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Abstract: Webegin a systematic studyof unitary representations ofminimalW -algebras.
In particular, we classify unitary minimal W -algebras and make substantial progress in
classification of their unitary irreducible highest weight modules. We also compute the
characters of these modules.
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1. Introduction

In the present paper we study unitarity of minimal W -algebras and of their representa-
tions. MinimalW -algebras are the simplest conformal vertex algebras among the simple
vertex algebrasWk(g, x, f ), constructed in [18,20], associated to a datum (g, x, f ) and
k ∈ R. Here g = g0̄ ⊕ g1̄ is a basic Lie superalgebra, i.e. g is simple, its even part g0̄ is
a reductive Lie algebra and g carries an even invariant non-degenerate supersymmetric
bilinear form (.|.), x is an ad-diagonalizable element of g0̄ with eigenvalues in 1

2Z,
f ∈ g0̄ is such that [x, f ] = − f and the eigenvalues of ad x on the centralizer g f of
f in g are non-positive, and k �= −h∨, where h∨ is the dual Coxeter number of g. The
most important examples are provided by x and f to be part of an sl2 triple {e, x, f },
where [x, e] = e, [x, f ] = − f, [e, f ] = x . In this case (g, x, f ) is called a Dynkin
datum. Recall thatWk(g, x, f ) is the unique simple quotient of the universalW -algebra,
denoted by Wk(g, x, f ), which is freely strongly generated by elements labeled by a
basis of the centralizer of f in g [20].

We proved in [16, Lemma 7.3] that if φ is a conjugate linear involution of g such that

φ(x) = x, φ( f ) = f and (φ(a)|φ(b)) = (a|b), a, b ∈ g, (1.1)

then φ induces a conjugate linear involution of the vertex algebra Wk(g, x, f ), which
descends to Wk(g, x, f ).

We also proved in [16, Proposition 7.4] that if φ is a conjugate linear involution of
Wk(g, x, f ), this vertex algebra carries a non-zero φ-invariant Hermitian form H(·, ·)
for all k �= −h∨ if and only if (g, x, f ) is a Dynkin datum; moreover, such H is unique,
up to a real constant factor, and we normalize it by the condition H(1, 1) = 1. A module
M for a vertex algebra V is called unitary if there is a conjugate linear involution φ of
V such that there is a positive definite φ-invariant Hermitian form on M . The vertex
algebra V is called unitary if the adjoint module is.

For some levels k the vertex algebra Wk(g, x, f ) is trivial, i.e. isomorphic to C; then
it is trivially unitary. Another easy case is when Wk(g, x, f ) “collapses” to the affine
part. In both cases we will say that k is collapsing level.

In the case of a Dynkin datum let g� be the centralizer of the sl2 subalgebra s =
span {e, x, f } in g0̄; it is a reductive subalgebra. If φ satisfies the first two conditions
in (1.1), it fixes e, x, f , hence φ(g�) = g�. It is easy to see that unitarity of Wk(g, x, f )
implies, when k is not collapsing, that φ|[g�,g�] is a compact involution.
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In the present paper we consider onlyminimal data (g, x, f ), defined by the property
that for the ad x-gradation g = ⊕

j∈ 1
2Z

g j one has

g j = 0 if | j | > 1, and g−1 = C f. (1.2)

In this case (g, x, f ) is automatically a Dynkin datum. The corresponding W -algebra
is called minimal. The element f ∈ g is a root vector attached to a root −θ of g, and
we shall normalize the invariant bilinear form on g by the usual condition (θ |θ) = 2,
which is equivalent to (x |x) = 1

2 . Recall that the dual Coxeter number h∨ of g is half of
the eigenvalue of its Casimir element of g, attached to the bilinear form (.|.). We shall
denote by Wmin

k (g) the minimal W -algebra, corresponding to g and k �= −h∨, and by
Wk

min(g) the corresponding universal W -algebra.
We proved in [16, Proposition 7.9] that, ifWmin

k (g) is unitary and k is not a collapsing
level, then the parity of g is compatible with the ad x-gradation, i.e. the parity of the
whole subspace g j is 2 j mod 2.

It follows from [18], [20] that for each basic simple Lie superalgebra g there is at
most one minimal Dynkin datum, compatible with parity, and the complete list of the g
which admit such a datum is as follows:

sl(2|m) for m ≥ 3, psl(2|2), spo(2|m) for m ≥ 0,

osp(4|m) for m > 2 even, D(2, 1; a) for a ∈ C, F(4), G(3).
(1.3)

The even part g0̄ of g in this case is isomorphic to the direct sum of the reductive Lie
algebra g� and s ∼= sl2.

One of our conjectures (see Conjecture 4 in Sect. 8)1 states that any unitaryWk
min(g)-

module descends toWmin
k (g). In fact, it is tempting to conjecture that for any conformal

vertex algebra V any unitary V -module descends to the simple quotient of V .
It turns out (cf. Proposition 7.2) that a conjugate linear involution of the universal

minimalW -algebraWk
min(g) at non-collapsing level k is necessarily induced by a conju-

gate linear involution φ of g. Moreover, by Proposition 8.9, if Wk
min(g) admits a unitary

highest weight module and k is not collapsing, then g� has to be semisimple. As ex-
plained above, the involution φ of gmust be almost compact, according to the following
definition.

Definition 1.1. A conjugate linear involution φ on g is called almost compact if

(i) φ fixes e, x, f ;
(ii) φ is a compact conjugate linear involution of g�.

Indeed (i) is equivalent to the first two requirements in (1.1), and the third requirement
in (1.1) follows from Lemma 3.1 in Sect. 3.

So, in order to study unitarity of highest weight modules, it is not restrictive to
assume that the conjugate linear involution ofWk

min(g) is induced by an almost compact
conjugate linear involution of g.

We prove in Sects. 3 and 4 that an almost compact conjugate linear involution φ

exists for all g from the list (1.3), except that a must lie in R in case of D(2, 1; a), and
is essentially unique.

1 See Note added in proof.
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It was shown in [20] that the central charge of Wmin
k (g) equals

c(k) = k d

k + h∨
− 6k + h∨ − 4, where d = sdimg. (1.4)

Here is another useful way to write this formula:

c(k) = 7h∨ + d − 4− 12√ − 6
(k + h∨ −√

)2

k + h∨
, where √ =

√
d h∨
6

. (1.5)

Recall that the most important superconformal algebras in conformal field theory are
the simple minimal W -algebras or are obtained from them by a simple modification:

(a) Wmin
k (spo(2|N )) is the Virasoro vertex algebra for N = 0, the Neveu-Schwarz

vertex algebra for N = 1, the N = 2 vertex algebra for N = 2, and becomes
the N = 3 vertex algebra after tensoring with one fermion; it is the Bershadsky-
Knizhnik algebra for N > 3;

(b) Wmin
k (psl(2|2)) is the N = 4 vertex algebra;

(c) Wmin
k (D(2, 1; a)) tensored with four fermions and one boson is the big N = 4

vertex algebra.

The unitary Virasoro (N = 0), Neveu-Schwarz (N = 1) and N = 2 simple vertex
algebras, along with their irreducible unitary modules, were classified in the mid 80s.
Up to isomorphism, these vertex algebras depend only on the central charge c(k), given
by (1.4). Putting k = 1

p − 1 in (1.5) in all three cases, we obtain

c(k) = 1− 6

p(p + 1)
for Virasoro vertex algebra, (1.6)

c(k) = 3

2

(

1− 8

p(p + 2)

)

for Neveu-Schwarz vertex algebra, (1.7)

c(k) = 3

(

1− 2

p

)

for N = 2 vertex algebra. (1.8)

The following theorem is a result of several papers, published in the 80s in physics and
mathematics literature, see e.g. [5] for references.

Theorem 1.2. The complete list of unitary N = 0, 1, and 2 vertex algebras is as follows:
either c(k) is given by (1.6), (1.7), or (1.8), respectively, for p ∈ Z≥2, or c(k) ≥ 1, 3

2 or
3, respectively.

The above three cases cover all minimal W -algebras, associated with g, such that the
eigenspace g0 of ad x is abelian. Thus, we may assume that g0 is not abelian.

In order to study unitarity of the simple minimal W -algebra Wmin
k (g), one needs to

consider the more general framework of representation theory of universal minimal W -
algebras Wk

min(g). Of course, unitarity of W
k
min(g) is equivalent to that of W

min
k (g). It is

therefore natural to study unitarity of irreducibleWk
min(g)-modules. For that purpose, we

take, in Sect. 6, a long detour to develop a general theory of invariant Hermitian forms on
modules over the vertex algebra of free bosons, which will be eventually applied to our
main object of interest. As a byproduct we obtain a field theoretic version of the Fairlie
construction, which yields explicit models of unitary representations of the Virasoro
algebra for certain values of the highest weight (cf. [17, 3.4], Example 6.9).
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We consider in Sect. 9 the free field realization � : Wk
min(g) → Vk = V k+h∨(Cx)⊗

V αk (g�) ⊗ F(g1/2) introduced in [20] (here V γ (a) denotes the universal affine vertex
algebra associated to the Lie algebra a and to a 2-cocycle γ , αk is the 2-cocycle defined in
(7.24), and F(g1/2) is the fermionic vertex algebra “attached” to g1/2). Let M(μ) be the

Verma module of highest weight μ ∈ C for the bosonic vertex algebra V k+h∨(Cx) and
consider the Vk-module N (μ) = M(μ)⊗V αk (g�)⊗ F(g1/2). Applying to N (μ) results
from Sect. 6, we obtain in Proposition 9.2 a generalization of the Fairlie construction to
universal minimal W -algebras.

The conformal vertex algebras (Wk
min(g), L) and (Vk, L̂(0)) (see (6.29)) both admit

Hermitian invariant forms H(·, ·)W and H(·, ·) f ree, respectively. Unfortunately, the
embedding � is not conformal, i.e., �(L) �= L̂(0), in particular � is not an isometry
(which was erroneously claimed in [14]). So, though the vertex algebra Vk is unitary,
this does not imply the unitarity of Wk

min(g). A few explicit computations suggest the
following conjecture, which we were unable to prove.

Conjecture 1. For each w ∈ Wk
min(g), H(w, w)W ≥ H(�(w), �(w)) f ree. In particu-

lar if Vk is unitary, then Wk
min(g) is unitary.

We start the study of unitary modules over minimal W -algebras in Sect. 8 by intro-
ducing the irreducible highest weight Wk

min(g)-modules LW (ν, 
0) with highest weight
(ν, 
0), where ν is a real weight of g� and 
0 ∈ R is the minimal eigenvalue of L0. We
prove that LW (ν, 
0) admits a φ-invariant nondegenerate Hermitian form (unique up to
normalization), see Lemma 8.1. In Sect. 8 we also determine necessary conditions for the
unitarity of LW (ν, 
0). Part of the necessary conditions is displayed in Proposition 8.5.
They say that unitarity of LW (ν, 
0) implies that the levels Mi (k) of the affine Lie al-
gebras ĝ�

i in Wk
min(g) (given in Table 2, Sect. 7), where g

�
i are the simple components of

g�, are non-negative integers, ν is dominant integral of levels Mi (k), and the inequality
(1.9) below holds. Proposition 8.8 provides a further necessary condition, which says
that (1.9) must be an equality when ν is an “extremal” weight. See Theorem 1.3 (1)
below for a precise statement.

In Sect. 10, using the generalization of the Fairlie construction, developed in Sect. 9,
we prove a partial converse result: if Mi (k) + χi ∈ Z+, where χi are negative integers,
displayed in Table 2, and ν is dominant integral weight for g� which is not extremal, then
the Wk

min(g)-module LW (ν, 
0) is unitary for l0 sufficiently large, see Proposition 10.2.
In Sect. 11 we prove our central Theorem 11.1, which claims that actually Proposi-

tion 10.2 holds for l0 satisfying the inequality (1.9), provided that ν is not extremal. This
is established by the following construction. Let ĝ be the affinization of g. We introduce
in (11.4) a highest weight module M (̂νh) over ĝ, whose highest weight ν̂h depends on
h ∈ C, with the following two properties

(1) M (̂νh) is irreducible, except possibly for an explicit set J of values of h.
(2) For the quantumHamiltonian reduction functor H0, theWk

min(g)-module H0(M (̂ν))

admits a Hermitian form, depending polynomially on h.

Using the irreducibility theorem by Arakawa [2], we deduce that H0(M (̂νh)) =
LW (ν, 
(h)) for h /∈ J , where 
(h) is defined by (11.45). It turns out that, miracu-
lously, if h ∈ J , then 
(h) does not satisfy (1.9). Moreover LW (ν, 
0) is unitary for
l0  0. By continuity, the determinant of the Hermitian form on LW (ν, 
0) is positive
if the inequality (1.9) holds. See Theorem 1.3 (2) below for a precise statement.
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Let us state our main results. First of all, if g = sl(2|m) with m ≥ 3 or osp(4|m)

with m ≥ 2 even, then none of the Wk
min(g)-modules LW (ν, 
0) are unitary for a non-

collapsing level k. For the remaining g from the list (1.3) the Lie algebra g� is semisimple
(actually simple, except forg = D(2, 1; a), wheng� = sl2⊕sl2). Let θ∨i be the coroots of

the highest roots θi of the simple components g�
i of g

�. Let 2ρ� be the sumof positive roots
of g�, and let ξ be a highest weight of the g�-module g−1/2 (this module is irreducible,
except for g = psl(2|2) when it is C2 ⊕C

2). Let ν be a dominant integral weight for g�

and l0 ∈ R. We prove the following theorem.

Theorem 1.3. Let LW (ν, 
0) be an irreducible highest weight Wk
min(g)-module for g =

psl(2|2), spo(2|m) with m ≥ 3, D(2, 1; a), F(4) or G(3).

(1) This module can be unitary only if the following conditions hold:
(a) Mi (k) are non-negative integers,
(b) ν(θ∨i ) ≤ Mi (k) for all i ,
(c)

l0 ≥ (ν|ν + 2ρ�)

2(k + h∨)
+

(ξ |ν)

k + h∨
((ξ |ν) − k − 1), (1.9)

and equality holds in (1.9) if ν(θ∨i ) > Mi (k) + χi for i = 1 or 2.
(2) This module is unitary if the following conditions hold:

(a) Mi (k) + χi ∈ Z+ for all i ,
(b) ν(θ∨i ) ≤ Mi (k) + χi for all i (i.e. ν is not extremal),
(c) inequality (1.9) holds.

Conjecture 2. The modules LW (ν, 
0) are unitary if ν is extremal and l0 = R.H.S. of
(1.9). In other words, the necessary conditions of unitarity in Theorem 1.3 (1) are
sufficient.

We were able to prove this conjecture only for g = psl(2|2) and spo(2|3), obtaining
thereby a complete classification of unitary simple highest weight Wk

min(g)-modules
in these two cases. Note that papers [3,4,21] respectively claim (without proof) these
results.

Since ν = 0 is extremal iff k is collapsing, we obtain the following complete classi-
fication of minimal simple unitary W -algebras:

Theorem 1.4. The simpleminimal W-algebraWmin−k (g)with k �= h∨ and g0 non-abelian
is non-trivial unitary if and only if

(1) g = sl(2|m), m ≥ 3, k = 1 (in this case the W-algebra is a free boson);
(2) g = psl(2|2), k ∈ N + 1;
(3) g = spo(2|3), k ∈ 1

4 (N + 2);
(4) g = spo(2|m), m > 4, k ∈ 1

2 (N + 1);
(5) g = D(2, 1; m

n ), k ∈ mn
m+nN, where m, n ∈ N are coprime, k �= 1

2 ;
(6) g = F(4), k ∈ 2

3 (N + 1);
(7) g = G(3), k ∈ 3

4 (N + 1).

This result, along with all known results on unitarity of vertex algebras, leads to the
following general conjecture.

Conjecture 3. ACFT type vertex operator algebra admitting a invariantHermitian form
and having a unitary module is unitary.
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In the final Sect. 14 we provide character formulas for all unitary Wk
min(g)-modules

LW(ν, 
0), which are obtained by applying the quantum Hamiltonian reduction to the
corresponding irreducible highest weight modules over the affinization ĝ of g. There are
two cases to consider. In the first case, called massive (or typical), when inequality (1.9)
is strict, this character formula is easy to prove (see the proof of Proposition 11.5), which
leads to the character formula (14.5). In the second case, called massless (or atypical),
when the inequality (1.9) is equality, there is a general KW-formula for maximally
atypical tame integrable ĝ-modules, conjectured in [19] and proved in [7] for all g in
question, except for g = D(2, 1; m

n ), ν �= 0, which leads to the character formula (14.6).
Character formulas were also given in [4] (resp. [21]) for the N = 4 superconformal
algebra (resp. for Wk

min(spo(2|3)), hence for the N = 3 superconformal algebra). The
proofs given in these papers are incomplete since they assume that their list of singular
vectors is complete and that in the usual argument of inclusion-exclusion of Verma
modules subsingular vectors cancel out. Their formulas for both massive and massless
representations coincide with (14.5) and (14.6), respectively.

In our next paper of this series we will study unitarity of twisted representations of
minimal W -algebras.

Throughout the paper the base field is C, and Z+ and N stand for the set of non
negative and positive integers, respectively.

2. Setup

2.1. Basic Lie superalgebras. Let g = g0̄ ⊕ g1̄ be a basic finite-dimensional Lie su-
peralgebra over C as in (1.3). Choose a Cartan subalgebra h of g0̄. It is a maximal
ad-diagonalizable subalgebra of g, for which the root space decomposition is of the
form

g = h⊕
⊕

α∈�

gα, (2.1)

where � ⊂ h∗ \ {0} is the set of roots. In all cases, except for g ∼= psl(2|2), the root
spaces have dimension 1. In the case g = psl(2|2) one can achieve this property by
embedding in pgl(2|2) and replacing (2.1) by the root space decomposition with respect
to a Cartan subalgebra of pgl(2|2), which we will do.

Let �+ be a subset of positive roots and � = {α1, . . . , αr } be the corresponding
set of simple roots. We will denote by �0̄, �1̄, the sets of even and odd simple roots,
respectively. For eachα ∈ �+ choose Xα ∈ gα and X−α ∈ g−α such that (Xα|X−α) = 1,
and let hα = [Xα, X−α]. Let ei = Xαi , fi = X−αi , i = 1, . . . , r . The set {ei , fi , hαi |
i = 1, . . . , r} generates g, and satisfies the following relations

[ei , f j ] = δi j hαi , [hαi , e j ] = (αi |α j )e j , [hαi , f j ] = −(αi |α j ) f j . (2.2)

The Lie superalgebra g̃ on generators {ei , fi , hαi | i = 1, . . . , r} subject to relations
(2.2) is a (infinite-dimensional) Z-graded Lie algebra, where the grading is defined by
deg hαi = 0, deg ei = − deg fi = 1, with a unique Z-graded maximal ideal, and g is
the quotient of g̃ by this ideal. We assume that (αi |α j ) ∈ R for all αi , α j ∈ �.
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2.2. Conjugate linear involutions and real forms. In the above setting, given a collection
of complex numbers � = {λ1, . . . , λr } such that λi ∈

√−1R if αi is an odd root and
λi ∈ R if αi is an even root, we can define an antilinear involution ω� : g → g setting

ω�(ei ) = λi fi , ω�( fi ) = λ̄−1
i ei , ω�(hαi ) = −hαi , 1 ≤ i ≤ r. (2.3)

Since ω� preserves relations (2.2), it induces an antilinear involution of g̃, and, since
ω� preserves the Z-grading of g̃, it preserves its unique maximal ideal, hence it induces
an antilinear involution of g.

Set σα = −1 if α is an odd negative root and σα = 1 otherwise, so that (Xα|X−α) =
σα . Let

ξα =
{
sgn(α|α) if α is an even root,
1 if α is an odd root.

Then in [8, (4.13), (4.15)] it is proven (using results from [9]), that one can choose root
vectors Xα in such a way that

ω�(Xα) = −σαξαλαX−α, (2.4)

where

λα =
∏

i

(−ξαi λi )
ni for α =

r∑

i=1

niαi . (2.5)

We shall call this a good choice of root vectors.

2.3. Invariant Hermitian forms on vertex algebras. Let V be a conformal vertex algebra
with conformal vector L = ∑n∈Z Lnz−n−2 (see [16] for the definition and undefined
notation). Let φ be a conjugate linear involution of V . A Hermitian form H( . , . ) on V
is called φ-invariant if, for all a ∈ V , one has [16]

H(v,Y (a, z)u) = H(Y (A(z)a, z−1)v, u), u, v ∈ V . (2.6)

Here the linear map A(z) : V → V ((z)) is defined by

A(z) = ezL1 z−2L0g, (2.7)

where

g(a) = e−π
√−1( 12 p(a)+�a)

φ(a), a ∈ V, (2.8)

�a stands for the L0-eigenvalue of a, and

p(a) =
{
0 ∈ Z if a ∈ g0̄,

1 ∈ Z if a ∈ g1̄.
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3. The Almost Compact Conjugate Linear Involution of g

From now on we let g be a basic simple finite-dimensional Lie superalgebra such that

g0̄ = s⊕ g�. (3.1)

where s ∼= sl2 and g� is the centralizer of s in g.
This corresponds to consider g as in Table 2 of [20].Wewill also assume that g� is not

abelian; this condition rules out g = spo(2|m), m = 0, 1, 2. The explicit list is given in
the leftmost column of Table 1. Note that sl(2|1) and osp(4|2) are missing there since
sl(2|1) ∼= spo(2|2) and osp(4|2) ∼= D(2, 1; a) with a = 1,−2 or − 1

2 .
First, we prove the simple lemma mentioned in the Introduction, which states that

the first two conditions of (1.1) imply the third one.

Lemma 3.1. Let g be a simple Lie superalgebra with an invariant supersymmetric bi-
linear form (.|.), let x ∈ g, and let φ be a conjugate linear involution of g, such that

(x |x) is a non-zero real number, and φ(x) = x . (3.2)

Then

(φ(a)|φ(b)) = (a|b), for all a, b ∈ g. (3.3)

Proof. Note that (φ(a)|φ(b)) is an invariant supersymmetric bilinear form aswell, hence
it is proportional to (a|b) since g is simple. Due to (3.2) these two bilinear forms coincide.

��
We now discuss the existence of an almost compact involution of g (see Defini-

tion 1.1).

Proposition 3.2. For any sl2-triple s = {e, x, f }, such that [e, f ] = x, [x, e] =
e, [x, f ] = − f, and (3.1) holds, an almost compact involution exists.

Proof. Choose a Cartan subalgebra t of g0̄. We observe that if we prove the existence of
an almost compact involution φ for a special choice of {e, x, f }, then an almost compact
involution exists for any choice of the sl2-triple. Indeed, if {e′, x ′, f ′} is another sl2-
triple, then there is an inner automorphismψ of smapping {e, x, f } to {e′, x ′, f ′}, which
extends to an inner automorphism of g. Therefore φ′ = ψφψ−1 is an almost compact
involution for {e′, x ′, f ′}. The construction of {e, x, f } and φ and the verification of
properties (i)–(iii) in Definition 1.1 will be done in four steps:

(1) make a suitable choice of positive roots for g with respect to t;
(2) define φ by specializing (2.3);
(3) construct {e, f, x} and verify that φ( f ) = f, φ(x) = x , φ(e) = e;
(4) check that φ is a compact involution for g�;

Step 1. We need some preparation. Let �� be the set of roots of g� with respect to the
Cartan subalgebra t ∩ g�. Let {±θ} be the t ∩ s-roots of s. Then R0̄ = {±θ} ∪ �� is the
set of roots of g0̄ with respect to t.

Let R be the set of roots of g with respect to t, let R+ be the subset of positive roots
whose corresponding set of simple roots S = {α1, . . . , αr } is displayed in Table 1.

Note that θ is the highest root of R.
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Table 1. Simple roots, invariant form, and highest root of g

g S (.|.) θ

psl(2|2) {ε1− δ1, δ1− δ2, δ2−
ε2}

(εi |ε j ) = δi, j = −(δi |δ j )
(εi |δ j ) = 0 ε1 − ε2

sl(2|m),m > 2 {ε1 − δ1, δ1 −
δ2, . . . , δm − ε2}

(εi |ε j ) = δi, j = −(δi |δ j )
(εi |δ j ) = 0 ε1 − ε2

osp(4|m),m > 2 {ε1− ε2, ε2− δ1, δ1−
δ2, . . . , δm−1 −
δm , 2δm }

(εi |ε j ) = δi, j = −(δi |δ j )
(εi |δ j ) = 0 ε1 + ε2

spo(2|2m + 1),m ≥ 1 {δ1 − ε1, ε1 −
ε2, . . . , εm−1 −
εm , εm }

(εi |ε j ) = − 1
2 δi, j , (δ1|δ1) = 1

2 , (εi |δ1) = 0 2δ1

spo(2|2m),m ≥ 3 {δ1 − ε1, ε1 −
ε2, . . . , εm−1 −
εm , εm−1 + εm }

(εi |ε j ) = − 1
2 δi, j , (δ1|δ1) = 1

2 , (εi |δ1) = 0 2δ1

D(2, 1; a) {ε1−ε2−ε3, 2ε2, 2ε3} (ε1|ε1) = 1
2 , (ε2|ε2) = −1

2(1+a)
, (ε3|ε3) = −a

2(1+a)
(ε1|ε2) = (ε1|ε3) = (ε2|ε3) = 0

2ε1

F(4) { 12 (δ1 − ε1 − ε2 −
ε3), ε3, ε2 − ε3, ε1 −
ε2}

(εi |ε j ) = − 2
3 δi, j , (δ1|δ1) = 2

(εi |δ1) = 0
δ1

G(3) {δ1 + ε3, ε1, ε2 − ε1} (εi |ε j ) = 1−3δi, j
4 , (δ1|δ1) = 1

2
(εi |δ1) = 0, ε1 + ε2 + ε3 = 0

2δ1

Step 2. Define

�0 = {λ1, . . . , λr }, λi =
{
−sgn(αi |αi ) if αi is even,
−√−1 if αi is odd.

(3.4)

Set φ = ω�0 (see (2.3)).
Step 3. Consider a good choice of root vectors Xα for �0. Set

x =
√−1
2 (Xθ − X−θ ), e = 1

2 (Xθ + X−θ +
√−1hθ ), f = 1

2 (Xθ + X−θ −
√−1hθ ).

(3.5)

If θ =∑r
i=1 miαi , then, by our special choice of �+, we have either mi = 2 for exactly

one odd simple root αi , ormi = m j = 1 for exactly two odd distinct simple roots αi , α j
(this corresponds to the fact that R+ is distinguished, in the terminology of [8]). By (2.4)
we have

φ(Xθ ) = −(
√−1)2X−θ = X−θ . (3.6)

Since hθ = ∑r
i=1 mihαi and φ(hαi ) = −hαi , it is clear from (3.5) that φ fixes e, f, x .

One checks directly that {e, f, x} is an sl2-triple.
Step 4. Endow g with the Z-grading

g =
⊕

i∈Z
qi (3.7)

which assigns degree 0 to h ∈ t and to ei and fi if αi is even, and degree 1 to ei and
degree −1 to fi , if αi is odd.

A direct check on Table 1 shows that q0 = g�. Recall from [8, Proposition 4.5] that
the fixed points of φ in q0 are a compact form of q0 if and only if λi (αi |αi ) < 0 for all
αi ∈ S \ S1. Step 4 now follows from (3.4). ��
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4. Explicit Expressions for Almost Compact Real Forms

In this section we exhibit explicitly an almost compact involution φ in each case and
discuss its uniqueness. If φ is an almost compact involution of g, we denote by gac the
corresponding real form (the fixed point set of φ). We can define gac by specifying a
real form gac

0̄
of g0̄ and a real form gac

1̄
of g1̄.

(1) g = spo(2|m). Then g0̄ = sl2 ⊕ som and g1̄ = C
2 ⊗ C

m as g0̄-module. We set

gac
0̄

= sl2(R) ⊕ som(R), gac
1̄

= R
2 ⊗ R

m .

Explicitly, let B be a non-degenerateR-valued bilinear form of the superspaceR2|m

with matrix

⎛

⎝
0 1 0
−1 0 0
0 0 Im

⎞

⎠. Then for g = spo(2|m) we have:

gac = {A ∈ sl(m|n;R) | B(Au, v) + (−1)p(A)p(u)B(u, Av) = 0}.
(2) g = psl(2|2). Let H be aC-valued non-degenerate sesquilinear form on the super-

space C2|2 whose matrix is diag(
√−1,−√−1, 1, 1). Set

g̃ac = {A ∈ sl(2|2;C) | H(Au, v) + (−1)p(A)p(u)H(u, Av) = 0}.
Then

gac = g̃ac/R
√−1I.

Explicitly, we have g0̄ = sl2 ⊕ sl2 and g1̄ =
{(

0 B
C 0

)

| B,C ∈ M2,2(C)

}

as a

g0̄-module. Then

g̃ac0̄ =
{(

A 0
0 D

)

| A ∈ su(1, 1), D ∈ su2

}

,

g̃ac1̄ =
⎧
⎨

⎩

⎛

⎝
0 0 u
0 0 v√−1ūt −√−1v̄t 0

⎞

⎠ | u, v ∈ C
2

⎫
⎬

⎭
.

(3) g = D(2, 1; a). Theng0̄ = sl2⊕sl2⊕sl2 = so(4,C)⊕sl2 andg1̄ = C
2⊗C

2⊗C
2 =

C
4 ⊗ C

2 as g0̄-module. We set

gac
0̄

= so(4,R) ⊕ spanR{e, f, x}, gac
1̄

= R
4 ⊗ R

2.

To get an explicit realization, consider the contact Lie superalgebra (see [11] for
more details)

K (1, 4) = C[t, ξ1, ξ2, ξ3, ξ4]
where t is an even variable and ξi , 1 ≤ i ≤ 4, are odd variables. Introduce on the
associative superalgebra K (1, 4) a Z-grading by letting

deg′ t = 2, deg′ ξi = 1,
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and the bracket

{F,G} = (2−
4∑

i=1

ξi∂i )F∂tG − ∂t F(2−
4∑

i=1

ξi∂i )G +
4∑

i=1

(−1)p(F)∂i F∂i G,

where ∂i = ∂ξi . This is a Z-graded Lie superalgebra with compatible grading
deg F = deg′ F − 2. We have

K (1, 4) =
⊕

j≥−2

K (1, 4) j ,

where

K (1, 4)−2 = C1, K (1, 4)−1 = spanC(ξi | 1 ≤ i ≤ 4),

K (1, 4)0 = spanC(ξiξ j , t | 1 ≤ i, j ≤ 4), K (1, 4)1 = g′1 ⊕ g′′1,where
g′1 = spanC(tξi | 1 ≤ i ≤ 4), g′′1 = spanC(ξiξ jξk | 1 ≤ i, j, k ≤ 4).

Note that spanC(ξiξ j | 1 ≤ i, j ≤ 4) = �2
C
4 ∼= so(4,C), that g′1 is isomorphic to

the standard representation C
4 of so(4,C) and that g′′1 is isomorphic to �3

C
4, so that

K (1, 4)1 = C
4⊕C

4 as so(4,C)-module. Also notice that {g′1, g′1} = Ct2, {g′′1, g′′1} = 0.
Fix now a copy g̃b of an so(4,C)-moduleC4 inC4⊕C

4, depending on a constant b ∈ R,
as follows. Set, for 1 ≤ i ≤ 4,

ai = tξi + bξ̂i , where ξ̂i = (−1)i+1
∏

j �=i

ξ j ,

and define

g̃b =
4∑

i=1

Cai .

Let b ∈ R. Note that, setting ξ = ξ1ξ2ξ3ξ4, we have

{tξi + bξ̂i , tξ j + bξ̂ j } = δi j (−t2 + 2bξ).

Hence, if we set

e = −t2 + 2bξ, f = −1, x = t/2,

then {e, x, f } is an sl2-triple. Set

gac = R.1⊕
(

4∑

i=1

Rξi

)

⊕
⎛

⎝
4∑

i, j=1

Rξiξ j ⊕ R
t
2

⎞

⎠⊕
(

4∑

i=1

Rai

)

⊕ R(−t2 + 2bξ).

Then gac is an almost compact form of D(2, 1; 1+b
1−b ). To prove this, it suffices to calculate

the Cartanmatrix for a choice of Chevalley generators of the complexification of gac. Fix
a Cartan subalgebra in g� = so(4,C) as the span of v2 = −√−1ξ1ξ2, v3 = −√−1ξ3ξ4.
Set v1 = t ; then {v1, v2, v3} is a basis of a Cartan subalgebra of g. Let {ε1, ε2, ε3} be the
dual basis to {v1, v2, v3}. One can choose {α1 = ε2 − ε1, α2 = ε1 − ε3, α3 = ε1 + ε3}
as a set of simple roots. The associated Chevalley generators are
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e1 = −√−1a1 + a2 e2 = ξ1ξ3 + ξ2ξ4 +
√−1(ξ1ξ4 − ξ2ξ3) e3 = ξ1ξ3 − ξ2ξ4 −

√−1(ξ1ξ4 + ξ2ξ3)

f1 = √−1ξ1 + ξ2 f2 = ξ1ξ3 + ξ2ξ4 −
√−1(ξ1ξ4 − ξ2ξ3) f3 = ξ1ξ3 − ξ2ξ4 +

√−1(ξ1ξ4 + ξ2ξ3)

h1 = −2v1 + 2v2 + 2b v3 h2 = 4v1 − 4v3 h3 = 4v1 + 4v3

and the corresponding Cartan matrix, normalized as in [11], is

⎛

⎝
0 1 1+b

1−b−1 2 0
−1 0 2

⎞

⎠. Hence

a = 1+b
1−b and therefore all a �= −1 occur in this construction. Since this subalgebra is

17-dimensional, it is isomorphic to D(2, 1; a).

Remark 4.1. Note that a = 0 for b = −1. In this case, D(2, 1; 0) contains a 11-
dimensional solvable ideal generated by f1, which is spanned by h1 and the root vectors
relative to roots having α1 in their support. If we replace ai by ai/b and h1 by h1/b, and
let b tend to +∞, we recover also the Lie superalgebra of derivations of psl(2|2), and
its almost compact real form.

(4) g = G(3). Then g0̄ = sl2 ⊕ G2 and g1̄ = C
2 ⊗ Lmin, where Lmin is the complex

7-dimensional irreducible representation of G2, and we let

gac
0̄

= sl2(R) ⊕ G2,0, gac
1̄

= R
2 ⊗ Lmin,0.

where G2,0 is the real compact form of G2 and Lmin,0 is the real 7-dimensional
irreducible representation of G2,0 whose complexification is Lmin.

(5) g = F(4). Then g0̄ = sl2 ⊕ so7 and g1̄ = C
2 ⊗ spin7, where spin7 is the complex

spinor representation of so7, and we let

gac
0̄

= sl2(R) ⊕ so7(R), gac
1̄

= R
2 ⊗ spin(R7),

where spin(R7) is the spinor representation of the compact group so7(R).

It is proved in [11, Proposition 5.3.2] that in both cases (4) and (5) gac = gac
0̄

⊕ gac
1̄

is an almost compact form of g.

4.1. Uniqueness of the almost compact involution.

Proposition 4.2. An almost compact involution is uniquely determined up to a sign by
its action on g0, provided that the g0-module g1/2 is irreducible.

Proof. If there are two different extensions of the compact involution, then their ratio
ψ , say, is identical on g0, hence, by Schur’s lemma, ψ acts as a scalar on g−1/2. Since
φ( f ) = f , we conclude that this scalar is ±1. ��
It remains to discuss the cases g = sl(2|m), m ≥ 3, and psl(2|2), since in all other
cases of Table 1 the g0-module g1/2 is irreducible. In this cases g is of type I, that is
g1̄ = g+

1̄
⊕ g−

1̄
where g±

1̄
are contragredient irreducible g0̄-modules and [g±

1̄
, g±

1̄
] = 0.

Let δλ be the linear map on g defined by setting

δλ|g0̄ = I d, δλ|g+
1̄
= λI d, δλ|g−

1̄
= λ−1 I d. (4.1)

Then δλ is an automorphism of g for any λ ∈ C. Suppose that φ′ is another conjugate
almost compact linear involution such that φ′|g0̄ = φ. Then φ′ = φ ◦ γ with γ an
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automorphism of φ such that γ|g0̄ = I d. If g = sl(2|m), by [22, Lemmas 1 and 2], we
have γ = δλ. Since φ(g+

1̄
) = g−

1̄
and (φ′)2 = I d we have that λ ∈ R. If g = psl(2|2),

then γ belongs to a three-parameter family of automorphisms explicitly described in [8,
§4.6], and contained in SL(2,C). This SL(2,C) is the group of automorphisms of g
corresponding to the Lie algebra sl2 of outer derivations of g.

Remark 4.3. Note that if φ is an almost compact involution, then

φ̃(a) = (−1)2 jφ(a), a ∈ g j

is again an almost compact involution.

5. The Bilinear Form 〈·, ·〉 on g−1/2

Let s = {e, x, f } be an sl2-triple as in Proposition 3.2. Consider the following symmetric
bilinear forms on g−1/2 and g1/2 respectively:

〈u, v〉 = (e|[u, v]), u, v ∈ g−1/2, (5.1)

〈u, v〉ne = ( f |[u, v]), u, v ∈ g1/2. (5.2)

Note that, since [ f, g−1/2] = 0, we have

〈[e, u], [e, v]〉ne = − 1
2 〈u, v〉, u, v ∈ g−1/2. (5.3)

We want to prove the following

Proposition 5.1. We can choose an almost compact involution such that the bilinear
form 〈., .〉 is positive definite on gac ∩g−1/2. In particular, the Hermitian form 〈φ(u), v〉
(resp. 〈φ(u), v〉ne) is positive definite (resp, negative definite) on gac ∩ g−1/2 (resp.
gac ∩ g1/2).

The proof requires a detailed analysis of the action of an almost compact involution on
g−1/2. Define structure constants Nα,β for a good choice of root vectors (see Sect. 2.2)
by the relation

[Xα, Xβ ] = Nα,βXα+β.

Observe that {X−θ , Xθ , 1
2hθ } is a sl2-triple in s. Let

g = CXθ ⊕ g̃1/2 ⊕ g̃0 ⊕ g̃−1/2 ⊕ CX−θ

be thedecomposition intoad 1
2hθ eigenspaces.By the sl2 representation theory,ad X±θ :

g̃∓1/2 → g̃±1/2 is an isomorphism of g�-modules. Moreover, by our choice of R+ in
Sect. 3, the roots of g̃−1/2 (resp. g̃1/2) are precisely the negative (resp. positive) odd
roots. In particular, the map α �→ −θ + α defines a bijection between the positive and
negative odd roots. We shall need the following properties.

Lemma 5.2. For a positive odd root α we have

N−θ,αNθ,α−θ = 1, (5.4)

N 2−θ,α = 1. (5.5)

In particular Nθ,α is real.
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Proof. Relation (5.4) is proven in [8, Lemma 4.3]. Equation (5.5) follows from [8, (4.8)],
noting that the −θ -string through α has length 1. ��

Arguing as in Proposition 3.2, we can assume in the proof of Proposition 5.1 that
{e, x, f } is the sl2-triple defined in (3.5); ad x defines on g a minimal grading

g = C f ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ Ce. (5.6)

Set, for an odd root α ∈ R+

uα = Xα +
√−1N−θ,αXα−θ . (5.7)

Note that

[x, uα] =
√−1
2 [Xθ − X−θ , Xα +

√−1N−θ,αXα−θ ]
=1

2N−θ,αNθ,α−θ Xα −
√−1
2 N−θ,αXα−θ = − 1

2uα,

hence {uα | α ∈ R+, α odd} is a basis of g−1/2.

Lemma 5.3. If α is a positive odd root then

φ(uα) = −N−θ,αuθ−α. (5.8)

Proof. By (2.4), φ(Xα) = −√−1X−α if α is an odd positive root, hence, by (5.5), since
N−θ,α is real,

φ(uα) = φ(Xα +
√−1N−θ,αXα−θ ) = −(

√−1X−α + N−θ,αXθ−α)

= −N−θ,α(Xθ−α +
√−1N−1

−θ,αX−α).
(5.9)

Note that, since φ(x) = x , φ(uα) has to belong to g−1/2. This forces

N−θ,αN−θ,θ−α = 1, (5.10)

and (5.9) becomes (5.8). ��
Proof of Proposition 5.1. Set vα = 1

2 (uα + φ(uα)) +
√−1
2 (uα − φ(uα)), where α runs

over the positive odd roots. It is clear that vα ∈ r. We want to prove that the vectors vα

form an orthogonal basis of r. We need two auxiliary computations:

[e, uα] =
√−1Xα + N−θ,αXα−θ , (5.11)

〈uα, uβ〉 = −(N−θ,α + N−θ,β)δθ−α,β . (5.12)

To prove (5.11) use (5.4):

[e, uα] = 1
2 [Xθ + X−θ +

√−1hθ , Xα +
√−1N−θ,αXα−θ ]

= 1
2 (
√−1N−θ,αNθ,α−θ Xα + N−θ,αXα−θ +

√−1Xα + N−θ,αXα−θ )

= √−1Xα + N−θ,αXα−θ .
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To prove (5.12) use (5.11):

〈uα, uβ〉 = (e|[uα, uβ ]) = ([e, uα]|uβ)

= (
√−1Xα + N−θ,αXα−θ |Xβ +

√−1N−θ,βXβ−θ ) =
= σα−θ N−θ,αδθ−α,β − σαN−θ,βδθ−α,β

= −(N−θ,α + N−θ,β)δθ−α,β .

Set

Mα,β = −(N−θ,α + N−θ,β).

Then, using (5.12)

〈vα, vβ〉
= 〈 1+

√−1
2 uα − 1−√−1

2 N−θ,αuθ−α, 1+
√−1
2 uβ − 1−√−1

2 N−θ,βuθ−β〉
=

√−1
2 〈uα, uβ〉 − 1

2N−θ,α〈uθ−α, uβ〉
− 1

2N−θ,β〈uα, uθ−β〉 −
√−1
2 N−θ,αN−θ,β〈uθ−α, uθ−β〉

=
√−1
2 Mα,βδθ−α,β − 1

2N−θ,αMθ−α,βδα,β − 1
2N−θ,βMα,θ−βδθ−α,θ−β

−
√−1
2 N−θ,αN−θ,βMθ−α,θ−βδα,θ−β.

Therefore by (5.4) and (5.10)

〈vα, vβ〉 = 2δα,β .

In particular, the restriction of 〈·, ·〉 to gac ∩ g−1/2 is positive definite. The final claim
follows immediately from (5.3), using that [e, g−1/2] = g1/2. ��

6. A General Theory of Invariant Hermitian Forms on Modules Over the Vertex
Algebra of Free Boson and the Fairlie Construction

Consider the infinite dimensional Heisenberg Lie algebraH = (C[τ, τ−1]⊗Ca)⊕CK
with K central and bracket

[τ n ⊗ a, τm ⊗ a] = δn,−mnK .

LetH0 = Ca +CK , and, given μ ∈ C, define μ∗ ∈ H∗
0 by μ∗(a) = μ, μ∗(K ) = 1.

Let M(μ) be the Verma module for the Lie algebra H with highest weight μ∗. Let vμ

be a highest weight vector, i.e. (τ n ⊗ a)vμ = 0 for n > 0, hvμ = μ∗(h)vμ for h ∈ H0.
It is well known that M(0) carries a simple vertex algebra structure, called the vertex
algebra of free boson, which we denote by V 1(Ca), and that M(μ) is a simple module
over the vertex algebra V 1(Ca). Moreover, V 1(Ca) is the universal enveloping vertex
algebra of the nonlinear Lie conformal algebra R = C[T ] ⊗ Ca with λ-bracket

[aλa] = λ.

We introduce conformal weight � on V 1(Ca) by letting �a = 1, and for v ∈ V 1(Ca)

we write the corresponding quantum field as Y (v, z) =∑ j∈Z v j z− j−�v .
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Fix t ∈ C and set

L(t) = 1

2
: aa : +tT a ∈ V 1(Ca). (6.1)

It is an energy-momentum element for all t . Set H(t) = L(t)0 = 1
2 : aa :0 −ta0. Since

a0 = 0 as operator on V 1(Ca), H(t) = 1
2 : aa :0. (Note that the conformal weights on

V 1(Ca) are the eigenvalues of H(t) = H(0)).
If b ∈ V 1(Ca), write bμ

n for bM(μ)
n . By the −1-st product identity

: aa :μ0= 2
∑

j∈N
aμ
− j a

μ
j + (aμ

0 )2.

In particular

: aa :μ0 vμ = μ2vμ. (6.2)

On the other hand, by the commutator formula,

1

2
[: aa :μ0 , aμ

j ] =
1

2

∑

r

(
1

r

)

(: aa :(r) a) j = (Ta)
μ
j + aμ

j = − jaμ
j . (6.3)

Recall that a basis of M(μ) is
{
(aμ

− j1
)i1 · · · (aμ

− jr
)ir .vμ | j1 > · · · > jr > 0

}
. (6.4)

Let M(μ)n be the eigenspace for the energy operator H(t) corresponding to the
eigenvalue n + 1

2μ2 − tμ. Since

1

2
: aa :μ0 +t (Ta)

μ
0 = 1

2
: aa :μ0 −taμ

0

and [aμ
0 , aμ

− j ] = 0 for all j , it follows from (6.2) and (6.3) that

M(μ)n = span{(aμ
− j1

)i1 · · · (aμ
− jr

)ir .vμ |
∑

s

is js = n}.

Thus

M(μ) = ⊕n∈Z+M(μ)n .

This shows that M(μ) is a positive energy V 1(Ca)-module, i.e. real parts of the eigen-
values of H(t) are bounded below. Moreover its minimal energy subspace is

M(μ)0 = Cvμ.

Lemma 6.1.

ezL(t)1 = ezL(0)1
∞∏

n=1

e−
2t
n znan . (6.5)
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Proof. Identify V 1(Ca) with the polynomial algebra in infinitely many variables using
(6.4) with μ = 0:

P = C[a−1, a−2, . . . , a−n, . . .].
Since L(t)11 = 0 and an1 = 0 if n > 0, both L(t)1 and an for n > 0 act as deriva-
tions of the algebra P under our identification. It follows that both sides of (6.5) are
automorphisms of P . It is therefore enough to check the equality only on the generators
a−n .

We need the following formulae:

[aλL(t)] = λa + tλ21, (6.6)

[an, L(t)1] = nan+1 + δn,−12t I, (6.7)

[an, a−m] = δn,mnI. (6.8)

Applying these formulae we find

e−
2t
n znan (a−m) = e

−2t zn ∂
∂a−n (a−m) = a−m − δn,m2t z

m I. (6.9)

It follows that

ezL(0)1
∞∏

n=1

e−
2t
n znan (a−m) = ezL(0)1(a−m − 2t zm1) = ezL(0)1a−m − 2t zm I. (6.10)

To conclude we only need to check that, if n ≥ 1, then

L(t)n1(a−m) = L(0)n1a−m − 2n!δn,mt I.

We prove this by induction on n. If n = 1 the formula reads

L(t)1(a−m) = L(0)1a−m − 2δ1,mt I.

Using (6.7) with t = 0 we see that the latter formula is equivalent to

L(t)1(a−m) = ma−m+1 − 2δ1,mt I,

which is just (6.7).
If n > 1 and m = 1, then

L(t)n1(a−1) =L(t)n−1
1 L(t)1(a−1) = L(t)n−1

1 (−2t) = 0 = L(0)n1(a−1).

If n > 1 and m > 1, then

L(t)n1(a−m) =L(t)n−1
1 L(t)1(a−m) = L(t)n−1

1 (ma−m+1)

=L(0)n−1
1 (ma−m+1) − 2(n − 1)!mδn−1,m−1t I )

=L(0)n1a−m − 2n!δn,mt I.

��
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Letφ be the conjugate linear involution of the vector spaceCa defined byφ(a) = −a.
Assume from now on that t ∈ √−1R. This assumption is necessary since, in order to
apply the results of [16], we need to assume φ(L(t)) = L(t). Set (cf. (2.7))

A(z, t) = ezL(t)1 z−2H(0)g, (6.11)

where g is defined in (2.8). Let πZ : V 1(Ca) → ZhuH(0)(V 1(Ca)) be the canonical
projection to the Zhu algebra (see e.g. [16, Section 2]). Let ω be the conjugate linear
anti-homomorphism of ZhuH(0)(V k+h∨(Cx)) defined by

ω(πZ (v)) = πZ (A(1, t)v)

It is proven in [16, Proposition 6.1] that ω is indeed well-defined.

Lemma 6.2.

ω(πZ (a))vμ = (μ − 2t)vμ (6.12)

Proof. By Lemma 6.1, since g(a) = a and L(0)1a = 0,

ω(πZ (a))vμ =(A(1, t)a)
μ
0 vμ = (eL(t)1a)

μ
0 vμ = (eL(0)1(a) − 2t1)

μ
0 vμ = aμ

0 vμ − 2tvμ

=(μ − 2t)vμ.

��
Recall from [16, Definition 6.4] that if V is a conformal vertex algebra and φ is a

conjugate linear involution of V , a Hermitian form H( . , . ) on a V -module M is called
φ-invariant if, for all v ∈ V , m1,m2 ∈ M

(m1,YM (a, z)m2) = (YM (A(z)a, z−1)m1,m2).

By abuse of terminology, we shall call H(·, ·) an L-invariant Hermitian form, where
L is the conformal vector of V . If μ ∈ C we denote by �(μ) and �(μ) the real and
imaginary part of μ, respectively.

Proposition 6.3. There is a non-zero L(t)-invariant Hermitian form on M(μ) if and
only if t = √−1�(μ).

Proof. Let (·, ·) be the unique Hermitian form on Cvμ such that (vμ, vμ) = 1. By
Proposition 6.7 of [16], there is a non-zero L(t)-invariant Hermitian form on M(μ)

if and only if (·, ·) is an ω-invariant Hermitian form on Cvμ. By Lemma 6.2, that is
equivalent to

μ = (vμ, a0vμ) = (vμ, πZ (a)vμ) = (ω(πZ (a))vμ, vμ) = μ − 2t .

Thus

−2t = 2
√−1�(μ),

hence the statement. ��
We denote by Hμ the unique L(

√−1�(μ))-invariant Hermitian form on M(μ) such
that Hμ(vμ, vμ) = 1.
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Lemma 6.4. If m,m′ ∈ M(μ), then

Hμ(m, aμ
n m

′) = Hμ(aμ
−nm,m′) + δn,02

√−1�(μ)Hμ(m,m′).

Proof. By invariance of the Hermitian form,

Hμ(m, anm
′) =Reszz

nHμ(m,Yμ(a, z)m′)
=Reszz

nHμ(Yμ(A(z)a, z−1)m,m′)
=Reszz

nHμ(Yμ(ezL(t)1 z−2L(t)0g(a), z−1)m,m′)
=Reszz

n−2Hμ(Yμ(ezL(0)1a − 2
√−1�(μ)z1, z−1)m,m′)

=Reszz
n−2Hμ(Yμ(a − 2

√−1�(μ)z1, z−1)m,m′).

The last two steps follow by (6.10) and the fact that L(0)1a = 0. As

Yμ(a, z−1) =
∑

r

aμ
r z

r+1, Yμ(1, z−1) =
∑

r

δr,0 I z
r ,

we get the result. ��
It is now easy to compute the invariant form in the basis (6.4):

Hμ

(

(aμ
− j1

)i1 · · · (aμ
− jr

)ir .vμ, (aμ

− j ′1
)i

′
1 · · · (aμ

− j ′
r ′
)
i ′
r ′ .vμ

)

= Hμ

(

(aμ

j ′
r ′
)
i ′
r ′ · · · (aμ

j ′1
)i

′
1(aμ

− j1
)i1 · · · (aμ

− jr
)ir .vμ, vμ

)

. (6.13)

It follows that the basis is orthogonal and
∥
∥
∥(a

μ
− j1

)i1 · · · (aμ
− jr

)ir .vμ

∥
∥
∥

μ
=
∏

s

is ! j iss

In particular the form is positive definite and its values on the chosen basis do not depend
on μ.

Let μ ∈ C and t ∈ √−1R. Let M(μ, t)∨ be the conjugate dual of M(μ) with action
given by, for b ∈ V 1(Ca), m ∈ M(μ), f ∈ M(μ, t)∨,

(Y M(μ,t)∨(b, z) f )(m) = f (Yμ(A(t, z)b, z−1)m),

where A(z, t) is defined by (2.7), (2.8).
Using the L(

√−1�(μ))-invariant form on M(μ) (see (6.13)), we can identify M(μ)

and M(μ, t)∨ (as vector spaces) by indentifying m with fm : m′ �→ Hμ(m′,m).
We now want to describe explicitly the action of V 1(Ca) under this identification.

We need the following result:

Lemma 6.5. If t ∈ √−1R, then

z2H(0)ez
nan z−2H(0) = ez

−nan (6.14)

etz
nan g = get (−z)nan (6.15)
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Proof. If b ∈ V 1(Ca) then,

e2zH(0)ez
nan e−2zH(0)b = z−2�b

∑

r

1

r ! z
2�b−2rnznrarnb

=
∑

r

1

r ! z
−rnarnb = ez

−nan b.

For the second formula note that

g(arnb) = (−1)�b−nrφ(arnb) = (−1)�b−nr (−1)r arnφ(b) = (−1)−nr (−1)r arng(b)

so, since t is purely imaginary,

etz
nan g(b) =

∑

r

1

r ! t
r znr arng(b) =

∑

r

1

r ! (−1)−nr znr g(tr arnb) = et (−z)nan b.

��
Proposition 6.6. If m ∈ M(μ) and fm ∈ M(μ, t)∨ is defined by fm(m′) = Hμ(m′,m),
then

Y M(μ,t)∨(b, z) fm = f
Yμ(
∏∞

n=1 e
2(−t+

√−1�(μ))
n (−z)−nan b,z)m

In particular the fields

Yμ,t (b, z) := Yμ

( ∞∏

n=1

e
2(−t+

√−1�(μ))
n (−z)−nan b, z

)

(6.16)

define a V 1(Ca)-module structure on M(μ).

Proof. By definition,

(Y M(μ,t)∨(b, z) fm)(m′) =Hμ(Yμ(A(t, z)b, z−1)m′,m)

=(Yμ(ezL(t)1 z−2L(t)0g(b), z−1)m′,m)

Using (6.5) we can write

ez(L(t))1 = ezL(0)1
∞∏

n=1

e−
2t
n znan = ezL(

√−1�(μ))1

∞∏

n=1

e−
2(t−√−1�(μ))

n znan

so, by Lemma 6.5,

(Y M(μ,t)∨(b, z) fm)(m′)

=Hμ(Yμ(ezL(
√−1�(μ))1

∞∏

n=1

e−
2(t−√−1�(μ))

n znan z−2L(t)0g(b), z−1)m′,m)

=Hμ(Yμ(ezL(
√−1�(μ))1 z−2L(t)0g

∞∏

n=1

e
2(−t+

√−1�(μ))
n (−z)−nan b, z−1)m′,m)
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Since the form Hμ is L(
√−1�(μ))-invariant, we find that

(Y M(μ,t)∨(b, z) fm)(m′) = Hμ(m′,Yμ(

∞∏

n=1

e
2(−t+

√−1�(μ))
n (−z)−nan b, z)m)

= f
Yμ(
∏∞

n=1 e
2(−t+

√−1�(μ))
n (−z)−nan b,z)m

(m′).

��
To simplify notationwrite a = (a−1, a−2, . . .). If I is an infinite sequence (i1, i2, . . .),

with i j ∈ Z+ almost all zero, then set aI = ∏∞
r=1 a

jr−r . We can regard b ∈ V 1(Ca) as a
polynomial b(a). More precisely, we write

b(a) =
∑

I

cIaI1, cI ∈ C.

We also set

ρ(z) = (z10, z210, z310, . . .) = (z I, z2 I, z3 I, . . .).

Lemma 6.7. Write Yμ,t (b, z) =∑r∈Z bμ,t
r z−r−�b . Then

bμ,t
r =

(
b(ashi f t )

)μ

r
, where ashi f t = a + 2(−t +

√−1�(μ))ρ(−1).

Proof. Since bμ,t
r = Reszzr+�b−1(Yμ,t (b, z)), we need to check that

Reszz
r+�b−1(Yμ,t (b, z)) = b(a + (−t +

√−1�(μ))ρ(−1))μr .

It is enough to check this for b = aI1. Using (6.9), we can write

∞∏

n=1

e
2(−t+

√−1�(μ))
n (−z)−nanaI1 = (a + 2(−t +

√−1�(μ))ρ(−z−1))I1.

It follows that

Yμ,t (b, z) = Yμ(b(a + 2(−t +
√−1�(μ))ρ(−z−1), z)

hence we need to check that

Reszz
r+�aI −1(Y ((a + 2(−t +

√−1�(μ))ρ(−z−1))I1 ⊗ v, z))

=
(
(ashi f t )I1 ⊗ v

)

r
.

Indeed, setting t0 = 2(−t+
√−1�(μ)) and letting q be the number of j such that i j �= 0,

Yμ((a + t0ρ(−z−1))I1, z))

=
∑

s

∑

j1≤i1,..., jq≤iq

⎛

⎝
q∏

p=1

(
i p
jp

)(
t0

(−z)p

)i p− jp
⎞

⎠ aJ1s z
−s−∑q

p=1 pjp

=
∑

s

∑

j1≤i1,..., jq≤iq

⎛

⎝
q∏

p=1

(−1)p(i p− jp)t
i p− jp
0

(
i p
jp

)
⎞

⎠ aJ1s z−s−�aI 1
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so

Reszz
r+�aI 1−1(Yμ(a + t0ρ(−z−1))I1, z))

=
∑

j1≤i1,..., jq≤iq

⎛

⎝
q∏

p=1

((−1)pt0)
i p− jp

(
i p
jp

)
⎞

⎠ aJ1r

=
(
(a + t0ρ(−1))I1

)

r
,

as wished. ��
In particular,

aμ,t
r = (a−11)μ,t

r = aμ
r − 2(−t +

√−1�(μ))δr,0 I (6.17)

so

aμ,t
0 = (μ − 2(−t +

√−1�(μ)))I = (μ + 2t)I.

Hence we have an isomorphism of V 1(Ca)-modules

M(μ, t)∨ ∼= M(μ + 2t). (6.18)

Let M[μ, t] denote the vector space M(μ) equipped with the V 1(Ca)-module struc-
ture given by b �→ Yμ,t (b, z) so that

M[μ, t] � M(μ, t)∨ � M(μ + 2t).

Letϒμ,t : M[μ, t] → M(μ+2t) denote such an isomorphism.By (6.17),ϒμ,t (vμ) ∈
Cvμ+2t . We can therefore normalize ϒμ,t so that vμ �→ vμ+2t . It follows from (6.17)
that, if j1 ≥ j2 ≥ · · · ≥ jr ,

ϒμ,t (a
μ
− j1

· · · aμ
− jr

vμ) = ϒμ,t (a
μ,t
− j1

· · · aμ,t
− jr

vμ) = aμ+2t
− j1

· · · aμ+2t
− jr

vμ+2t .

Note that, by (6.13),

Hμ+2t (ϒμ,t (m), ϒμ,t (m
′)) = Hμ(m,m′). (6.19)

Moreover

Yμ,t+s(b, z) = Yμ(

∞∏

n=1

e
2(−t−s+

√−1�(μ)
n (−z)−nan b, z)

= Yμ,t (

∞∏

n=1

e
−2s
n (−z)−nan b, z), (6.20)

and, if m ∈ M(μ) and m′ ∈ M(μ + 2s),

Hμ+2s(ϒμ,sY
μ,t (b, z)m,m′) = Hμ+2s(ϒμ,sY

μ,s+(t−s)(b, z)m,m′)

= Hμ+2s(ϒμ,sY
μ,s(

∞∏

n=1

e
−2(t−s)

n (−z)−nan b, z)m,m′)

= Hμ+2s(Y
μ+2s(

∞∏

n=1

e
−2(t−s)

n (−z)−nan b, z)ϒμ,s(m),m′)

= Hμ+2s(Y
μ+2s,t+s−√−1�(μ)(b, z)ϒμ,s(m),m′).
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It follows that

ϒμ,sY
μ,t (b, z) = Yμ+2s,t+s−√−1�(μ)(b, z)ϒμ,s (6.21)

In particular, if μ is real,

ϒμ,sY
μ,t (b, z) = Yμ+2s,t+s(b, z)ϒμ,s (6.22)

Lemma 6.8. If m,m′ ∈ M(μ) and b ∈ V 1(Ca), then

Hμ(m,Yμ,t (b, z)m′) = Hμ(Yμ,s(A(−√−1�(μ) + t + s, z)b, z−1)m,m′). (6.23)

In particular, if b is quasiprimary for L(−√−1�(μ) + t + s), then

Hμ(m, bμ,t
n m′) = Hμ(g(b)μ,s

−n m,m′). (6.24)

Proof. We first prove that

Hμ(m,Yμ,t (b, z)m′) = Hμ(Yμ,t (A(−√−1�(μ) + 2t, z)b, z−1)m,m′). (6.25)

Indeed,

Hμ(m,Yμ,t (b, z)m′) = Hμ+2t (ϒμ,t (m), ϒμ,t (Y
μ,t (b, z)m′))

= Hμ+2t (ϒμ,t (m),Yμ+2t (b, z)ϒμ,t (m
′))

= Hμ+2t (Y
μ+2t (A(−√−1�(μ) + 2t, z)b, z−1)ϒμ,t (m), ϒμ,t (m

′))
= Hμ+2t (ϒμ,t (Y

μ,t (A(−√−1�(μ) + 2t, z)b, z−1)m), ϒμ,t (m
′)),

so (6.25) follows.
To prove (6.23) write

Hμ(m,Yμ,t (b, z)m′) = Hμ(m,Yμ,s(

∞∏

n=1

e
−2(t−s)

n (−z)−nan b, z)m′).

By (6.25), setting s0 = −√−1�(μ) + 2s,

Hμ(m,Yμ,t (b, z)m′) = Hμ(Yμ,s(A(s0, z)
∞∏

n=1

e
−2(t−s)

n (−z)−nan b, z−1)m,m′)

= Hμ(Yμ,s(ezL(s0)1 z−2L(s0)0g
∞∏

n=1

e
−2(t−s)

n (−z)−nan b, z−1)m,m′)

= Hμ(Yμ,s(ezL(s0)1
∞∏

n=1

e
−2(t−s)

n znan z−2L(s0)0g(b), z−1)m,m′).

Since, if p ∈ √−1R,

ez(L(p))1 = ezL(0)1
∞∏

n=1

e−
2p
n znan ,
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we find that

Hμ(m,Yμ,s(b, z)m′)

= Hμ(Yμ,s(ezL(0)1
∞∏

n=1

e−
2(−√−1�(μ)+s+t)

n znan z−2L(0)0g(b), z−1)m,m′)

= Hμ(Yμ,s(ezL(−√−1�(μ)+s+t)1 z−2L(0)0g(b), z−1)m,m′)

= Hμ(Yμ,s(ezL(0)1
∞∏

n=1

e−
2(−√−1�(μ)+s+t)

n znan z−2L(0)0g(b), z−1)m,m′)

= Hμ(Yμ,s(A(−√−1�(μ) + s + t, z)b, z−1)m,m′).

��
Example 6.9 (The Fairlie construction). Since L(s) = 1

2a
2−11+sa−21, by (6.17) we have

L(s)μ,t
n = 1

2 (a−1 + 2t − 2
√−1�(μ))21n + s(a−2 − 2t + 2

√−1�(μ))1n

= 1
2a

2−11n + 2(t −√−1�(μ))a−11n + 2(t −√−1�(μ))21n

+ sa−21n − 2s(t −√−1�(μ))1n

= 1
2 : aa :n +2(t −√−1�(μ))an + s(Ta)n

+ 2(t −√−1�(μ))(t −√−1�(μ) − s)1n .

In other words

L(s)μ,t
n = 1

2 : aa :μn +s(Ta)μn + 2(t −√−1�(μ))aμ
n + 2(t −√−1�(μ))

(t −√−1�(μ) − s)1μ
n (6.26)

In particular, if μ ∈ R, we have

L(s)μ,t
n = 1

2 : aa :μn +s(Ta)μn + 2taμ
n + 2(t2 − st)1μ

n , (6.27)

and, setting s = 2t , (6.27) becomes

L(s)μ,s/2
n = 1

2 : aa :μn +s(Ta)μn + saμ
n − 1

2 s
21μ

n = L(s)μn + saμ
n − 1

2 s
21μ

n . (6.28)

By the −1-st product identity,

: aa :μn=
{∑

j∈Z a
μ
− j a

μ
j+n if n �= 0,

2
∑

j∈N aμ
− j a

μ
j + (aμ

0 )2 if n = 0.

Moreover, (Ta)
μ
n = −(n + 1)aμ

n , hence, substituting in (6.28), we obtain

L(s)μ,s/2
n = 1

2

∑

j∈Z
aμ
− j a

μ
j+n − snaμ

n if n �= 0,

while

L(s)μ,s/2
0 =

∑

j∈N
aμ
− j a

μ
j +

μ2 − s2

2
I.
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Since b �→ Yμ,s/2(b, z) gives a V 1(Ca)-module structure to M(μ) and

[L(s)λL(s)] = (T + 2λ)L(s) +
λ3

12
(1− 12s2),

by the Borcherds commutator formula,

[L(s)μ,s/2
n , L(s)μ,s/2

m ] = (n − m)L(s)μ,s/2
n+m +

n3 − n

12
(1− 12s2)δn,−m .

Finally, since L(s) is quasiprimary for L(s) and g(L(s)) = L(s), by (6.24) we have

Hμ(m, L(s)μ,s/2
n m′) = Hμ(L(s)μ,s/2

−n m,m′).

We now extend the previous analysis of invariant Hermitian forms on bosons to the case
of the vertex algebra V 1(Ca) ⊗ V where V is a conformal vertex algebra.

Let L̂ be the conformal vector of V . Set

L̂(s) = L(s) + L̂. (6.29)

If M is a V -module, then M(μ)⊗M is a V 1(Ca)⊗V -module and, if M is equipped
with a L̂-invariant form ( . , . ), then Hμ( . , . )⊗ ( . , . ) is a L̂(

√−1�(μ))-invariant form
on M(μ) ⊗ M that we keep denoting by Hμ( . , . ).

The arguments developed in this section for V 1(Ca) can be carried out in the same
way in the more general setting of the vertex algebra

V 1(Ca) ⊗ V, (6.30)

where V is any conformal vertex algebra. In particular, we have

Proposition 6.10. If b ∈ V 1(Ca) ⊗ V and M is a V -module, then the fields

Yμ,t (b, z) = Yμ(

∞∏

n=1

e
2(−t+

√−1�(μ))
n (−z)−nan b, z)

define a V 1(Ca) ⊗ V -module structure on M(μ) ⊗ M.

As before, we can regard b ∈ V 1(Ca) ⊗ V as a polynomial b(a) with values in V .
More precisely, we write

b(a) =
∑

I

aI ⊗ cI , cI ∈ V .

The following is the generalization of Lemma 6.7. The proof is the same.

Lemma 6.11. Write Yμ,t (b, z) =∑r∈−�b+Z bμ,t
r z−r−�b . Then

bμ,t
r = b(a + 2(−t +

√−1�(μ))ρ(−1))μr .
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7. Minimal W -Algebras

7.1. λ-brackets and conjugate linear involutions. Let, as before, g be a basic classical
Lie superalgebra, and x ∈ g be an element, for which ad x is diagonalizable with
eigenvalues in 1

2Z, the ad x-gradation of g satisfies (1.2) with some f ∈ g−1 and is
compatible with the parity of g. Then for some e ∈ g1, {e, x, f } is an sl2-triple as in
Proposition 3.2, i.e. (3.1) holds with g� the centralizer of f in g. Recall that the invariant
bilinear form (.|.) on g is normalized by the condition (x |x) = 1

2 , and we have the
orthogonal direct sum of ideals

g0 = Cx ⊕ g�. (7.1)

Choose a Cartan subalgebra h� of g�, so that, by (7.1), h = Cx⊕h� is a Cartan subalgebra
of g0 (and of g).

Let

g� =
s⊕

i=0

g
�
i (7.2)

be the decomposition of g� into the direct sum of ideals, where g�
0 is the center and the

g
�
i are simple for i > 0. Let h∨ be the dual Coxeter number of g, and denote by h̄∨i half

of the eigenvalue of the Casimir element of g�
i with respect to (.|.)|g�

i×g
�
i
, when acting on

g
�
i . Note that h̄

∨
0 = 0.

In [18] the authors introduced (as a special case of a more general construction) the
universal minimal W -algebra Wk

min(g), whose simple quotient is Wmin
k (g), attached to

the grading (5.6). This is a vertex algebra strongly and freely generated by elements L ,
J {v} where v runs over a basis of g�, G{u} where u runs over a basis of g−1/2, with the
following λ-brackets ( [20, Theorem 5.1]): L is a Virasoro element (conformal vector)
with central charge c(k) given by (1.4), J {u} are primary of conformal weight 1, G{v}
are primary of conformal weight 3

2 , and

[J {u}λG{v}] = G{[u,v]} for u ∈ g�, v ∈ g−1/2, (7.3)

[J {u}λ J {v}] = J {[u,v]} + λβk(u|v) for u, v ∈ g�, (7.4)

where

βk(u, v) = δi, j (k +
h∨−h̄∨i

2 )(u|v), u ∈ g
�
i , v ∈ g

�
j , i, j ≥ 0. (7.5)

Furthermore, the most explicit formula for the λ-bracket between the G{u} is given in
[1, (1.1)] and in [20, Theorem 5.1 (e)]. We will need both formulas:

[G{u}
λG

{v}] = − 2(k + h∨)〈u, v〉L + 〈u, v〉
dim g�
∑

α=1

: J {uα} J {uα} : +

dim g1/2∑

γ=1

: J {[u,wγ ]�} J {[wγ ,v]�} : +2(k + 1)∂ J {[[e,u],v]�}

+ 4λ
∑

i

p(k)

ki
J {[[e,u],v]

�
i } + 2λ2〈u, v〉p(k)1, (7.6)
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(G{u}
λG

{v}) =− 2(k + h∨)〈u, v〉L + 〈u, v〉
dim g�
∑

α=1

: J {uα} J {uα} : +

2
∑

α,β

〈[uα, u], [v, uβ ]〉 : J {uα} J {uβ } : +2(k + 1)(∂ + 2λ)J {[[e,u],v]�}

+ 2λ
∑

α,β

〈[uα, u], [v, uβ ]〉J {[uα,uβ ]} + 2λ2〈u, v〉p(k)1, (7.7)

where {uα} and {uα} (resp. {wγ }, {wγ }) are dual bases of g� (resp. g1/2) with respect to

(.|.) (resp. with respect to 〈·, ·〉ne), a �→ a�
i (resp. a �→ a�) for a ∈ g0 is the orthogonal

projection to g�
i (resp g

�), p(k) is the monic quadratic polynomial proportional to (7.28),
introduced in [1, Table 4], and thoroughly investigated in [15], and ki = k + 1

2 (h∨− h̄∨i ),
i = 1, . . . , s (see Table 2 below for the values of h̄∨i ).

The following proposition is a special case of [16, Lemma 7.3], in view of Lemma 3.1.

Proposition 7.1. Letφ be a conjugate linear involution of g such thatφ( f ) = f, φ(x) =
x, φ(e) = e. Then the map

φ(J {u}) = J {φ(u)}, φ(G{v}) = G{φ(v)}, φ(L) = L , u ∈ g�, v ∈ g−1/2 (7.8)

extends to a conjugate linear involution of the vertex algebra Wk
min(g).

The following result is a sort of converse to Proposition 7.1.

Proposition 7.2. Assume that k ∈ R is non-collapsing. Let ψ be a conjugate linear
involution of Wk

min(g). Then there exists a conjugate linear involution φ of g satisfying
(1.1) such that ψ is the conjugate linear involution induced by φ.

Proof. If a, b ∈ g�, define φ(a) by

ψ(J {a}) = J {φ(a)}.

Then

ψ([J {a}λ J {b}]) = ψ(J {[a,b]}) + λβk(a, b) = J {φ([a,b])} + λβk(a, b) (7.9)

[J {φ(a)}
λ J

{φ(b)}] = J {[φ(a),φ(b)]} + λβk(φ(a), φ(b)) (7.10)

Since ψ is a vertex algebra conjugate linear automorphism, (7.9) equals (7.10), so that
φ is a conjugate linear involution of g�, and we have

βk(a, b) = βk(φ(a), φ(b)). (7.11)

Since k is not collapsing, relations (7.22), (7.28) and (7.11) imply that

(a|b) = (φ(a)|φ(b)) for a, b ∈ g�. (7.12)

We nowprove that there is a unique extension ofφ to a conjugate linear automorphism
of g fixing e, x , and f . Note that φ(g−1/2) ⊂ g−1/2 and that g1/2 = [e, g−1/2]. In
particular, setting φ(x) = x, φ( f ) = f, φ(e) = e, φ(u) = [e, φ(v)] for u ∈ g1/2, u =
[e, v], v ∈ g−1/2, we extend φ to a conjugate linear bijection g → g. In particular, φ is
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unique. It remains to prove that it is a conjugate linear automorphism. Note first that, by
(7.1), equation (7.12) holds for a, b ∈ g0. Consider elements

g = α e + u + a + v + β f + γ x, g′ = α′ e + u′ + a′ + v′ + β ′ f + γ ′ x,

where α, α′, β, β ′, γ, γ ′ ∈ C, u, u′ ∈ g1/2, v, v′ ∈ g−1/2, a, a′ ∈ g�. Then

φ([g, g′]) =
φ([e, v′] + αβ ′x − αγ ′e + [u, u′] + [u, a′] + [u, v′] + β ′[u, f ]
− 1

2γ ′u + [a, u′] + [a, a′] + [a, v′] + α′[v, e] + [v, u′] + [v, a′] + [v, v′]
+ 1

2γ ′v − βα′x + β[ f, u′] + βγ ′ f + γα′e + 1
2γ u′ − 1

2γ v′ − β ′γ f ), (7.13)

[φ(g), φ(g′)] =
ᾱ[e, φ(v′)] + ᾱβ̄ ′x − ᾱγ̄ ′e + [φ(u), φ(u′)] + [φ(u), φ(a′)] + [φ(u), φ(v′)] + β̄ ′[φ(v), f ]
− 1

2 γ̄ ′φ(u) + [φ(a), φ(u′)] + [φ(a), φ(a′)] + [φ(a), φ(v′)] + ᾱ′[φ(v), e] + [φ(v), φ(u′)]
+ [φ(v), φ(a′)] + [φ(v), φ(v′)] + 1

2 γ̄ ′φ(v) − β̄ᾱ′x + β[ f, φ(u′)] + βγ ′ f + γ̄ ᾱe

+ 1
2 γ̄ φ(u′) − 1

2 γ̄ φ(v′) − β̄ ′γ̄ f ). (7.14)

Hence (7.13) equals (7.14), provided the following equalities hold

φ([u, u′]) = [φ(u), φ(u′)], (7.15)

φ([u, a′]) = [φ(u), φ(a′)], (7.16)

φ([u, v′]) = [φ(u), φ(v′)], (7.17)

φ([v, v′]) = [φ(v), φ(v′)], (7.18)

φ([v, a′]) = [φ(v), φ(a′)], (7.19)

φ([u, f ]) = [φ(u), f ]. (7.20)

Relation (7.3) implies at once (7.19). To prove (7.18) note that [v, v′] = 〈v, v′〉 f , so
it is enough to prove that 〈φ(v), φ(v′)〉 = 〈v, v′〉. By (7.7),

G{φ(v)}
3/2G

{φ(v′)} = 4p(k)〈φ(v), φ(v′)〉1 = φ(4p(k)〈v, v′〉1) = 4p(k)〈v, v′〉1.

Since p(k) �= 0 (k is not collapsing) and k is real, we have the claim.
Now we prove (7.20). Here and in the following we write u = [e, v], v ∈ g−1/2.

Then

φ([u, f ]) = φ([[e, v], f ]) = −φ([x, v])
= 1

2φ(v) = −[x, φ(v)] = [[e, φ(v)], f ] = [φ(u), f ].
Next we prove (7.17). We have to prove that

φ([[e, v], v′]) = [[e, φ(v)], φ(v′)].
By (7.6)

G{φ(v)}
1/2G

{φ(v′)} =
∑

i

p(k)
ki

J {[[e,φ(v)],φ(v′)]�i }.
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On the other hand

ψ(G{v}
1/2G

{v′}) =
∑

i

p(k)
ki

J {φ([[e,v],v′]�i )}.

Since φ is an automorphism of g� there is a permutation i �→ i ′ such that φ(g
�
i ) = g

�

i ′ . It

follows that φ([[e, v], v′]�i ) = φ([[e, v], v′])�i ′ hence [[e, φ(v)], φ(v′)]�i ′
= φ([[e, v], v′]�i ) for all i , and also

[[e, φ(v)], φ(v′)]� =
∑

i ′
[[e, φ(v)], φ(v′)]�i ′ =

∑

i

φ([[e, v], v′]�i )

=
∑

i ′
φ([[e, v], v′])�i ′ = φ([[e, v], v′])�.

To conclude we have to check the x-component:

(x |[[e, φ(v)], φ(v′)]) = ([x, [e, φ(v)]]|φ(v′)) = 1
2 ([e, φ(v)]|φ(v′))

= 1
2 〈φ(v), φ(v′)〉 = 1

2 〈v, v′〉.
Since (1.1) holds on g0, we have

(x |φ([[e, v], v′]) = (φ(x)|[[e, v], v′]) = (x |[[e, v], v′]) = 1
2 〈v, v′〉.

Next, we prove (7.16). We have

φ([[e, v], a′]) = φ([e, [v, a′]]) = [e, φ([v, a′])]=[e, [φ(v), φ(a′)]]
= [[e, φ(v)], φ(a′)] = [φ(u), φ(a′)].

Next, we prove (7.15). Consider u = [e, v], u′ = [e, v′], v, v′ ∈ g−1/2.

φ([u, u′]) = φ([[e, v], [e, v′]]) = φ([e, [[e, v], v′]]) = [e, φ([[e, v], v′])].
By (7.17), we obtain

φ([u, u′]) = [e, [φ([e, v]), φ(v′)])] = [e, [φ(u), φ(v′)]] = [φ(u), φ(u′)].

It remains to check that

(φ(a)|φ(b)) = (a|b)
for a, b ∈ g. We already observed that this relation holds for a, b ∈ g0 and it is obvious
that (φ(e)|φ( f )) = (e| f ). We now compute for u ∈ g1/2, v

′ ∈ g−1/2,

(φ(u)|φ(v′)) = ([e, φ(v)]|φ(v′)) = 〈φ(v), φ(v′)〉 = 〈v, v′〉 = (u|v′).
��
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By Proposition 3.2 there is a conjugate linear involution φ on g such that φ(x) =
x, φ( f ) = f and (g�)φ is a compact real form of g�, hence, by Proposition 7.1,φ induces
a conjugate linear involution of the vertex algebraWk

min(g), and descends to a conjugate
linear involution of its unique simple quotient Wmin

k (g), which we again denote by φ.
By [16, Proposition 7.4 (b)], Wk

min(g) admits a unique φ-invariant Hermitian form
H(·, ·) such that H(1, 1) = 1. Recall that if k + h∨ �= 0 then the kernel of H(·, ·)
is the unique maximal ideal of Wk

min(g), hence H(·, ·) descends to a non-degenerate
φ-invariant Hermitian form on Wmin

k (g), which we again denote by H(·, ·).
We need to fix notation for affine vertex algebras. Let a be aLie superalgebra equipped

with a nondegenerate invariant supersymmetric bilinear form B. The universal affine
vertex algebra V B(a) is the universal enveloping vertex algebra of the Lie conformal
superalgebra R = (C[T ] ⊗ a) ⊕ C with λ-bracket given by

[aλb] = [a, b] + λB(a, b), a, b ∈ a.

In the following, we shall say that a vertex algebra V is an affine vertex algebra if it is a
quotient of some V B(a). If a is simple Lie algebra, we denote by (.|.)a the normalized
invariant bilinear form on a, defined by the condition (α|α)a = 2 for a long root α. Then
B = k(.|.)a, and we simply write V k(a). If k �= −h∨, then V k(a) has a unique simple
quotient, which will be denoted by Vk(a).

Let ψ be a conjugate linear involution of a such that (ψ(x)|ψ(y)) = (x |y). By [16,
§5.3] there exists a unique ψ-invariant Hermitian form Ha on V k(a). The kernel of Ha

is the maximal ideal of V k(a), hence Ha descends to Vk(a).

7.2. Some numerical information. Recall the decomposition (7.2) of the Lie algebra g�,
and that we assume that g� is not abelian, i.e. s ≥ 1 in (7.2). Let θi be the highest root
of the simple component g�

i for i > 0. Set

Mi (k) = 2

ui

(

k +
h∨ − h̄∨i

2

)

, i ≥ 0, (7.21)

where

ui =
{
2 if i = 0,
(θi |θi ) if i > 0.

Let (.|.)�i denote the invariant bilinear form on g�
i , normalized by the condition (θi |θi )�i =

2 for i > 0, and let (.|.)�0 = (.|.)|g�
0×g

�
0
. Note that, for i > 0, (a|b)�i = δi, j

(θi |θi )
2 (a|b),

hence, formula (7.5) can be written as

βk(a, b) = δi, j Mi (k)
(θi |θi )

2
(a|b) (7.22)

= δi, j Mi (k)(a|b)�i for a ∈ g
�
i , b ∈ g

�
j , i, j ≥ 0. (7.23)

Inotherwords, the vertex subalgebra ofWk
min generatedby J

{a}, a ∈ g�, is
⊗

i≥0
V Mi (k)(g

�
i ).
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Table 2. Numerical information

g g� ui h∨ h̄∨i Mi (k) χi

sl(2|m),m > 2 C⊕ slm 2,−2 2− m 0,−m k − m−2
2 ,−k − 1 1− m/2,−1

psl(2|2) sl2 −2 0 −2 −k − 1 −1
osp(4|m),m > 2 sl2 ⊕ spm 2,−4 2− m 2,−m − 2 k − m

2 ,− 1
2 k − 1 −m/2,−1

spo(2|3) sl2 −1/2 1/2 −1/2 −4k − 2 −2
spo(2|m),m > 4 som −1 2− m/2 1− m/2 −2k − 1 −1
D(2, 1; a) sl2 ⊕ sl2 − 2

1+a ,− 2a
1+a 0 − 2

1+a ,− 2a
1+a −(1 + a)k − 1,− 1+a

a k − 1 −1,−1
F(4) so7 −4/3 −2 −10/3 − 3

2 k − 1 −1
G(3) G2 −2/3 −3/2 −3 − 4

3 k − 1 −1

Closely related to the vertex algebra Wk
min(g) is the universal affine vertex algebra

V αk (g0) (see [20, (5.16)]), where

αk(a, b) = ((k + h∨)(a|b) − 1
2κg0(a, b)) , (7.24)

and where κg0 denotes the Killing form of g0. Note that

αk(a, b) = δi, j (k + h∨ − h̄∨i )(a|b) if a ∈ g
�
i , b ∈ g

�
j , i, j ≥ 0.

We have another formula for the cocycle αk, closely related to (7.23):

αk(a, b) = δi, j
2

(θi |θi )
(
k + h∨ − h̄∨i

)
(a|b)�i

= δi, j (Mi (k) + χi )(a|b)�i for a ∈ g
�
i , b ∈ g

�
j , i, j ≥ 0, (7.25)

where

χi = h∨ − h̄∨i
ui

, i ≥ 0. (7.26)

The relevant data for computing the Mi (k) and χi are collected in Table 2, where their
explicit values are also displayed. Note that M0(k) = k + 1

2h
∨.

As in the Introduction, denote by ξ ∈ (h�)∗ a highest weight of the g�-module g−1/2.

Lemma 7.3. For i ≥ 1 we have

χi = −ξ(θ∨i ), (7.27)

with the exception of χ1 for g = osp(4|m).

Proof. The weights ξ are restrictions to h� of the maximal odd roots of g; they are listed
in Table 3, together with the maximal roots θi . Relation (7.27) is then checked directly
using the data in Tables 1, 2, 3. ��

Recall from [1] that a level k is collapsing forWmin
k (g) ifWmin

k (g) is a subalgebra of
the simple affine vertex algebra Vβk (g

�).
We summarize in the following result the content of Theorem 3.3 and Proposition

3.4 of [1] relevant to our setting. We say that an ideal in g� is a component of g� if it is
simple or 1-dimensional.
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Table 3. Highest odd roots and highest roots of g�

g Highest odd roots θi
sl(2|m),m > 2 ε1 − δm , δ1 − ε2 δ1 − δm
psl(2|2) ε1 − δ2, δ1 − ε2 δ1 − δ2
osp(4|m),m > 2 ε1 + δ1 ε1 − ε2, 2δ1
spo(2|3) δ1 + ε1 ε1
spo(2|m),m > 4 δ1 + ε1 ε1 + ε2
D(2, 1; a) ε1 + ε2 + ε3 2ε2, 2ε3
F(4) 1

2 (δ1 + ε1 + ε2 + ε3) ε1 + ε2
G(3) δ1 + ε1 + ε2 ε1 + 2ε2

Theorem 7.4. Let g be a basic Lie superalgebra from Table 2. Assume k �= −h∨. Let
p(k) be the monic quadratic polynomial in k, proportional to

{
M1(k)M2(k) if g� has two components,

M1(k)(k +
h̄∨1
2 + 1) otherwise.

(7.28)

Then

(1) k is collapsing if and only if p(k) = 0.
(2) If g� is simple then

(a) Wmin
k (g) = C if and only if M1(k) = 0;

(b) if k = − h̄∨1
2 − 1, then Wmin

k (g) ∼= VM1(k)(g
�).

(3) If g = D(2, 1; a) and k is collapsing, then Wmin
k (g) = VMj (k)(g

�
j ), with j �= i if

Mi (k) = 0.

Remark 7.5. If Mi (k) ∈ Z+ for all i ≥ 1, g �= osp(4|m) and Mi (k) < −χi for some
i ≥ 1, then k is a collapsing level (or critical). This is clear by looking at Table 2.

8. Necessary Conditions for Unitarity of Modules Over Wk
min(g)

We assume that g is from the list (1.3); in particular, g� is a reductive Lie algebra. We
parametrize the highest weight modules forWk

min(g) following Sect. 7 of [20]. Let h
� be

a Cartan subalgebra of g�, and choose a triangular decomposition g� = n
�
−⊕h�⊕n

�
+. For

ν ∈ (h�)∗ and l0 ∈ C, let LW (ν, 
0) (resp. MW (ν, 
0) ) denote the irreducible highest
weight (resp. Verma) Wk

min(g)-module with highest weight (ν, 
0) and highest weight
vector vν,
0 . This means that one has

J {h}0 vν,
0 = ν(h)vν,
0 for h ∈ h�, L0vν,
0 = l0vν,
0 ,

J {u}n vν,
0 = G{v}
n vν,
0 = Lnvν,
0 = 0 for n > 0, u ∈ g�, v ∈ g−1/2,

J {u}0 vν,
0 = 0 for u ∈ n
�
+.

Let φ is an almost compact conjugate linear involution of g (see Definition 1.1); in
particular, the fixed points set g�

R
of φ|g� is a compact Lie algebra (the adjoint group is

compact). Set h�

R
= g

�

R
∩ h�. Recall that ν ∈ (h

�

R
)∗ is said to be purely imaginary if

ν(h
�

R
) ⊂ √−1R. It is well-known that if α is a root of g� and ν is purely imaginary then

ν(α) ∈ R.
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Lemma 8.1. Assume that l0 ∈ Rand that ν is purely imaginary. Then LW (ν, 
0)admits a
unique φ-invariant nondegenerate Hermitian form H( . , . ) such that
H(vν,
0 , vν,
0) = 1.

Proof. It is enough to show that the Verma module MW (ν, 
0) admits a φ-invariant
Hermitian form H such that H(vν,
0 , vν,
0) = 1. Fix a basis {vi | i ∈ I } of g−1/2 and a

basis {ui | i ∈ J } of n�
−. Set A{i} = J {ui } if i ∈ J , A{i} = G{vi } if i ∈ I , and A{0} = L .

Then

B =
{(

A{1}
−m1

)b1 · · ·
(
A{s}
−ms

)bs
vν,
0

}

where bi ∈ Z+ , bi ≤ 1 if i ∈ I ,mi > 0 ormi = 0 when i ∈ J , is a basis of MW (ν, 
0).
Define the conjugate-linear map F : M → C by setting F(vν,
0) = 1 and F(v) = 0

if v ∈ B, v �= vν,
0 .
If v ∈ MW (ν, 
0), m > 0, and u ∈ g�, then

(J {u}m F)(v) = −F(J {φ(u)}
−m v) = 0.

Similarly we see that, if u ∈ g−1/2, then

(G{u}
m F)(v) = (LmF)(v) = 0.

On the other hand, if u ∈ n0+, then, since φ(u) ∈ n0−,

(J {u}0 F)(v) = −F(J {φ(u)}
0 v) = 0.

If h ∈ h
�

R
, then, since ν(h) is purely imaginary,

(J {h}0 F)(vν,
0) = −F(J {φ(h)}
0 vν,
0) = −F(J {h}0 vν,
0) = ν(h)F(vν,
0),

and, if v ∈ B, v �= vν,
0 , then

(J {h}0 F)(v) = −F(J {φ(h)}
0 v) = −F(J {h}0 v) = 0.

It follows that J {h}0 F = ν(h)F for all h ∈ h�. Finally, since l0 ∈ R,

(L0F)(vν,
0) = F(L0vν,
0) = l0F(vν,
0),

and, if v ∈ B, v �= vν,
0 , then

(L0F)(v) = F(L0v) = 0.

so L0F = l0F . It follows that there is a Wk
min(g)-module map β : MW (ν, 
0) →

MW (ν, 
0)
∨ mapping vν,
0 to F . Define a Hermitian form on MW (ν, 
0) by setting

H(m,m′) = β(m′)(m).

Let us check that this form is φ-invariant: write Y ν,
0 for the field Y MW (ν,
0) and Y̌ ν,
0

for the field Y MW (ν,
0)
∨
. Then

H(m,Y ν,
0(u, z)m′) = β(Y ν,
0(u, z)m′)(m) = Y̌ ν,
0(u, z)β(m′)(m)
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= β(m′)(Y ν,
0(A(z)u, z−1)m),

so

H(m,Y ν,
0(u, z)m′) = H(Y ν,
0(A(z)u, z−1)m,m′).

��
Definition 8.2. The Wmin

k (g)-module LW (ν, 
0) is called unitary if the Hermitian form
H(·, ·) is positive definite. The vertex algebra Wmin

k (g) is called unitary if its adjoint
module is unitary.

As usual, we denote ‖u‖ = H(u, u), u ∈ LW (ν, 
0). In order to obtain necessary
conditions for unitarity of LW (ν, 
0) we compute ||G{v}

−1/2vν,
0 ||.
Lemma 8.3. Let, as before, ξ be a highest weight of the g�-module g−1/2, and fix a
highest weight vector v ∈ g−1/2 . Then

‖G{v}
−1/2vν,
0‖2 =(−2(k + h∨)l0 + (ν|ν + 2ρ�) − 2(k + 1)(ξ |ν) + 2(ξ |ν)2)〈φ(v), v〉.

(8.1)

Proof. To prove (8.1) we observe that, since g(G{v}) = G{φ(v)} and G{v} is primary,

H(G{v}
−1/2vν,
0 ,G

{v}
−1/2vν,
0) = H(G{φ(v)}

1/2 G{v}
−1/2vν,
0 , vν,
0)

= H([G{φ(v)}
1/2 ,G{v}

−1/2]vν,
0 , vν,
0).

Using Borcherds’ commutator formula

[G{φ(v)}
1/2 ,G{v}

−1/2] =
∑

j

(
1

j

)

(G{φ(v)}
( j)G

{v})0,

and formula (7.7) with u = φ(v) we obtain

[G{φ(v)}
1/2 ,G{v}

−1/2] = −2(k + h∨)〈φ(v), v〉L0 + 〈φ(v), v〉
dim g�
∑

α=1

: J {uα} J {uα} :0 +

2
∑

α,β

〈[uα, φ(v)], [v, uβ ]〉 : J {uα} J {uβ } :0 +2(k + 1)J {[[eθ ,φ(v)],v]�}
0

+ 2
∑

α,β

〈[uα, φ(v)], [v, uβ ]〉J {[uα,uβ ]}
0 . (8.2)

By the −1-st product identity,

: J {uα} J {uβ } :0=
∑

j∈Z+

(J {u
α}

− j−1 J
{uβ }
j+1 + J

{uβ }
− j J {u

α}
j ),

hence

: J {uα} J {uβ } :0 vν,
0 = J
{uβ }
0 J {u

α}
0 vν,
0 . (8.3)
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We choose the basis {uα} so that {uα} = {uγ | uγ ∈ g
�
γ } ∪ {ui | 1 ≤ i ≤ rank g�} with

{ui } a basis of h�. Then uγ ∈ g
�
−γ . It follows that

H(J
{uγ }
0 J {u

γ ′ }
0 vν,
0 , vν,
0) �= 0 ⇒ γ = γ ′. (8.4)

Since

[[eθ , φ(v)], v]� =
∑

γ∈��

([[eθ , φ(v)], v]|uγ )uγ +
∑

i

([[eθ , φ(v)], v]|ui )ui ,

we see that

H(J {[[eθ ,φ(v)],v]�}
0 vν,
0 , vν,
0)

=
∑

i

([[eθ , φ(v)], v]|ui )ν(ui ) =
∑

i

(eθ |[φ(v), [v, ui ]])ν(ui ). (8.5)

We assume that v ∈ gξ . Then (8.5) yields

H(J {[[eθ ,φ(v)],v]�}
0 vν,
0 , vν,
0) = −

∑

i

(eθ |[φ(v), v])ξ(ui )ν(ui ) = −〈φ(v), v〉(ξ |ν).

(8.6)

From (8.4) we see that (J
{[uγ ′ ,uγ ]}
0 vν,
0 , vν,
0) = 0 unless γ ′ = γ . Clearly J

{[ui ,u j ]}
0 = 0

for all i, j . Combining (8.2), (8.4), (8.6) we find

H([G{φ(v)}
1/2 ,G{v}

−1/2]vν,
0 , vν,
0)

= −2(k + h∨)〈φ(v), v〉l0 + 〈φ(v), v〉(ν|ν + 2ρ�) − 2(k + 1)〈φ(v), v〉(ξ |ν)

+ 2
∑

α,β

〈[uα, φ(v)], [v, uβ ]〉H(J {u
α}

0 J
{uβ }
0 vν,
0 , vν,
0). (8.7)

Recall that φ is a compact involution of g�, thus

φ(hα) = −hα for all α ∈ ��. (8.8)

(As usual hα stands for the element of h� corresponding to α in the identification of h�

with (h�)∗ via (.|.)). It follows that [hα, φ(v)] = −ξ(hα)φ(v), so the weight of φ(v) is
−ξ . In particular, since v is a highest weight vector for the g�-module g−1/2, we have

∑

α,β

〈[uα, φ(v)], [v, uβ ]〉H(J {u
α}

0 J
{uβ }
0 vν,
0 , vν,
0) =

∑

i, j

〈[ui , φ(v)], [v, u j ]〉H(J {u
i }

0 J
{u j }
0 vν,
0 , vν,
0)

+
∑

γ <0

〈[uγ , φ(v)], [v, uγ ]〉H(J {u
γ }

0 J
{uγ }
0 vν,
0 , vν,
0)

=
∑

i, j

ξ(ui )ν(ui )ξ(u j )ν(u j )〈φ(v), v〉. (8.9)
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Substituting (8.9) into (8.7) we obtain

H(G{v}
−1/2vν,
0 ,G

{v}
−1/2vν,
0) =− 2(k + h∨)〈φ(v), v〉l0 + 〈φ(v), v〉(ν|ν + 2ρ�)

− 2(k + 1)〈φ(v), v〉(ξ |ν) + 2(ξ |ν)2〈φ(v), v〉,
as claimed. ��
Remark 8.4. Let v ∈ g−1/2 be as in Lemma 8.3 and u a root vector for the root θi . Then

‖J {u}−1 G
{v}
−1/2vν,
0‖2 =((θi |ξ + ν)(φ(u)|u) − βk(φ(u), u))‖G{v}

−1/2vν,
0‖2.

Indeed,

H(J {u}−1 G
{v}
−1/2vν,
0 , J

{u}
−1 G

{v}
−1/2vν,
0)

= −H(G{φ(v)}
1/2 J {φ(u)}

1 J {u}−1 G
{v}
−1/2vν,
0 , vν,
0)

= −H(G{φ(v)}
1/2 [J {φ(u)}

1 , J {u}−1 ]G{v}
−1/2vν,
0 , vν,
0)

= (θi |ξ + ν)(φ(u)|u)H(G{v}
−1/2vν,
0 ,G

{v}
−1/2vν,
0)

− βk(φ(u), u)H(G{v}
−1/2vν,
0 ,G

{v}
−1/2vν,
0).

Let P+ ⊂ (h�)∗ be the set of dominant integral weights for g� and let

P+
k = {ν ∈ P+ | ν(θ∨i ) ≤ Mi (k) for all i ≥ 1

}
. (8.10)

Recall that ξ ∈ (h�)∗ is a highest weight of the g�-module g−1/2. Introduce the following
number

A(k, ν) = (ν|ν + 2ρ�)

2(k + h∨)
+

(ξ |ν)

k + h∨
((ξ |ν) − k − 1). (8.11)

Proposition 8.5. Assume that k + h∨ �= 0. If the Wk
min(g)-module L

W (ν, 
0) is unitary,
then Mi (k) ∈ Z+ for all i ≥ 1, ν ∈ P+

k , and


0 ≥ A(k, ν). (8.12)

Proof. In order to prove thatMi (k) ∈ Z+ for all i ≥ 1 and ν ∈ P+
k , it is enough to observe

that, if LW (ν, 
0) is a unitary module over Wk
min(g), then, in particular, V βk (g�)vν,
0 is

a unitary module over V βk (g�), hence ν ∈ P+
k [12], which is non-empty if and only if

Mi (k) ∈ Z+ for all i ≥ 1.
To prove the second claim recall that, by Proposition 5.1, the Hermitian form 〈φ(.), . 〉

is positive definite on g−1/2. Since k + h∨ < 0, we obtain from (8.1) that


0 ≥ (ν|ν + 2ρ�)

2(k + h∨)
− (k + 1)

k + h∨
(ξ |ν) +

(ξ |ν)2

k + h∨
= A(k, ν),

as claimed. ��
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Consider the short exact sequence

0 → I k → Wk
min(g) → Wmin

k (g) → 0.

If aWk
min(g)-module LW (ν, 
0) is unitary, then, restricted to the subalgebra V βk (g�) it is

unitary, hence a direct sum of irreducible integrable highest weight ĝ�-modules of levels
Mi (k), i ≥ 1. But it is well known that all these modules descend to Vβk (g

�). Also, all
these modules are annihilated by the elements

(J
{eθi }
(−1) )

Mi (k)+11, i ≥ 1. (8.13)

Let Ĩ k ⊂ I k be the ideal of Wk
min(g) generated by the elements (8.13), and let W̃min

k =
Wk

min/ Ĩ
k . We thus obtain

Proposition 8.6. If theWk
min(g)-module L

W (ν, 
0) is unitary, then it descends to W̃min
k (g).

Note that a unitary Wk
min(g)-module descends to Wmin

k (g) if and only if

Ĩ k = I k . (8.14)

Conjecture 4. 2 Equality (8.14) holds for all unitary vertex algebras Wk
min(g). Conse-

quently, any unitary Wk
min(g)-module descends to Wmin

k (g).

Definition 8.7. An element ν ∈ P+
k is called an extremal weight if ν + ξ doesn’t lie in

P+
k .

Proposition 8.8. If LW (ν, 
0) is unitary and ν is an extremal weight, then


0 = A(k, ν).

Proof. Let u be a root vector for ξ . Then G{u}
−1/2vν,
0 is a singular vector for V βk (g�).

Since LW (ν, 
0) is unitary, all vectors that are singular for V βk (g�) should have weight
in P+

k . By the assumption, we have G{u}
−1/2vν,
0 = 0, hence the norm of this vector is 0,

and we can apply (8.1). ��
In the setting of the above proposition, note that ν is extremal iff ν(θ∨i ) > Mi (k) + χi
for some i . Moreover, k is collapsing iff Mi (k) + χi < 0 (cf. Remark 7.5).

Proposition 8.9. (a) For k �= −1, Wk
min(sl(2|m)), m ≥ 3, has no unitary highest weight

modules. In particular, Wmin
k (sl(2|m)), m ≥ 3, is unitary if and only if k = −1 and

this W-algebra collapses to the free boson.
(b) The W-algebra Wk

min(osp(4|m)), m > 2, has no unitary highest weight modules for
all k.

Proof. (a) Let g = sl(2|m). Then g
�
0 = C� , where � =

⎛

⎝
m/2 0 0
0 m/2 0
0 0 Im

⎞

⎠, and

(a|b) = str(ab). By Theorem 7.4, the collapsing levels are k = −1 and k = m/2− 1.
If k = −1 then M0(−1) = −m/2, M1(−1) = 0 and Wmin

k (g) is the Heisenberg ver-
tex algebra M(C�) = V−m/2(C�) = V−m/2(C�) and this vertex algebra is unitary.

2 See Note added in proof.
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If k = m/2−1 thenM0(m/2−1) = 0, M1(m/2−1) = −m/2 andWmin
k (sl(2|m)) =

V−m/2(sl(m)) which has no unitary highest weight modules.
Assume that k is not collapsing. Let ψ be a conjugate linear involution of

Wk
min(sl(2|m)) such that LW (ν, 
0) has a positive definite ψ-invariant Hermitian form

H , normalized by the condition H(vν,
0 , vν,
0) = 1. By Proposition 7.2, the involution
ψ is induced by an involution ψ on g satisfying (1.1). This implies that ψ(�) = ζ�

with |ζ | = 1.
The vertex algebra V k−m/2−1(C�) ⊗ V−k−1(sl(m)) embeds in Wk

min(sl(2|m)). In
particular, (V k−m/2−1(C�) ⊗ V−k−1(sl(m))).vν,
0 is a unitary module. This implies
that ψ|sl(m) corresponds to a compact real form of sl(m) and −k − 1 ∈ Z+. Using the
formulas given in [16, §5.3] we have

0 ≤ H(J {� }vν,
0 , J
{� }vν,
0) = H(−J {ψ(�)}

1 J {� }
−1 vν,
0 , vν,
0)

= −(k − m/2− 1)ζ−1(� |�)

= −ζ−1(k − m/2− 1)(m2/2− m).

Therefore ζ = 1, so that

ψ(�) = �. (8.15)

Note that

[�, u] = ±m
2 u, u ∈ g−1/2. (8.16)

Write g−1/2 = g+−1/2 ⊕ g−−1/2 for the corresponding eigenspace decomposition. Since

ψ(�) = � , we have ψ(g±−1/2) = g±−1/2. Since the form 〈., .〉 is g�-invariant, we have

〈g+, g+〉 = 〈g−, g−〉 = 0.

It follows that, if u ∈ g−1/2,

〈ψ(u), u〉 = 0. (8.17)

Observe now that by [1], since k is not collapsing, the image of G{u} in Wmin
k (g) is

non-zero if u �= 0. We observe that, since g(G{u}) = G{ψ(u)} and G{u} is primary, for
n ∈ 1

2 + Z+

H(G{u}
−nv,G{u}

−nv) = H(G{ψ(u)}
n G{u}

−n, v)

= H([G{ψ(u)}
n ,G{u}

−n]v, v) (8.18)

for any v ∈ LW (ν, 
0). Using Borcherds’ commutator formula

[G{ψ(u)}
n ,G{u}

−n] =
∑

j

(
n + 1

2
j

)

(G{ψ(u)}
( j)G

{u})0,

and combining formulas (7.7) and (8.17), we obtain

[G{ψ(u)}
n ,G{u}

−n] = −2(k + h∨)〈ψ(u), u〉L0 + 〈ψ(u), u〉
dim g�
∑

α=1

: J {uα} J {uα} :0 +
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2
∑

α,β

〈[uα, ψ(u)], [u, uβ ]〉 : J {uα} J {uβ } :0 +4n(k + 1)J {[[eθ ,ψ(u)],u]�}
0

+ (2n + 1)
∑

α,β

〈[uα, ψ(u)], [u, uβ ]〉J {[uα,uβ ]}
0 + (2n2 − 1

2 )p(k)〈ψ(u), u〉

= 2
∑

α,β

〈[uα, ψ(u)], [u, uβ ]〉 : J {uα} J {uβ } :0 +4n(k + 1)J {[[eθ ,ψ(u)],u]�}
0

+ (2n + 1)
∑

α,β

〈[uα, ψ(u)], [u, uβ ]〉J {[uα,uβ ]}
0 . (8.19)

Nowwe compute (8.18) for v ∈ LW (ν, 
0)
0 . As in the proof of Lemma 8.3, using (8.4),
(8.6) with ψ instead of φ, we find that (8.19) becomes, with the notation of the proof of
Lemma 8.3,

H([G{ψ(u)}
n ,G{u}

−n]v, v) = (2n + 1)
∑

α,β

〈[uα, ψ(u)], [u, uβ ]〉H(J {u
α}

0 J
{uβ }
0 v, v)

= (2n + 1)
∑

i, j

〈[ui , ψ(u)], [u, u j ]〉H(J {u
i }

0 J
{u j }
0 v, v) (8.20)

+ (2n + 1)
∑

γ∈��

〈[uγ , ψ(u)], [u, uγ ]〉H(J {u
γ }

0 J
{uγ }
0 v, v).

(8.21)

Recall that ψ ia a compact involution of [g�, g�], hence, by (8.8), ψ(uγ ) ∈ g
�
−γ , so that,

for some constant b we have

〈[uγ , ψ(u)], [u, uγ ]〉 = b〈ψ([u, uγ ]), [u, uγ ]〉,
so, by (8.17), the summand (8.21) is zero.

The summand (8.20) vanishes since 〈[ui , ψ(u)], [u, u j ]〉 is a multiple of 〈ψ(u), u〉 =
0. This shows that Y LW (ν,
0)(G{u}, z)v = 0. By relation (7.3), G{u}

n Amv = 0 with
A ∈ V βk (g�) for all n,m, hence, since G{u} is primary,

Y LW (ν,
0)(G{u}, z)LW (ν, 
0) = 0.

Hence G{u} lies in a proper ideal of Wk
min(g), contradicting the fact that, since the level

is not collapsing, G{u} is non zero in Wmin
k (g).

(b) For g = osp(4|m), the conditions of Proposition 8.5 imply k−m/2 ∈ Z+, − 1
2k−

1 ∈ Z+. These relations are never satisfied at the same time. ��
Proposition 8.10. Non-trivial unitary irreducible highest weight Wk

min(g)-modules with
k �= −h∨ may exist only in the following cases

(1) g = sl(2|m), m ≥ 3, k = −1 (then Wmin
k = Wk

min is a free boson);
(2) g = psl(2|2), −k ∈ N + 1;
(3) g = spo(2|3), −k ∈ 1

4 (N + 2);
(4) g = spo(2|m), m > 4, −k ∈ 1

2 (N + 1);
(5) g = D(2, 1; m

n ), −k ∈ mn
m+nN, m, n ∈ N are coprime, k �= − 1

2 ;
(6) g = F(4), −k ∈ 2

3 (N + 1);
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(7) g = G(3), −k ∈ 3
4 (N + 1).

Proof. By Proposition 8.9, we may assume that g is not one of the Lie superalgebras
sl(2|m) woth m ≥ 3 or osp(4|m) with m > 2. The remaining cases are treated, using
only the easy necessary conditions Mi = Mi (k) ∈ Z+ for all i . In all cases, except for
g = D(2, 1; a), the condition Mi ∈ Z+ is obviously equivalent to the condition on k,
given in the statement of the proposition.

Consider the remaining case g = D(2, 1; a). By this we mean the contragredient Lie

superalgebra with Cartan matrix

⎛

⎝
0 1 a
−1 2 0
−1 0 2

⎞

⎠. By Proposition 8.5, we need to find the

values of a such that Mi = Mi (k), i = 1, 2, from Table 2 are non-negative integers.
These conditions imply that

k = −M1+1
a+1 and k = − (M2+1)a

a+1 . where M1, M2 ∈ Z+. (8.22)

Equating these two expressions for k, we obtain a = M1+1
M2+1

is a positive rational number.
Inserting this in either of the expressions (8.22) for k, we obtain

k = − (M1+1)(M2+1)
(M1+1)+(M2+1)

,

proving the claim. (k = −1/2 corresponds to the trivial D(2, 1; 1)-module.) ��
Definition 8.11. Given g in the above list, we call the corresponding set of values of
k �= −h∨ the unitarity range of Wk

min(g).

Remark 8.12. For g = D(2, 1; a), there are actually three possible choices of the mini-
mal root. We now describe how the unitarity range depends on this choice. We choose
{2ε1, 2ε2, 2ε3} as the set of positive roots in g0̄: hence, if −θ is a minimal root, then
θ = 2εi for some 1 ≤ i ≤ 3. The bilinear form (.|.), displayed in Table 1, corresponds
to the choice θ = 2ε1, so that (2ε1|2ε1) = 2. If we choose θ = 2ε2, then the bilinear
form (.|.) is given by

(ε1|ε1) = − 1+a
2 , (ε2|ε2) = 1

2 , (ε3|ε3) = a
2 , (ε1|ε2) = (ε1|ε3) = (ε2|ε3) = 0.

We have M1(k) = − 1
1+a k − 1, M2(k) = 1

a k − 1. Then a = − m
m+n , m, n ∈ N, m and n

are coprime (i. e. a ∈ Q, −1 < a < 0) and in turn k ∈ − mn
m+nN. If we choose θ = 2ε3,

then the bilinear form (.|.) is given by

(ε1|ε1) = − a+1
2a , (ε2|ε2) = 1

2a , (ε3|ε3) = 1
2 , (ε1|ε2) = (ε1|ε3) = (ε2|ε3) = 0.

We have M1(k) = − a
1+a k − 1, M2(k) = ak − 1. Then a = −m+n

m , m, n ∈ N, m and n
are coprime (i. e. a ∈ Q, a < −1) and in turn k ∈ − mn

m+nN.
Recall that one obtains isomorphic superalgebras of the family D(2, 1; a), a �=

0,−1, under the action of the group S3, generated by the transformations a �→ 1/a, a �→
−1−a. These transformations permute transitively the domainsQ>0,Q>−1∩Q<0 and
Q<−1, which correspond to the above three cases.

Corollary 8.13. If k is from the unitarity range for Wk
min(g), then k + h∨ is a negative

rational number.
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9. Free Field Realization of Minimal W -Algebras

Let � : Wk
min(g) → Vk = V k+h∨(Cx)⊗V αk (g�)⊗ F(g1/2) be the free field realization

introduced in [20, Theorem 5.2]; it is explicitly given on the generators of Wk
min(g) by

J {b} �→ b +
1

2

∑

α∈S1/2
: �α�[uα,b] : (b ∈ g�), (9.1)

G{v} �→
∑

α∈S1/2
: [v, uα]�α : −(k + 1)

∑

α∈S1/2
(v|uα)T�α

+
1

3

∑

α,β∈S1/2
: �α�β�[uβ ,[uα,v]] : (v ∈ g−1/2) , (9.2)

L �→ 1

2(k + h∨)

∑

α∈S0
: uαu

α : + k + 1

k + h∨
T x +

1

2

∑

α∈S1/2
: (T�α)�α : . (9.3)

Recall that F(g1/2) is the universal enveloping vertex algebra of the (non-linear)
Lie conformal superalgebra C[T ] ⊗ g1/2 with [aλb] = 〈a, b〉ne1, a, b ∈ g1/2, and{�α}α∈S1/2 , {�α}α∈S1/2 are dual bases of g1/2 with respect to 〈., .〉ne.

We now apply the results of Sect. 6 to V k+h∨(Cx). By Corollary 8.13 unitarity of
Wk

min(g) implies k + h∨ < 0. Hence, using the normalization

a = √−1

√
2√|k + h∨| x, (9.4)

wehaveV k+h∨(Cx) = V 1(Ca), since, by (7.24),αk(x, x) = 1
2 (k+h∨), henceαk(a, a) =

1
Recall that in Proposition 5.1 we proved that one can choose an almost compact

involution φ of g that fixes pointwise the sl2-triple {e, x, f } in such a way that the
Hermitian form 〈φ(u), v〉ne on g1/2 is negative definite. This conjugate linear involution
induces a conjugate linear involution ofWk

min(g) and of V
αk (g0)⊗ F(g1/2) as well, both

denoted again by φ. It is readily checked, using (9.1), (9.2), and (9.3), that

�(φ(v)) = φ(�(v)) for all v ∈ Wk
min(g). (9.5)

Since φ(x) = x , we see that φ(a) = −a. The conformal vector of the vertex algebra Vk

is

L f ree = 1

2
: aa : +Lg� + LF , (9.6)

where

Lg� = 1
2(k+h∨)

∑

α∈S�

: uαu
α, LF = 1

2

∑

α∈S1/2
: (T�α)�α : .

Here {uα}α∈S� and {uα}α∈S� are dual bases of g� with respect to the bilinear form (.|.)
restricted tog�. Recall that Lg� is the conformal vector ofV αk (g�) and LF is the conformal
vector of F(g1/2). Let

sk =
√−1

(k + 1)√
2|k + h∨| . (9.7)
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It follows from (9.3) and (9.6) that

�(L) = L(sk) + L̂ = L f ree + skT (a), (9.8)

where L̂ = Lg� + LF , and L(s) = 1
2 : aa : +sT a, L̂(s) = L(s)+ L̂ , cf. (6.1) and (6.29),

respectively.
Note that Vk = V 1(Ca)⊗V, where V = V αk (g�)⊗ F(g1/2), and �(L) = L̂(s) (cf.

(6.28), (6.29)).
Given μ ∈ C, let M(μ) be the irreducible V 1(Ca)-module with highest weight μ,

and consider the Vk-module

N (μ) = M(μ) ⊗ V .

Recall that V carries a φ-invariant Hermitian form Hg� ⊗HF , which is positive definite.
Recall also that, by Proposition 6.3, the V 1(Ca)-module M(μ) carries a unique L(t)-
invariant Hermitian form, provided that t = √−1�(μ), which is positive definite. This
Hermitian form, normalized by the condition that the norm of the highest weight vector
equals 1, was denoted by Hμ. Hence we have a φ-invariant positive definite Hermitian
form Hμ( . , . ) ⊗ Hg� (. , .) ⊗ HF (. , .) on N (μ), which we denote by (·, ·)μ.

It follows from Proposition 6.10 that, restricting the fields Yμ,t (−, z) from Vk to
�(Wk

min(g)), one equips N (μ) with a structure of a Wk
min(g)-module. We now explicitly

describe this action of the generators of Wk
min(g) on N (μ).

Proposition 9.1. For b ∈ Wk
min(g), write

Yμ,t (�(b), z) =
∑

n∈−�b+Z

bμ,t
n z−n−�b ,

and let μ ∈ R. Then

Lμ,t
n = �(L)μn + 2taμ

n + 2(t2 − st)1μ
n , (9.9)

(J {u})μ,t
n = �(J {u})μn , u ∈ g�, (9.10)

(G{v})μ,t
n = �(G{v})μn + 2t

√−1
√
2|k + h∨|(�[e,v])μn , v ∈ g−1/2. (9.11)

Furthermore, if m,m′ ∈ N (μ), then

(m, Lμ,t
n m′)μ = (Lμ,s−t

−n m,m′)μ, (9.12)

(m, (J {u})μ,t
n m′)μ = −((J {φ(u)})μ,s−t

−n m,m′)μ, (9.13)

(m, (G{v})μ,t
n m′)μ = ((G{φ(v)})μ,s−t

−n m,m′)μ. (9.14)

Proof. We already noted that �(L) = L̂(s). By (6.27),

�(L)μ,t
n = (L(s) + L̂)μ,t

n = 1
2 : aa :μn +sT aμ

n + 2taμ
n + 2(t2 − st)1n + L̂μ

n

= L̂(s)μn + 2taμ
n + 2(t2 − st)1μ

n .

If u ∈ g�, then �(J {u}) ∈ V αk (g�) ⊗ F(g1/2), hence, by Lemma 6.11, (J {u})μ,t
n =

�(J {u})μn . Finally, if v ∈ g−1/2,

[v, uα] = 2([v, uα]|x)x + [v, uα]� =
√−1

√|k + h∨|√
2

(v|uα)a + [v, uα]�,
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where u� is the orthogonal projection of u onto g� with respect to ( . | . ). Since
[e, v] =

∑

α

〈[e, v], uα〉neuα =
∑

α

( f |[[e, v], uα])uα =
∑

α

( f |[e, [v, uα]])uα

=
∑

α

([[ f, e], v]|uα)uα = −
∑

α

([x, v]|uα)uα = 1
2

∑

α

(v|uα)uα,

we can write

�(G{v}) =√−1
√
2|k + h∨| : a�[e,v] : +

∑

α∈S1/2
: [v, uα]��α : −2(k + 1)T�[e,v]

+
1

3

∑

α,β∈S1/2
: �α�β�[uβ ,[uα,v]] : .

Set

G{v} =
∑

α∈S1/2
: [v, uα]��α : +1

3

∑

α,β∈S1/2
: �α�β�[uβ ,[uα,v]] : .

so that

(G{v})μ,t
n =√−1

√
2|k + h∨| : a�[e,v] :μn +2t

√−1
√
2|k + h∨|(�[e,v])μn

− 2(k + 1)(T�[e,v])μn + G{v}μ
n .

Thus,

(G{v})μ,t
n = �(G{v})μn + 2t

√−1
√
2|k + h∨|(�[e,v])μn . (9.15)

For proving (9.12), (9.13), and (9.14), it is enough to observe that L , G{v}, and J {u}
are quasiprimary for L̂(s) and apply (6.24). We use the fact that �(g(b)) = g(�(b))
for all b ∈ Wk

min(g) , where g is defined by (2.8). This follows from (9.5) and the fact
that � preserves both parity and conformal weight. ��
Asan application of Proposition 9.1,weobtain a generalization of theFairlie construction
to minimal W -algebras.

Proposition 9.2. Set s = sk (cf. (9.7)) and

Lμ,s/2
n = �(L)μn + saμ

n + |s|2
2 1μ

n = �(L)μn +
k + 1

k + h∨
xμ
n − (k+1)2

4(k+h∨)
1μ
n ,

(G{v})μ,s/2
n = �(G{v})μn − (k + 1)(�[e,v])μn ,

(J {u})μ,s/2
n = �(J {u})μn .

The fields

Yμ,s(L , z) =
∑

n∈Z
Lμ,s
n z−n−2,

Yμ,s(G{v}, z) =
∑

n∈1/2+Z
(G{v})μ,s

n z−n−3/2,
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Yμ,s(J {u}, z) =
∑

n∈Z
(J {u})μ,s

n z−n−1

endow N (μ) with a Wk
min(g)-module structure. Moreover, the Hermitian form ( . , . )μ

on N (μ) is invariant.

Proof. Plug t = s/2 in Proposition 9.1. By (9.12), (9.13), and (9.14), we have

(m, Lμ,s/2
n m′)μ = (Lμ,s/2

−n m,m′)μ,

(m, (J {u})μ,s/2
n m′)μ = −((J {φ(u)})μ,s/2

−n m,m′)μ,

(m, (G{v})μ,s/2
n m′)μ = ((G{φ(v)})μ,s/2

−n m,m′)μ.

thus the representations N (μ) acquire a Wk
min(g)-module structure and the Hermitian

form (·, ·)μ is φ-invariant. ��

10. Sufficient Conditions for Unitarity of Modules Over Wk
min(g)

Due to the Proposition 8.9 (a), we may assume in this section that g �= sl(2|m) and
osp(4|m), m > 2. Then, in particular, g� = ⊕i≥1g

�
i is the decomposition of g� into

simple ideals, and the χi are given by (7.27).

Proposition 10.1. Assume that k+h∨ �= 0. Then there exists a unitarymodule LW (ν, 
0)

over Wk
min(g) if and only if Mi (k) ∈ Z+ for all i and ν ∈ P+

k .

Proof. One implication has been already proven in Proposition 8.5. To show that the
converse implication also holds, assume Mi (k) ∈ Z+ for all i . Recall (see (7.25)) that
the cocycle αk is given by

αk |g�
i×g

�
i
= (Mi (k) + χi )(.|.)�i .

Assume first that Mi (k)+χi ∈ Z+ for all i . Then the simple quotient Vαk (g
�) of V αk (g�)

is unitary, since it is an integrable ĝ�-module [11]. Next, the vertex algebra F(g1/2) is
unitary due to Proposition 5.1 and [16, §5.1]. Finally, the V 1(Ca)-module M(s) , where
s is given by (9.7), is unitary by the observation following Lemma 6.4.

Consider the unitaryWk
min(g)-module M(s)⊗Vαk (g

�)⊗F(g1/2), and its submodule

U = �(Wk
min(g)).(vs ⊗ 1 ⊗ 1).

Since the Hermitian form Hs( . , .) is L̂(s)-invariant and �(L) = L̂(s), we see that U
admits a φ-invariant Hermitian positive definite form, thusU is a unitary highest weight
module for Wk

min(g).
Now we look at the missing cases, where there is i such that 0 ≤ Mi (k) < −χi ,

described in Remark 7.5. Assume first that g� is simple. If χ1 = −1 then the only
possible value is M1(k) = 0, so, Wmin

k (g) = C, by Theorem 7.4 (1) (a). In the case
of g = spo(2|3) one should consider the cases M1(k) = 1 and M1(k) = 0: in the

former case k = − h∨1
2 − 1, hence Theorem 7.4 (1) (b) applies and Wmin

k (spo(2|3)) =
V1(sl(2)), whereas in the latter case k + h∨ = 0. If g� is semisimple but not simple,
then g = D(2, 1; a). In this case we have to consider only the case in which either
M1(k) or M2(k) is zero. If M1(k) = 0 (resp. M2(k) = 0) then, by Theorem 7.4 (2),
Wmin

k (D(2, 1; a)) = VM2(k)(sl(2)) (resp. = VM1(k)(sl(2))). ��
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We now generalize the construction given in the proof of Proposition 10.1 to provide
families of unitary representations. For ν ∈ P+

k introduce the following number

B(k, ν) = (ν|ν + 2ρ�)

2(k + h∨)
− (k + 1)2

4(k + h∨)
. (10.1)

Proposition 10.2. Assume that k +h∨ �= 0 and Mi (k)+χi ∈ Z+ for all i > 0. If ν ∈ P+

is such that ν(θ∨i ) ≤ Mi (k) + χi for all i > 0 (then ν ∈ P+
k ) and


0 ≥ B(k, ν), (10.2)

then LW (ν, 
0) is a unitary Wk
min(g)-module.

Proof. Let L�(ν) be the irreducible highest weight V αk (g�)-module of highest weight ν
and let vν be a highest weight vector. Fix μ ∈ R and set

N (μ, ν) = �(Wk
min(g)).(vμ+s ⊗ vν ⊗ 1) ⊂ M(μ + s) ⊗ L�(ν) ⊗ F(g1/2),

where s = sk is given by formula (9.7). Note that the Hermitian form (·, ·)μ+s is L̂(s)-
invariant. Since Mi (k) + χi ∈ Z+ and ν(θ∨i ) ≤ Mi (k) + χi for all i , then L�(ν) is
integrable for V αk (g�), hence unitary [12]. Thus N (μ, ν) is a unitary representation of
Wk

min(g).
We now compute the highest weight of N (μ, ν). Recall that

�(J {h}) = h +
1

2

∑

α∈S1/2
: �α�[uα,h] : .

By the −1-st product identity,

: �α�[uα,h] :0=
∑

j∈ 1
2 +Z+

(
�α− j (�[uα,h]) j − (�[uα,h])− j�

α
j

)

so

�(J {h})0.(vμ+s ⊗ vν ⊗ 1) = ν(h)(vμ+s ⊗ vν ⊗ 1).

It follows that N (μ, ν) = LW (ν, 
0) for some 
0. We now compute 
0:

L0(vμ+s ⊗ vν ⊗ 1) =
(

μ2 − s2

2
+

(ν|ν + 2ρ�)

2(k + h∨)

)

(vμ+s ⊗ vν ⊗ 1)

so that, using (9.7),


0 = μ2 − s2

2
+

(ν|ν + 2ρ�)

2(k + h∨)
= μ2

2
− (k + 1)2

4(k + h∨)
+

(ν|ν + 2ρ�)

2(k + h∨)
.

Hence 
0 ≥ B(k, ν). Lettingμ = 2
√


0 − B(k, ν),we see that themodule LW (ν, 
0) =
N (μ, ν) is unitary. ��
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11. Unitarity of Minimal W -Algebras and Modules Over Them

The main result of this paper is the following.

Theorem 11.1. Let k �= −h∨, and recall the number A(k, ν) given by (8.11). If k lies in
the unitary range (hence Mi (k) ∈ Z+ for i ≥ 1), then the Wk

min(g)-module L
W (ν, 
0) is

unitary for all non extremal ν ∈ P̂+
k and 
0 ≥ A(k, ν).

Corollary 11.2. If k lies in the unitary range, then the Wk
min(g)-module LW (0, 
0) is

unitary for all 
0 ≥ 0. Consequently, Wmin
k (g) is a unitary vertex algebra if and only if

k lies in the unitary range.

In the rest of this section we give a proof of these results. First, by Proposition 8.9 (a),
we may exclude g = sl(2|m), m > 2, from consideration, so that g� is semisimple and
by Proposition 8.5, conditions Mi (k) ∈ Z+ are necessary for unitarity, hence we shall
assume that these conditions hold.

Let ĝ = (C[t, t−1] ⊗ g) ⊕ CK ⊕ Cd be the affinization of g (with bracket [tm ⊗
a, tn ⊗ b] = tn+m ⊗ [a, b] + δm,−nmK (a|b), a, b ∈ g). Let ĥ = h⊕ CK ⊕ Cd be its
Cartan subalgebra. Define �0 and δ ∈ ĥ

∗
setting �0(h) = �0(d) = δ(h) = δ(K ) = 0

and �0(K ) = δ(d) = 1. Let �̂ ⊂ ĥ
∗
be the set of roots of ĝ. As a subset of simple roots

for ĝ we choose �̂ = {α0 = δ − θ} ∪ �, where � is the set of simple roots for g given
in Table 1. We denote by �̂+ the corresponding set of positive roots and by ρ̂ ∈ ĥ

∗
the

corresponding ρ-vector.
For ν ∈ P+

k and h ∈ C, set

ν̂h = k�0 + ν + hθ ∈ ĥ
∗
. (11.1)

Let p̂ be the parabolic subalgebra of ĝ with Levi factor ĥ + g� and the nilradical û+ =∑
α∈�̂+\�� ĝα . Set û− = ∑α∈�̂+\�� ĝ−α . Let V

�(ν) denote the irreducible g�-module

with highest weight ν and extend the g� action to p̂ by letting û+ act trivially; x , K , and
d act by h, k, and 0 respectively. Let M�(̂νh) be the corresponding generalized Verma
module for ĝ, i.e.

M�(̂νh) = U (̂g) ⊗U (̂p) V
�(ν).

We denote by v̂νh a highest weight vector forM
�(̂νh) . If μ̂ ∈ ĥ

∗
andM is a ĝ-module,

we denote by Mμ̂ the corresponding weight space. Let ηi = δ − θi , 1 ≤ i ≤ s (recall
that s = 1 or 2).

Ifα ∈ �̂ is a non-isotropic root, denote by sα ∈ End (̂h
∗
) the corresponding reflection

and the group generated by them by Ŵ . If β ∈ �̂ \ Zδ is an odd isotropic root, we let
rβ denote the corresponding odd reflection. We denote by xα a root vector attached to
α ∈ �̂. Denote by w. the shifted action of Ŵ : w.λ = w(λ + ρ̂) − ρ̂.

Lemma 11.3. Let �̂′ be a set of simple roots for �̂. Let M be a ĝ-module and assume
that m ∈ M is a singular vector with respect to �̂′. If α j ∈ �̂′ is an isotropic root and
x−α j m �= 0, then x−α j m is a singular vector with respect to rα j (�̂

′).

Proof. Since α j is odd isotropic, it follows that x2−α j
m = 0. If r �= j and (αr |α j ) = 0

then xαr x−α j m = x−α j xαr m = 0. If r �= j and (αr |α j ) �= 0 then xαr+α j x−α j m =
x−α j xαr+α j m + xαr m = 0. ��
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For ν ∈ P+
k set

Ni (k, ν) = (̂νh + ρ̂|η∨i ). (11.2)

Note that Ni (k, ν) does not depend on h. We will simply write Ni when the dependence
on k and ν is clear from the context.

Lemma 11.4. For ν ∈ P+
k not extremal, we have

Ni (k, ν) = Mi (k) + χi + 1− (ν|θ∨i ) ∈ N. (11.3)

Moreover, for

vi (h) := xNi−ηi
x−α0−α1x−α1 v̂νh ,

the subspace
∑

i U (̂g)vi (h) is a proper submodule of the ĝ-module M�(̂νh).

Proof. Note that

(̂νh + ρ̂|η∨i ) = 2

(θi |θi ) (k + h∨) − (ν + ρ|θ∨i ) = 2

(θi |θi ) (k +
h∨ − h̄∨i

2

+
h∨ + h̄∨i

2
− (ν + ρ�|θi ))

= Mi (k) +
2

(θi |θi ) (
h∨ − h̄∨i

2
+

(θi |θi )
2

) − (ν|θ∨i )

= Mi (k) + χi + 1− (ν|θ∨i ).

Since ν is not extremal, (̂νh + ρ̂|η∨i ) ∈ N.
Recall from Table 1 the set � of simple roots for g. Let α1 be an odd root in �. A

direct (easy) verification shows that α0 +α1 is an odd root and that the set of simple roots
rα0+α1(rα1(�̂)) contains both α0 and {ηi | 1 ≤ i ≤ s}. Clearly x−α0−α1x−α1 v̂νh �= 0 in
M�(νh) so, byLemma11.3, x−α0−α1x−α1 v̂νh is a singular vector for the set of simple roots
rα0+α1(rα1(�̂)). The weight of this singular vector is, clearly, ν̂′h = ν̂h −α0−2α1. Since
the ρ-vector ρ̂′ of rα0+α1(rα1(�̂)) is ρ̂+α0+2α1, we see that (̂ν′h+ρ̂′|η∨i ) = (̂νh+ρ̂|η∨i ) =
Ni . Since ηi is a simple root in rα0+α1(rα1(�̂)), we obtain that xNi−ηi

x−α0−α1x−α1 v̂νh is a
singular vector for the set of simple roots rα0+α1(rα1(�̂)). It follows that

∑
i U (̂g)vi (h)

is a proper submodule of U (̂g)x−α0−α1x−α1 v̂νh ⊂ M�(̂νh). ��
Set

M (̂νh) = M�(̂νh)/(
∑

i

U (̂g)vi (h)). (11.4)

Recall (cf. [13] in the non-super case) that for μ̂, λ̂ ∈ ĥ
∗
, μ̂ is said to be linked to λ̂ if

there exists a sequence of roots {γ1, . . . , γt } ⊂ �̂+ and weights λ̂ = μ0, μ1 . . . , μt = μ̂

such that, for 1 ≤ r ≤ t one has

• (μr−1 + ρ̂|γr ) = mr
2 (γr |γr ), mr ∈ N, where mr = 1 if γr is an odd isotropic root

and mr is odd if γr is an odd non-isotropic root,
• μr = μr−1 − mrγr .
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The proof of the following proposition is inspired by [7, Section 11]. It also provides a
simple proof of Lemma 2 from [10].

Proposition 11.5. Assume that ν ∈ P+
k is not extremal and that

(̂νh + ρ̂|α) �= n
2 (α|α) for all n ∈ N and α ∈ �̂+ \ �̂+(g�). (11.5)

Then

(i) the module M (̂νh) is irreducible;
(ii) its character is

chM (̂νh) =
∑

w∈Ŵ �

det(w)chM(w.̂νh). (11.6)

Proof. We have

(1) (̂νh + ρ̂|α) �= 0 for all odd isotropic roots;
(2) (̂νh + ρ̂|α∨) ∈ N for all α ∈ �̂+(g�);
(3) (̂νh + ρ̂|α) �= n

2 (α|α) for all n ∈ N and for all positive roots α of the affinization of
sl2 = 〈e, f, x〉 and for all non-isotropic odd positive roots.

Indeed, (1), (3) follow from (11.5). To prove (2), first remark that if α is a simple
root for �

�
+, then α ∈ �̂. It follows that (ρ̂|α∨) = (ρ�|α∨) = 1. This implies that

(̂νh + ρ̂|α∨) = (ν + ρ�|α∨) ∈ N for α ∈ �
�
+. Since ν is not extremal, (11.3) gives

(̂νh + ρ̂|η∨i ) ∈ N.
We have

ch M (̂νh) =
∑

w∈Ŵ �

c(w)chM(w.̂νh), where c(w) ∈ Z. (11.7)

Indeed, if ch M(μ̂) appears in ch M (̂νh) then, using the determinant formula proved in
[6], and the corresponding Jantzen filtration [10], one shows, as in [13], that there is a
sequence of roots {γ1, . . . , γt } ⊂ �̂+ linking μ̂ to ν̂h . Properties (1), (3) imply that γi ∈
�̂+(g�) and this yields (11.7). It is clear that g� acts locally finitely onM�(̂νh), hence also
on M (̂νh). By (1), x−α0−α1x−α1 v̂νh generates M (̂νh). Since xNi−ηi

(x−α0−α1x−α1 v̂νh ) =
vi (h) = 0 in M (̂νh), M (̂νh) is integrable for ĝ�, in particular ch M (̂νh) is Ŵ �-invariant.
Hence, we obtain c(w) = det(w); therefore (ii) holds. Since the proof of (ii) didn’t use
irreducibility, the irreducible quotient of M (̂νh) has the same character, proving (i). ��
The following functions hn,εm, hm,γ relate singular weights of Verma modules over ĝ
to those over Wk

min(g) [20, Remark 7.2]:

hn,εm(k, ν) = 1

4(k + h∨)
((εm(k + h∨) − n)2 − (k + 1)2 + 2(ν|ν + 2ρ�)), (11.8)

hm,γ (k, ν) = 1

4(k + h∨)
((2(ν + ρ�|γ ) + 2m(k + h∨))2 − (k + 1)2 + 2(ν|ν + 2ρ�)) .

(11.9)

Here γ ∈ �′, the set of g�-weights in g−1/2, ε = 2 (resp. 1) if 0 ∈ �′ (resp. 0 /∈ �′),
m, n ∈ ε−1

N and m − n ∈ Z in (11.8) and m ∈ 1
2 + Z+ in (11.9).
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Lemma 11.6. Let k be in the unitarity range and let A(k, ν) be as in (8.11). Assume that
ν is not extremal. Then

hn,εm(k, ν) ≤ A(k, ν), (11.10)

hm,γ (k, ν) ≤ A(k, ν). (11.11)

Proof. First we prove (11.10). Plugging (11.8) into (11.10) we get

(εm(k + h∨) − n)2 − (k + 1)2 + 2(ν|ν + 2ρ�)

4(k + h∨)
≤ (ν|ν + 2ρ�)

2(k + h∨)
+

(ξ |ν)

k + h∨
((ξ |ν) − k − 1),

which is equivalent to

n − εm(k + h∨) ≥ |(k + 1) − 2(ξ |ν)|. (11.12)

Since k + h∨ < 0, it is enough to check (11.12) with εm = 1, n = 1/ε. In the case
(k + 1) ≤ 2(ξ |ν), (11.12) reads

1/ε − h∨ ≥ 2(ξ |ν) − 1. (11.13)

Looking at the values of h∨ in Table 2, we see that the L.H.S. of (11.13) is non-negative.
Now we prove that (ξ |ν) ≤ 0. Indeed, from Table 1 we deduce that the restriction of
(.|.) to the real span of �� is negative definite. From Tables 1 and 3 one checks that ξ

is a linear combination with non-negative coefficients of simple roots of g�; since ν is
dominant, if α ∈ �� is a simple root then ν(α∨) ≥ 0, hence (ν|α) ≤ 0 since (α|α) < 0.
In the case (k + 1) ≥ 2(ξ |ν) we have to prove that

k + h∨
2 ≤ (ξ |ν) + 1−ε

2ε . (11.14)

The non-extremality condition means that (ν + ξ)(θ∨i ) ≤ 2
(θi |θi )

(

k +
h∨−h̄∨i

2

)

or

k + h∨
2 ≤ (ν + ξ |θi ) + h̄∨i

2 , (11.15)

hence it is enough to prove that

(ν + ξ |θi ) + h̄∨i
2 ≤ (ξ |ν) + 1−ε

2ε . (11.16)

Note that θi = ξ + βi , where, as above, βi is a linear combination with non-negative
coefficients of simple roots of g�. Therefore (11.16) can be written as

(ν|βi ) + (ξ |ξ + βi ) ≤ 1−ε
2ε − h̄∨i

2 ,

which is clearly verified, since the left hand side is negative and the right hand side is
positive (use the data in Table 2).

Now we prove (11.11). Substituting (11.8) in it we obtain

(2(ν + ρ�|γ ) + 2m(k + h∨))2 − ((k + 1) − 2(ξ |ν))2 ≥ 0,

which is equivalent to

|(2(ν + ρ�|γ ) + 2m(k + h∨)| ≥ |(k + 1) − 2(ξ |ν)|. (11.17)
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Table 4. Data employed in the proof of Lemma 11.6

g ε ρ� max(ρ�|γ ) h∨
psl(2|2) 1 1

2 (δ1 − δ2) 1/2 0
spo(2|2m),m ≥ 3 1 (m − 1)ε1 + (m − 2)ε2 + . . . + εm−1 (m − 1)/2 2− m
spo(2|2m + 1),m ≥ 1 2 2m−1

2 ε1 +
2m−3

2 ε2 + . . . + 1
2 εm (2m − 1)/4 3/2− m

D(2, 1; a) 1 ε2 + ε3
1
2 0

F(4) 1 5
2 ε1 +

3
2 ε2 +

1
2 ε3 3/2 −2

G(3) 2 2ε1 + 3ε2 5/4 −3/2

Recall that, even though g−1/2 can be reducible as a g�-module, all irreducible compo-
nents have the same highest weight ξ . It follows that

− (ξ |ν) = max
γ∈�′(γ |ν). (11.18)

A direct check on Table 4 shows that

2 max
γ∈�′(ρ

�|γ ) + h∨ = 1. (11.19)

Note that, by (11.18) and (11.19)

(k + h∨) + 2(ν + ρ�|γ ) ≤ (k + 1) − 2(ξ |ν). (11.20)

Therefore, if (k + 1) ≤ 2(ξ |ν) then

2(ν + ρ�|γ ) + 2m(k + h∨)

= 2(ν + ρ�|γ ) + (k + h∨) + (2m − 1)(k + h∨)

≤ 2(ν + ρ�|γ ) + (k + h∨) ≤ (k + 1) − 2(ξ |ν) ≤ 0,

and (11.17) reads

2(ν + ρ�|γ ) + 2m(k + h∨) ≤ (k + 1) − 2(ξ |ν),

which is clearly true.
Now consider the case

(k + 1) ≥ 2(ξ |ν), −2(ν + ρ�|γ ) − 2m(k + h∨) ≥ 0. (11.21)

The inequality (11.17) becomes

−2(ν + ρ�|γ ) − 2m(k + h∨) ≥ (k + 1) − 2(ξ |ν).

which is implied by

− 2(ν + ρ�|γ ) − (k + h∨) ≥ (k + 1) − 2(ξ |ν). (11.22)

If γ = −ξ , then the left hand side of (11.22) is

−2(ν + ρ�| − ξ) − (k + h∨) = 2(ν|ξ) + h∨ − 1− (k + h∨) = 2(ν|ξ) − k − 1,

hence (11.21) implies that both members of (11.22) are zero.
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If γ �= −ξ , then (11.22) is equivalent to

k + h∨
2 ≤ − 1

2 + (ξ |ν) − (ν + ρ�|γ ), (11.23)

hence, by (11.15), we are done if we prove that

(ν + ξ |θi ) + h̄∨i
2 ≤ − 1

2 + (ξ |ν) − (ν + ρ�|γ ). (11.24)

Remark that, since γ �= −ξ , then ξ − γ = α ∈ �
�
+ ∪ {0}. If g� is simple, then

(ν|θi ) ≤ (ν|ξ − γ ), hence

(ν + ξ |θi ) + h̄∨i
2 ≤ (ν|ξ − γ ) + (ξ |θi ) + h̄∨i

2 ,

and therefore (11.22) is implied by

(ν|ξ − γ ) + (ξ |θi ) + h̄∨i
2 ≤ − 1

2 + (ξ |ν) − (ν + ρ�|γ ),

or

(ξ |θi ) + h̄∨i
2 ≤ − 1

2 − (ρ�|γ ). (11.25)

The minimum of the left hand side of (11.25) is obtained when (ρ�|γ ) is maximum,
hence, by (11.19), we are left with proving that

(ξ |θi ) + h̄∨i
2 ≤ h∨

2 − 1. (11.26)

This relation is checked using the data in Tables 1, 2, 3. When g� is not simple, i.e.
g = D(2, 1; a), relation (11.22) is proven directly. We have ν = rε2 + sε3, r, s ∈
Z+ γ = ±ε2 ± ε3, ξ = ε2 + ε3; if we exclude γ = −ξ , (11.22) translates into

k ≤ 0, k ≤ − r+1
1+a , k ≤ − (s+1)a

1+a , (11.27)

according to whether γ = ε2 + ε3, ε2, ε3. The non extremality conditions are

k ≤ − r+2
1+a , k ≤ − (s+2)a

1+a , (11.28)

so that (11.28) implies (11.27).
We are left with proving (11.17) when both arguments in the absolute values are

non-negative, i.e.

2(ν + ρ�|γ ) + 2m(k + h∨) ≥ (k + 1) − 2(ξ |ν). (11.29)

We claim that the conditions 2(ν +ρ�|γ )+2m(k +h∨) ≥ 0 combined with (11.15) force
m = 1/2 and γ = −ξ . Taking this fact for granted, (11.29) reads

−2(ν + ρ�|ξ) + h∨ − 1 ≥ −2(ξ |ν),

which holds by (11.18) and (11.19).
To prove our claim, assume that there is m > 1/2 such that

k ≥ 1− 2mh∨ − 2(ξ |ν) − 2(ν + ρ�|γ )

2m − 1
,
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or

k + h∨
2 ≥ 2− (2m + 1)h∨ − 4(ξ |ν) − 4(ν + ρ�|γ )

2(2m − 1)
.

Taking (11.15) into account, we are done if we prove that

2− (2m + 1)h∨ − 4(ξ |ν) − 4(ν + ρ�|γ )

2(2m − 1)
> (ν + ξ |θi ) + h̄∨i

2 . (11.30)

We have

L. H. S. of (11.30) ≥ 2− (2m + 1)h∨ − 4(ξ |ν) − 4(ν|γ ) + 2(h∨ − 1)

2(2m − 1)

= − h∨
2 +

−4(ξ |ν) − 4(ν|γ )

2(2m − 1)
≥ − h∨

2 ≥ h̄∨i
2 ≥ (ν + ξ |θi ) + h̄∨i

2 .

(11.31)

The next to last inequality in (11.31) follows from Table 2; more precisely, the strict
inequality holds in all cases except for spo(2|3). The last inequality in (11.31) uses that
(ν + ξ |θi ) ≤ 0. For g = spo(2|3) the last inequality in (11.31) is strict, hence (11.30) is
proven in all cases.

Hence we have necessarily m = 1/2 in (11.29). We now prove that if

2(ν + ρ�|γ ) + (k + h∨) ≥ 0, (11.32)

(k + 1) − 2(ξ |ν) ≥ 0, (11.33)

hold, then (11.15) implies γ = −ξ . We proceed case by case.

• g = psl(2|2) or spo(2|3). Since γ ∈ {0,±ξ}, relation (11.32) forces γ = −ξ .
• g = spo(2|m), m > 4. In this case ν = ∑i niεi , n1 ≥ n2 ≥ . . . ≥ 0, γ =
±εi , ρ� =∑i (

m
2 − i)εi , ξ = ε1. Then (11.32) reads

2

(
∑

i

(ni + m
2 − i)| ± ε j

)

+ k + 2− m
2 ≥ 0,

or

∓(n j + m
2 − j) + k + 2− m

2 ≥ 0.

Since k + 2− m
2 ≤ 0, we have

n j − j + k + 2 ≥ 0.

By (11.15)

k ≤ − 1
2n1 − 1

2n2 − 1,

therefore

0 ≤ n j − j + k + 2 ≤ − 1
2n1 − 1

2n2 + n j − j + 1.

This relation can be written as

0 ≤ n j−n1
2 +

n j−n2
2 − j + 1,

which holds only if j = 1, since the n j are non-increasing half integers. If j = 1
then γ = −ε1 = −ξ .
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• g = D(2, 1; a). In this case ν = rε2 + sε3, r, s ∈ Z+, γ = ±ε2 ± ε3, ρ� =
ε2 + ε3, ξ = ε2 + ε3, and in this case (11.32) becomes

2((r + 1)ε2 + (s + 1)ε3| ± ε2 ± ε3) + k ≥ 0,

which gives

∓ (r + 1) ∓ (s + 1)a + (1 + a)k ≥ 0. (11.34)

Condition (11.15) is

k ≤ ((r + 1)ε2 + (s + 1)ε3|2ε2) − 1
1+a , k ≤ ((r + 1)ε2 + (s + 1)ε3|2ε3) − a

1+a ,

or

(1 + a)k ≤ −(r + 2), (1 + a)k ≤ −(s + 2)a. (11.35)

The only possibility to fulfill (11.34) and (11.35) at the same time is to take γ =
−ε2 − ε3 = −ξ .

• g = F(4). In this case ν = n1ε1 + n2ε2 + n3ε3, n1 ≥ n2 ≥ n3 ≥ 0, ρ� =
5
2ε1 + 3

2ε2 + 1
2ε3, γ = 1

2 (±ε1 ± ε2 ± ε3), ξ = 1
2 (ε1 + ε2 + ε3). Then (11.32) reads

− 2
3 (±(n1 + 5

2 ) ± (n2 + 3
2 ) ± (n3 + 1

2 )) + k − 2 ≥ 0. (11.36)

By (11.15) we have

k ≤ − 2
3 (n1 + n2) − 4

3 . (11.37)

Write now (11.36) using (11.37)

0 ≤ − 2
3 (±(n1 + 5

2 ) ± (n2 + 3
2 ) ± (n3 + 1

2 )) + k − 2

≤ − 2
3 (±(n1 + 5

2 ) ± (n2 + 3
2 ) ± (n3 + 1

2 )) − 2
3 (n1 + n2) − 10

3

≤ − 2
3 (±n1 − 5

2 ± n2 − 3
2 ± n3 − 1

2 ) − 2
3 (n1 + n2) − 10

3

= − 2
3 (±n1 ± n2) − 2

3 (n1 + n2 ± n3) − 1
3 .

This inequality holds if and only if the minus sign is taken in all occurrences of ±,
i.e. γ = −ξ .

• g = G(3). In this case ν = m(ε1 + ε2) + n(ε1 + 2ε2), m, n ∈ Z+, γ ∈
{0,±ε1,±ε2,±(ε1 + ε2)}, ρ� = 2ε1 + 3ε2, ξ = ε1 + ε2. Then (11.32) reads

2((m + n + 2)ε1 + (m + 2n + 3)ε2|γ ) + k − 3
2 ≥ 0. (11.38)

and we can confine ourselves to consider γ ∈ {−ε1,−ε2,−ε1−ε2}. The inequalities
corresponding to γ = −ε1, γ = −ε2 are

k + m
2 − 1 ≥ 0, (11.39)

k + m+3n+1
2 ≥ 0, (11.40)

respectively. Relation (11.41) gives

k ≤ ((m + n + 1)ε1 + (m + 2n + 1)ε2|ε1 + 2ε2) − 3
4 .
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or

k ≤ − 3
4 (m + 2n) − 3

2 (11.41)

Substituting (11.39), (11.40), into (11.41) we obtain

0 ≤ k + m
2 − 1 ≤ − 1

4m − 3
2n − 5

2 , (11.42)

0 ≤ k + m+3n+1
2 ≤ −m

4 − 1, (11.43)

respectively. Inequalities (11.42), (11.43) are never verified. Once again we conclude
that γ = −ξ .

��
Let H0 denote the quantum Hamiltonian reduction functor, from the category O of ĝ-
modules of level k to the category of Wk

min(g)-modules. Recall that, for a ĝ-module M ,
H0(M) is the zeroth homology of the complex (M ⊗ F(g, x, f ), d0) defined in [18].
Recall that the functor H0 maps Verma modules to Verma modules [20, Theorem 6.3]
and it is exact [2, Corollary 6.7.3]. By [20, Lemma 7.3 (b)], if M is a highest weight
module over ĝ of highest weight � ∈ ĥ

∗
, H0(M) is either zero or a highest weight

module over Wk
min(g) of highest weight (ν, 
) with

ν = �|h� , 
 = (�|� + 2ρ̂)

2(k + h∨)
− �(x + d). (11.44)

Remark 11.7. Let L(�) denote the irreducible ĝ-module of highest weight � ∈ ĥ
∗
. By

Arakawa’s theorem [2, Main Theorem] H0(L(�)) is either irreducible or zero, and it
is zero if and only if (�|α0) = n

2 (α0|α0), n ∈ Z+. In particular, if (11.5) holds, then
H0(M (̂νh)) is a non-zero highest weight module of highest weight (ν, 
(h)), where


(h) = (̂νh |̂νh + 2ρ̂)

2(k + h∨)
− h. (11.45)

For � ∈ ĥ
∗
, by a slight abuse of notation, we set MW (�) = H0(M(�)), where

M(�) is the Verma module over ĝ of highest weight�. Note that MW (�) = MW (ν, 
),
where ν, 
 are given by (11.44).

From now on we assume

• k is in the unitarity range;
• ν ∈ P+

k ;• 
(h) ∈ R.

Lemma 11.8. Let h, h′ be the solutions of the equation 
(h) = 
0. If (̂νh + ρ̂|δ−θ) = n,
n ∈ N, then (̂νh′ + ρ̂|δ − θ) /∈ N.

Proof. Recalling that


(h) = (̂νh |̂νh + 2ρ̂)

2(k + h∨)
− h = (ν|ν + 2ρ�)

2(k + h∨)
+
h(h − k − 1)

k + h∨

we see that h′ = k + 1− h. If (̂νh + ρ̂|δ − θ) = n ∈ N, then

((k + h∨)�0 + hθ + ν + ρ|δ − θ) = k + 1− 2h = n,

hence h = (k + 1− n)/2 and h′ = (k + n + 1)/2 so that

(̂νh′ + ρ̂|δ − θ) = k + 1− 2h′ = −n.

��



V. G. Kac, P. Möseneder Frajria, P. Papi

Theorem 11.9. If 
(h) > A(k, ν), then H0(M (̂νh)) is an irreducible Wk
min(g)-module

and its character is

ch H0(M (̂νh)) =
∑

w∈Ŵ �

det (w)ch MW (w.̂νh). (11.46)

Proof. If 
(h) > A(k, ν), then, by Lemma 11.6


(h) �= hn,εm(k, ν) and 
(h) �= hm,γ (k, ν). (11.47)

By [20, Lemma 7.3 (c)], (11.47) implies that (̂νh + ρ̂|α) �= n
2 (α|α) for all α ∈ �̂+ \

(�̂+(g�) ∪ {δ − θ}). By exchanging h and h′ if h ∈ N and applying Lemma 11.8, we
find that one can choose h so that (11.5) is satisfied. Hence, by Propositions 8.8 and
11.5, M (̂νh) is irreducible. By Remark 11.7, H0(M (̂νh)) is irreducible and non-zero. On
the other hand, by Theorem 6.2 of [20], we find that H j ((M (̂νh) ⊗ F(g, x, f ))) = 0
if j �= 0. Thus, using Euler-Poincaré character, the fact that H0 maps Verma modules
over ĝ to Verma modules overWk

min(g), and (ii) in Proposition 11.5, we find that (11.46)
holds. ��
Recall fromSect. 6 theHeisenberg algebraH. Let y be an indeterminate.Define an action
of H0 = Ca + CK on C[y] by letting K act as the identity and a act by multiplication
by y. Let M(y) be the corresponding Verma module. This module can be regarded as a
V 1(Ca)-module by means of the field Y (a, z) defined by setting, for m ∈ M(y),

Y (a, z)m =
∑

j∈Z
(τ j ⊗ a) · m z− j−1.

Note also that M(y) is free over C[y] with basis
{(τ− j1 ⊗ a)i1 · · · (τ− jr ⊗ a)ir (1⊗ 1) | j1 > · · · > jr > 0}. (11.48)

Recall from Sect. 9 the free field realization � : Wk
min(g) → Vk = V 1(Ca) ⊗

V αk (g�) ⊗ F(g1/2). If ν ∈ P+
k is not extremal, recall that we denoted by L�(ν) the

integrable V αk (g�)-module of highest weight ν. We also let vν be a highest weight
vector of L�(ν). Then

M(y) ⊗ L�(ν) ⊗ F(g1/2)

is a Vk-module, hence, by means of �, a Wk
min(g)-module. Set

N (y, ν) = �(Wk
min(g)) · (1⊗ C[y] ⊗ vν ⊗ 1) ⊂ M(y) ⊗ L�(ν) ⊗ F(g1/2).

Since M(y)⊗ L�(ν)⊗ F(g1/2) is free as a C[y]-module, N (y, ν) is also free. If μ ∈ C,
set also

N (μ, ν) = (C[y]/(y − μ)) ⊗C[y] N (y, ν).

By construction N (μ, ν) is clearly a highest weight module for Wk
min(g). As shown

in Sect. 10, its highest weight is (ν, 
0) with


0 = 1
2μ2 − skμ +

(ν|ν + 2ρ�)

2(k + h∨)
.

Since we are looking for unitary representations, we will always assume that 
0 ∈ R.
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Lemma 11.10. If 
0 > A(k, ν) then N (μ, ν) is an irreducible Wk
min(g)-module.

Proof. Choose h ∈ C such that 
0 = 
(h). By Theorem 11.9, H0(M (̂νh)) is an ir-
reducible Wk

min(g)-module, hence there is an onto map N (μ, ν) → H0(M (̂νh)) =
LW (
0, ν). If 
0  0, by the proof of Proposition 10.2, N (μ, ν) = LW (
0, ν). Observe
that, since 
0 > A(k, ν), by Lemma 11.6, relations (11.5) hold for our chosen h. It
follows from (11.46) that

ch N (μ, ν) =
∑

w∈Ŵ �

det (w)ch MW (w.̂νh) for 
0  0. (11.49)

By (11.44), the highest weight of MW (w.̂νh) is (ν(w, h), 
0(w, h)) where

ν(w, h) = (w.̂νh)|h� , 
0(w, h) = ‖w(̂νh + ρ̂)‖2 − ‖ρ̂‖2
2(k + h∨)

− (w.̂νh)(x + d).

Since w ∈ Ŵ �, (w.̂νh)(x) = h and (w.̂νh)(d) as well as ν(w, h) do not depend on h.
We can therefore write


0(w, h) = ‖w(̂νh + ρ̂)‖2 − ‖ρ̂‖2
2(k + h∨)

− (w.̂ν0)(d) − h

= ‖(̂ν0 + ρ̂)‖2 − ‖ρ̂‖2
2(k + h∨)

− (w.̂ν0)(d + x) +
‖(̂νh + ρ̂)‖2 − ‖̂ν0 + ρ̂‖2

2(k + h∨)
− h

= ‖w(̂ν0 + ρ̂)‖2 − ‖ρ̂‖2
2(k + h∨)

− (w.̂ν0)(d + x) +
2h2 + (h∨ − 1)h

2(k + h∨)
− h

= 
0(w, 0) +
2h2 + (h∨ − 1)h

2(k + h∨)
− h.

It follows that

ch MW (w.̂νh) = ch MW (w.̂ν0)e
(0,

2h2+(h∨−1)h
2(k+h∨)

−h)

and

∑

w∈Ŵ �

det (w)ch MW (w.̂νh) =
⎛

⎝
∑

w∈Ŵ �

det (w)ch MW (w.̂ν0)

⎞

⎠ e
(0,

2h2+(h∨−1)h
2(k+h∨)

−h)
.

(11.50)

In particular, if 
0  0, then

ch N (μ, ν) =
⎛

⎝
∑

w∈Ŵ �

det (w)ch MW (w.̂ν0)

⎞

⎠ e
(0,

2h2+(h∨−1)h
2(k+h∨)

−h)
.

Since N (y, ν) is a freeC[y]-module, the dimensions of the weight spaces of N (μ, ν) do
not depend onμ. By (11.50), the coefficents of both sides of (11.49) do not depend onμ.
It follows that (11.49) holds for all μ. In particular, if 
0 > A(k, ν), by Theorem 11.9,

ch N (μ, ν) = ch H0(M (̂νh)),

hence N (μ, ν) � H0(M (̂νh)) is irreducible. ��
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The lowest energy space of N (μ, ν) is 1 ⊗ 1 ⊗ V �(ν) ⊗ 1 with L0 acting by mul-
tiplication by 
0. This space admits a ω-invariant Hermitian form hence there exists a
φ-invariant Hermitian form H(·, ·) on N (μ, ν).

If ζ̂ (y) ∈ HomC[y](C[y] ⊗ ĥ,C[y]) is a weight of N (y, ν), fix a basis Bζ̂ (y)

of N (y, ν)̂ζ (y). Set ζ̂ = ζ̂ (μ). Then 1 ⊗ Bζ̂ (y) gives a basis Bζ̂ of N (μ, ν)̂ζ =
(C[y]/(y − μ)) ⊗C[y] N (y, ν)̂ζ (y). Let det̂ζ (
0) be the determinant of the matrix in
this basis of the Hermitian form H(·, ·) restricted to N (μ, ν)̂ζ . Note that det̂ζ (
0) is a
polynomial in 
0.

End of proof of Theorem 11.1 and Corollary 11.2. We may assume that the level is not
collapsing, so that Mi (k) +χi ∈ Z+ by Remark 7.5. Then, by Proposition 10.2, the Her-
mitian form on LW (ν, 
0) is positive definite for 
0  0. By Lemma 11.10, N (μ, ν) =
LW (ν, 
0) if 
0 = 1

2μ2− skμ+ (ν|ν+2ρ�)
2(k+h∨)

> A(k, ν), hence det̂ζ (
0) �= 0 for all weights

ζ̂ of N (μ, ν). It follows that the Hermitian form is positive definite for 
0 > A(k, ν),
hence positive semidefinite for 
0 = A(k, ν).

Corollary 11.2 follows from Proposition 8.10 and Theorem 11.1 in the case ν = 0,
since A(k, 0) = 0, and Remark 7.5. ��

12. Explicit Necessary Conditions and Sufficient Conditions of Unitarity

Looking for the pairs (ν, 
0), ν ∈ P̂+
k , 
0 ∈ R, such that LW (ν, 
0) is a unitary

Wk
min(g)-module for k in the unitarity range, we rewrite for each case (excluding the

trivial case (1)) the conditions in terms of the parameters Mi = Mi (k) from Table 2.
Namely, we provide the necessary and sufficient conditions of unitarity of LW (ν, 
0)

for a non-extremal weight ν, given by Theorem 11.1, and the necessary condition of
unitarity for an extremal weight ν, given by Proposition 8.8. We also provide explicit
expressions for the cocycle αk and the central charge c of L . Recall the invariant bilinear
form (.|.)�i on g

�
i , introduced in Sect. 7.

12.1. psl(2|2). In this case g� = sl(2), M1 ∈ N and αk = (M1 − 1)( . | . )�1. If ν =
rθ1/2, with r ∈ Z≥0 (i.e. ν is dominant integral), and r ≤ M1 − 1, then the necessary
and sufficient condition for unitarity is


0 ≥ r

2
.

If r = M1, then then necessary condition is 
0 = M1/2.
The central charge is c = −6(k + 1) = 6M1.

12.2. spo(2|3). In this case g� = sl(2), M1 ∈ N and αk = (M1 − 2)( . | . )�1. If
ν = rθ1/2 = rα/2, with r ∈ Z≥0, r ≤ M1 − 2, then the necessary and sufficient
condition for unitarity is


0 ≥ r

4
.

If M1 − 1 ≤ r ≤ M1, then then necessary condition is 
0 = r/4.
The central charge is c = −6k − 7

2 = 3
2M1 − 1

2 .
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12.3. spo(2|m), m > 4. In this case g� = so(m), M1 ∈ N and αk = (M1 − 1)( . | . )�1.
If ν is dominant integral, ν(θ∨1 ) ≤ M1 − 1, then the necessary and sufficient condition
for unitarity is


0 ≥ (ν|ν + 2ρ�)�

2(M1 + m − 3)
+
r(M1 − r − 1)

2(m + M1 − 3)
= − (ν|ν + 2ρ�)� − r(2k + r + 2)

2(2k − m + 4)
, (12.1)

where r = (ω1|ν)�, andω1 is the highest weight of the standard representation of so(m).
If ν(θ∨1 ) = M1, the necessary condition is that equality must hold in (12.1).

The central charge is c = M1
(
m2+6M1−10

)

2(m+M1−3) = − (2k+1)
(
12k−m2+16

)

4k−2m+8 .

12.4. D(2, 1; m
n ), m, n ∈ N, m, n coprime. In this case g� = g

�
1 ⊕ g

�
2 with g

�
i � sl(2),

and

αk(b, c) = (Mi (k) − 1)(b|c)�i if b, c ∈ g
�
i .

If ν = r1
2 θ1 +

r2
2 θ2 is dominant integral with ri ≤ Mi (k) − 1, then the necessary and

sufficient condition for unitarity is


0 ≥ 2(M1 + 1)r2 + 2(M2 + 1)r1 + (r1 − r2)2

4(M1 + M2 + 2)
= 2(a + 1)k(ar2 + r1) − a(r1 − r2)2

4(a + 1)2k
(12.2)

If ri = Mi for some i , then the necessary condition is that equality must hold in (12.2).
The central charge is c = 6 (M1+1)(M2+1)

M1+M2+2
− 3 = −3(1 + 2k).

12.5. F(4). In this case g� = so(7), M1 ∈ N and αk = (M1 − 1)( . | . )�. If ν(θ∨1 ) ≤
M1 − 1, then the necessary and sufficient condition for unitarity is


0 ≥ r1(M1 + 7) + r2(M1 + 4) + r3(M1 + 1) + r21 + r22 + r23 − r1r2 − r1r3 − r2r3
3(M1 + 4)

= r1(6− 3
2k) + r2(3− 3

2k) + r3(− 3
2k) + r21 + r22 + r23 − r1r2 − r1r3 − r2r3

3(3− 3
2k)

,

(12.3)

where we write ν = r1ε1 + r2ε2 + r3ε3 with εi as in Table 1. If ν(θ∨1 ) = M1, then the
necessary condition is that equality must hold in (12.3).

The central charge is c = 2M1(2M1+11)
M1+4

= − 2(k−3)(3k+2)
k−2 .
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12.6. G(3). In this caseg� = G2,M1 ∈ N andαk = (M1−1)( . | . )�. If ν(θ∨1 ) ≤ M1−1,
then the necessary and sufficient condition for unitarity is


0 ≥ r1(3M1 + 1) + r2(3M1 + 7) + 3(r1 − r2)2

12(M1 + 3)

= r1(−2− 4k) + r2(4− 4k) + 3(r1 − r2)2

8(3− 2k)
, (12.4)

where we write ν = r1ε1 + r2ε2 with εi as in Table 1. If ν(θ∨1 ) = M1, then the necessary
condition is that equality must hold in (12.4).
The central charge is c = M1(9M1+31)

2(M1+3)
= −24k2+26k+33

4k−6 .

13. Unitarity for Extremal Modules Over the N = 3, N = 4 and big N = 4
Superconformal Algebras

A module LW (ν, 
0) for Wk
min(g) is called extremal if the weight ν is extremal (see

Definition 8.7). In this section we give a partial solution of Conjecture 2 for some g.
Namely, g will be either spo(2|3), or psl(2|2), or D(2, 1; a), so that Wk

min(g) is related
to the N = 3, N = 4 and big N = 4 superconformal algebra, respectively. Recall from
[20, Section 8] that in these cases, up to adding a suitable number of bosons and fermions,
it is always possible to make the λ-brackets between the generating fields linear, hence
the span of their Fourier coefficients gets endowed with a Lie superalgebra structure,
called the N = 3, N = 4 and big N = 4 superconformal algebra respectively.

Recall that, by Proposition 8.8, for each extremal weight ν there is at most one 
0 for
which the extremal module LW (ν, 
0) is unitary, hence for each extremal ν it suffices
to construct one such unitary module.

13.1. g = spo(2|3). ConsiderWk
min(spo(2|3)) and theLie conformal superalgebra R =

(C[∂] ⊗ a) ⊕ CK , where a is an 8-dimensional superspace with basis
L̃, G̃±, G̃0, J±, J 0, �, where L̃, J±, J 0 are even and G̃±, G̃0, � are odd, and the fol-
lowing λ-brackets

[J0λG̃
0] = −2λ� , [J+λG̃

−] = −2G̃0 + 2λ� , [J−λG̃
+] = G̃0 + λ� , [G̃±

λG̃
±] = 0 ,

[G̃+
λG̃

−] = L̃ + 1
4 (∂ + 2λ)J0 − λ2K , [G̃+

λG̃
0] = 1

4 (∂ + 2λ)J+ , [G̃0
λG̃

0] = L̃ − λ2K ,

[G̃−
λG̃

0] = − 1
2 (∂ + 2λ)J− , [G̃+

λ�] = 1
4 J

+ , [G̃−
λ�] = 1

2 J
− , [G̃0

λ�] = − 1
4 J

0

[�λ�] = −K , [J+λ J−] = J0 − 4λK , , [J0λ J±] = ±2J±, [J0λ J0] = −8λK ,

[L̃λ L̃] = ∂ L̃ + 2λL̃ − λ3

2 K .

Furthermore G̃±, G̃0, J±, J 0, � are primary for L̃ of conformal weight 3
2 , 3

2 , 1, 1, 1
2 ,

respectively.
The N = 3 superconformal algebra Wk

N=3 is V (R)/(K − (k + 1
2 )1), where V (R)

is the universal enveloping vertex algebra of R. Let F� be the fermionic vertex algebra
generated by an odd element �, with λ-braket [�λ�] = −(k + 1

2 )1. Then there is a
conformal vertex algebra embedding

Wk
N=3 ↪→ Wk

min(spo(2|3)) ⊗ F�
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given by (cf [20, §8.5])

L̃ �→ L − 1
2k+1 : ∂�� : , G̃+ �→

√−1√
k+1/2

G+ − 1
4k+2 : J+� : ,

G̃− �→ −√−1√
k+1/2

G− − 1
2k+1 : J−� : , G̃0 �→ −√−1√

k+1/2
G0 + 1

4k+2 : J 0� : .

� �→ �, J± �→ J±, J 0 �→ J 0.

Extend the conjugate linear involution φ to Wk
min(spo(2|3))⊗ F� setting φ(�) = −�.

Recall from [16] that the unique φ-invariant Hermitian form on F� is positive definite.
Also recall that the tensor product of invariant Hermitian forms is still invariant; in
particular if we prove that LW (ν, 
0) ⊗ F� is unitary for Wk

N=3, then LW (ν, 
0) is a
unitary Wk

min(spo(2|3))-module. Recall that, for a, b ∈ V (R), the modes of a, b have a
Lie superalgebra structure given by

[ar , bs] =
∑

j∈Z+

(
�a + r − 1

j

)

(a( j)b)r+s .

Observe that the span L of L̃n, G̃±
m, G̃0

m, J±n , J 0n , �m, K , n ∈ Z,m ∈ 1
2 + Z, is a Lie

superalgebra. IfM (resp.M ′) aremodules forWk
N=3 (resp.Wk′

N=3), thenM⊗M ′ inherits

an action of L which makes M ⊗ M ′ a Wk+k′+ 12
N=3 -module. Clearly, if both M, M ′ are

unitary, then M ⊗ M ′ is unitary. The argument used in the next proposition generalizes
the one used for the oscillator representation of the Virasoro algebra in [17, §3.4].

Proposition 13.1. Let M1 = −4k−2 ∈ N. Then the extremal Wk
min(spo(2|3))-modules

LW (M1−1
2 α, M1−1

4 ), LW (M1
2 α, M1

4 ) are both unitary, where α is the simple root of g� =
sl2.

Proof. Tomake the argumentmore transparent wemake explicit the dependence on k, so
we write L(k, ν, 
0) for the Wk

min(spo(2|3))-module LW (ν, 
0). Recall that ν = rα/2.
We proceed by induction on M1. The base case M1 = 1 corresponds to the collapsing

level k = −3/4, when Wmin−3/4(spo(2|3)) = V1(sl2). Recall that V1(sl2) has only two
irreducible modules N1 and N2, which are both unitary and have highest weights ν = 0
and ν = α/2 respectively. Recall from § 12.2 that if M1 − 1 ≤ r ≤ M1, then the
necessary condition for unitarity is 
0 = M1/4. Hence N1 and N2 are L(−3/4, 0, 0) and
L(−3/4, α/2, 1/4). Set k1 = −M1+1

4 . Assume by induction that L(k1,
M1−2

2 α, M1−2
4 )

and L(k1,
M1−1

2 α, M1−1
4 ) are unitary. Then M = L(k1,

M1−2
2 α, M1−2

4 ) ⊗ F� is unitary

forWk1
N=3 and M ′ = L(−3/4, α/2, 1/4)⊗ F� is unitary forW−3/4

N=3 . Therefore M⊗M ′

is unitary forWk2
N=3, k2 = k1− 3

4 +
1
2 = −M1+1

4 − 3
4 +

1
2 = −M1

4 − 1
2 = k. In particular,

theWk
min(spo(2|3))-module generated by vM1−2

2 α,
M1−2

4
⊗ 1⊗ vα

2 ,
1
4
⊗ 1 is unitary, and

its weight is (M1−1
2 α, M1−1

4 ), as required.

Repeating this argument with L(k1,
M1−1

2 α, M1−1
4 ) ⊗ F� proves the unitarity of

L(k, M1
2 α, M1

4 ). ��
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13.2. g = psl(2|2). Wechoose stronggenerators J 0, J±,G±, Ḡ±, L forWk
min(psl(2|2))

as in [20, §8.4]. We can choose the generators so that, if φ is the almost compact invo-
lution corresponding to the real form described in Sect. 4, then

φ(L) = L , φ(J+) = −J−, φ(J 0) = −J 0, φ(G+) = Ḡ−, φ(G−) = Ḡ+. (13.1)

The λ-brackets among these generators are linear, hence their Fourier coefficients span
the N = 4 superconformal algebra. It is therefore enough to prove unitarity of the
extremal module LW (θ1/2, 1/2) at level k = −2, since all the other extremal modules
at level k < −2 are obtained by iterated tensor product of LW (θ1/2, 1/2).

The unitarity of LW (θ1/2, 1/2) is proved by constructing this module as a submodule
of a manifestly unitary module. This is achieved by using the free field realization of
W−2

min(psl(2|2)) given in [3], in terms of four bosonic fields and four fermionic fields,
which we now describe. Let F be the vertex algebra generated by four even fields
ai , 1 ≤ i ≤ 4 and four odd fields bi , 1 ≤ i ≤ 4 with λ-bracket

[aiλa j ] = δi jλ, [biλb j ] = δi j , [aiλb j ] = 0.

There is an homomorphism FFR : W−2
min(psl(2|2)) → F given by

L �→ 1
2

4∑

i=1

(: aiai : + : Tbibi :)

J+ �→ − 1
2 : b1b3 : − 1

2

√−1 : b1b4 : − 1
2

√−1 : b2b3 : +1
2 : b2b4 :

J− �→ 1
2 : b1b3 : − 1

2

√−1 : b1b4 : − 1
2

√−1 : b2b3 : − 1
2 : b2b4 :

J 0 �→ −√−1 : b1b2 : −√−1 : b3b4 :
G+ �→ 1

2 : (a1 +
√−1a2)(b3 +

√−1b4) : − 1
2 : (a3 +

√−1a4)(b1 +
√−1b2) :

G− �→ 1
2 : (a1 +

√−1a2)(b1 −√−1b2) : +1
2 : (a3 +

√−1a4)(b3 −√−1b4) :
Ḡ+ �→ 1

2 : (a1 −√−1a2)(b1 +
√−1b2) : +1

2 : (a3 −√−1a4)(b3 +
√−1b4) :

Ḡ− �→ 1
2 : (a1 −√−1a2)(b3 −√−1b4) : − 1

2 : (a3 −√−1a4)(b1 −√−1b2) :

We define a conjugate linear involution ψ on F by

ai �→ −ai , bi �→ −bi

so that, according to [16, §5.1,5.2], there is a ψ-invariant positive definite Hermitian
form HF on F . It is clear from (13.1) that ψ ◦ FFR = FFR ◦ φ. Using FFR we
can define an action of W−2

min(psl(2|2)) on F . Since HF is invariant with respect to the
conformal vector FFR(L), it follows that F is a unitary W−2

min(psl(2|2))-module. An
easy calculation shows that v = b1 +

√−1b2 is a singular vector for W−2
min(psl(2|2)),

thus v generates a unitary highest weight representation LW (ν, 
0) of W
−2
min(psl(2|2)).

Clearly FFR(L)0v = 1
2v, while J 0v = v, hence ν = 1

2θ1 and 
0 = 1
2 . This proves

that the highest weight module corresponding the extremal weight ν = 1
2θ1 is indeed

unitary.
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13.3. g = D(2, 1; m
n ). In this case we are able to prove unitarity only in the very special

case when either m = 1 of n = 1.
If n = 1, then the unitarity range is {− m

m+1N | N ∈ N}. Take N = 1 and observe that

W
− m
m+1

min (D(2, 1;m)) collapses to Vm−1(sl(2)). In this case there is only one extremal
weight ν = m−1

2 α2, which gives rise to a unitary representation since it is integrable.
The case m = 1 is dealt with in a similar way, switching the roles of α2, α3.

14. Characters of the Irreducible Unitary Wk
min(g)-Modules

Recall that, for � ∈ ĥ
∗
, we denoted by MW (�) the Verma module MW (ν, 
), where

(ν, 
) is given by (11.44). It follows from [20, (6.11)], that

ch MW (�) = eνq
FNS(q), (14.1)

where q = e(0,1) and

FNS(q) =
∞∏

n=1

∏
α∈�1/2

(1 + qn− 1
2 e−α)

(1− qn)rankg�+1
∏

α∈�
�
+
((1− qn−1e−α)(1− qneα)))

. (14.2)

In particular,

ch MW (̂νh) = eνq
(h)FNS(q), (14.3)

where 
(h) is given by (11.45).
The characters of unitary Wk

min(g)-modules LW (ν, 
0) are computed by applying
the quantum Hamiltonian reduction to the irreducible highest weight ĝ-modules L (̂νh),
where ν ∈ P+

k and 
0 = 
(h), and using the argument in the proof of Theorem 11.9,
which is based on Remark 11.7. There are two cases to consider in computation of their
characters. First, if the weight ν̂h is typical, i.e. conditions (11.5) hold, then ch L (̂νh) is
given by the R.H.S. of (11.6), by Proposition 11.5.

The second case occurs when the weight ν̂h satisfies the condition

(̂νh + ρ̂|α) = 0 for all α ∈ �1̄,

where�1̄ denotes the set of simple isotropic roots of g. Then the weight ν̂h is maximally
atypical, and L (̂νh) is integrable, hence the following formula is a special case of [7,
Formula (14)] if g �= D(2, 1; m

n ) and of [7, Section 6.1] if g = D(2, 1; m
n ) and ν = 0:

eρ̂ R ch L (̂νh) =
∑

w∈Ŵ �

det (w)w
eν̂h+ρ̂

∏
β∈�1̄

(1 + e−β)
, (14.4)

where R equals the character of the Verma module M(0) over ĝ with highest weight 0.

Theorem 14.1. Let k be in the unitary range and let ν ∈ P+
k . Let L

W (ν, 
0) be a unitary
irreducible Wk

min(g)-module. Choose h so that 
(h) = 
0 and let, as before,

ν̂h = k�0 + ν + hθ.
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(i) If 
0 > A(k, ν), then

chLW (ν, 
0) =
∑

w∈Ŵ �

det (w)chMW (w.̂νh). (14.5)

(ii) If 
0 = A(k, ν), and ν = 0 if g = D(2, 1; m
n ), then

chLW (ν, 
0) =
∑

w∈Ŵ �

∑

γ∈Z+�1̄

(−1)γ det (w)chMW (w.(̂νh − γ )), (14.6)

where �1̄ = {γ1, γ2, . . .} is the set of isotropic simple roots for g, and for γ =
n1γ1 + · · · , we write (−1)γ = (−1)n1+···.

Proof. Formula (14.5) follows from (11.46). Formula (14.6) follows from (14.4) by
applying quantum Hamiltonian reduction to the ĝ-module L (̂νh). In order to use (14.4),
write explicitly the relation 
0 = 
(h) = A(k, ν). We have

(k�0 + hθ + ν|k�0 + hθ + ν + 2h∨�0 + 2ρ)

2(k + h∨)
− h

= (ν|ν + 2ρ�)

2(k + h∨)
+

(ξ |ν)

k + h∨
((ξ |ν) − k − 1),

or

h(h − 1− k) = (ξ |ν)((ξ |ν) − k − 1).

Hence either h = (ξ |ν) or h = 1+ k− (ξ |ν). We observe that if α ∈ �1̄, then, restricted
to h�, it coincides with −ξ , hence (ξ |ν) = −(α|ν), and also (θ |α) = 1. Therefore, for
h = (ξ |ν) we have

(̂νh + ρ̂|α) = ((k + h∨)�0 + (ξ |ν)θ + ν + ρ|α) = (ξ |ν) + (α|ν) = 0.

Hence we may apply (14.4). Note that H0(L (̂νh)) �= 0 since (̂νh |α0) < 0, so that we
can apply Remark 11.7. ��
Remark 14.2. It is still an open problem whether in the case g = D(2, 1; m

n ) formula
(14.4) holds for an arbitrary ν ∈ P+

k .

Remark 14.3. For the N = 4 superconformal algebra, formula (14.5) appears, in a
different form, in [4, formula (14)], where it has been derived in a non-rigorous way.
To establish a dictionary to match the two formulas first observe that a parameter y
occurs in the formulas of [4] corresponding to an extra U (1)-symmetry that we do not
consider, hence, to compare the formulas, we set y = 1. Next recall that in this case Ŵ �

is of type A(1)
1 , hence its elements are of the form ui = s0s1 · · ·︸ ︷︷ ︸

i factors

or u′i = s1s0 · · ·︸ ︷︷ ︸
i factors

(set

u0 = u′0 = I d). In the notation of [4], the pairs (an, bn) corresponding to the α-series
(resp. β-series) in formula (12) of [4] match exactly the pairs (ν, 
) given in (11.44) for
the weight � = ui .̂νh (resp. � = u′i .̂νh). The factor FNS(θ, 1) translates precisely to
(14.3) according to the dictionary

eδ1−δ2 ↔ e
√−1θ .
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The character formula (14.6) corresponds to the formula (26) in [4] for the character of
“massless” representations. To show this, we first remark that, if γ ∈ Z+�1̄, then

MW (w.(̂νh − γ )) = MW (ν, 
),

where (ν, 
) is given by (11.44). In particular


 = (w.(̂νh − γ )|w.(̂νh − γ ) + 2ρ̂)

2(k + h∨)
− (w.(̂νh − γ ))(x + d)

= ||̂νh − γ + ρ̂||2 − ||ρ̂||2
2(k + h∨)

− (w.(̂νh − γ ))(x + d)

= ||̂νh + ρ̂||2 − ||ρ̂||2
2(k + h∨)

− w.(̂νh)(x + d) + w(γ )(x + d)

= 
(h) + (̂νh + ρ̂)(x + d) − w(̂νh + ρ̂)(x + d) + w(γ )(x + d),

hence, using formula (14.1),

ch MW (w.(̂νh − γ )) = q
(h)FNS(q)e(w.̂νh)|h�q (̂νh+ρ̂−w(̂νh+ρ̂))(x+d)e−(wγ )|h�qw(γ )(x+d),

and we obtain that

∑

γ∈Z+�1̄

(−1)γ ch MW (w.(̂νh − γ )) = q
(h)FNS(q)
e(w.(̂νh))|h�q (̂νh+ρ̂−w(̂νh+ρ̂))(x+d)

∏
α∈�1̄

(1 + e−w(α)|h�qw(α)(x+d))
.

(14.7)

Since θ is orthogonal to (̂h
�
)∗ (where ĥ� = CK + Cd + h�), we can apply the formulas

of [12, Chapter 6] to ĝ� and its Weyl group. Since, in our case, ν̂h + ρ̂ = k�0 + (h −
1
2 )θ + (r + 1

2 )η1, r ∈ 1
2Z+, we have, for m ∈ Z,

(s0s1)
m (̂νh + ρ̂) = k�0 + (h − 1

2 )θ + (r − km + 1
2 )η1 − (m(−km + 2r + 1))δ.

and, if α ∈ �1̄,

(s0s1)
m(α) = α + mδ.

Since s1 = sη1 , it follows that

((s0s1)
m .̂νh)|h� = (r − km)η1, ((s1(s0s1)

m).̂νh)|h� = −(r − km + 1)η1,

ν̂h + ρ̂ − (s0s1)
m (̂νh + ρ̂)(x + d) = ν̂h + ρ̂ − s1(s0s1)

m (̂νh + ρ̂)(x + d)

= (m(−km + 2r + 1)) = −km2 + (2r + 1)m,

and

(s0s1)
m(α)|h� = − 1

2η1, s1(s0s1)
m(α)|h� = 1

2η1,

(s0s1)
m(α)(x + d) = s1(s0s1)

m(α)(x + d) = (m + 1
2 ).

Substituting (14.7) into (14.6), recalling that M1(k) = −k − 1, we obtain

ch LW (rη1, 
0)
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= q
0FNS(q)
∑

m∈Z

(
e(r+m(M1(k)+1))η1

(1 + e
1
2 η1qm+ 1

2 )2
− e−(r+m(M1(k)+1)+1)η1

(1 + e− 1
2 η1qm+ 1

2 )2

)

qm
2(M1(k)+1)+(2r+1)m

which, under our dictionary, corresponds to formula (26) of [4] in the NS sector.
For Wk

min(spo(2|3)), formula (14.5) appears (with a non-rigorous proof) in [21, for-

mula (4.3)]. Again, in this case Ŵ � is of type A(1)
1 and its elements are of the form ui or

u′i (notation as above). The pairs (ln, hn) displayed in [21, (4.2.a),(4.2.b)], correspond-
ing to the A-series (resp. B-series), match exactly the pairs (ν, 
) given in (11.44) for
the weight � = ui .̂νh (resp. � = u′i .̂νh). The denominator FNS(q, z) in [21, (3.15.i)]
translates precisely to (14.3) according to the dictionary

eε1 ↔ z.

In the massless case, the character formula (14.6) corresponds to formula (4.6.1) in [21],
hence Theorem 14.1 provides a proof of it, since formula (14.4) holds in this case, due
to [7, Subsection 12.3].

Note added in proof: Conjecture 4 has been proved in a joint paper with Drazen
Adamović.
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