 2 sy & sp,, 2,—4 2—m 2,—m—2 k— %,—%k—l —m/2, —1
spo(2]3) sh —1/2 1/2 —1/2 —4k —2 -2
spo(2lm),m >4 sop -1 2—m/2 1—m/2 -2k —1 —1

D2, 1;a) sh®slh, —1%.-7 0 - —(+a)k—1, -2k -1 —1,-1
F4) 507 —4/3 -2 —10/3 3k -1 -1

G(3) G, -2/3 —3/2 -3 —3k—1 -1

Closely related to the vertex algebra erﬁlin (g) is the universal affine vertex algebra
V% (gp) (see [20, (5.16)]), where

ax(a, b) = ((k+h")(alb) — %Kgo(a, b)), (7.24)

and where kg, denotes the Killing form of g,. Note that
ar(a,b) =8 j(k+h” —hY)alb)ifa eg. beg ij=0.

We have another formula for the cocycle «y, closely related to (7.23):

wla.b) =38 (k+h" —hY) (alb)!

RCI)
= 8 j(M;(k) + xi)(alb)] fora € g}, b e g%, i,j =0, (7.25)
where

hY —hY
xi=——=,i>0. (7.26)
u;
The relevant data for computing the M; (k) and x; are collected in Table 2, where their
explicit values are also displayed. Note that Mo (k) = k + %hv.

As in the Introduction, denote by & € (h%)* a highest weight of the g*-module 9_1/2-

Lemma 7.3. Fori > 1 we have

xi = —£(6,), (7.27)
with the exception of x1 for g = osp(4|m).

Proof. The weights & are restrictions to h? of the maximal odd roots of g; they are listed
in Table 3, together with the maximal roots 6;. Relation (7.27) is then checked directly
using the data in Tables 1, 2, 3. m|

Recall from [1] that a level k is collapsing for W,?“i“ (g)if W,f‘i“ (g) is a subalgebra of
the simple affine vertex algebra Vg, (@).

We summarize in the following result the content of Theorem 3.3 and Proposition
3.4 of [1] relevant to our setting. We say that an ideal in g* is a component of g* if it is
simple or 1-dimensional.
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Table 3. Highest odd roots and highest roots of gu

g Highest odd roots 0;
sl2lm),m > 2 €1 —om,01 — €2 81— 6m
psl(2[2) €1 — 82,01 —€ 31—
osp(4lm), m > 2 €1+ €] — €, 2681
spo(2|3) 81 + €1 €]
spo(2lm), m > 4 81 + €1 €1 +€p
D2, 1;a) €1+€e+€3 2ep, 2€3
F(4) 1061 +e1 +er+e3) €1 +e
G(3) S1+€1+e €1 +2€

Theorem 7.4. Let g be a basic Lie superalgebra from Table 2. Assume k # —h". Let
p(k) be the monic quadratic polynomial in k, proportional to

M (k)M (k if g% has two components,
: 1 (k)M (k) if g p (7.28)

M)k + "L +1) otherwise.
Then

(1) k is collapsing if and only if p(k) = 0.
(2) If g is simple then
(a) WM (g) = Cif and only if My(k) = 0;
. ﬁv . ~
(b) ifk = =5 — 1, then WM™ (g) = Vi, 1) (@)
(3)If g = D2, 1;a) and k is collapsing, then W,ﬁni“(g) = VMJ.(k)(gé), with j # i if
M;(k) = 0.
Remark 7.5. If M;(k) € Z foralli > 1, g # osp(4|m) and M; (k) < —x; for some
i > 1, then k is a collapsing level (or critical). This is clear by looking at Table 2.

8. Necessary Conditions for Unitarity of Modules Over Wl’:ﬁn (9)

We assume that g is from the list (1.3); in particular, gu is a reductive Lie algebra. We
parametrize the highest weight modules for erflin(g) following Sect. 7 of [20]. Let h” be

a Cartan subalgebra of g, and choose a triangular decomposition g = n° @ h° @ ni. For

v e (h")* and Iy € C,let LY (v, £g) (resp. MW (v, £9) ) denote the irreducible highest
weight (resp. Verma) Wr’fﬁn(g)—module with highest weight (v, £p) and highest weight
vector vy, ¢,. This means that one has

h
JQ{ }vv,eo = v(h)vv,fo forh e huv LOU\),ZO = lovv,f(y

J,i“}vv’go = G,{f}vv’go = Lyvy g, =0forn>0,u € g, ve 9-_1/2s
Jé"}vu,go =0foru en;.
Let ¢ is an almost compact conjugate linear involution of g (see Definition 1.1); in
particular, the fixed points set gE{ of ¢4 is a compact Lie algebra (the adjoint group is
compact). Set b% = g% N b, Recall that v € (f)g@)* is said to be purely imaginary if

v(h%) C +/—IR. Tt is well-known that if « is a root of g” and v is purely imaginary then
v(a) € R.
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Lemma 8.1. Assume thatly € R and that v is purely imaginary. Then LY (v, £o) admits a
unique  ¢-invariant nondegenerate  Hermitian form H(.,.) such that
H(Uv,éoa Uv,(io) =1L

Proof. Tt is enough to show that the Verma module M"Y (v, £y) admits a ¢-invariant
Hermitian form H such that H (v, ¢, Vv,¢,) = 1. Fix a basis {v; | i € I} of 9-1,2 and a

basis {u; | i € J}ofn. Set A} = jluidifj e J, A} = G} ifj e I, and A = L

Then
by by
1
5= {(alh)" - (4%,) v

where b; € Z,, b < 1ifi € I,m; > 0orm; = Owheni € J,isabasisof MY (v, £p).
Define the conjugate-linear map F : M — C by setting F (v, ¢,) = 1 and F(v) =0
ifvebB, v#uvyg.
Ifve MY (v, £y, m>0,and u € g, then

(T Fy ) = —F"hy) = 0.

Similarly we see that, if u € g_ >, then
(GYF)(v) = (LuF)(v) = 0.

On the other hand, if # € ng,, then, since ¢ (1) € ng_,

M FPYw) = —FU ) = 0.
Ith e b%, then, since v(h) is purely imaginary,

U F)we0) = —FUP " 0,00) = =FUv000) = v F (04,
and, if v € B, v # vy g,, then
P = —FU ") = —F"v) = 0.
It follows that J\") F = v(h) F for all h € b”. Finally, since Iy € R,
(LoF)(vy,e9) = F(Lovy,ey) = loF (vy,44)s
and, if v € B, v # v, ¢,, then
(LoF)(v) = F(Lov) =0.

so LoF = [pF. It follows that there is a Wmm(g)-module map B : MY (v, y) —

MW (v, £9)" mapping v, ¢, to F. Define a Hermitian form on M" (v, £) by setting
H(m,m") = B(m")(m).

Let us check that this form is ¢-invariant: write Y% for the field Y™ Y (v.00) apd yvto
for the field YM" -¢0" Then

H(m, Y, 2ym’) = Y, 2ym"y(m) = YV (u, 2) B(m’) (m)
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= Bm") (Y (A(Du, z~Hm),
SO
H(m, YV, 2 ym') = HY Y (A(D)u, 77 Hm, m").
[}

Definition 8.2. The W,ﬁ“i“(g)—module LY (v, £y) is called unitary if the Hermitian form

H (-, -) is positive definite. The vertex algebra W,I“i“ (g) is called unitary if its adjoint
module is unitary.

As usual, we denote |[u| = H(u,u), u € LY (v, £y). In order to obtain necessary

conditions for unitarity of LY (v, £y) we compute ||G{_U]} /2006 [

Lemma 8.3. Let, as before, £ be a highest weight of the g*-module g_, /2, and fix a
highest weight vector v € g_y 5 . Then

1" l/zvveoll =(=2(k +h")lp+ W]y +2p") = 2(k + D(E[v) +2(E[1)*) ($(v), v).
(8.1)

Proof. To prove (8.1) we observe that, since g(G*) = G1?@} and G} is primary,

H(G 1/2vv £o> G 1/2UU 0) = H(G1(%v)}G 1/2Vv,o> Vv )
= H(GS". G, 1oty vunty).
Using Borcherds’ commutator formula
1
08761 = 32 () 0 5,6
J
and formula (7.7) with u = ¢ (v) we obtain

dim g*
(G, G )1 = =206+ ) (@), v) Lo + (D (v), v Z J el

23 (e, $)), o,y 7 }J{“ﬁ} 0 +2(k + Dl
op

£2) e, p @)1, [, uf sV, 82)
a’ﬁ

By the —1-st product identity,

g g 3 ) 1

JEL+
hence

LT sy g = 0 I T g (8.3)
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We choose the basis {1y} so that {uq} = {u, | u, € g]u,} U{u; | 1 <i < rank g} with
{u;} a basis of h”. Then u? € g[y. It follows that

HUM 1 0, 00 v000) 202y = . (8.4)
Since
[leo, p ()], vI* = Y (lleg, )], vlluy ) + Y ([lea, ()], vljupu',
yeA! i
we see that

b
H(Jé[[ee,éb(”)]'”] }vv,zo, Uy, ¢o)

= (llea, )], vlluv(ui) =Y (epllp ), [v, u;Dvw;).  (8.5)
We assume that v € g¢. Then (8.5) yields

HIS POy o) = = S (eolld ). vDE@NVW') = — (@), ) E V).

1

(8.6)

From (8.4) we see that (Jé[uy ’uy]}vv,go, Uy,¢,) = Ounless y' = y. Clearly Jé[Lll’uj]} =0

for all i, j. Combining (8.2), (8.4), (8.6) we find

HAGYM™, G vy v0.40)

= =20k + 1) (p (), v)lo + (P (v), V) V|V +2p") — 2(k + 1){p (v), V) (£|v)
+2) (e ), o P DHUIS Iy 0060 v0,00)- (8.7)
a.p
Recall that ¢ is a compact involution of g7, thus
¢ (hy) = —hy forall a € A", (8.8)

(As usual iy stands for the element of h” corresponding to « in the identification of h”
with (h”)* via (.].)). It follows that [Ay, ¢ (V)] = —&(hy) P (v), so the weight of ¢ (v) is
—&. In particular, since v is a highest weight vector for the g*-module g_ /2> We have

> e d )1, [, P Y H IS Iy vty v060) =
o.p

> (Wi d ). L. w HHIS Iy vyt o)

i,J

£y d @1 o w? DHIS 1 0,00 v10)

y <0

=Y E@)v@HEW () (), v). (8.9)

i,J
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Substituting (8.9) into (8.7) we obtain
H(G) yvvt: G jpvveg) = = 20k + hY) (@ (0. v)lo + (@ (v). v) 0] +20)
—2(k + D(¢(), v) () +2(E[v)* (P (v), v),
as claimed. |

Remark 8.4. Letv € g_;, be as in Lemma 8.3 and u a root vector for the root 6;. Then

179G 00012 =(@1 1 + )@ @) — B @), uDIG™] 01,012,
Indeed,
H(J" “}G{vl/zvu t> JiL']}G{l)l}/zvu,eo)
_ _H(G{¢(v) J{d)(u)}J{u}G{v} by Vito)
= —H(GE%U) [Jl{‘p(”)} J{u}]G{Ul/zvu €95 Vv, )
= (O:1& + V)@ W) H(G"] yvu10, G pv04)
— Brlp ), wH(GY] yvu.40. G} y0000)-

Let P* C (h%)* be the set of dominant integral weights for g and let
Pf={ve P v) < Mk foralli >1}. (8.10)

Recall that £ € (h%)* is a highest weight of the g?-module g_ 1,2~ Introduce the following
number

(v|v +2,01) E[v)
2(k+hY) k+hV

Ak, v) = ((§lv) =k —1). (8.11)

Proposition 8.5. Assume that k + hY # 0. If the W.
then M; (k) € Zy foralli > 1, v € P}, and

(g)-module LY (v, £p) is unitary,

mm

Lo > Ak, v). (8.12)

Proof. Inorder to prove that M; (k) € Z, for all i>1landv e PkJr ,itis enough to observe
that, if LY (v, £p) is a unitary module over W mm (@), then, in particular, v B (g”)vv £ 18
a unitary module over V% (g%), hence v € P} [12], which is non-empty if and only if
M;(k) € Z, foralli > 1.

To prove the second claim recall that, by Proposition 5.1, the Hermitian form (¢ (.), . )
is positive definite on g_; . Since k + hY < 0, we obtain from (8.1) that

_ Ov+20%)  (k+1) <5| >2

02 Skrn) kane M TAEY)

as claimed. O
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Consider the short exact sequence

k k
0—I" - Wi

(9) — Wrin(g) — 0.

Ifa WI’flin (g)-module LY (v, £y) is unitary, then, restricted to the subalgebra v B (g“) itis

unitary, hence a direct sum of irreducible integrable highest weight g°-modules of levels
M;(k), i > 1. But it is well known that all these modules descend to Vg, (g”). Also, all
these modules are annihilated by the elements

(J({iol,-)})M,-(k)Hl’ i>1. (8.13)

Let C I* be the ideal of Wk,

+in (8) generated by the elements (8.13), and let ngnin =
/ T%. We thus obtain

1’1’111’1

Proposition 8.6. Ifthe W. (g)-module LY (v, £y) is unitary, then it descends to W,f““ (9).

mm

Note that a unitary W . (g)-module descends to W,ﬁ“m (g) if and only if

mm
* = I~ (8.14)

Conjecture 4. > Equality (8.14) holds for all unitary vertex algebras W mm (g). Conse-
quently, any unitary W7, (g)-module descends to Wy, min (g).

l’l‘lll’]

Definition 8.7. An element v € P is called an extremal weight if v + £ doesn’t lie in
P+
(e

Proposition 8.8. If LY (v, £) is unitary and v is an extremal weight, then
Lo = Ak, v).

Proof. Let u be a root vector for &. Then G{_"l} /20v.60 is a singular vector for VA (g%).
Since LY (v, £) is unitary, all vectors that are singular for VP (g%) should have weight
in PkJr . By the assumption, we have G{fl} 2.ty = 0, hence the norm of this vector is 0,
and we can apply (8.1). O

In the setting of the above proposition, note that v is extremal iff v(GiV) > M;(k) + xi

for some i. Moreover, k is collapsing iff M; (k) + x; < O (cf. Remark 7.5).

Proposition 8.9.(a) Fork # —1, erflm (sl(2|m)), m > 3, has no unitary highest weight
modules. In particular, Wy min (51 (2lm)), m > 3, is unitary if and only if k = —1 and
this W-algebra collapses to the free boson.

(b) The W-algebra W’. (osp(4|m)), m > 2, has no unitary highest weight modules for
all k.

m1n

m/2 0 |0

0 m/2|0

0 0 |Iy

(a|b) = str(ab). By Theorem 7.4, the collapsing levels are k = —1 and k = m/2 — 1.
If k = —1 then My(—1) = —m /2, M;(—1) = 0 and W,i“in(g) is the Heisenberg ver-

tex algebra M (Cw) = V"2 Cw) = V_p, /2(Co) and this vertex algebra is unitary.

Proof. (a) Let g = s/(2|m). Then g(u) = Cw, where w = , and

2 See Note added in proof.



Unitarity of Minimal W-Algebras and Their Representations I

Ifk =m/2—1then Mo(m/2—1) =0, My(m/2—1) = —m/2and W,ﬁn"“(sl(2|m)) =
V_m/2(sl(m)) which has no unitary highest weight modules.

Assume that k is not collapsing. Let ¢ be a conjugate linear involution of
Wr’fﬁn (s1(2|m)) such that LW (v, £o) has a positive definite ¥ -invariant Hermitian form
H, normalized by the condition H (v, ¢, vv.¢,) = 1. By Proposition 7.2, the involution
¥ is induced by an involution i on g satisfying (1.1). This implies that V(@) = ¢
with [¢] = 1.

The vertex algebra VEk=m2=1(Cw) ® V%" 1(sl(m)) embeds in Wf;lin(sl(2|m)). In

particular, (VEm/2-1(Cwm) ® V_k_l(sl(m))).v‘,,g0 is a unitary module. This implies
that vjs;n) corresponds to a compact real form of s/(m) and —k — 1 € Z,. Using the
formulas given in [16, §5.3] we have

0< HU' ™ vy 40, 10, 0) = HI VI 0, 00, 0000)
=—tk—m/2 -1 Yw|w)
=Yk =m/2—1)(m*/2 —m).
Therefore ¢ = 1, so that
V(o) =w. (8.15)
Note that
[, ul = +Fu, uecg_ ;. (8.16)
Write g_y» = g, n®8 ), for the corresponding eigenspace decomposition. Since
V() = w, we have Iﬂ(gf]/z) = gf]/z. Since the form (., .) is g“—invariant, we have
(69" =(g",97)=0.
It follows that, if u € g_; /25
(Y (), u) = 0. (8.17)

Observe now that by [1], since k is not collapsing, the image of G in W,?lin(g) is
non-zero if u # 0. We observe that, since g(G") = GV} and G is primary, for
ne % + 7y

HG" v, 6"y = HGW@IGH )
)
= H(G"™, G210, v) (8.18)

for any v € LW (v, £o). Using Borcherds’ commutator formula

1
n+ 5
[Gi;lf(”)}, G{_“r}’] — Z ( ; 2>(G{¢(M)}(j)G{“})0,
J
and combining formulas (7.7) and (8.17), we obtain
dim g°

(G G = =20k + hY) (W (), u) Lo + (Yru), u) Y 2 0D glad 4

a=1
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2 (g @)1, fu, uP1) = T 08 2 pdn (ke + 1) g1 0

wp
+ @+ 1) S g ¥ @) L, wP DI 4 @02 — D) py (). w)
wp
=23 (s W), [, Py 2 TV T8 gk 4 1) g0V 1)
wp
+ @+ 1) (e W1, L, uP gy, (8.19)
wp

Now we compute (8.18) forv € LY (v, £0)¢,- As in the proof of Lemma 8.3, using (8.4),
(8.6) with ¢ instead of ¢, we find that (8.19) becomes, with the notation of the proof of
Lemma 8.3,

HAGY ™, 6" o, v) = @n+ 1)) e ¥ ()], [, P YH (IS I 0, 0)
wp
= @n+ D) Y (i @], e w HYHIM I 0, 0) (8.20)
i
F Q@+ 1) Y [y Y. [uu? YHUIF g

yeAl

{uy} U)

(8.21)

Recall that v ia a compact involution of [g”, g], hence, by (8.8), Y(uy) € g:_y, so that,
for some constant b we have

(luy, v @], [u, u”1) = bW (u, u” D), [u, u”1),

so, by (8.17), the summand (8.21) is zero.

The summand (8.20) vanishes since ([u;, ¥ (u)], [u, u/]) is amultiple of (¥ (u), u) =
0. This shows that YL" 40 (G} 7)» = 0. By relation (7.3), G} A,,v = 0 with
A e Vh (g”) for all n, m, hence, since Gl is primary,

YLW(V,EO)(G{M}’ Z)LW(v, Lo) = 0.

Hence G lies in a proper ideal of W mm (g), contradicting the fact that, since the level

is not collapsing, G} is non zero in Wmm (9).
(b) For g = osp(4|m), the conditions of Proposition 8.5 imply k —m /2 € Z,, — %k —
1 € Z,. These relations are never satisfied at the same time. |

Proposition 8.10. Non-trivial unitary irreducible highest weight Wmm (g)-modules with
k £ —h" may exist only in the following cases

(1) g =sl2lm), m >3, k = —1 (then W,?““ = erfnn is a free boson);
(2) g=psl(2]2), -k e N+ 1;

(3) g = spo2|3), —k € 1(N+2);

(4) g = spolm), m > 4, —k € (N +1);

(5)g=DQ2,1; %), —k € ;"=-N, m,n € Nare coprime, k # —5

(6)g = F(d), —k € 20N+ 1);
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(7)g=G@3), —k € 3(N+1).

Proof. By Proposition 8.9, we may assume that g is not one of the Lie superalgebras

s{(2|m) woth m > 3 or osp(4|m) with m > 2. The remaining cases are treated, using

only the easy necessary conditions M; = M; (k) € Z, for all i. In all cases, except for

g = D(2, 1; a), the condition M; € Z; is obviously equivalent to the condition on &,

given in the statement of the proposition.

Consider the remaining case g = D(2, 1; a). By this we mean the contragredient Lie

0 la

superalgebra with Cartan matrix | —1 2 0 |. By Proposition 8.5, we need to find the
—-102

values of a such that M; = M;(k), i = 1,2, from Table 2 are non-negative integers.

These conditions imply that

— _ M+l __ (Ma+Da
k= —=13=and k = —=27. where M|, M> € Zj. (8.22)
Equating these two expressions for k, we obtain a = %; :} is a positive rational number.

Inserting this in either of the expressions (8.22) for k, we obtain

k= — (M1+1)(Mp+1)
—  (Mi+D)+(Ma+1)°

proving the claim. (k = —1/2 corresponds to the trivial D(2, 1; 1)-module.) O

Definition 8.11. Given g in the above list, we call the corresponding set of values of
k # —h" the unitarity range of WX. (g).

Remark 8.12. For g = D(2, 1; a), there are actually three possible choices of the mini-
mal root. We now describe how the unitarity range depends on this choice. We choose
{2€1, 2€3, 2€3} as the set of positive roots in gg: hence, if —6 is a minimal root, then
0 = 2¢; for some 1 < i < 3. The bilinear form (.|.), displayed in Table 1, corresponds
to the choice 6 = 2¢1, so that (2¢1]2¢1) = 2. If we choose & = 2¢5, then the bilinear
form (.|.) is given by

(erle) = =12, (e2le2) = 3. (e3le3) = 4. (e1le2) = (e1le3) = (e2]e3) = 0.

We have M (k) = —1—k — 1, Ma(k) = 1k — 1. Thena = =" m,n e N, mand n

m+n’
are coprime (i.e.a € Q, —1 < a < 0) and in turn k € — 22 N. If we choose 6 = 2e¢3,

g . . m+n
then the bilinear form (.|.) is given by

(e1le) = =%, (e2le) = 5, (e3l€3) = 3. (e1le2) = (e1]€3) = (e2le3) = 0.

We have M (k) = _L?-_ak —1, My(k) =ak — 1. Thena = —mr::", m,n €N, mandn
are coprime (i.e.a € Q,a < —1)andin turn k € — = N.

Recall that one obtains isomorphic superalgebras of the family D (2, 1;a),a #
0, —1, under the action of the group S3, generated by the transformationsa — 1/a, a —
—1 —a. These transformations permute transitively the domains Qx, Q- -1 NQ~o and

Q~—_1, which correspond to the above three cases.

Corollary 8.13. If k is from the unitarity range for WIII‘1
rational number.

(@), then k + hY is a negative
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9. Free Field Realization of Minimal W-Algebras

Let W : mm (g) - Yk = yk+h? Cx)®VH*(gH® F (g, ») be the free field reahzatlon
introduced in [20, Theorem 5.2]; it is explicitly given on the generators of W. mm (g) by
1
hs b+ 3 D D, (b Egh, 9.1)
a€S)
G Z [V, ug | O : —(k + 1) Z (v|utg)T ¥
OlES]/z UtESI/2
1
3 Z DY DP D g0y (VE G 1)), 9.2)
0[,,3€S|/2
1 o k+1 1
= m Z S UgU :+me + z Z . (T(Da)(ba N (93)
aeSy Q€S

Recall that F(g;/,) is the universal enveloping vertex algebra of the (non-linear)
Lie conformal superalgebra C[T] ® g, with [a,b] = (a,b)ncl, a,b € gy, and
{@a}aesl/z, {d>°‘}0,€51/2 are dual bases of 91,2 with respect to (., .)pe-

We now apply the results of Sect. 6 to vk (Cx). By Corollary 8.13 unitarity of
(g) implies k + 1Y < 0. Hence, using the normalization

s
a—\/_m , (9.4)

wehave VK" (Cx) = V1 (Ca), since, by (7.24), ax (x, x) = L (k+h"), hence a(a, a) =
1

Recall that in Proposition 5.1 we proved that one can choose an almost compact
involution ¢ of g that fixes pointwise the slp-triple {e, x, f} in such a way that the
Hermitian form (¢ (u), v)xe 0n gy is negative definite. This conjugate linear involution

induces a conjugate linear involution of mln(g) and of V¥ (g() ® F (g, ») as well, both
denoted again by ¢. It is readily checked, using (9.1), (9.2), and (9.3), that

1'1111'1

W(p(v) = ¢p(W(v)) forallve W (q). (9.5)
Since ¢ (x) = x, we see that ¢ (a) = —a. The conformal vector of the vertex algebra V¥
is
1
Lfree = 3 raa: +Lgt +Lp, (9.6)

where

Lgn:mz tugu®, Lp=13 Y (T,

aes? Q€S2

Here {uq},cs: and {u®},cq: are dual bases of g” with respect to the bilinear form (.|.)
restricted to g*. Recall that L is the conformal vector of V% (g%) and L f is the conformal
vector of F(g,»). Let

g’

(k+1)
sk =Vl o2l 9.7
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It follows from (9.3) and (9.6) that
W(L) = L(sg) + L= Lfree + 51T (a), (9.8)

where L = Ly+Lp,and L(s) = 5 :aa: +sTa, L(s) L(s) +Z, cf. (6.1) and (6.29),
respectively.

Note that V¥ = VI(Ca) ® V, where V = V% (g) ® F(g1/2),and W(L) = L(s) (cf.
(6.28), (6.29)).

Given pu € C, let M () be the irreducible V!(Ca)-module with highest weight u,
and consider the V¥-module

Ny =Mp) V.

Recall that V carries a ¢p-invariant Hermitian form ng ® Hp, which is positive definite.

Recall also that, by Proposition 6.3, the V1(Ca)-module M (u) carries a unique L(t)-
invariant Hermitian form, provided that t = /—13J(x), which is positive definite. This
Hermitian form, normalized by the condition that the norm of the highest weight vector
equals 1, was denoted by H,,. Hence we have a ¢-invariant positive definite Hermitian
form Hy,(.,.) ® Hyg(.,.) ® Hr(.,.) on N(u), which we denote by (-, ).

It follows from Proposition 6.10 that, restrictlng the fields Y*!(—, z) from V¥ to
\I'(Wk (g)), one equips N (u) with a structure of a W= . (g)-module. We now explicitly

min ]TllI'l
describe this action of the generators of mln(g) on N(u).

Proposition 9.1. For b € WX. (g), write

min

YRWB). )= Y bt

ne—Ap+Z

and let u € R. Then
LI = W(L) + 2ta +2(e% — s)1, 9.9)
(JUhst = wghe e g, (9.10)

(GUHI = W (GYHE + 20/ =120k + BV [(Pe, o)k, v € gy (9.11)

Furthermore, if m, m’ € N(w), then

(m, L"'m"y,, = (L™ 'm, m") ., 9.12)
(m, (JUNEIm'y, = — (TN ), (9.13)
(m, (G"HYE"m"y, = (GPONSS T 'y, 9.14)

Proof. We already noted that W (L) = Z(s). By (6.27),
W(L) = (L(s) + L)’” =1 aa " +sTal +2ta +2(* — st)l, + L“
= L(s)ﬁf +2tall + 2(t —sn1h.
If u € g° then W(J™) € V% (g°) ® F(g)y), hence, by Lemma 6.11, (J)}"" =
W (s Finally, if v € g_y ),

VIk+hV]
N

[V, ug] = 2([v, ug11x)x + [v, ug]* = lug)a +[v, ugl,
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where u" is the orthogonal projection of u onto g* with respect to (. |.). Since

e, v] = (le, v], g )net® Z(fl[e vl, uaDu® Z(fl[e [v, ue]]

= (Lf: el, vljug)u® = Z([x vljugu® = 5 Z(vlua)u

we can write

WG =V =12k +hV| : a®pey : + Z [, ug DY - =20k + 1T Py

a€S|
1
+ g Z . Cbaq)ﬂq)[uﬂ,[ua,v]] o
a,BeS )2
Set
1
G = 3" v, ugl" 0" +3 D U Dy
a€S @.BES1)2
so that
(G =V=TV2Ik+ 1V s a®pe H +207/=T/20k + RV [(Pe, )y
—2(k + )(T D) + GV
Thus,

(GWHH! = WG 1 26/ =1/21k + BV [(Ppe. o). 9.15)

For proving (9.12), (9.13), and (9.14), it is enough to observe that L, GW, and J1
are quamprlmary for L(s) and apply (6.24). We use the fact that W(g(b)) = g(¥V (b))
forall b e Wmm(g) , where g is defined by (2.8). This follows from (9.5) and the fact
that W preserves both parity and conformal weight. O

As an application of Proposition 9.1, we obtain a generalization of the Fairlie construction
to minimal W-algebras.

Proposition 9.2. Set s = s; (cf. (9.7)) and

5/2 k+1 2
LA = w(L) + sal + BE18 = WLyt + o gL ab i)

(GPHE = WGP — (k + 1) (g,
O e (AT

The fields

Y””S(L,Z) ZL;,LS —n— 2

nez

y G = Y (G
nel/2+7
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Y}L,S(J{u}’ 7) = Z(J{u})f;,sz—n—l

nez

endow N () with a WIIT‘liIl
on N (1) is invariant.

Proof. Plugt = s/2 in Proposition 9.1. By (9.12), (9.13), and (9.14), we have

(9)-module structure. Moreover, the Hermitian form (., .),

(m, L3Py = (L) Pm ',
,5/2 5/2
(m, (JUNYES2y = (TSNS oy,
,$/2 ,5/2
(m, (G P!y, = (GNP m'y,.

thus the representations N () acquire a me (g)-module structure and the Hermitian
form (-, -),, is ¢-invariant. O

10. Sufficient Conditions for Unitarity of Modules Over Wlﬁi ()

Due to the Proposition 8.9 (a), we may assume in this section that g # s/(2|m) and

osp(4|m), m > 2. Then, in particular, g° = @;> g? is the decomposition of g7 into
simple ideals, and the x; are given by (7.27).

Proposition 10.1. Assume thatk+h" # 0. Then there exists a unitary module LY (v, £¢)
over WX (g) if and only if M;(k) € Zy forall i and v € P

min
Proof. One implication has been already proven in Proposition 8.5. To show that the
converse implication also holds, assume M; (k) € Z, for all i. Recall (see (7.25)) that
the cocycle o is given by
W g = (Mi (k) + x) (1)}
Assume first that M; (k) + x; € Z. for alli. Then the simple quotient V,, (g%) of V% (g%)
is unitary, since it is an integrable g*-module [11]. Next, the vertex algebra F (g, /2) 18

unitary due to Proposition 5.1 and [16, §5.1]. Finally, the vl (Ca)-module M (s) , where
s is given by (9.7), is unitary by the observation following Lemma 6.4.
Consider the unitary erl‘lin(g)—module M(s)® Ve, (gt) ®F(g1,2), and its submodule

U=WvWE (g).0,11®1).

Since the Hermitian form H,(., .) is L(s)-invariant and W(L) = L(s), we see that U
admits a ¢-invariant Hermitian positive definite form, thus U is a unitary highest weight
module for erflin (9).

Now we look at the missing cases, where there is i such that 0 < M;(k) < —yx;,
described in Remark 7.5. Assume first that g? is simple. If x; = —1 then the only
possible value is M (k) = 0, so, W,f““(g) = C, by Theorem 7.4 (1) (a). In the case
of g = spo(2|3) one should consider the cases Mj(k) = 1 and M (k) = O: in the

former case k = —%‘ — 1, hence Theorem 7.4 (1) (b) applies and W,i“i“(spo(2|3)) =

V1 (sl(2)), whereas in the latter case k + ¥ = 0. If gu is semisimple but not simple,
then g = D(2, 1; a). In this case we have to consider only the case in which either
M (k) or M (k) is zero. If My(k) = O (resp. Ma(k) = 0) then, by Theorem 7.4 (2),
WD (2, 1; ) = Vg (s1(2)) (tresp. = Vi, 4o (s1(2))). O
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We now generalize the construction given in the proof of Proposition 10.1 to provide
families of unitary representations. For v € P;" introduce the following number

(v +2p%) (k + 1)2
20k +hY)  4k+hY)’

B(k,v) = (10.1)

Proposition 10.2. Assume that k+h" # 0 and M; (k) + x; € Zy foralli > 0. Ifv € P*
is such that v(0,) < M; (k) + x; for alli > 0 (then v € P;") and
Lo = Bk, v), (10.2)

then LW (v, £y) is a unitary wk

min

(g)-module.

Proof. Let L?(v) be the irreducible highest weight V% (g")-module of highest weight v
and let v, be a highest weight vector. Fix u € R and set

N, v) = W(WE (). 0prs ® 0y @ 1) C M1 +5) @ LU(v) ® F(gy ),

where s = sy is given by formula (9.7). Note that the Hermitian form (-, -) ;4 is Z(s)-
invariant. Since M;(k) + x; € Z, and v(@iv) < M;(k) + y; for all i, then Li(v) is
integrable for V% (g*), hence unitary [12]. Thus N (i, v) is a unitary representation of
erflin (9).

We now compute the highest weight of N (u, v). Recall that

1
Iy =h+ 3 PREE S TR
Q€S2
By the —1-st product identity,
TPy, py 0= Y (q)o_lj(cp[ua,h])j - (q’[ua,h])—jq’ff)
je3+Le
SO
(M0 (vprs @ 0y @ 1) = V(1) (Vs @ vy @ 1).

It follows that N (u, v) = LW (v, £¢) for some £y. We now compute {(:

p?—s2 (v +2p%

+
2 2(k+hV)

Lo(ps @y ® 1) = ( ) (Vs ®vy ® 1)

so that, using (9.7),

prost +20h) @t (k+D? (] +2p%)
"2

o= - .
0 2 2k +hV) dk+hY)  2(k+hY)

Hence £y > B(k, v). Letting u = 2./€y — B(k, v), we see that the module LY (v, £y) =
N (u, v) is unitary. |
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11. Unitarity of Minimal W-Algebras and Modules Over Them

The main result of this paper is the following.

Theorem 11.1. Let k # —h", and recall the number A(k, v) given by (8.11). Ifk lies in
the unitary range (hence M; (k) € Z, fori > 1), then the erf]in (g)-module LW (v, €y) is
unitary for all non extremal v € Pk+ and Ly > Ak, v).

Corollary 11.2. If k lies in the unitary range, then the WI’fﬁn(g)-module LY(0, £y) is

unitary for all £y > 0. Consequently, W,?li“ () is a unitary vertex algebra if and only if
k lies in the unitary range.

In the rest of this section we give a proof of these results. First, by Proposition 8.9 (a),
we may exclude g = sl(2|m), m > 2, from consideration, so that gu is semisimple and
by Proposition 8.5, conditions M; (k) € Z, are necessary for unitarity, hence we shall
assume that these conditions hold.

Letg = (C[t,t7'1 ® g) ® CK @ Cd be the affinization | of g (with bracket [ ®
a, " @bl = """ Q [a, bl + 8y, —nmK (alb), a,b € g). Leth = h & CK & Cd be its
Cartan subalgebra. Define Ag and § € E* setting Ag(h) = Ao(d) =46(h) =6(K) =0
and Ag(K) = 3(d) = 1. Let AC E* be the set of Toots of g. As a subset of simple roots
for g we choose IT = {ag = 8§ — 0} U I1, where I1 is the set of simple roots for g given
in Table 1. We denote by A* the corresponding set of positive roots and by p € E* the
corresponding p-vector.

Forv e P and h € C, set

Dy =kAo+v+hoeh” (11.1)

Let p be the parabolic subalgebra of § with Levi factor E + gu and the nilradical u, =
D weAn\as Bo- SELU_ = D R\ Az B_q- Let V¥(v) denote the irreducible g*-module
with highest weight v and extend the g’ action to p by letting 1 act trivially; x, K, and
d act by h, k, and 0 respectively. Let M"(7},) be the corresponding generalized Verma
module for g, i.e.

M'®p) = U@ ®ug) VW)

We denote by vy, a highest weight vector for M* (V) . If i1 € B" and M is ag-module,
we denote by My; the corresponding weight space. Let n; = 6 — 60;,1 < i < s (recall
that s = 1 or 2).

Ifo € Aisa non-isotropic root, denote by s, € End (E*) the corresponding reflection
and the group generated by them by W. If 8 € A \ Z§ is an odd isotropic root, we let
rg denote the corresponding odd reflection. We denote by x a root vector attached to
o € A. Denote by w. the shifted action of W:wd =wh+p) — 7.

Lemma 11.3. Let T1' be a set of simple roots for 1 A. Let M be a g-module and assume
that m € M is a singular vector with respect to TI'. If a; € I1" is an isotropic root and

X—q;m # 0, then x_o;m is a singular vector with respect to ry; (IT').

Proof. Since o is odd isotropic, it follows that x%ajm =0.Ifr # jand (a/|aj) =0
then Xo, X—o;m = X_q;Xo,m = 0. If r # j and (erlej) # O then xg,1q;%X—a;m =
X—q; Xa,+a ;M + Xg, M = 0. O
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Forv € P/ set

Ni(k, v) = @ + pIn;).- (11.2)

Note that N; (k, v) does not depend on 4. We will simply write N; when the dependence
on k and v is clear from the context.

Lemma 11.4. Forv € P,:' not extremal, we have
Nik,v) = M;(k)+ xi + 1 —(v|9iv) e N. (11.3)
Moreover; for
N;
Vi (h) 1= X5, X—ap—ay X—ay VB, »

the subspace y_; U(§)vi (h) is a proper submodule of the g-module M “On).
Proof. Note that

R w2 w w2 hY —hY
(n +pln;") = —(9|9)(k+h) (v+pl0;°) = (9i|6i)(k+ 5
hV 6
> — (v+0%16))
o 2 hY—hy (9|9) y
—M,(k)+(9i|9i)( 7t ) — (v16;7)

= M;(k) + xi + 1 — (]6;").

Since v is not extremal, (U, + pln;") € N.

Recall from Table 1 the set IT of simple roots for g. Let o1 be an odd root in IT. A
direct (easy) verification shows that oo+« is an odd root and that the set of simple roots
Tag+ay (Fay (H)) contains both «g and {n; | 1 < i < s}. Clearly x_qy—q,;X—q, V3, 7 0in
M%) so0, by Lemma 11.3, x_q,—q, X—q, U}, 1s a singular vector for the set of simple roots
Tag+ay (Fa (ﬁ)). The weight of this singular vector is, clearly, T)\;l =), — o — 2aq. Since
the p-vector p” of rogta; (o, (T1)) is p+ao+201, we see that V,+0' 1) = Wn+pln) =
N;. Since n; is a simple root in ryg4q; (Fa, (ﬁ)), we obtain that xivj'?ix_ao_mx_al vp, isa
singular vector for the set of simple roots ryg+q; (7o, (ﬁ)). It follows that Zi U (g)v; (h)

is a proper submodule of U (§)X—gy—a; X—a; V5, C M*(Vp). O
Set
M@y = Mu(ﬁh)/(z U@v;(h)). (11.4)
i

Recall (cf. [13] in the non-super case) that for [t K, e f) s  said to be linked to if
there exists a sequence of roots {y1, ..., y;} C A" and weights A= O AT+ e vy U = [0
such that, for 1 < r < ¢t one has

o (r—1+Plyr) = F(rlyr), my € N, where m, = 1 if y, is an odd isotropic root
and m, is odd if y, is an odd non-isotropic root,
® Ur = KUr—1 — MyrYr.
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The proof of the following proposition is inspired by [7, Section 11]. It also provides a
simple proof of Lemma 2 from [10].

Proposition 11.5. Assume that v € P is not extremal and that
(On +Plor) # Leler) forall n € Nand a € A+ \ A*(gh). (11.5)

Then

(i) the module M (D)) is irreducible;
(ii) its character is

chM),) = Z det(w)chM (wy). (11.6)

weWt
Proof. We have

(1) (W + pla) # 0 for all odd isotropic roots;

(2) Wp +plaY) e Nforalla € A*(gh);

(3) (Un + pla) # 5(ala) for all n € N and for all positive roots « of the affinization of
sly = (e, f, x) and for all non-isotropic odd positive roots.

Indeed, (1), (3) follow from (11.5). To prove (2), first remark that if « is a simple
root for Ai, then o € TI. It follows that (pla¥) = (p’|a) = 1. This implies that

Oh + 0leY) = v+ plleY) € Nforo € Ai. Since v is not extremal, (11.3) gives

(n +pIn’) € N.
We have

chM®y) = Z c(w)chM (w.vy), where c(w) € Z. (11.7)
weW?

Indeed, if ch M (ix) appears in ch M) then, using the determinant formula proved in
[6], and the corresponding Jantzen filtration [10], one shows, as in [13], that there is a
sequence of roots {y1, ..., y,} C A* linking jz to V. Properties (1), (3) imply that y; €
A*(g") and this yields (11.7). It is clear that g acts locally finitely on M®(7,), hence also
on M (V). By (1), X—gy—qX—a, U5, generates M (Vj,). Since xiv"i(x_ao_alx_alvgh) =
vi(h) = 01in M (V},), M (V) is integrable for §°, in particular ch M (Vy,) is We-invariant.
Hence, we obtain c(w) = det(w); therefore (ii) holds. Since the proof of (ii) didn’t use
irreducibility, the irreducible quotient of M (V),) has the same character, proving (i). O

The following functions Ay ¢y, hp,, relate singular weights of Verma modules overg
to those over Wk (g) [20, Remark 7.2]:

_ 1 o2 2 :
hn,em(k,v)_—4(k+hv)((em(k+h) n)? — (k+ 1) +2w|v +2p%), (11.8)
1 ;
By (k, v) = m((2(u + 00y +2mk +hV)? — (k+ D> +2(v|v +2p%) .

(11.9)

Here y € A’, the set of g°-weights in g_1/2,€ =2 (resp. 1)if 0 € A’ (resp. 0 ¢ A'),
m,nee 'Nandm —n € Zin(11.8)and m € 1 +Z, in (11.9).
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Lemma 11.6. Let k be in the unitarity range and let A(k, v) be as in (8.11). Assume that
v is not extremal. Then

Bnem(k, v) < Ak, v), (11.10)
.y (k1) < Ak, v). (11.11)

Proof. First we prove (11.10). Plugging (11.8) into (11.10) we get

(em(k +h") —n)i— (kt1)2+2<v|v+2p“> - (v|v+2/vf) . @'v)v(@lv) PR
(k+hV) 2k +hY)  k+h

which is equivalent to
n—emk+h")>|(k+1) =2 (11.12)

Since k + h¥ < 0, it is enough to check (11.12) with em = 1, n = 1/e. In the case
(k+1) <2(&|v), (11.12) reads

1/e —hY > 2(&v) — 1. (11.13)

Looking at the values of 2" in Table 2, we see that the L.H.S. of (11.13) is non-negative.
Now we prove that (£|v) < 0. Indeed, from Table 1 we deduce that the restriction of
(.].) to the real span of A’ is negative definite. From Tables 1 and 3 one checks that &
is a linear combination with non-negative coefficients of simple roots of g’; since v is
dominant, if & € A%isa simple root then v(a¥) > 0, hence (v|a) < 0 since (a|a) < 0.
In the case (k + 1) > 2(£|v) we have to prove that

k+ < vy + 5= (11.14)

vV _pY
The non-extremality condition means that (v + £)(6,") < ﬁ (k + %) or

k+ i< g+, (11.15)

hence it is enough to prove that

(v +E16)+ 5 < €l + 5=, (11.16)

Note that 6; = & + B;, where, as above, §; is a linear combination with non-negative
coefficients of simple roots of g°. Therefore (11.16) can be written as

Y

1B + &+ ) < 52 — &,

which is clearly verified, since the left hand side is negative and the right hand side is
positive (use the data in Table 2).
Now we prove (11.11). Substituting (11.8) in it we obtain

QW+ ply) + 2mk +hY)? — ((k+ 1) — 2(£|v))* > 0,
which is equivalent to

|+ p"ly) + 2m(k + 1Y) = |(k+1) — 2(§[v)]. (11.17)
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Table 4. Data employed in the proof of Lemma 11.6

g € 0" max(pFly) hY
psl(2]2) 1 161 -6 1/2 0
spo(2|2m),m >3 1 (m—1er+(m—2)er+...+€,-1 (m—1)/2 2—m
spo22m +1),m > 1 2 Iley + M3 ey v+ Sem Qm —1)/4 3/2—m
D2, 1;a) 1 € +e3 % 0

F(4) 1 Ja+3a+ia 3/2 )
G@3) 2 2¢; + 362 5/4 -3/2

Recall that, even though g_; , can be reducible as a gf-module, all irreducible compo-

nents have the same highest weight &. It follows that

— (§[v) = max(y|v).
yeA

A direct check on Table 4 shows that
2max(p’ly) +hY = 1.
yea’
Note that, by (11.18) and (11.19)
(k+h")+20 +pfly) < (k+1) = 2(5v).
Therefore, if (k + 1) < 2(&|v) then
20+ pfy) +2mk + hY)
=2w+p y)+ (k+hY)+@2m — 1)(k+h")
<200+ p%y) + k+hY) < (k+1) = 2(6v) <0,
and (11.17) reads
20+ 1Y) +2m(k + k) < (k+1) =25 v),

which is clearly true.
Now consider the case

(k+1) > 2(&|v), —2(+p*ly) —2m(k+h") > 0.
The inequality (11.17) becomes
=20+ pYy) = 2mk +hY) = (k+ 1) — 2(£|v).
which is implied by
— 2w+ p%ly) = (k+hY) = (k+1) — 2(€|v).
If y = —&, then the left hand side of (11.22) is

(11.18)

(11.19)

(11.20)

(11.21)

(11.22)

2w+ p —&) — (k+hY) =2|E) +hY — 1 — (k+hY) =2(v|E) —k — 1,

hence (11.21) implies that both members of (11.22) are zero.



V. G. Kac, P. Moseneder Frajria, P. Papi

If y # —&, then (11.22) is equivalent to
kb < =3+ @) — 0+ ), (11.23)

hence, by (11.15), we are done if we prove that

(v+g|9,-)+’%f < =3+ EW) = W+ Y. (11.24)

Remark that, since y # —&, then € —y = a € A% U {0}. If g° is simple, then
(v|6;) < (v|§ —y), hence
hy iy
(W+E10) + % < WIE —y) + (El6) + .

and therefore (11.22) is implied by

WIE — )+ (Elo) + 5 < —La vy — + 7).

or

&6+ < —5 = (o). (11.25)

The minimum of the left hand side of (11.25) is obtained when (p%|y) is maximum,
hence, by (11.19), we are left with proving that

4 v
GO+ < —1. (11.26)

This relation is checked using the data in Tables 1, 2, 3. When gu is not simple, i.e.
g = D(2, 1;a), relation (11.22) is proven directly. We have v = rer + se3, 1,5 €
Zy y = ey €3, £ = e + €3; if we exclude y = —£, (11.22) translates into

k<0, k<-—rtl < _(Gtha (11.27)

1+a’ — 14+a

according to whether y = €5 + €3, €2, €3. The non extremality conditions are

k< -2 < _(2a (11.28)

— 1+a’ — I+a °

so that (11.28) implies (11.27).
We are left with proving (11.17) when both arguments in the absolute values are
non-negative, i.e.

20+ py) +2mk + 1Y) > (k+1) — 2(|v). (11.29)

We claim that the conditions 2(v + p°|y) +2m(k+h") > 0 combined with (11.15) force
m = 1/2 and y = —&. Taking this fact for granted, (11.29) reads

2+ pME) +hY — 1 > —=2(|v),

which holds by (11.18) and (11.19).
To prove our claim, assume that there is m > 1/2 such that

_ v o_ _ b
. 1 —2mh* —2(§|v) —2(v+p |J/)’
- 2m — 1
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or
2 — 2m+1hY —4(Ev) — 40+ p%y)
22m —1) '
Taking (11.15) into account, we are done if we prove that
2 — 2m+ 1Y —4Ev) — 40+ p%y)
22m — 1)

k+%z

> (u+g|9i)+’%7. (11.30)

We have
2—Q2m+DHhY —4E W) —4@]y) +2(hY = 1)

L. H.S. of (11.30) >

202m — 1)
C o —AE) —40ly) i iy
=1+ 2o =) > M > Sh > (VHEG) + £

(11.31)

The next to last inequality in (11.31) follows from Table 2; more precisely, the strict
inequality holds in all cases except for spo(2|3). The last inequality in (11.31) uses that
(v+£&16;) <0.For g = spo(2|3) the last inequality in (11.31) is strict, hence (11.30) is
proven in all cases.

Hence we have necessarily m = 1/2 in (11.29). We now prove that if

2w+ ply)+ (k+hY) >0, (11.32)
(k+1) —2(&|v) > 0, (11.33)
hold, then (11.15) implies y = —&. We proceed case by case.

e g = psi(2]2) or spo(2|3). Since y € {0, ££&}, relation (11.32) forces y = —¢&.
e g =spo2m), m > 4. Inthiscase v = ) . njej,n;y > ny > ... >0, y =
+¢;, pt = >.i(5 —i)€i, £ = €1. Then (11.32) reads

2(Z(n,~+%—i)|ie,>+k+2—% > 0,

1
or
Fmj+5 —j)+k+2 -5 >0.
Since k +2 — 5 < 0, we have
nj—j+k+2>0.

By (11.15)

therefore
O0<nj—j+k+2<—Iny—Ina+n; —j+1.

This relation can be written as

0 < @ + % — ,] + 1’
which holds only if j = 1, since the n; are non-increasing half integers. If j = 1
then y = —e; = —¢£.
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e g= D2, 1;a). Inthiscase v = rey + se3, 1,5 € Zy, y = e + €3, p? =
€+ €3, £ = € + €3, and in this case (11.32) becomes
2(r+ Dex+(s+ ezl £ex £ e3)+k >0,
which gives
Fr+DFG+Da++a)k=0. (11.34)
Condition (11.15) is

k< ((r+Dex+(s+1)e3|2er) — ﬁ, k < ((r+Dex+ (s + Des|2e3) — 15,
or
I+a)k <—(r+2), (1+a)k <—(s+2)a. (11.35)

The only possibility to fulfill (11.34) and (11.35) at the same time is to take y =
—e —e3 = —¢£.

e g = F(4). In this case v = nj€] + noex + n3ez, np > np > n3 > 0, ,0u =
%61 + %62 + %63, y = %(:I:el *Tertez), £ = %(61 + €3 + €3). Then (11.32) reads

—3(Em+3)Em+3)Em3+ ) +k—220. (11.36)
By (11.15) we have
k< -2 +n)— 3. (11.37)
Write now (11.36) using (11.37)
0<—3(Em+3)EMm+EMm3+5))+k—2

< —-3Em+PDEMm+DHEMm3+5) —Fni+ny) — 2

3
2 5 3 1 2 n 1 10

I

|

Wl
—~
H_

S
H_

S

N
~

— %(nl +ny £n3) — %
This inequality holds if and only if the minus sign is taken in all occurrences of =,
.1‘;- J/=:G_(53.). In this case v = m(e; + €) + n(ey + 262), myn € Zy,y €
{0, €1, £e2, £(€1 + €2)}, p* = 2¢; + 3€a, & = €1 + €. Then (11.32) reads
2((m+l’l+2)€1+(m+2n+3)€2|)/)+k—% > 0. (11.38)

and we can confine ourselves to consider y € {—e€1, —€2, —€1 —€3}. The inequalities
corresponding to y = —e€, Yy = —e are

k+%2 —1>0, (11.39)
k+ m3ntl >, (11.40)

respectively. Relation (11.41) gives

k < ((m+n+Dep+ (m+2n+Deler +2€) — 3.
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or
k<—3m+2n) -3 (11.41)
Substituting (11.39), (11.40), into (11.41) we obtain
0<k+%—-1<—Im—3n-3, (11.42)
0<h+mtml < _m (11.43)

respectively. Inequalities (11.42), (11.43) are never verified. Once again we conclude
that y = —&.

O

Let Hyp denote the quantum Hamiltonian reduction functor, from the category O of g-

modules of level & to the category of erflin(g)-modules. Recall that, for a' g-module M,

Hy(M) is the zeroth homology of the complex (M ® F (g, x, f), do) defined in [18].

Recall that the functor Hy maps Verma modules to Verma modules [20, Theorem 6.3]

and it is exact [2, Corollary 6.7.3]. By [20, Lemma 7.3 (b)], if M is a highest weight

module over g of highest weight A € E*, Ho(M) is either zero or a highest weight

module over erflin(g) of highest weight (v, £) with

_(AIA+ 20)

b T 2k +hY)

Remark 11.7. Let L(A) denote the irreducible g-module of highest weight A € E* By

Arakawa’s theorem [2, Main Theorem] Hy(L(A)) is either irreducible or zero, and it

is zero if and only if (Alap) = 5(aolag), n € Zy. In particular, if (11.5) holds, then
Hy(M (Dy,)) is a non-zero highest weight module of highest weight (v, £(h)), where

(Vh[Vh +20)
2(k +hV)

For A € H*, by a slight abuse of notation, we set MW (A) = Hy(M(A)), where

M (A) is the Verma module over g of highest weight A. Note that MW (A) = MW (v, £),

where v, £ are given by (11.44).
From now on we assume

v=A —Alx +4d). (11.44)

t(h) = (11.45)

e k is in the unitarity range;
e ve P
e ((h) e R.

Lemma 11.8. Let h, h’ be the solutions of the equation £(h) = £y. If Uy +p|8 —0) = n,
n €N, then (O +p]|8 —0) ¢ N.

Proof. Recalling that

o) = On[Vh +2P) (vv+2p% Lhh—k=1
2k +hY) T 2(k+hY) k+hV

weseethath’ =k+1—h.If Oy + 0|8 —0) =n € N, then
((k+h")Ag+hO+v+p|8 —0)=k+1—2h=n,
hence h = (k+1—n)/2and h' = (k +n + 1)/2 so that
O +018—6)=k+1—2h"" = —n.
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Theorem 11.9. If ¢(h) > A(k, V), then Ho(M (%y)) is an irreducible Wlﬁ
and its character is

(g)-module

in

ch HyM@®p) = Y det(w)ch M" (w). (11.46)
weW?
Proof. If £(h) > A(k, v), then, by Lemma 11.6
L(h) # hyem(k,v) and L(h) # hy o, (K, ). (11.47)

By [20, Lemma 7.3 (c)], (11.47) implies that (V, + pla) # 5(«|a) for all @ € AT\
(A*(g") U {8 — 0}). By exchanging h and k' if h € N and applying Lemma 11.8, we
find that one can choose 4 so that (11.5) is satisfied. Hence, by Propositions 8.8 and
11.5, M (V) is irreducible. By Remark 11.7, Hy(M (V1)) is irreducible and non-zero. On
the other hand, by Theorem 6.2 of [20], we find that HI(M©®y) ® F(g,x, ) =0
if j # 0. Thus, using Euler-Poincaré character, the fact that Hy maps Verma modules
over g to Verma modules over Wr]:lin (9), and (ii) in Proposition 11.5, we find that (11.46)
holds. O

Recall from Sect. 6 the Heisenberg algebra 7. Let y be an indeterminate. Define an action
of Hp = Ca + CK on C[y] by letting K act as the identity and a act by multiplication
by y. Let M (y) be the corresponding Verma module. This module can be regarded as a
V1(Ca)-module by means of the field Y (a, z) defined by setting, for m € M(y),

Y(a,z)m = Z(rj ®a) -mz i7"
JjEZ
Note also that M(y) is free over C[y] with basis
(" Qa)" - TP Ra) AR | j1 > -+ > jr > 0} (11.48)

Recall from Sect. 9 the free field realization ¥ : W!;in (g9) — VE = vI(Ca) ®
V% (g”) ® F(g1/2)- Ifv e P,:r is not extremal, recall that we denoted by L%(v) the

integrable V% (g%)-module of highest weight v. We also let v, be a highest weight
vector of L%(v). Then

M(y) ® L*(v) ® F(gy)2)
isa Vk-module, hence, by means of W, a W!;lin (g)-module. Set
N(y.,v) = WU(Wiin(@) - 1@ Clyl®v, ® 1) C M(y) ® L (v) ® F(gy ).

Since M(y) @ L*(v) ® F(gy/,) is free as a C[y]-module, N (y, v) is also free. If u € C,
set also

N(w,v) = (Clyl/(y — ) &cpy) N(y, v).

By construction N (i, v) is clearly a highest weight module for Wr]fl
in Sect. 10, its highest weight is (v, £g) with

(g). As shown

in

(v +2p%)
2k+hY)

Since we are looking for unitary representations, we will always assume that £y € R.

o = 3u” — sep+
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Lemma 11.10. If ¢y > A(k, v) then N(w, v) is an irreducible wk

min

(g)-module.

Proof. Choose h € C such that ¢y = £(h). By Theorem 11.9, Ho(ﬁ(ﬁhﬁis an ir-
reducible W (g)-module, hence there is an onto map N(u,v) — Ho(M (D)) =

min
LY (£, v). If £ >> 0, by the proof of Proposition 10.2, N (i, v) = LW (¢, v). Observe
that, since ¢y > A(k,v), by Lemma 11.6, relations (11.5) hold for our chosen 4. It

follows from (11.46) that
ch N(u,v) =Y det(w)ch MY (w.p) for £y > 0. (11.49)
weW!
By (11.44), the highest weight of MW (w.) is (v(w, h), £o(w, h)) where

lw@s + DI = 161>

ki) (wvp)(x +d).

v(w, h) = (w.’ﬁh)lht, Lo(w, h) =

Since w € W7, (wVp)(x) = h and (w.Vy)(d) as well as v(w, i) do not depend on A.
‘We can therefore write

lw@s +2)I* = 1811
2(k+hV)
_ G0+ —Ip1*

lo(w, h) = (w)(d) —h

Ik + DI — [P0 + 211>

Do)(d+x) + h
2k + 1Y) (w-Vo)(d +x) 2k + 1Y)
lw@o + D)1 — 1712 ~ 202+ (hY — Dh
= —(wyv)d+x)+ ————— —h
2k +hY) W)@ +x)+ =07
202+ (hY = Dh
= lo(w,0) + —————— T
20k +hV)
It follows that
© M—m
ch MW (wiy) = ch MY (wDp)e 26+
and
0 22+ —Dh
Z det(w)ych MY (wD,) = Z det(w)ch MY (wp) | e 2G+nY) .
11)6‘}?:J wEWJ
(11.50)

In particular, if £ > 0, then

2h%+(hV =Dh
w ~ (0 v
ch N(u,v) = E det(w)chM" (wvy) | e = 2Kk+hY)

weWt

—h)

Since N (y, v) is a free C[y]-module, the dimensions of the weight spaces of N (i, v) do
not depend on . By (11.50), the coefficents of both sides of (11.49) do not depend on pt.
It follows that (11.49) holds for all w. In particular, if £y > A(k, v), by Theorem 11.9,

¢h N (i, v) = ch Hy(M (D)),
hence N (i, v) =~ Ho(M (D)) is irreducible. o
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The lowest energy space of N (i, v)is 1 ® 1 ® Vi(v) ® 1 with Lg acting by mul-
tiplication by £y. This space admits a w-invariant Hermitian form hence there exists a
¢-invariant Hermitian form H (-, -) on N (4, v).

If ¢(y) € Homcpy(Cly] ® b, Cly]) is a weight of N(y, v), fix a basis Bg(y)

of N(y,v)z(y- Set E = E(M). Then 1 ® Bg(y) gives a basis By of N(u,v)z =
Clyl/(y — w) ®cry N(y, ”)?(y)' Let detz(ﬁo) be the determinant of the matrix in
this basis of the Hermitian form H (-, -) restricted to N (i, v);. Note that dez?(ﬂo) is a
polynomial in €.

End of proof of Theorem 11.1 and Corollary 11.2. We may assume that the level is not
collapsing, so that M; (k) + x; € Z+ by Remark 7.5. Then, by Proposition 10.2, the Her-
mitian form on LW (v, £y) is positive definite for £o >> 0. By Lemma 11.10, N (i, v) =

LY (v, £o) if o = $u® — spp+ (;},”;iet)) > A(k. v), hence detz(£o) # O for all weights

? of N(u, v). It follows that the Hermitian form is positive definite for £y > A(k, v),
hence positive semidefinite for £y = A(k, v).

Corollary 11.2 follows from Proposition 8.10 and Theorem 11.1 in the case v = 0,
since A(k, 0) = 0, and Remark 7.5. o

12. Explicit Necessary Conditions and Sufficient Conditions of Unitarity

Looking for the pairs (v, £p), v € PF. £y € R, such that LY (v, £p) is a unitary
Wr]flin(g)-module for k in the unitarity range, we rewrite for each case (excluding the
trivial case (1)) the conditions in terms of the parameters M; = M; (k) from Table 2.
Namely, we provide the necessary and sufficient conditions of unitarity of LV (v, o)
for a non-extremal weight v, given by Theorem 11.1, and the necessary condition of
unitarity for an extremal weight v, given by Proposition 8.8. We also provide explicit
expressions for the cocycle oy and the central charge c of L. Recall the invariant bilinear

form (.|.)E on g?, introduced in Sect. 7.

12.1. psl(2|2). In this case g° = s1(2), M; € Nand ox = (M1 — 1)(.| .)t}. Ifv=
r01/2, with r € Z>¢ (i.e. v is dominant integral), and » < M — 1, then the necessary
and sufficient condition for unitarity is

Ly =

NS ]

If r = My, then then necessary condition is o = M1 /2.
The central charge is c = —6(k + 1) = 6 M.

12.2. spo(2]|3). In this case gu = s5l1(2), M{ € Nand o = (M — 2)(.| .)?. If
v =r61/2 = ra/2, withr € Zso,r < M; — 2, then the necessary and sufficient
condition for unitarity is

Ly >

L ]

If My — 1 <r < Mj, then then necessary condition is £y = r/4.
The central charge is ¢ = —6k — % = %Ml -5
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12.3. spo(2|m), m > 4. In this case g* = so(m), M} € Nand oy = (M1 — 1)(.| .)?.
If v is dominant integral, \1(91v ) < Mj — 1, then the necessary and sufficient condition
for unitarity is

wv+2hHt  rMy—r—1) v +2oD8 = rQk+r+2)

by = = . (12.1)

2(My+m—3)  2(m+M; —3) 202k —m +4)

where r = (w1 |v)?, and wy is the highest weight of the standard representation of so(m).
If v(0,") = Mj, the necessary condition is that equality must hold in (12.1).

My (m*+6M1—10)  (2k+1)(12k—m>+16)
2m+M,=3) 4k—2m+8 :

The central charge is ¢ =

124. D2, 1;™), m,n € N, m, n coprime. In this case g* = g} @ g3 with g ~ 5/(2),
and

ar(b, ¢) = (M;(k) — 1)(ble)! ifb,c € g].

Ifv = ’7‘9] + ’7262 is dominant integral with r; < M; (k) — 1, then the necessary and
sufficient condition for unitarity is

_ 2My+ Dy +2(My + Dy + (1 — r)? 2+ Dk(ary +r1) — a(ry — r2)?

¥4
0= A(My + My +2) 4@+ DK

(12.2)

If r; = M; for some i, then the necessary condition is that equality must hold in (12.2).

The central charge is ¢ = 6% —3 = —3(1 +2k).

12.5. F(4). In this case g* = so(7), M; € Nand oy = (M7 — 1)(.|.)% If v(e,)) <
M — 1, then the necessary and sufficient condition for unitarity is

> ri(My+7)+r(M; +4)+r3(M1+1)+r12+r22+r32—r1r2—r1r3 —1r3
0= 3(M; +4)
3 3 3 2 2 2
ri(6 — 5k) +r2(3 — 5k) +ra(—5k) +ri +ry +r3y —rirp —riry — rar3
33— 3k)

’

(12.3)

where we write v = ri€] + rp€x + r3ez with ¢; as in Table 1. If v(le) = M, then the
necessary condition is that equality must hold in (12.3).

My 2M +11) _ 2(k—=3)(3k+2)
- k=2 .

The central charge is ¢ = =777
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12.6. G(3). Inthiscasegu = Gy,M; € Nandoy = (M—1)(. | .)“.va(@lv) < M;—1,
then the necessary and sufficient condition for unitarity is
_ NGBMi+ 1) +rBM +7) +3(rn — r)?
0= 12(M; +3)
r1(=2 — 4k) + r2(4 — 4k) +3(r1 — r2)?

- 8(3 — 2k) ’ (124

where we write v = ri€] +rp€x with €; as in Table 1. If U(le) = M, then the necessary

condition is that equality must hold in (12.4).

o MIOM+31) _ —24k2426k+33
The central charge is ¢ = SO0 = s

13. Unitarity for Extremal Modules Over the N =3, N =4 and big N =4
Superconformal Algebras

A module LY (v, £o) for erflin(g) is called extremal if the weight v is extremal (see
Definition 8.7). In this section we give a partial solution of Conjecture 2 for some g.
Namely, g will be either spo(2|3), or psi(2|2), or D(2, 1; a), so that WI’;in(g) is related
tothe N =3, N = 4 and big N = 4 superconformal algebra, respectively. Recall from
[20, Section 8] that in these cases, up to adding a suitable number of bosons and fermions,
it is always possible to make the A-brackets between the generating fields linear, hence
the span of their Fourier coefficients gets endowed with a Lie superalgebra structure,
called the N =3, N = 4 and big N = 4 superconformal algebra respectively.

Recall that, by Proposition 8.8, for each extremal weight v there is at most one £ for
which the extremal module LW(v, £p) is unitary, hence for each extremal v it suffices
to construct one such unitary module.

13.1. g = spo(2|3). Consider erflin (spo(2]3)) and the Lie conformal superalgebra R =
(C[0] ® a) & CK, where a is an 8-dimensional superspace with basis
i, éi, GO, Ji, JO, @, where i, Ji, JY are even and Gi, GO, ® are odd, and the fol-
lowing A-brackets

[79,G%1 = —22@, [J5G 1= —2G"+200, [J 7,61 =G +20, [GF,GF] =0,
[GTG1=L+1@+20)J° 32K (GG = L@ +2007 (GG = L - 2Kk,
(G360 = —1@+2007, [GH@1 = 377, (G701 = L7, (6% 01 = —1J°
[0, @] = —K, [J7 I 1=J0 —dak,, [J0U5] = +207F, (1270 = —8)K,
(L0 =0L+2L — 5 K.
Furthermore éi, GO, JE, 70 @ are primary for L of conformal weight %, % 1,1, %
respectively.
The N = 3 superconformal algebra W1’§,Z3 is V(R)/(K — (k + %)1), where V(R)
is the universal enveloping vertex algebra of R. Let F¢ be the fermionic vertex algebra

generated by an odd element ®, with A-braket [®; ®] = —(k + %)1. Then there is a
conformal vertex algebra embedding

Wh_3 = Whin(spo(2]3)) ® Fo
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given by (cf [20, §8.5])

N
L L— gy 000, Gt ELGH - ol 170
s g 0, ==L 50 0
G VE+I2 50—/ G /=y 5G4+ g J00

> &, JE s JE, JO s JO,

Extend the conjugate linear involution ¢ to mln(sp0(2|3)) ® Fg setting ¢ (D) =

Recall from [16] that the unique ¢-invariant Hermitian form on Fg is positive deﬁmte
Also recall that the tensor product of invariant Hermitian forms is still invariant; in
particular if we prove that LY (v, £9) ® Fg is unitary for WN 3, then LY (v, £p) is a

unitary WX (spo(2]3))-module. Recall that, for a, b € V(R), the modes of a, b have a

min
Lie superalgebra structure given by

Ay -1
la,, bs] = Z < +jr )(a(j)b)r+s-

JEL+

Observe that the spanﬁofl:n,Gi GO, J*x Jo O, K, neZ,me %+Z, is a Lie

m?> m>¥n >vn>
superalgebra. If M (resp. M") are modules for Wk N —3 (resp. Wk/_3) then M ® M’ inherits
1
Kk +
an action of £ which makes M @ M’ a WN+ 3 2 _module. Clearly, if both M, M’ are
unitary, then M ® M’ is unitary. The argument used in the next proposition generalizes
the one used for the oscillator representation of the Virasoro algebra in [17, §3.4].

Proposition 13.1. Let M| = —4k —2 € N. Then the extremal Wmln (spo(2]3))-modules
LIW(M‘2 Lo M‘ Moy LW( AZ' ) are both unitary, where « is the simple root of g* =
sh.

Proof. To make the argument more transparent we make explicit the dependence on k, so
we write L(k, v, £¢) for the er;m (spo(2|3))-module LW (v, €p). Recall that v = ro/2.

We proceed by induction on M. The base case M1 = 1 corresponds to the collapsing
level k = —3/4, when Wfl3lr/l4(spo(2|3)) = Vi(slp). Recall that Vj(sl>) has only two
irreducible modules Ny and N3, which are both unitary and have highest weights v = 0
and v = «/2 respectively. Recall from § 12.2 that if M; — 1 < r < M, then the
necessary condition for unitarity is {9 = M1 /4. Hence Ny and N, are L(— 3 /4 0, O) and

L(—-3/4,a/2,1/4). Set k1 = M‘” . Assume by 1nduct10n that L(kl, )
and L(kl, Moz Ml l) are umtary Then M = L(k;, X —a ) ® Fq> is unltary
for Wy k1 _yand M’ = L( 3/4, (x/2 1/4) ® Fg is unitary for W Therefore MM
1sun1taryforWN 3, ko = k1 — +% = —Mrl —%+% = —%—— k. In particular,
the Wr]“m (sp0(2|3)) -module generated by v M12 2 M14 2 R1R® v% % ® 1is unitary, and

its weight is (& Ml !

—L—), as required.

Repeating thls argument with L(kq, —la ’;1) ® Fg¢ proves the unitarity of

Lk, Yo, M1y, O
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13.2. g = psl(2|2). Wechoose strong generators JO, J* G*, G*, Lfor Wrﬁm (psl(2]12))
as in [20, §8.4]. We can choose the generators so that, if ¢ is the almost compact invo-

lution corresponding to the real form described in Sect. 4, then

dL)y=L, p(JH) =—-J", $(J) =—-J° $(G") =G, ¢(G™) =G*.(13.1)

The A-brackets among these generators are linear, hence their Fourier coefficients span
the N = 4 superconformal algebra. It is therefore enough to prove unitarity of the
extremal module LW(91 /2, 1/2) at level k = —2, since all the other extremal modules
at level k < —2 are obtained by iterated tensor product of LY (61 /2, 1/2).

The unitarity of LW (9} /2, 1/2) is proved by constructing this module as a submodule
of a manifestly unitary module. This is achieved by using the free field realization of

Wn_li%l( psl(2]2)) given in [3], in terms of four bosonic fields and four fermionic fields,

which we now describe. Let F be the vertex algebra generated by four even fields
a', 1 <i <4 and four odd fields b', 1 <i < 4 with A-bracket

laizaj]l = dij, [binb;]l = dij, lai;bj] =0.

There is an homomorphism FFR : (psl(2|2)) — F given by

Il’lll’l

L +— ¢ a'a :+:Tbb )

8=
-

1

N L AL At SV B L A SV o SRS B A
N RE AU AR SV Y L AR SVAR Y S AN —%~b b
IO —/=1:b' : —/=1: 7" :

l\JI'— Tl‘

Gt L@ + V1B +V=IbY =L @+ VS lah !+ V1)
G~ L@+ VT1aH b — VI s+l @3+ VTah (6P - V1Y)
Gt i@ = VIO + V=16 4L @ - VT + VT
G~ L@ —VE1aH B - V1Y L (@ - VETah ! - V1Y)

We define a conjugate linear involution v on F by
a; — —aj, b,‘ = —b,’

so that, according to [16, §5.1,5.2], there is a y-invariant positive definite Hermitian
form Hr on F. It is clear from (13.1) that ¥ o FFR = FFR o ¢. Using FFR we
can define an action of W__ ( psl(2]2)) on F. Since Hr is 1nvar1ant with respect to the

min
conformal vector FFF R(L), it follows that F is a unitary W . ( psl(2]2))-module. An

easy calculation shows that v = =b' +/=1bisa singular vector for w2 (psl(2]2)),

min

thus v generates a unitary highest weight representation LY (v, £g) of w2 (psl(2]2)).

mm

Clearly FFR(L)ov = %v, while J% = v, hence v = %01 and ¢y = 5. This proves

that the highest weight module corresponding the extremal weight v = %91 is indeed
unitary.
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13.3. g = D(2, 1; 7). Inthiscase we are able to prove unitarity only in the very special
case when eitherm = 1 of n = 1.

If n = 1, then the unitarity range is {—
_m_

2N | N € N}. Take N = 1 and observe that

m+1

Wmu’l'“rl (D(2, 1; m)) collapses to V,,,—1(s/(2)). In this case there is only one extremal
weight v = 2= laz, which gives rise to a unitary representation since it is integrable.

The case m = 1 is dealt with in a similar way, switching the roles of >, «3.

14. Characters of the Irreducible Unitary WII:Iin (g)-Modules

Recall that, for A € H* we denoted by M W(A) the Verma module MW (v, £), where
(v, £) is given by (11.44). It follows from [20, (6.11)], that

ch MY (A) = g FN5(g), (14.1)
where ¢ = ¢V and
FNS(g) = lo—o[ t [Taea, (1 +g" e . 142)
15 (1 = gmyrankg®l HaeAi (1 — g"le=o)(1 — g"e%)))
In particular,
ch MY @) = e"q" M FN3(g), (14.3)

where £(h) is given by (11. 45)

The characters of unitary W mm (g)-modules LY (v, £y) are computed by applying
the quantum Hamiltonian reduction to the irreducible highest weight g-modules L (y,),
where v € P,: and ¢y = £(h), and using the argument in the proof of Theorem 11.9,
which is based on Remark 11.7. There are two cases to consider in computation of their
characters. First, if the weight Dy, is typical, i.e. conditions (11.5) hold, then ch L(Vy) is
given by the R.H.S. of (11.6), by Proposition 11.5.

The second case occurs when the weight Dy, satisfies the condition

(Vh + pla) = 0 forall o € I3,

where IT; denotes the set of simple isotropic roots of g. Then the weight vy, is maximally
atypical, and L(Vy) is integrable, hence the following formula is a special case of [7,
Formula (14)] if g #= D(2, 1; %) and of [7, Section 6.1] if g = D(2, 1; %) and v = 0:

vh+p

e’ Rch L)) = Z det(w)wl_l T e ?)
Belly

weWh

(14.4)

where R equals the character of the Verma module M (0) over g with highest weight 0.

Theorem 14.1. Let k be in the unitary range and let v € P. Let LY (v, £o) be a unitary
irreducible W* (g)-module. Choose h so that £(h) = £ and let, as before,

min

Y =kAg+v+h6.
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(i) If Lo > A(k, v), then

chLW (v, €o) = Z det(w)chM" (wy). (14.5)

weWt

(ii) If Lyg = Ak, v), andv =0ifg= D2, 1; %), then

chLW (. to) = > > (=D'detw)chM™ (w.(Dy —y)).  (14.6)
weWt y €205

where T1; = {y1, y2, ...} is the set of isotropic simple roots for g, and for y =
niyy+---, wewrite (—1)Y = (=1)"*".

Proof. Formula (14.5) follows from (11.46). Formula (14.6) follows from (14.4) by
applying quantum Hamiltonian reduction to the g-module L (V). In order to use (14.4),
write explicitly the relation £o = £(h) = A(k, v). We have

(kAg+hO +v|kAg+hO +v+2hY Ay +2p)
2k + 1Y)
v +2p")  (¢Iv)

= 2urny) Trany G mE=D,

h

or

h(h —1—k) = EW)(E) —k—1).

Hence either & = (§|v) or h = 1+k — (§|v). We observe that if « € IIj, then, restricted

to h®, it coincides with —&, hence (£]v) = —(«|v), and also (f|a) = 1. Therefore, for
h = (&€|v) we have

(Oh + plo) = ((k +h) Ao+ ([0 +v + pla) = (§|v) + («|v) = 0.

Hence we may apply (14.4). Note that Hy(L(Vy,)) # 0 since (Vj|ag) < 0, so that we
can apply Remark 11.7. O

Remark 14.2. Tt is still an open problem whether in the case g = D(2, 1; %) formula
(14.4) holds for an arbitrary v € Pk+ .

Remark 14.3. For the N = 4 superconformal algebra, formula (14.5) appears, in a
different form, in [4, formula (14)], where it has been derived in a non-rigorous way.
To establish a dictionary to match the two formulas first observe that a parameter y
occurs in the formulas of [4] corresponding to an extra U (1)-symmetry that we do not
consider, hence, to compare the formulas, we set y = 1. Next recall that in this case wh
is of type A(ll), hence its elements are of the form u; = sos1--- or u; = 5180 - - - (set
[— [——
i factors i factors
ug = u6 = Id). In the notation of [4], the pairs (a,, b,) corresponding to the «-series
(resp. B-series) in formula (12) of [4] match exactly the pairs (v, £) given in (11.44) for
the weight A = u;.V;, (resp. A = u}.vj). The factor F NS0, 1) translates precisely to
(14.3) according to the dictionary

PRACIPINAS
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The character formula (14.6) corresponds to the formula (26) in [4] for the character of
“massless” representations. To show this, we first remark that, if y € Z,TI;, then

MY (.G —y) = MY (v, 0),
where (v, £) is given by (11.44). In particular

_ WO =)0k —y) +2D) _

¢ KR (w.(0h — ¥)(x +d)
A =y + 11 — 115112
= TR — (w.(0h — Y)(x +d)
_ 1D+ —1p1*

Skt w.(p) (x +d) + w(y)(x +d)

=L+ Op+p)(x+d) —wOp+p)(x+d) +w(y)(x +d),
hence, using formula (14.1),

Ch MW(U)(/V\[/L _ )/)) — qe(h) FNS(q)e(w:‘;h)‘bDq(/17;,+ﬁ—w(ﬁh+,/0\))(x+d)ef(w7/)‘htqw(}/)(x+d)’

and we obtain that

WOt o Gt p—w By +2)) (x+d)

(=) ch MY (w.0n — y)) = ¢"PFNS(g) .
—w(a)

Y €24 T1; [ |a€l'li(1 +e I g w (@) (x+d))

14.7)

Since 6 is orthogonal to (/h\n)* (where /f)\u = CK + Cd + b%), we can apply the formulas
of [12, ChaPter 6] to g" and its Weyl group. Since, in our case, Vy + p = kAo + (h —
%)9 +(r+ §)m, re %Z+, we have, form € Z,

(s051)™ On + P) = kAo + (h — D)0 + (r — km + $)ny — (m(—km +2r +1))8.
and, if o € I3,
(s0s1)™ (o) = o + m$.
Since 51 = sy, it follows that

((s051)™ V) jgs = (r — km)ni, ((s1(s051)™)-Vh)p: = —(r — km + Dny,
Vi + 0 — (s051)" U + D) (x +d) =V + p — s1(s051)" (W + 0) (x +d)
= (m(—km +2r + 1)) = —km?* + 2r + Dm,

and

(s051)™ (@) = =371, 51(5051)" (@) g5 = 371,
(s0s1)™ (@) (x +d) = s1(s05)™ (@) (x +d) = (m + 3).

Substituting (14.7) into (14.6), recalling that M, (k) = —k — 1, we obtain

ch LY (rny, €o)
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M (k)+1 - My (k)+1)+1
e r+m (M (k)+1)m e (r+m(M()+1)+1)ny w2 (My () +1)+2r+1)m

=q"F"@q) )

S\ pedmgmhy? (14 3mgn+iy

which, under our dictionary, corresponds to formula (26) of [4] in the NS sector.
For erl‘ﬁn (spo(2]3)), formula (14.5) appears (with a non-rigorous proof) in [21, for-
mula (4.3)]. Again, in this case W is of type Aﬁl)and its elements are of the form u; or
u: (notation as above). The pairs (I, h,) displayed in [21, (4.2.a),(4.2.b)], correspond-
ing to the A-series (resp. B-series), match exactly the pairs (v, £) given in (11.44) for
the weight A = u; D, (resp. A = u}.Dj,). The denominator F¥5(q, z) in [21, (3.15.1)]
translates precisely to (14.3) according to the dictionary

€1

e < Z.

In the massless case, the character formula (14.6) corresponds to formula (4.6.1) in [21],
hence Theorem 14.1 provides a proof of it, since formula (14.4) holds in this case, due
to [7, Subsection 12.3].

Note added in proof: Conjecture 4 has been proved in a joint paper with Drazen
Adamovié.
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