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Abstract 

This study aims to optimize supplier selection and demand allocation decisions for omni-channel 

(OC) retailers to achieve supply chain resilience under the potential disruption risks. A two-phase 

approach with resilience factors that covers three main sourcing issues (i.e., supplier evaluation, 

supplier selection, and demand allocation) is proposed to support the decision-making. In the first 

phase, we construct a five-dimensional evaluation framework for OC retailers to identify supplier 

preferences and a hybrid model that combines the best–worst method to determine the weights of 

the evaluation criteria and evidential reasoning to evaluate potential suppliers. In the second phase, 

the preferences obtained from multiple suppliers are integrated into a multi-objective mixed-integer 

linear programming model aiming to minimize expected cost and maximize total purchasing value 

and geographical segregation based on three key resilience strategies of multiple sourcing, 

geographic diversification, and local sourcing. The efficiency of the aforementioned resilience 

strategies as well as the solvability of the proposed model are then validated numerically using a 

real-world case study and various MOEAs. The outcomes could be used as a decision-making tool 

to assist OC retailers in the performance assessment and optimal demand allocation among the 

alternative suppliers by considering costs, purchase value, and resilience simultaneously. 

 

Keywords: supply chain resilience; supplier selection and demand allocation; disruption risks; 

omni-channel retailing 

 

1. Introduction 

In contemporary omni-channel retailing (OCR) businesses, retailers continuously strive to improve 

efficiency and resilience across channels (Caro et al., 2020). In particular, retailers seek strategic 

alliances within supply chains to manage the diversified daily demand and foster supply chain 

resilience (SCR) when navigating increasing supply chain complexity and various sources of 

inherent supply chain disruption risks caused by the multitude of channels (Alikhani et al., 2021). 

Some researchers have claimed that the ability to ensure product availability and mitigate disruption 

risks is dependent on efficient and effective relationships between omnichannel (OC) retailers and 

suppliers (Deloitte, 2021). Therefore, supplier selection to meet the company’s strategic goals has 

a significant role in ensuring that retailers are more competitive (Hosseini et al., 2022). 

As a traditional topic of supply chain management, supplier selection is primarily based on 

cost (Hosseini et al., 2022); however, in the era of economic globalization, modern supply chains 

now have an increased probability of disruption risks and resilience to ensure continuous operations 

must also be considered simultaneously (e.g., Namdar et al., 2018). The retail sector has a key role 

in communities’ sustainability and livability, and retailers must take responsibility for responding 

to disruptions in their entire supply chain (Solomon et al., 2021). Thus, OC retailers are required to 

fully embed the concept of resilience in supplier management to survive and grow under such 

circumstances. 

Although the importance of managing supply chain disruptions and selecting suitable suppliers 

for OC retailers has been recognized and examined in previous research, the problem has not yet 

been fully addressed. Most of the research on OCR consider the front-end of the supply chain, e.g., 

promotion and pricing, whereas there are very few studies on the back-end SCM (e.g., Kembro and 

Norrman, 2019). Existing studies have focused on supplier evaluation and selection for traditional 

retailers (e.g., Solomon et al. al., 2021) or pure online retailers (e.g., Kaushik et al., 2022) without 
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simultaneously considering the characteristics of the OC business and various potential disruption 

risks. For example, to realize the vision of “buy anywhere, ship from anywhere” in the OC system, 

suppliers face various demands from different delivery channels (e.g., delivery from a warehouse, 

delivery from a physical store, and drop-shipping) and are located in diversified geographical 

regions to connect with consumers (Cai and Lo, 2020, Melacini et al., 2018). Therefore, in the OCR 

context, when managing suppliers, retailers must consider the demand from different channels and 

the impact of geographical locations as there are considerable geographically induced differences 

in consumer behavior, supply cost, and risk events (Agrawal et al., 2022). Although previous studies 

on supplier selection have considered disruption risks (e.g., PrasannaVenkatesan and Goh, 2016) 

and resilience factors (e.g., Namdar et al., 2018), the relevant mathematical models still lack 

comprehensive investigation of OC retailers’ business process and main resilient supply strategies 

when selecting suppliers (i.e., multiple sourcing, geographical diversification and local sourcing). 

Given the research gap, our research objective is to propose a two-phase approach to examine 

the supplier selection and demand allocation (SS&DA) problem considering OC retailers in a 

context of disruption risks. Specifically, the first phase develops a supplier evaluation model for the 

OC retailer to identify supplier preference by combining the best–worst method and evidential 

reasoning (BWM-ER). The evaluation consists of five dimensions, including product and service 

quality, cost, resilience capability, human capital, and digitalization. In the second phase, since 

purchasing under disruption risks is a challenging task as it involves tradeoffs among cost, purchase 

value, and geographical segregation (GS) to reduce geographically induced disruption risks, we 

construct a multi-objective mixed-integer linear programming (MILP) model to determine the 

optimal solution for SS&DA, where multiple sourcing, geographic diversification, and local 

sourcing are the primary resilient supply strategies.  

Differently from existing SS&DA approaches, ours (i) incorporates the resilience factor, by 

considering the resilience capability in the supplier evaluation stage, and using GS as one of the 

objective functions in the optimization modeling, (ii) distinguishes disruption risks, suppliers, and 

costs according to geographical locations, (iii) captures the characteristics of the OC supply process 

(i.e., providing homogeneous products for multiple channels and allowing cross-channel delivery 

under disruption risks), and (iv) jointly models the main resilience strategies when selecting 

suppliers (i.e., multiple sourcing, geographic diversification, and local sourcing). 

The main research contributions of our study are as follows: 

 A two-phase approach is proposed to solve the SS&DA problem in OCR under disruption 

risks focusing on the front-end of the supply chain. In the first phase, we develop a supplier 

evaluation model comprising five dimensions for the OC retailer to evaluate suppliers. In the 

second phase, we formulate the SS&DA problem as a multi-objective MILP model for 

solution, which captures different types of delivery modes according to the OC paradigm, 

and different potential disruption risks and risk mitigation strategies that the OC retailers 

may adopt. 

 Geographical locations are taken into consideration, distinguishing geographically-related 

suppliers, types of disruption risks, and objectives. Specifically, we divide suppliers into 

local and regional suppliers that are located outside the retailer’s region, and model 

disruption risks at the super, regional, and local levels. Meanwhile, we include suppliers’ 

geographical segregation in the multi-objective function of the optimization model. 
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 Applying the proposed two-phase approach to solve the SS&DA problem of an OC retailer 

in China, we illustrate the application process of the proposed approach in real practice and 

provide some interesting observations. 

We organize the remainder of this paper as follows. Section 2 reviews the related literature on 

the SS&DA problem and identifies the research gap. Section 3 introduces the proposed two-phase 

approach for solving the SS&DA problem. Section 4 details the results of applying the approach to 

solve the SS&DA problem of an OC retailer in China, and Section 5 performs several test problems 

to validate the proposed model and algorithms. Finally, Section 6 concludes the paper, suggesting 

topics for future research. 

 

2. Literature review 

Our paper is primarily related to the quantitative research literature on SS&DA under the multiple 

sourcing strategy. The model developed in our paper is also related to the literature on resilience 

strategies applied by buyers when purchasing. Therefore, we review these issues, specifically those 

papers which are essential in building up our model. 

In the context of supply chain disruption management, improving SCR from the perspective 

of sourcing is critical because stable upstream supply is the key to maintaining supply chain 

continuity (e.g., Namdar et al., 2018). Diversification, in which a buyer simultaneously orders from 

multiple suppliers, is an important sourcing strategy for managing yield risk and improving 

resilience, and it has been widely studied in the literature. For example, Whitney et al. (2014) 

showed that supplier diversification was the preferred way to reduce supply chain disruption risks. 

Solomon et al. (2021) claimed that retailers can insulate themselves from deeper struggles when a 

risk event strikes by choosing multiple suppliers from different geographical areas. 

In multiple-sourcing models, the main decisions are two-fold, i.e., select the best suppliers and 

allocate the quantity of orders from each supplier (Alfares and Turnadi, 2018; Kamalahmadi and 

Parast, 2017). As the first step of SS&DA, supplier evaluation is considered as a multi-criteria 

decision-making (MCDM) problem in the literature that involves both tangible and intangible 

criteria (Ho et al., 2010). Literature studies have proposed several supplier selection criteria such as 

supply ability (e.g., response rate, lead time, and production capacity), product quality (e.g., failure 

rate), cost (e.g., procurement and logistics cost), firm development (e.g., sustainability and social 

responsibility), and resiliency criteria as a crucial capability for firms to resist disruption risks. For 

different strategic goals, decision makers have formulated corresponding evaluation criteria, and 

use suitable MCDM method to make evaluation decisions. These MCDM models involve Analytic 

Hierarchy Process (AHP) (e.g., Hamdan et al., 2017), Data Envelopment Analysis (DEA) (e.g., 

Pratap et al., 2021), Analytical Network Process (ANP) (e.g., Giannakis et al., 2020), TOPSIS and 

Fuzzy-TOPSIS (Gupta and Barua, 2017), and evidential reasoning (ER) (e.g., Hosseini et al., 2022). 

Next, the decision maker assigns the demands to the best suppliers to optimize different 

objectives subject to pertinent constraints. An extensive literature prone to consider multiple 

objectives simultaneously when finding the optimal demand allocation strategy. For example, 

Almasi et al. (2019) combined sustainable the mentioned problem with inflation, risk and 

ambiguous uncertainty and set six objective functions in the model, including total cost, economic 

score, environmental score, social score, inflation rate, and risk level. Jia et al. (2020) developed a 

robust optimization goal programming model for a steel company and optimized it considering the 

total cost, CO2 emission, and environmental objectives. Since the selection problems are recognized 
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as an assignment problem, those have the nature of integer. Also, the allocated quantity of order has 

a continuous nature, the mixed integer programming (MILP) becomes the mainstream technique. 

For example, considering supply chain systems face a variety of disruptive events, Hosseini et al. 

(2019) proposed a stochastic bi-objective MILP model to achieve both the economic and resilience 

objectives. Sontake et al. (2021) developed a MILP for SS&DA, focusing on the selection of 

transportation alternatives while delivering items. 

To solve mentioned multi-objective programming models, there are two primary approaches 

generally used to solve multi-objective programming models. The first category is based on 

aggregation, in which each objective in the original multi-objective problem is aggregated into one 

objective in a linear or nonlinear manner, such as the weighted sum approach (WSA), ε-constraint 

(Deb, 2014). The second category is optimization algorithms that employ evolutionary computation 

techniques to solve multi-objective optimization problems, such as multi-objective evolutionary 

algorithms (MOEAs). MOEA is a popular and effective approach for solving retailers’ SS&DA 

challenges because MOEAs are designed to identify multiple solutions that optimize multiple 

conflicting objectives simultaneously. By determining Pareto optimal solutions, retailers can make 

tradeoffs between different objectives and choose the best possible solutions for their specific needs. 

Therefore, to determine the supply portfolio in such an OC supply chain, this study uses the widely-

proposed MOEAs. 

As mentioned, SS&DA is essentially a multi-stage problem involving supplier evaluation, 

selection, and demand allocation. Therefore, an extensive literature tends to develop multi-phase 

methodology to address the involved issues separately. For example, PrasannaVenkatesan and Goh 

(2016) evaluated suppliers using a hybrid fuzzy AHP-fuzzy PROMETHEE and formulated a multi-

objective MILP model to find the optimal choice of suppliers and their order quantity allocation 

under disruption risk. Park et al. (2018) proposed a two-phase approach for SS&DA in which first 

the sustainable supplier regions are identified, and next the optimal DA strategy is obtained. Nasr 

et al. (2020) presented a novel two-stage fuzzy SS&DA model in a closed-loop supply chain, where 

they used fuzzy BWM for selecting the most suitable suppliers and fuzzy goal programming 

approach for solving the model. Kaur and Singh (2021) proposed a multi-stage hybrid model for 

integrated supplier segmentation, selection and order allocation considering risks and disruptions, 

where they evaluated suppliers based on DEA.  

As the question of how we can manage and control the potential supply risks to improve SCR 

is the main objective of this study, in addition to reviewing SS&DA-related technical approaches, 

the research on SS&DA under disruption risks is also our main concerns. For example, 

PrasannaVenkatesan and Goh (2016) considered three types of risk events when solving the SS&DA 

problem, including unique event, semi-super event and super event. Esmaeili-Najafabadi et al. 

(2021) considered two types of disruption risk: local disruption risks and regional disruption risks. 

Hosseini et al. (2019) assumed that suppliers are subject to a variety of random disruption risks such 

as floods, earthquakes, hurricanes, and labor strikes. Similar to the most of the previous literature, 

based on the number of supply chain members involved in a disruption, this paper classifies 

disruption risks into local, s regional, and super disruption. A super disruption event disrupts all the 

suppliers regardless of their locations, rendering them unable to deliver their committed quantities; 

a regional disruption event occurs in a specific region and causes all the suppliers in the region to 

fail, while a local disruption event occurs in the buyer’s region.  
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A major difference of our work compared with the previous SS&DA literature is that we 

perform the research in the context of OCR. The extant studies mostly focus on the manufacturing 

sector, and only little research on SS&DA is in the context of retailing. For example, Kaushik et al. 

(2022) developed seven main criteria for supplier selection for online fashion retailers, which are 

Operational Competency, Product Attribute, Logistic Warehousing, Ethics, Status, Business 

Competencies, and Versatility. In fact, SS&DA is an important purchasing issue because the 

purchasing cost often takes up a large portion of retail spending (Yoon et al., 2018). Moreover, the 

OC strategy increases the complexity of the supply process owing to the high requirement of 

integration (Adivar et al., 2019). Thus, the OC retailer's SS&DA problem is critical, yet it remains 

unsolved in the existing studies. This paper considers the demand from different channels, captures 

the characteristics of the supply process in the OCR system, that is, integrated supply across 

channels, and then constructs a two-phase approach to solve the SS&DA problem of OC retailers, 

finally uses a real case to verify the value of the proposed models. 

In terms of model development, our work mainly differs from existing research in the following 

three aspects. First, this paper comprehensively considers the following three objective functions, 

the expected total cost (ETC), the total purchasing value (TPV), and geographic segregation (GS), 

which are considered as the main objectives from the economic and resilience perspective (see Table 

1). Second, three key resilience strategies adopted by OC retailers are modeled, namely multiple 

sourcing, geographic diversification, and local sourcing (see Table 1). Particularly, although local 

suppliers are considered in the multiple sourcing context, e.g., Choi et al. (2013) considered a local 

supplier that offers a buyback contract for a fashion retail buyer, the extant literature lacks extensive 

discussion and consideration of the importance of local suppliers. Last, given the geographic 

differences in the main parameters (e.g., disruption probability, transportation cost), geographic 

location must be included in decision-making. Our consideration of geographic location is captured 

in definitions of disruption risks (i.e., local disruption, regional disruption, and super disruption) 

and suppliers' location (i.e., local suppliers, external regional suppliers). 

 

Table 1. Recent studies related to multi-objective models for addressing the SS&DA problem. 

 Involved resilience strategies Multiple objectives Solution 

 Multiple 

sourcing 

Geographic 

diversification 

Local 

sourcing 

ETC TPV GS WSA ε-constraint MOEAs 

Kabadayi and 

Dehghanimohammadabadi 

(2022) 

√   √     √ 

Rahman et al. (2022) √        √ 

Wu et al. (2022) √    √    √ 

Islam et al. (2021) √   √   √ √  

Khoshsirat et al. (2021) √   √    √  

Kaviani et al. (2020) √   √   √   

Sobhanallahi et al. (2020) √   √ √    √ 

Almasi et al. (2019) √   √   √ √  

Kellner and Utz (2019) √ √  √    √  

Moheb-Alizadeh and 

Handfield (2019) 

√   √    √  
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Salehi and Rezaei (2019) √   √     √ 

Hosseini et al. (2019) √ √  √  √  √  

Mohammed et al. (2018) √   √ √   √  

Che (2017) √   √     √ 

PrasannaVenkatesan and 

Goh (2016) 

√ √  √ √    √ 

This study √ √ √ √ √ √   √ 

 

3. The two-phase approach for supplier selection and demand allocation for OC retailers 

Figure 1 illustrates the proposed two-phase approach to solve the SS&DA problem for OC retailers. 

The first phase concerns the evaluation of the OC retailer’s suppliers, involving three steps. First, 

we determine the supplier evaluation criteria based on a comprehensive review of the OC and SCM 

literature. Then, we apply a hybrid BWM-ER method for evaluating and ranking suppliers according 

to Hosseini et al. (2022), who pointed out that BWM as an effective multi-criteria-decision-making 

method is used to determine the weight of the criteria and sub-criteria, and the ER method is 

employed to solve the potential uncertainty and the incompleteness of information about some of 

the sub-criteria. We then use BWM to determine the weights of the criteria and sub-criteria. In the 

final step, we derive supplier preferences by applying the ER method. In the second phase, we solve 

the OC retailer’s SS&DA problem by constructing a multi-objective MILP model that includes the 

preferences derived in the first phase. 

 

 

Figure 1. The two-phase approach. 

 

3.1 Phase 1: OC retailer’s supplier evaluation 

Supplier evaluation is a typical MCDM problem that includes various qualitative and quantitative 

factors. During the evaluation process, the decision maker must endeavor to reduce errors caused 

by subjective judgment and unavoidable information incompleteness. Therefore, evaluation 

methods should be flexible and versatile, with reliable and reasonable results to conduct supplier 

evaluations economically and efficiently. In this study, we combine BWM and ER methods to 

evaluate the criteria developed in the OC context based on the advantages of BWM for capturing 

experts’ opinions (Rezaei, 2015) and the effectiveness of the ER method in information aggregation 

and managing incompleteness and uncertainty. 

To identify the most suitable set of criteria for OC retailers, we first examine the literature 

regarding supplier evaluation, combined with the OC supply chain’s high requirements of timeliness, 
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flexibility, and reliability, and propose an evaluation framework that spans five dimensions of 

supplier quality, cost, resilience capability, human capital, and digitalization. These criteria were 

studied and confirmed by case company experts (Section 4). The quantitative criteria are then 

assessed using real data, and the qualitative criteria are assessed by referencing opinions expressed 

on a five-point Likert scale. The chosen criteria and brief descriptions are presented in Table 2. 
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Table 2. Related information on the main criteria and sub-criteria. 

Main criteria Reference Weight Sub-criteria Brief description Weight 

Product and 

service quality 

(PS) 

Hosseini et al. (2016); Shi et al. 

(2017); Liu et al. (2018) 

0.297 Annual revenue (PS1) Average annual revenue in the past five years 0.077 

Response rate (PS2) Proportion of timely order fulfillment after accepting the order 0.313 

Lead time (PS3) Order fulfillment cycle time from order placement to delivery 0.233 

Product quality (PS4) Product qualified rate 0.206 

Number of SKUs (PS5) Product variety that suppliers can provide 0.069 

After-sale service (PS6) After-sales service activities by suppliers that increase product value 

and enhance effective buyer–seller cooperation 

0.102 

Cost (CO) Hosseini et al. (2016); Hu et al. 

(2020); Kaushik et al. (2022) 

0.168 Unit ordering cost (CO1) Cost related to supplier order preparation, including order 

processing, acceptance, and paperwork costs 

0.083 

Unit purchasing cost (CO2) Cost incurred by purchasing products 0.657 

Unit transportation cost (CO3) In the complicated OC distribution network, transport cost is a 

crucial consideration due to various demand and delivery modes 

0.260 

Resilience 

capability (RC) 

Hosseini et al. (2016); Kurniawan 

et al. (2017); Hosseini et al. (2019) 

0.332 Diversified logistics network (RC1) Diversified logistics networks mitigate disruption risks and reduce 

the likelihood of supply failure during risk events 

0.277 

Back-up suppliers (RC2) OC retailers’ tier-one suppliers that have backup supply sources to 

absorb disruptive events and maintain continuous operations 

0.124 

Redundancy stock (RC3) Excess inventory of key products, which allows suppliers to mitigate 

disruption risks 

0.262 

Multiple transportation modes (RC4) Use of various transportation modes to fulfill product delivery 0.180 

Back-up funds (RC5) Dedicated funds to resist disruption risks 0.079 

Risk management culture (RC6) Formally embedding the consideration of risk management within 

the decision-making processes at every level 

0.080 

Human capital 

(HC) 

Flöthmann et al. (2018); Zhang et 

al. (2020); Song et al. (2020) 

0.082 Professional skills (HC1) The depth and breadth of existing professional competence, 

knowledge, and experience 

0.338 

Teamwork (HC2) This capability is important since procurement practices occur at the 

inter-firm level 

0.164 

Attitude (HC3) Employees’ positive attitude motivates a supplier to quickly restore 

damaged equipment and logistics facilities 

0.085 

OC-related experience (HC4) Suppliers with rich experience are expected to provide more quality, 

timely, and efficient products to different demand points 

0.413 

Digitalization 

(DG) 

Burnson (2018); Büyüközkan and 

Göçer (2018); Song et al. (2021) 

0.121 Visualization (DG1) The ability to achieve real-time visualization of the entire supply 

chain 

0.402 

Information sharing (DG2) The ability to collaborate and communicate more efficiently with 

supply chain partners and share operational information 

0.060 

Digital decision-making (DG3) The ability to use advanced tools to improve decision-making 

processes and subsequent product quality 

0.538 
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Introduced by Rezaei (2015), the BWM compares the best (most important) and worst (least 

important) criteria with other criteria. BWM allows designers to obtain weights with high reliability 

and consistency while inputting less information. We apply BWM to obtain the weights of the 

evaluation criteria. Referencing Kaushik et al. (2022), BWM proceeds in four steps as follows: 

(i) Identifying the best and worst criterion among the selected and finalized criteria; 

(ii) Pairwise comparisons between the best criterion and all other criteria; 

(iii) Pairwise comparisons between the other criteria and the worst criterion (scale of 1–9 here); 

(iv) Calculating the optimized weights for different criteria and sub-criteria at a reliable consistency 

level (normally, a consistency ratio < 0.1 is acceptable). 

The ER method is effective and reasonable for solving MCDM problems with uncertain 

information. Because of its powerful evidence aggregation rules, this approach is suitable for 

managing mixed criteria and incomplete information. In this study, supplier evaluation for OC 

retailers is a typical MCDM problem that includes qualitative criteria (e.g., professional skills and 

attitude) and quantitative criteria (e.g., annual revenue and response rate); therefore, we use the ER 

method to evaluate the OC retailer’s suppliers. At the firm level, the ER method is convenient and 

cost-effective as there is no specific limit to the number of experts consulted. Referencing Yang and 

Singh (1994) and Yang and Xu (2002), we apply the ER method to conduct supplier evaluation in 

three steps. 

(i) Constructing the evaluation analysis model, which includes the main criteria and sub-criteria 

shown in Table 2, in which the criteria weights are determined by the results of BWM and a 

set of evaluation grades including best, good, average, poor, worst; 

(ii) Using the ER algorithm to obtain each supplier’s distribution evaluation of each criterion, 

including the distributed scores of the main criteria according to the assessment 

value/distribution of the sub-criteria, and repeating this process at the main criteria level to 

determine the distributed score for each supplier; 

(iii) Systematically comparing and ranking the suppliers using a ranking method based on utility 

intervals, considering that there might be incompleteness or uncertainty in the assessment 

information. 

3.2 Phase 2: OC retailer SS&DA under disruption risks 

3.2.1 Problem description 

We consider an OC retailer-dominant supply chain (Figure 2). The supply chain consists of 𝑛1 +

𝑛2 suppliers 𝑖 ∈ 𝐼 = {1, … , 𝑛1, 𝑛1 + 1, … , 𝑛1 + 𝑛2}, including 𝑛1 local suppliers and 𝑛2 regional 

suppliers that are located in R geographic regions. 𝐼𝑟 is the subset of suppliers in region r, 𝑟 ∈

{1, … , 𝑅} . Moreover, there are 𝑚1 + 𝑚2 + 𝑚3  demand nodes 𝑘 ∈ 𝐾 = {1, … , 𝑚1, 𝑚1 +

1, … , 𝑚1 + 𝑚2, 𝑚1 + 𝑚2 + 1, … , 𝑚1 + 𝑚2 + 𝑚3} , including 𝑚1  nodes of warehouse delivery, 

𝑚2 nodes of physical store delivery, and 𝑚3 nodes in which end-customers prefer delivery via 

drop-shipping. The OC retailer uses warehouses, physical stores, and vendor-managed inventory to 

fulfill consumer demand. We assume that the demand for different delivery modes is known and 

independent of one another. To ensure a non-differentiated shopping experience across channels, 

suppliers provide the same products via the three delivery channels (Hübner et al., 2022). 
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Figure 2. The OC supply chain framework. 

 

We consider disruption risks due to risk events such as natural disasters, geopolitical events, 

and public health emergencies, which have strong regional attributes (PrasannaVenkatesan and Goh, 

2016). Therefore, we analyze three potential disruptions according to the size and location of the 

risk outbreak, including local disruption (with a probability of 𝑝0), regional disruption (with a 

probability of 𝑝𝑟 , 𝑟 ∈ 𝑅: 𝑟 ≥ 1), and super disruption (with a probability of 𝑝𝑠𝑢). Suppliers are of 

the all-or-nothing type, indicating that they are completely reliable in normal times or completely 

fail when disruptions happen (Esmaeili-Najafabadi et al., 2021). We assume that local and regional 

disruptions do not occur simultaneously because risk occurrences frequently have geographical 

boundaries. Moreover, in-store pick-up is not available when a local disruption occurs, and physical 

stores are considered mini fulfillment centers for fulfilling online orders (Sodhi and Tang, 2021). 

Therefore, physical store demand remains during a local disruption. In summary, four scenarios and 

their corresponding probability are as follows (notations are presented in Table 3): 

Type 1: When no disruption occurs (normal circumstances), we have: 

                       𝒫0 = (1 − 𝑝𝑠𝑢)(1 − 𝑝0) ∏ (1 − 𝑝𝑟)𝑟∈𝑅,𝑟≥1 .                       (1) 

Type 2: When a super disruption occurs, we have: 

                                𝒫1 = 𝑝𝑠𝑢.                                 (2) 

Type 3: When a regional disruption event occurs, we have: 

                     𝒫2 = (1 − 𝑝𝑠𝑢) ∏ 𝑝𝑟𝑟∈𝑠𝑡
∏ (1 − 𝑝𝑟)𝑟∉𝑠𝑡

.                    (3) 

Type 4: When a local disruption event occurs, we have: 

                            𝒫3 = (1 − 𝑝𝑠𝑢)𝑝0.                              (4) 

In this setting, the OC retailer executes flexible contracts with its suppliers in which suppliers 

can provide products over a certain percentage of the ordered quantity to manage disruption risks 

(PrasannaVenkatesan and Goh, 2016). For example, as shown in Figure 3, when no disruption 

occurs, the retailer will assign demand to three suppliers (Q1, Q2, and Q3). When supplier 3 fails due 

to a disruption, it cannot supply any products. The buyer can obtain replacement supplies from 

suppliers 1 and 2 and may face stockout if the replacement supplies are less than the original 

provisions from supplier 3 (q1 + q2 < Q3). We assume that the undisrupted suppliers will make up 

for the shortfall in the ordered units at no extra cost (Meena et al., 2011). 



12 

 

 

Figure 3. An example of procurement of replacement supplies from undisrupted suppliers. 

 

The model incorporates the following sourcing strategies to enable resilient sourcing and 

mitigate disruption risks: 

 Multiple sourcing: This approach helps reduce various supply disruption risks that firms face (e.g., 

Yousefi et al., 2021), such as strikes, natural disasters, and public health events, to maintain 

competitiveness among suppliers (Elmaghraby, 2000). 

 Geographical diversification: Sourcing from suppliers in different geographic regions is an 

effective risk mitigation strategy (Hosseini et al., 2019; Esmaeili-Najafabadi et al., 2021). For 

example, during the COVID-19 pandemic, when some regions closed their borders, a 

geographically diversified supply network could effectively disperse disruption risks. 

 Local sourcing: Local suppliers have significant advantages in terms of having lead times, meeting 

frequent low-quantity deliveries, and cultivating close cooperative relationships. In particular, 

when other areas are disrupted, local suppliers can still fulfill order deliveries. 

3.2.2 Assumptions and notation 

We propose a multi-objective MILP model that balances economic benefit, procurement value, and 

GS to determine the optimal selection of suppliers and assign demand. The multiple objectives 

include minimizing the total cost, maximizing TPV, and maximizing the distances between 

suppliers. We make the following assumptions for the model: 

(1) The OC retailer purchases a single product with no quantity discount in a single period 

(Sawik, 2022; Mohammadivojdan et al., 2022); 

(2) The demand from each channel in a planning period is known, deterministic, and stable 

(Lücker and Seifert, 2017), as physical stores can function as fulfillment centers for online orders 

during a disruption (Sodhi and Tang, 2021); 

(3) The geographical regions and capacity levels of the suppliers are known; 

(4) The fixed cost of ordering from a specific supplier is known and varies among potential 

suppliers; 

(5) Each supplier has different capacity and flexibility levels; 

(6) Warehouses and physical stores can fully accommodate the purchased products, so the 

capacity limitations of the facilities are not considered; 

(7) Inventory cost is not considered in the model because the total demand in the single 

planning period is deterministic, and the OC retailer will sell the goods as soon as the supply arrives. 

 

Table 3. Definitions of study notations. 

Symbol Meaning 
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Index 

i Supplier node i, 𝑖 ∈ 𝐼. 

k Demand node k, 𝑘 ∈ 𝐾. 

r Potential suppliers’ geographic region, 𝑟 ∈ 𝑅 = {0,1, … , 𝑅}, where r=0 is the local region. 

t Potential regional disruption scenarios 𝑡 ∈ 𝑇 = {1, … , 2𝑅 − 1}. 

Sets 

R Set of regions 𝑟 ∈ 𝑅. 

𝐼𝑟  Set of suppliers in region r, 𝑟 ∈ 𝑅, e.g., the set of potential local suppliers is 𝐼0 = {1, … , 𝑛1}. 

S Set of all subsets of regional disruption scenarios st. For example, if there are three regions (r=1, 

2, 3) outside the local region (r = 0), the set of potential scenarios 𝑆 = {𝑠1, 𝑠2, … , 𝑠7} =
{(1), (2), (3), (1,2), (1,3), (2,3), (1,2,3)}, where (∙) represents the region under disruption. The 

total number of subsets of potential regional disruption scenarios is then 2R−1. 

Parameter 

𝐷, 𝐷𝑘  Original total demand, type-1 demand of warehouse delivery k, 𝑘 ∈ 𝐾: 𝑘 ≤ 𝑚1; type-2 physical 

store delivery k, 𝑘 ∈ 𝐾: 𝑚1 < 𝑘 ≤ 𝑚1 + 𝑚2; and drop-shipping by suppliers, i.e., type-3 

demand, 𝑘 ∈ 𝐾: 𝑚1 + 𝑚2 < 𝑘 ≤ 𝑚1 + 𝑚2 + 𝑚3, 𝐷 = ∑ 𝐷𝑘
𝑚1+𝑚2+𝑚3
𝑘=1 . 

Ci The capacity of supplier i to provide products (𝑖 ∈ 𝐼: 𝑛1 < 𝑖 ≤ 𝑛1 + 𝑛2) is exogenous and does 

not depend on the order quantity. 

ai Fixed cost of ordering the products from supplier i, 𝑖 ∈ 𝐼: 𝑖 ≤ 𝑛1 + 𝑛2. 

bi The unit purchasing cost of the product from supplier i, 𝑖 ∈ 𝐼: 𝑖 ≤ 𝑛1 + 𝑛2. 

ℎ𝑖𝑘  The unit shipment cost from supplier i to demand node k (the definition of k mirrors the above) 

𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾. 

dij Shortest distance between locations of suppliers i and j, 𝑖, 𝑗 ∈ 𝐼: 𝑖 < 𝑗;  𝑖, 𝑗 ≤ 𝑛1 + 𝑛2. 

v Stockout cost per unit of unmet demand due to supplier failure. 

𝑝𝑠𝑢, 𝑝𝑟 , 𝑝0  Probability of a region r or local super disruption, respectively. Note that each region r has an 

independent disruption probability, 𝑟 ∈ 𝑅: 𝑟 ≥ 1. 

𝒫  Probability of occurrence of different types of potential scenarios (i.e., no disruption, super 

disruption, regional disruption, and local disruption). 

wi OC retailers’ preference value of supplier i 𝑖 ∈ 𝐼: 𝑖 ≤ 𝑛1 + 𝑛2 

Fi Percentage index indicating the maximum amount that the order quantity from supplier i, 𝑖 ∈
𝐼: 𝑖 ≤ 𝑛1 + 𝑛2 can be increased, 𝐹𝑖 ∈ [0,1]. 𝑚𝑖𝑛 {𝐶𝑖/𝐷, (1 + 𝐹𝑖)𝑄𝑖} refers to the maximum 

supply fraction of supplier i. 

Binary variable 

Xi Xi = 1 if supplier i is selected; Xi = 0, otherwise, 𝑖 ∈ 𝐼: 𝑖 ≤ 𝑛1 + 𝑛2 

Yij Yij= 1 if suppliers i and j are both selected; Yij = 0, otherwise, where 𝑖 < 𝑗; 𝑖, 𝑗 ≤ 𝑛1 + 𝑛2. 

Continuous variable 

𝑄𝑖𝑘  Fraction of each demand k assigned to supplier i, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑄𝑖 = ∑ 𝑄𝑖𝑘
𝑚1+𝑚2+𝑚3
𝑘=1  is the 

total demand assigned to supplier i. 

𝑞𝑖𝑘  Replacement of each demand k received from undisrupted supplier i when there are disruption 

risks; 𝑞𝑖 = ∑ 𝑞𝑖𝑘
𝑚1+𝑚2+𝑚3
𝑘=1  is the total replacement supply by an undisrupted supplier i. 

 

3.2.3 Model formulation 

Objective 1: Expected total cost 

As illustrated in Figure 4, ETC includes the fixed cost (FC), purchasing cost (PC), transport cost 

(TC), and expected stockout cost (ESC). We express the ETC as follows: 

                         ETC = FC + PC + TC + ESC,                           (5) 

where, 

                              𝐹𝐶 = ∑  
𝑛1+𝑛2
𝑖=1 𝑎𝑖𝑋𝑖,                                 (6) 

               𝑃𝐶 + 𝑇𝐶 = ∑  (
𝑛1+𝑛2

𝑖=1
∑ (𝑏𝑖 + ℎ𝑖𝑘)𝑄𝑖𝑘𝐷𝑘

𝑚1+𝑚2+𝑚3
𝑘=1 ).               (7) 

Two scenarios can cause stockout loss. One scenario is all regional suppliers fail when a super 

disruption occurs. The second scenario occurs when the available supply of the supplier(s) that do 
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not fail is lower than the allocated demand of the failed supplier(s), in which case the retailer may 

face stockout. Consequently, we express the ESC under different disruption scenarios. 

 

Figure 4. The composition of the expected total cost. 

 

Type 1: When no disruption occurs (normal circumstances), there is no possibility of stockout, and 

𝐸𝑆𝐶0 = 0. 

Type 2: When a super disruption occurs, both local and regional suppliers fail  

                                𝐸𝑆𝐶1 = 𝒫1𝐷𝑣.                                     (8) 

Type 3: When at least one regional disruption occurs, 𝑟 ∈ 𝑅: 𝑟 ≥ 1; thus, 

                   𝐸𝑆𝐶2 = ∑ 𝒫2(∑ 𝑄𝑖𝑖∈𝐼𝑟,𝑟∈𝑠𝑡
− ∑ 𝑞𝑖𝑖∈𝐼𝑟,𝑟∉𝑠𝑡

)
+2𝑅−1

𝑡=1 𝐷𝑣,                (9) 

where (𝑥)+ = 𝑚𝑎𝑥{𝑥, 0}. Noting that when some regional disruptions occur, if the replacement 

supplies from undisrupted suppliers fall short of the demands assigned to disrupted suppliers, an 

out-of-stock loss will occur. 

Type 4: When a local disruption occurs, we have 

                    𝐸𝑆𝐶3 = 𝒫3(∑ 𝑄𝑖
𝑛1
𝑖=1 − ∑ 𝑞𝑖

𝑛1+𝑛2
𝑖=𝑛1+1 )

+
𝐷𝑣.                       (10) 

Objective 2: Total purchasing value 

TPV represents the retailer’s utility function based on preferences for different suppliers that are 

obtained by supplier evaluation (Mafakheri et al., 2011). We obtain the TPV by taking the sum of 

the products of each supplier preference value and the corresponding order quantity as follows: 

                                 𝑇𝑃𝑉 = ∑  
𝑛1+𝑛2
𝑖=1 𝑤𝑖𝑄𝑖.                            (11) 

Objective 3: Geographical segregation 

To improve SCR, OC retailers must thoroughly segregate the suppliers; therefore, we use the sum 

of the distances between selected suppliers to determine the degree of GS. Notably, only when both 

suppliers i and j are selected (i.e., 𝑌𝑖𝑗 = 1) is the shortest distance (dij) meaningful (Hosseini et al., 

2019). dij is usually determined by using geographic information systems or online services such as 

Google Maps. The expression of GS is as follows: 

                          𝐺𝑆 = ∑  
𝑛1+𝑛2−1
𝑖=1

∑  
𝑛1+𝑛2
𝑗=𝑖+1 𝑌𝑖𝑗𝑑𝑖𝑗.                        (12) 

Multi-objective optimization 
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We propose a multi-objective MILP model with constraints on capacity and demand to address the 

OC retailer SS&DA problem. The multiple objectives include: (i) minimizing ETC, which satisfies 

the OC retailer’s economic benefit; (ii) maximizing TPV, which increases the OC retailer’s 

purchasing value (i.e., sourcing more products from suppliers with higher preference values); and 

(iii) maximizing GS to ensure suppliers’ GS. The multi-objective MILP model is constructed as 

follows: 

Objective functions: 

𝑀𝑖𝑛 𝐸𝑇𝐶 

𝑀𝑎𝑥 𝑇𝑃𝑉 

𝑀𝑎𝑥 𝐺𝑆 

Constraints: 

                             𝑄𝑖𝐷 ≤ 𝐶𝑖𝑋𝑖 , 𝑖 ∈ 𝐼: 𝑖 ≤ 𝑛1 + 𝑛2,                       (13) 

                                  𝑞𝑖 ≤ (𝐶𝑖/𝐷 − 𝑄𝑖)𝑋𝑖,                         (14) 

                                       𝑞𝑖 ≤ 𝐹𝑖𝑄𝑖,                             (15) 

                       ∑  
𝑛1+𝑛2
𝑖=1 𝑄𝑖𝑘 = 𝐷𝑘, 𝑘 ∈ 𝐾: 𝑘 ≤ 𝑚1 + 𝑚2 + 𝑚3,               (16) 

                                𝑄𝑖𝑘 ≥ 0, 𝑖 ∈ 𝐼: 𝑖 ≤ 𝑛1 + 𝑛2,                      (17) 

                                 𝑞𝑖𝑘 ≥ 0, 𝑖 ∈ 𝐼: 𝑖 ≤ 𝑛1 + 𝑛2,                     (18) 

              𝐼
(∑ 𝑄𝑖𝑘

𝑚1
𝑘=1 )(∑ 𝑄𝑖𝑘

𝑚1+𝑚2
𝑘=𝑚1+1 )(∑ 𝑄𝑖𝑘

𝑚1+𝑚2+𝑚3
𝑘=𝑚1+𝑚2+1 )=0)

𝑋𝑖 = 0, 𝑖 ∈ 𝐼: 𝑖 ≤ 𝑛1 + 𝑛2,        (19) 

                                𝑋𝑖 ∈ {0,1}, 𝑖 ≤ 𝑛1 + 𝑛2,                         (20) 

                              𝑌𝑖𝑗 ≤ 𝑋𝑖 , 𝑖 < 𝑗; 𝑖, 𝑗 ≤ 𝑛1 + 𝑛2,                      (21) 

                               𝑌𝑖𝑗 ≤ 𝑋𝑗 , 𝑖 < 𝑗; 𝑖, 𝑗 ≤ 𝑛1 + 𝑛2,                     (22) 

                           𝑌𝑖𝑗 ≥ 𝑋𝑖 + 𝑋𝑗 − 1, 𝑖 < 𝑗; 𝑖, 𝑗 ≤ 𝑛1 + 𝑛2.                 (23) 

Eqs. (13)–(18) represent suppliers’ capacity and demand satisfaction constraints, respectively. 

Noting that the replacement supply fraction (𝑞𝑖 ) is constrained by both supply capacity and 

maximum flexible supply, and each undisrupted supplier can offer a replacement supply that is more 

than its original allocation by an amount 𝑚𝑖𝑛{𝐶𝑖/𝐷 − 𝑄𝑖 , 𝐹𝑖𝑄𝑖}, Eq. (19) requires that each selected 

supplier must be able to satisfy all types of demand, or it will not be selected. The indicator function 

𝐼𝑥 is used, where 𝐼𝑥= 1 if x holds, otherwise it is 0, which is nonlinear. We examine linearization 

below: 

Proposition 1. The nonlinear constraint in Eq. (19) is linearized by introducing a large value M as 

follows: 

                                  𝑋𝑖 ≤ 𝑀 ∑ 𝑄𝑖𝑘
𝑚1
𝑘=1 ,                               (24) 

                                 𝑋𝑖 ≤ 𝑀 ∑ 𝑄𝑖𝑘
𝑚1+𝑚2
𝑘=𝑚1+1 ,                             (25) 

                                𝑋𝑖 ≤ 𝑀 ∑ 𝑄𝑖𝑘
𝑚1+𝑚2+𝑚3
𝑘=𝑚1+𝑚2+1 .                         (26) 

Proof. Considering similarities, we only provide proof for the constraints on 𝑄𝑖𝑘. Noting that 𝑋𝑖 ∈

{0,1} is a binary variable, 𝑄𝑖𝑘 ∈ [0,1] is the proportion of the demand that 𝐷𝑘 assigned to supplier 

i. This can be shown for all three cases that can arise in this study. 

(i) When ∑ 𝑄𝑖𝑘
𝑚1
𝑘=1 = ∑ 𝑄𝑖𝑘

𝑚1+𝑚2
𝑘=𝑚1+1 = ∑ 𝑄𝑖𝑘

𝑚1+𝑚2+𝑚3
𝑘=𝑚1+𝑚2+1 = 0, 𝑋𝑖 = 0; 

(ii) When ∑ 𝑄𝑖𝑘
𝑚1
𝑘=1 = 0, ∑ 𝑄𝑖𝑘

𝑚1+𝑚2
𝑘=𝑚1+1 = 0, or ∑ 𝑄𝑖𝑘

𝑚1+𝑚2+𝑚3
𝑘=𝑚1+𝑚2+1 = 0, supplier i cannot meet the 

three types of demand simultaneously; thus, based on Eqs. (24)–(26), 𝑋𝑖 = 0; 



16 

 

(iii) When ∑ 𝑄𝑖𝑘
𝑚1
𝑘=1 ≠ 0, ∑ 𝑄𝑖𝑘

𝑚1+𝑚2
𝑘=𝑚1+1 ≠ 0, and ∑ 𝑄𝑖𝑘

𝑚1+𝑚2+𝑚3
𝑘=𝑚1+𝑚2+1 ≠ 0, based on Eqs. (24)–(26), 

𝑋𝑖 = 1. 

According to Hosseini et al. (2019), Eqs. (21)–(23) are the constraints of Yij, which are obtained 

from the following cases: (i) when Xi = Xj = 1, Yij= 1; (ii) when Xi = 0, Xj = 1, or Xi = 1, Xj = 0, Yij= 

0; (iii) when Xi = Xj = 0, Yij= 0. 

3.2.4 Solution procedure 

The popular MOEAs to solve the multi-objective models are NSGA-II, MOPSO, and multi-

objective genetic algorithm (MOGA) (Anwar and Ahsan, 2014). Due to their adaptability and speed, 

the MOGA and NSGA-II are the most extensively used among them in many different fields. With 

the help of these algorithms, a final population with improved characteristics is produced after an 

initial population. The benefits of MOPSO, on the other hand, include being less dependent on the 

characteristics of the objective function, being able to escape from the local minimum with the right 

design, and having fewer operator settings (Alejo-Reyes et al., 2021). The key benefit of this 

technique over other global optimization algorithms is also how quickly it converges.  

Using a real-world case study as our starting point, we discuss the various performances of the 

aforementioned algorithms in the section that follows in this paper. We use MOGA to benchmark 

the numerical results and use the Taguchi method to tune the parameters of the other two algorithms 

because MATLAB R2022b includes a “gamultiobj solver”. To compare the utilized algorithms, five 

multi-objective standard measure metrics are chosen, including Number of Pareto Solution (NPS), 

Mean Ideal Distance (MID), Spread of Non-dominated Solution (SNS), Maximum Spread (MS), 

and Computational time (CPU time). It should be mentioned that these metrics are widely used in 

the literature (e.g., Maghsoudlou et al., 2016). Roghanian and Cheraghalipour (2019) provided 

extensive definitions and formulations of these metrics. 

 

4. Numerical case study based on a real company 

4.1 Case description and related parameters 

To verify the operability and effectiveness of the proposed model and solution procedure, we apply 

the model to an OC retailer in China and numerically solve the corresponding SS&DA problem 

using the retailer’s real data. Company 𝔸 is an OC retailer in China that is headquartered in Beijing. 

It sells luxury goods and personal care products from numerous brands, and its primary sources are 

mostly significant domestic and foreign distributors. Because of this, Company 𝔸 has numerous 

alternative suppliers for the same product that is marketed under the same brand. Products can be 

purchased by customers in physical stores, online, or through drop-shipping from suppliers. The 

supply chain used in the numerical study is based on a specific luxury product produced by five 

suppliers located in three regions, two local physical stores (D2 and D3), and a local warehouse (D1) 

(see Figure 5). 
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Figure 5. Arrangement of the supply chain nodes of company 𝔸. 

 

The demand node of drop-shipping by suppliers is virtualized as D4 due to the similarities in 

China’s freight rates. Following desensitization treatment, the basic parameters of each supply chain 

node are presented in Table 4, and the fixed cost of ordering the products ai (CNY/product) = 0, the 

stockout cost per unit of unmet demand is v (CNY/product) = 200. The probabilities of the three 

types of disruption risks are estimated by monitoring and identifying the key locations for 

catastrophic risks in a supply chain. Considering existing related research indicating that the 

probability of a super disruption is lower than that of a regional disruption, and local sourcing is 

more controllable and reliable than sourcing outside of the local region (PrasannaVenkatesan and 

Goh, 2016; Esmaeili-Najafabadi et al., 2021), we set 𝑝𝑠𝑢 = 0.002, 𝑝0 = 0.010, 𝑝1 =

0.015, and 𝑝2 = 0.015. We list the values for the other parameters in Tables 4 and 5. 

 

Table 4. Input parameters in the numerical study: Supplier- and demand-related data. 

 𝑛1 = 1 𝑛2 = 4 

i 1 2 3 4 5 

r r = 0 r = 1 r = 2 r = 2 r = 2 

Ci (pieces/period) 200 400 500 550 400 

bi (CNY/product) 900 1000 1500 1600 2000 

Fi (%) 10% 20% 15% 20% 15% 

wi 0.6227 0.6247 0.4870 0.3692 0.3374 

 ℎ1𝑘  ℎ2𝑘  ℎ3𝑘  ℎ4𝑘  ℎ5𝑘  

k 
𝑚1 = 1 𝐷1 = 400 15 50 60 65 80 

𝑚2 = 2 𝐷2 = 300 15 50 60 65 80 
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 𝐷3 = 200 15 50 60 65 80 

𝑚3 = 1 𝐷4 = 100 15 70 150 150 150 

 

Table 5. Input parameters in the numerical study: Distances between regional supplier locations. 

𝑑𝑖𝑗  (km) 2 3 4 5 

1 2000 7500 7800 8700 

2 -- 9000 8800 10000 

3  -- 1900 1300 

4   -- 1600 

 

4.2 Preference value obtained using the integrated BWM–ER method 

First, we invited five supply chain managers (with more than ten years of experience) in the case 

company as the expert group to evaluate the importance of each criterion and sub-criterion 

(February 7-February 9, 2022). The final result takes the experts’ average evaluation results. All 

consistency ratios are less than 0.1, confirming the reliability of the assigned weights. We present 

the results of BWM for the main criteria and sub-criteria in Table 2. 

Having determined the optimal weights for each criterion and sub-criterion, we then rank the 

suppliers using evidential reasoning. Due to the quantitative criteria included in the evaluation 

framework, we do not disclose the five suppliers’ original assessment scores to preserve 

confidentiality. We fed the evaluation criteria and the original assessment scores of the five suppliers 

into the IDS software developed by Yang and Xu (2002), which is a useful tool for supplier 

evaluation and applies the ER method for MCDM. The computation starts at the sub-criteria level 

as a stepwise process. We show the calculation results in Appendix Table A1. Notably, in our case 

study, when there is complete information on each supplier, the suppliers’ maximum and minimum 

values are equal. 

4.3 Examining Pareto optimal solutions using different MOEAs 

4.3.1 Benchmark results using the MOGA 

According to the principle of MOGA (https://ww2.mathworks.cn/help/gads/gamultiobj-

algorithm.html), We benchmark our results using “gamultiobj solver” in MATLAB R2022b on a 

DELL laptop with an Intel Core i5 processor running at 1.8 GHz with 8 GB of RAM. The default 

parameters are as follows: the population size = “500”; the mutation function = “Gaussian”; the 

number of generations = “1000”; and the function tolerance = “10-4”.  

Figure 6 shows the Pareto-frontier using the MOGA. The ETC ranges from 1,239,545 CNY to 

1,543,125 CNY, the TPV from 0.5021 to 0.5690, and the GS from 18,500 km to 58,600 km. 
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Figure 6. Pareto frontier for the numerical case study using MOGA. 

 

Regarding the demand allocation illustrated in Figure 7, the Pareto optimal results indicate that 

almost all of the total demand is assigned to local supplier 1 (approximately 20%), regional supplier 

2 (approximately 40%), and regional supplier 3 (approximately 40%). This is because of regional 

supplier 2’s lower cost, higher order flexibility, and higher preference; regional supplier 3’s higher 

supply capacity; and local supplier 1’s lowest cost. In addition, a large proportion of the type-1 

demand is allocated to regional supplier 3, followed by regional supplier 2 and local supplier 1; a 

large proportion of the type-2 demand is allocated to regional supplier 2, followed by local supplier 

1 and regional supplier 3; and the type-3 demand is allocated to regional supplier 2, followed by 

regional supplier 3 and local supplier 1. 

 

Figure 7. Demand allocation results. 
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4.3.2 Tuning the parameters of algorithms 

The Taguchi approach is used to adjust each algorithm’s parameters for maximum performance 

(Taguchi, 1986). This method was used by Taguchi, a quality advisor in Japan, to avoid performing 

numerous trials by taking into account a collection of elements based on orthogonal arrays. This 

approach attempts to maximize the impacts of the controllable features and to reduce the effects of 

the noise components by dividing the aforementioned factors into control and noise factors. The 

value of answer deviation is computed in this manner using the signal to noise ratio. In line with 

Roghanian and Cheraghalipour (2019), “the smaller is better” is used to tune the parameters of each 

method, as illustrated in the following equation: 

𝑆
𝑁⁄ = −10 × log(∑(𝑌2) 𝑛⁄ )   

where Y represents the response value and n is the number of orthogonal arrays. Furthermore, 

𝑀𝐶𝑂𝑉 = 𝑀𝐼𝐷 𝑀𝑆⁄  shows the proposed response for the Taguchi method in this study (Roghanian 

and Cheraghalipour, 2019). 

The orthogonal array is used in the Taguchi method to arrange the parameters impacting the 

process at the various levels so that a high number of decision variables can be studied with a limited 

number of experiments (Taguchi, 1986). We take into account four parameters at the three different 

levels (see Table 6) based on the literature and a trial-and-error experiment. Thus, by applying the 

Taguchi method via Minitab software, we employ the L9 orthogonal arrays (Roy, 2001). 

 

Table 6. Effective factors and levels in Taguchi method. 

Level Factor 

1 2 3 

500 300 100 Population Size 

1000 600 200 Maximum Iteration 

0.75 0.65 0.55 Mutation Rate 

0.20 0.15 0.10 Crossover Rate 

 

Based on Figure 8, the best level of the parameters can be determined as follows.  

 NSGA-II: Population Size = 500, Maximum Iteration = 1000, Mutation Rate = 0.55, Crossover 

Rate = 0.15. 

 MOPSO: Population Size = 500, Maximum Iteration = 600, Mutation Rate = 0.75, Crossover 

Rate = 0.10. 
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(a) NSGA-II (b) MOPSO 

Figure 8. Average S/N ratio levels for NSGA-II’s and MOPSO’s parameters. 

 

4.3.3 Performance of different algorithms based on the case study 

The mathematical model can be validated using actual data after fine-tuning the suggested 

algorithms. Recall that all algorithms are run on a Dell laptop with an Intel Core i5 CPU operating 

at 1.8 GHz and 8 GB of RAM using the MATLAB R2022b software. The standard measure metrics 

(see “sub-section 3.2.4”) should be used to compare the effectiveness of the various methods 

because this model contains three objective functions. To this purpose, Table 7 reports the 

comparison of the NSGA-II and MOPSO results after tuning the parameters and the benchmark 

results attained by utilizing MOGA in various dimensions. MOGA is the best in terms of CPU time, 

as can be seen from the three last columns of this table, even though its CPU time is not the best. 

Moreover, MOGA allows for obtaining superior Pareto optimal solutions (i.e., the value of min-

ETC in MOGA is the smallest and max-TPV in MOGA is the largest). Therefore, when performing 

sensitivity analysis on key parameters in the following sub-section, we mainly use the benchmark 

results obtained by MOGA. 

 

Table 7. Comparison of results using different MOEAs. 

  NSGA-II MOPSO MOGA 

Standard 

measure metric 

NPS 
(The lower value is better) 

10 14 175 

MID 
(The lower value is better) 

1.081226301 1.000775108 0.371371002 

SNS 
(The higher value is better) 

26,362.31368 8,806.185366 36,038.36843 

MS 
(The higher value is better) 

68,309.77392 33,251.71745 306,217.0009 

CPU time 
(The lower value is better) 

458s 623s 602s 

Extreme Pareto 

solutions 

Min-ETC 1,282,842 1,287,598 1,239,545 

Max-TPV 0.5506 0.5509 0.5690 

Max-GS 58,600 58,600 58,600 

Note: Best performing values are bolded. 

 

4.4 Investigating the effects of the main parameters on the objective values 

After obtaining the Pareto optimal solutions, there is the question of how uncertainty introduced 

into the key parameters changes the outcome and affects policy decisions. We select the extreme 

solutions under different objectives for analysis, including min-ETC, max-TPV, and max-GS. In 

this subsection, we select the main parameters in two categories of internal firm-related parameters 

(supplier preference and stockout cost) and external environment-related parameters (disruption 

probability and demand). 

4.4.1 Effects of firm-related parameters 

Supplier preference: We vary the preferences of different suppliers in the interval (0, 1), keeping 

other parameters constant. Although changes in supplier preference do not significantly affect the 

min-ETC and max-GS solutions, they increase the max-TPV. Contrary to PrasannaVenkatesan and 

Goh (2016), pursuing the max-TPV does not cause the suppliers located in a single region to be 
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assigned more demand but still suggests allocating demand to suppliers with cost advantages, which 

allows the OC retailer to increase TPV and reduce ETC (Appendix Figure A1). Giving higher 

preference values for suppliers with high costs increases ETC. 

Stockout cost: We varied the stockout cost per item in the interval [100, 1,000] keeping the other 

parameters constant. Changes in the stockout cost do not cause significant changes in max-TPV and 

max-GS but lead to a slight increase in the min-ETC (Figure 9). In these min-ETC solutions, local 

supplier 1, regional supplier 2, and regional supplier 3 are always selected based on relatively lower 

costs and higher preferences. There is no significant damage to TPV because the OC retailer has a 

higher preference for the three lower-cost suppliers. Therefore, we conclude that choosing local and 

regional suppliers with cost advantages can maximize TPV and alleviate the economic loss caused 

by rising stockout costs for the OC retailer. 

 

Figure 9. Effect of stockout cost on extreme solutions. 

 

4.4.2 Effects of environment-related parameters 

Disruption probability: We vary the probabilities of different disruptions’ occurrence between 0 

and 1 with an increment of 0.1, keeping other parameters constant. Increasing the occurrence 

probabilities of different types of disruption events does not affect the max-TPV and max-GS but 

increases the min-ETC (Figure 10). In addition, super disruption has the greatest negative impact 

and local disruption contributes the least. The increased risk of disruption in region 2 has a higher 

negative impact than the increased risk of disruption in region 1 because there are more suppliers 

located in region 2. Therefore, we conclude that choosing a local supplier can reduce the loss caused 

by disruptions for the OC retailer to a certain extent while selecting suppliers from different regions 

helps mitigate disruption risks. 
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Figure 10. Effects of disruption probabilities on extreme solutions. 

 

Demands: We next increase the demands at different nodes (D1, D2, D3, D4), with the original 

demand as the baseline, keeping the other parameters constant. Specifically, D1 represents type-1 

demand, D2 and D3 are type-2 demand, and D4 is type-3 demand. As shown in Appendix Figure A2, 

increasing the three types of demand raises min-ETC and decreases max-TPV. This is because as 

demand increases, considering the suppliers’ capacity constraints, partial demand must be allocated 

to less preferred suppliers, which leads to a loss in TPV. Therefore, to avoid a loss in TPV, reduce 

ETC, and geographically diversify the supply network, selecting regional suppliers with large 

supply capacity is a better choice, despite such suppliers not presenting the lowest cost. 

4.5 Extension analysis by changing the constraints 

To examine the impacts of different practices on solving the OC retailer’s SS&DA problem, we 

conduct the following extensive analysis of the numerical study, including two scenarios. (i) 

Comparing the OC supply with separated supply in the context of multi-channel retailing by 

dropping the constraint in Eq. (19) that requires suppliers to meet the needs of different channels 

simultaneously, and (ii) adding the following constraint that the proportion of the total demand 

assigned to supplier s must be no less than the minimum demand assigned to the same supplier 

(𝑄𝑖
𝑚𝑖𝑛) as follows: 

                           𝑄𝑖 ≥ 𝑄𝑖
𝑚𝑖𝑛, 𝑖 ∈ 𝐼: 𝑖 ≤ 𝑛1 + 𝑛2,                      (27) 

where 𝑄𝑖
𝑚𝑖𝑛 = 0.010 in the case study. 

The Pareto optimal solutions demonstrate that the ETC under the cross-channel separated 

supply policy is greater than that under the integrated supply policy (see Appendix Figure A3). 

Moreover, under the minimum demand assignment constraint, the optimal values of the three 

objective functions based on this numerical study do not exhibit obvious changes, nor do the optimal 

total demand assignment decisions, indicating that the optimization results obtained above are 

meaningful and reliable. 
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4.6 Main observations of the case analysis 

Referencing the results of our two-phase decision-making system using a real case study, we draw 

the following main observations, which provide managerial insights for the case company and 

similar OC retailers. 

4.6.1 Local suppliers are an important aspect of the supplier portfolio 

Retailers such as the case company usually apply multisource strategies, which enable them to 

take advantage of pricing advantages and successfully reduce the risks of supply disruption. Due to 

the complexity and variability of the external environment, professionals and researchers have 

started to pay more attention to the importance of local suppliers when implementing multiple 

sourcing (Maersk, 2020). The Kearney Foreign Direct Investment Confidence Index survey in 2018 

revealed that 89% of businesses were implementing or considering the implementation of 

localization initiatives, and roughly 40% were hiring local people or establishing production bases 

in the local market. In the presence of risk events such as geopolitical conflicts and border blockades, 

choosing local suppliers can significantly reduce supply disruptions and stable supply for OC 

retailers. As the case study shows, in terms of the local supplier with cost advantages, the Pareto 

optimal solution indicates that choosing this supplier can achieve economic benefits and promote 

GS, improving the SCR of OC retailers.  

4.6.2 Different types of demand have different tendencies towards suppliers when allocated 

Demand from a variety of sources is placed on OC retailers, including physical stores, live broadcast 

platforms, online shopping websites, and even drop-shipping from suppliers. While offline demand 

is predominantly fulfilled by physical stores, online demand is primarily met by warehouses, and 

the drop-shipping option is fulfilled by upstream suppliers (Melacini et al., 2018). Therefore, from 

the supply perspective, suppliers must send ordered goods to three demand points: warehouses, 

physical stores, and consumers who select drop-shipping. Analyzing the three demand types 

considering order size and delivery frequency reveals warehouse > physical shop > drop-shipping 

for order size and warehouse > physical store > drop-shipping for delivery frequency (Song et al., 

2020). As a result, the demand for large order sizes is more likely to be awarded to suppliers with 

extensive supply capacity, whereas high delivery frequency is more likely to be allocated to 

suppliers with a closer distance.  

4.6.3 The integrated supply strategy is more economical than its separated counterpart 

To provide a seamless cross-channel experience for customers of the OC system, retailers must be 

able to offer homogenous services across various touchpoints and channels (Cai and Lo, 2020). 

Therefore, OC retailers like Wal-Mart have begun to implement cross-channel integrated supply, 

integrating the needs of different channels so that suppliers from different sources can 

simultaneously meet demands to benefit from economies of scale and reduce increasing fixed 

ordering costs caused by multiple purchases (Hübner et al., 2022). Consistent with OC retailers’ 

practice, it demonstrates that integrated supply has certain economic benefits when seeking to meet 

various demands. Although creating an integrated purchase platform necessitates a certain level of 

cost input, the Pareto optimal solutions demonstrate that integrated supply saves 8.84% of the total 

cost on average compared with decentralized supply.  

 



25 

 

5. Further computational experiments using the MOGA 

We operate with five distinct data sets that are randomly created with the parameters listed in Table 

8 in order to show the applicability and usefulness of the proposed model for practical applications. 

The models are solved using the MOGA approach to produce Pareto optimum solutions. Table 9 

provides the computational performance and Pareto solutions for the five test problems, where the 

identifier of the test problem, the number of suppliers, the number of regions, and the disruption 

scenarios associated with each data set are presented in columns (1)–(4), respectively. Extreme 

Pareto solutions are shown in other columns. 

 

Table 8. Random data generation. 

Parameter Corresponding random distribution 

The number of suppliers (i) ∼ Uniform (3;8) 

The number of regions (r) ∼ Uniform (2;4) 

The number of demand nodes (k) 3 

𝐶𝑖  ∼ Uniform (100;400) 

𝑎𝑖  ∼ Uniform (0;50) 

𝑏𝑖  ∼ Uniform (500;1,000) 

𝐹𝑖  ∼ Uniform (0;0.5) 

𝑤𝑖  ∼ Uniform (0;1) 

ℎ𝑖𝑘  ∼ Uniform (5;100) 

𝑝  ∼ Uniform (0.05;0.5) 

𝐷𝑘  ∼ Uniform (200;1,000) 

𝑑𝑖𝑗   ∼ Uniform (100;10,000) 

v ∼ Uniform (50;200) 

 

Using the five test problems, the proposed multi-objective MILP model’s viability is further 

confirmed. These conflicts between the model's three objectives confirm that various objective 

functions cannot be optimized concurrently, which supports the use of the multi-objective 

programming approach. The results also demonstrate the importance of local suppliers for reducing 

the risk of disruption and increasing GS. 

 

Table 9. Summary of model results from differing scenarios and extreme Pareto optimal solutions. 

Test 

problem 

Number of 

suppliers 

Regions Disruption 

scenarios 

Extreme Pareto solutions 

Local Foreign Min-ETC (Xi) Max-TPV (Xi) Max-GS (Xi) 

1 7 1 1 4 
994,776 

(1,1,1,0,1,1,1) 

0.556 

(1,1,0,1,1,1,1) 

14,789 

(1,1,1,1,1,1,1) 

2 3 1 1 4 
645,458 

(1,1,1) 

0.349 

(1,1,1) 

1,454 

(1,1,1) 

3 4 1 2 6 
714,091 

(1,1,1,1) 

0.787 

(1,1,1,1) 

3,240 

(1,1,1,1) 

4 5 1 3 10 
945,258 

(1,1,1,1,1) 

0.502 

(1,1,1,1,1) 

17,987 

(1,1,1,1,1) 

5 8 1 2 6 
1,105,280 

(1,1,0,1,1,1,0) 

0.721 

(1,0,1,1,1,0,1,0) 

52,948 

(1,1,1,1,1,1,1,1) 
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6. Summary and implications 

In an increasingly dynamic environment, this paper proposes a two-phase approach to solve the 

SS&DA problem for OC retailers for navigating disruption risks for improving SCR from the 

perspective of purchasing. In the first phase, we combine BWM and the ER method to obtain the 

OC retailer’s preference values for suppliers based on a five-dimensional evaluation framework. In 

the second phase, we develop a multi-objective MILP model to determine the optimal solution for 

the SS&DA problem. By comparing different MOEAs to find the set of Pareto optimal solutions, a 

real case study and several test problems are applied to validate the proposed evaluation framework 

and multi-objective MILP models. To the best of our knowledge, this study is the first attempt to 

integrate the OC characteristics and the local sourcing strategy to solve the SS&DA problem for 

retailers. Thus, it offers the following theoretical contributions:  

(i) A two-phase approach is proposed by considering the characteristics of the OC operations, 

different resilience strategies, different types of disruption risk events, and suppliers in 

different geographical regions, providing theoretical insight for future research on 

procurement decisions in OCR. 

(ii) The proposed approach is constructed to solve three key decision-making issues of the 

SS&DA problem for OC retailers, namely supplier evaluation, selection, and demand 

allocation, in the presence of potential disruption risks. Resilience factors are considered in 

each decision-making phase, which helps to enrich the research on OCR supply chain 

management. 

(iii) The effect of geographic locations is considered comprehensively when solving the SS&DA 

problem, due to the geographic location-induced differences, such as dividing suppliers and 

disruption risks by geographical location, and using geographic segregation as one of the 

objective functions to improve SCR. 

(iv) A real-world case study is applied to test the proposed approach and provides several related 

observations, this paper offers further inquiries on the SS&DA problem beyond the 

considered exploratory case. 

In conclusion, this study offers valuable insights for practitioners, which can be summarized 

as follows. First, we provide a set of criteria for supplier evaluation in the OC context, spanning five 

practical and comprehensive dimensions of product and service quality, cost, resilience capability, 

human capital, and digitalization, and consequently obtain OC retailers’ supplier rankings by 

applying the hybrid BWM and ER methods. Second, the numerical results also reveal the 

importance of local suppliers for OC retailers, and suggest them to allocate the demand from 

different channels to suppliers in different regions to maximize the overall benefit. Third, the 

outcomes of our research can assist OC retailers’ supply chain managers to design supply networks 

that minimize not only traditional supply cost but also possible losses due to disruptive risks while 

increasing their SCR. 

Our work has some limitations that should be addressed in future work. We assumed that the 

suppliers are all-or-nothing type, i.e., completely reliable under normal conditions and completely 

fail when a risk event occurs, however, there might situations when the suppliers are still able to 

reserve partial capacity during the disruption risk. Moreover, the focus of this work is on evaluating 

the impact of those low frequency but high impact disruptive risk such as natural disasters. However, 
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other operational disruptions (e.g., bankrupt cy of suppliers, labor strike) can be investigated in 

future research. Last, when studying SS&DA issues under potential disruption risk, it is also 

worthwhile to consider the impact of demand fluctuation caused by the risk events, such as panic 

buying behavior during the COVID-19 pandemic. 
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Appendix 

Table A1 Aggregated distributed assessments of the five suppliers. 

Supplier/Expected 

utility 

Criteria Worst Poor Average Good Best 

Local supplier 1 Total score 0.00% 22.92% 29.10% 23.93% 24.04% 

(0.6227) PS 0.00% 44.71% 23.48% 0.00% 31.80% 

 CO 0.00% 0.00% 0.00% 0.00% 100.00% 

 RC 0.00% 25.49% 59.03% 15.48% 0.00% 

 HC 0.00% 0.00% 0.00% 100.00% 0.00% 

 DG 0.00% 0.00% 2.43% 97.57% 0.00% 

Regional supplier 2 Total score 1.46% 16.25% 29.74% 36.06% 16.49% 

(0.6247) PS 5.24% 0.00% 20.89% 16.25% 57.62% 

 CO 0.00% 0.00% 0.00% 96.92% 3.08% 

 RC 0.00% 48.19% 25.83% 25.97% 0.00% 

 HC 0.00% 0.00% 28.69% 71.31% 0.00% 

 DG 0.00% 0.00% 100% 0.00% 0.00% 

Regional supplier 3 Total score 16.02% 10.48% 44.17% 21.35% 7.98% 

(0.4870) PS 23.26% 0.00% 38.25% 11.49% 27.00% 

 CO 0.00% 80.59% 7.72% 7.72% 3.98% 

 RC 26.38% 0.00% 47.76% 25.86% 0.00% 

 HC 0.00% 0.00% 0.00% 100.00% 0.00% 

 DG 0.00% 0.00% 100.00% 0.00% 0.00% 

Regional supplier 4 Total score 8.35% 44.55% 40.15% 4.95% 2.00% 

(0.3692) PS 23.51% 34.53% 29.85% 6.42% 5.69% 

 CO 16.12% 64.47% 11.58% 3.86% 3.98% 

 RC 0.00% 31.44% 68.56% 0.00% 0.00% 

 HC 0.00% 0.00% 57.79% 42.21% 0.00% 

 DG 0.00% 100.00% 0.00% 0.00% 0.00% 

Regional supplier 5 Total score 28.28% 34.30% 13.64% 21.77% 2.01% 

(0.3374) PS 54.96% 21.88% 11.87% 5.98% 5.31% 

 CO 80.59% 15.43% 0.00% 0.00% 3.98% 

 RC 0.00% 46.02% 6.27% 47.71% 0.00% 

 HC 0.00% 0.00% 57.79% 42.21% 0.00% 

 DG 0.00% 64.44% 35.56% 0.00% 0.00% 

 

Table A2 The orthogonal array L9 and computational results for the NSGA-II and MOPSO. 

Run order Population Size Maximum Iteration Mutation Rate Crossover Rate NSGA-II 

response 

MOPSO 

response 

1 500 1000 0.75 0.2 0.0000152 0.0000299 

2 500 600 0.65 0.15 0.0000127 0.0000410 

3 500 200 0.55 0.1 0.0000086 0.0000259 

4 300 1000 0.65 0.1 0.0000143 0.0000397 

5 300 600 0.55 0.2 0.0000341 0.0000310 

6 300 200 0.75 0.15 0.0000142 0.0000299 

7 100 1000 0.55 0.15 0.0000145 0.0000465 

8 100 600 0.75 0.1 0.0000446 0.0000246 
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9 100 200 0.65 0.2 0.0000525 0.0000432 
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(iii) 

 
(iv) 

 
(v) 

Figure A1 Effect of preferences on ETC for maximum TPV. 
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(a) 

 

(b) 

 

(c) 

Figure A2 Effect of demand on extreme solutions. 

 

Figure A3 Integrated supply compared with separated supply. 


