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A MULTISCALE POROMECHANICS MODEL INTEGRATING
MYOCARDIAL PERFUSION AND THE EPICARDIAL CORONARY

VESSELS\ast 

NICOL\'AS ALEJANDRO BARNAFI WITTWER\dagger , SIMONE DI GREGORIO\ddagger , LUCA DEDE'\ddagger ,

PAOLO ZUNINO\ddagger , CHRISTIAN VERGARA\S , AND ALFIO QUARTERONI\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The importance of myocardial perfusion at the outset of cardiac disease remains
largely understudied. To address this topic we present a mathematical model that considers the
systemic circulation, the coronary vessels, the myocardium, and the interactions among these com-
ponents. The core of the whole model is the description of the myocardium as a multicompartment
poromechanics system. A novel decomposition of the poroelastic Helmholtz potential involved in the
poromechanics model allows for a quasi-incompressible model that adequately describes the physical
interaction among all components in the porous medium. We further provide a rigorous mathematical
analysis that gives guidelines for the choice of the Helmholtz potential. To reduce the computational
cost of our integrated model we propose decoupling the deformation of the tissue and systemic cir-
culation from the porous flow in the myocardium and coronary vessels, which allows us to apply the
model also in combination with precomputed cardiac displacements, obtained form other models or
medical imaging data. We test the methodology through the simulation of a heartbeat in healthy
conditions that replicates the systolic impediment phenomenon, which is particularly challenging to
capture as it arises from the interaction of several parts of the model.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . cardiac perfusion, nonlinear poromechanics, constitutive modeling
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1. Introduction. Cardiac perfusion is the blood supply of the heart muscle
and it involves three components. The first one is the cardiac tissue, known as my-
ocardium. The second one is the coronary vasculature, which carries blood from the
aorta to the myocardium and then to the venous system, and it is composed of two
parts: the epicardial coronary vessels, stemming from the aorta and embracing the
heart, and the myocardial coronary vessels (also known as intramural coronary ves-
sels or coronary microvasculature), carrying the blood in the tissue to the venous
system. The third component is the systemic circulation, which carries blood to the
rest of the organs. The myocardial coronary vessels present large variations of spatial
scales in the range of 10--500 \mu m [DJBBD92, FAC16] with very different mechanical
properties [AKL10a] and a complex network structure [HBRS08, LMR+10, LS12].
As a result, the pressure that drives perfusion in the coronary microvasculature
is given by the combined effects of the intravessel and intramyocardial pressures
[AKL10b].
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Mathematical models have been widely used to study this problem. The com-
plex multiscale nature of the coronary microvasculature and its interaction with
the myocardium has been mainly addressed by the use of poromechanics models
[HAvCR92, VSW97, Smi04, CGSMVC10, CLM+12, VYW15, PKJ+20], consisting in
a continuum model [Cou04] obtained by a formal averaging of the fluid porous struc-
ture (vessels) and the solid phase (myocardium) [Whi86]. This approach does not
necessitate a detailed geometric description of the vessels, which would be impossible
to obtain from medical imaging in-vivo and, in any case, computationally untractable.
A more accurate description can be given by multicompartment formulations, wherein
a scale separation procedure allows one to consider different vessel resolutions sepa-
rately (e.g., arterioles, capillaries, venules) [CLM+12, MCC+13, DGFP+20].

Epicardial coronary vessels can be modeled either in full three-dimensional (3D)
resolution [KVCC+10, DGFP+20] or by means of reduced models, which can be ei-
ther lumped (namely, 0D models) [WBDVN69, QRV01, FQV09, DK75, HS90, KCB85,
NLL+20] or 1D [BB00, HKL+09, LNN+09, NKL18]. The main advantage of 1D mod-
els with respect to 0D ones is the ability to capture wave propagation phenomena,
particularly relevant in the coronary blood dynamics [GPCP90]. Finally, systemic
circulation has been often modeled as a network of 0D elements, based on RLC el-
ements [QVV16] and Windkessel models [WLW09] considering separately the lungs
(supplied by the right ventricle) from the rest of the body [BF10, HBJ+17] (supplied
by the left ventricle).

The scope of our work is the creation of a new mathematical model of cardiac
perfusion encompassing all of the aforementioned components and their interactions,
whose layout is shown in Figure 1.1. The interaction between the intramural coronary
vessels and the heart tissue is described employing a multicompartment poromechanics
model, where each compartment is associated to a different length scale of blood
vessels. One distinctive feature of our new model is the use of a quasi-incompressible
formulation, achieved by combining the Helmholtz potential from [CLM+12] with
the thermodynamically motivated energy presented in [CM14]. This combination
yields a better representation of the underlying physics and, most importantly, the
pressure in the coronary microvasculature results as the difference between the intra-
vessel and intramyocardial pressures in each compartment. Our proposed poroelastic
Helmholtz potential presents two further advantages: (i) it enables the straightforward
use of constitutive laws already available in the literature, and (ii) it provides analytic
conditions that guarantee the existence of solutions for each of the problems within
the poromechanics model, namely, the mechanics and porous media equations.

Regarding blood flow in the epicardial coronaries, we consider a 0D model [QRV01,
FQV09], where we generalize the standard formulation to make it better suited
for arbitrary networks of vessels. Finally, we consider an additional 0D model for
the circulatory system that yields a closed loop of blood flow through the body
[RSA+20a, RSA+20b].

For the numerical approximation, we neglect the feedback of blood pressure on
both the circulatory system and the heart mechanics. This results in a one-way
coupling strategy that allows our model to be used with a prescribed myocardial
displacement obtained either by an electromechanics simulation or prescribed from
imaging techniques [CWH+16], with the additional advantage of greatly reducing
computational costs.

This paper is structured as follows: in section 2 we present the poromechanics
model for the myocardium and the novel constitutive law, in section 3 we introduce the
generalized 0D coronary vessel model, in section 4 we present the coupled perfusion
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Fig. 1.1. Description of the general layout of the integrated perfusion model and of the coupling
with the heart contraction for the application to myocardial perfusion. The row ``Electromechanics""
shows the input used by our resulting model, meaning an electromechanics simulation coupled with
a circulation model that yields the aortic pressure. The second row shows the geometry wherein the
problem is solved. We neglect the feedback of perfusion on the electromechanics, which we refer to
as the one-way coupling hypothesis (section 4.1), where aortic pressure is prescribed at the aortic
root (shown in black circles connecting the aortic pressure with the vessels in ``Heart geometry"")
and the deformation is prescribed in the myocardium (represented by the arrow connecting the PV
loop and the heart geometry). Each epicardial coronary vessel perfuses an independent perfusion
region, represented by different colors in the geometry that correspond to different vessel outlets
(section 4). The third row shows the reduced model 0D used for the epicardial coronary vessels
(section 3). ``Myocardium 3D model"" shows the multicompartment model (section 2), where the
two compartments (arteries and capillaries) interact with the muscle through their pressures (art
\rightarrow artery, cap \rightarrow capillary, and im \rightarrow intramural), and the coupling between these components is
shown in ``Coupling,"" where a simple example depicts the flow of blood from the aortic root to two
perfusion regions, where vessel 1 perfuses region \Omega 1 and vessel 2 perfuses region \Omega 2 (section 4).

model together with the one-way coupling hypothesis, and in section 5 we perform a
realistic numerical simulation to validate the proposed model.

2. Mathematical model for the myocardium and intramural coronary
vessels. In this section we propose a novel constitutive model for poromechanics.

D
ow

nl
oa

de
d 

08
/0

3/
22

 to
 8

4.
22

1.
22

8.
16

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

1170 BARNAFI WITTWER ET AL.

This is achieved by considering the energy contribution of the local volumes of the
solid [dBCD98, CM14], the fluid phases [CLM+12], and the total volume (as in quasi-
incompressible mechanics). The resulting energy yields a quasi-incompressible model
that is very convenient for numerical simulations.

2.1. Poromechanics with large deformations. We review the balance laws
for poromechanics by following [CM14]. For this, consider a reference domain \Omega 0,
deformed at time t into \Omega (t) where possibly \Omega 0 \not = \Omega (0). Deformation is given by a
map \bfitx (t) : \Omega 0 \rightarrow \Omega (t), and we use the standard notation that \bfitx := \bfity s+\bfitX , so that \bfitx 
is the current coordinate, \bfitX is the reference coordinate, and \bfity s is the displacement.
We also define the strain tensor \bfitF := \nabla \bfitX \bfity s, its determinant J := det\bfitF , and the
solid velocity \bfitv s :=

\partial \bfity s

\partial t .
Poromechanics is a mixture theory [Bow80, Bow82], which means that the domain

of interest is composed of coexisting phases. In the context of cardiac perfusion, we
consider these as a solid phase plus two fluid phases (also named compartments).
The fluid phases correspond to the different length scales of the arteries and the
capillaries. Nevertheless, the model is equally suited for an arbitrary number of fluid
compartments, so we will keep the exposition general. For example, the venous system
will be later modelled as a sink term, but it could be alternatively and more accurately
described using an additional fluid compartment. If we consider a generic number,
NC , of fluid phases (or compartments), we can formally define a fluid volume fraction

as \phi i :=
d\Omega fluidi

(t)

d\Omega (t) named porosity, where d\Omega fluidi
represents the differential volume

of compartment i, and a solid volume fraction \phi s := 1  - 
\sum NC

i=1 \phi i. These quantites
relate the phase measure to the Lebesgue measure through d\Omega fluidi

(t) = \phi id\Omega (t).
Their reference counterpart, i.e., the Lagrangian porosities given by \varphi i := J\phi i, are
the primary variables regarding mass conservation. The initial and solid Lagrangian
porosities are then given by \varphi i,0 = J0\phi i,0 and \varphi s = J  - 

\sum NC

i=1 \varphi i respectively, so we

denote with \varphi s,0 = J0  - 
\sum NC

i=1 \varphi i,0 the initial solid Lagrangian porosity.
Mass conservation. We consider a compartment i \in \{ 1, ..., NC\} , a distributed

mass source term \theta i associated to the fluid phase, and define the fluid, solid, and total
densities as \rho f,i, \rho s, and \rho := \phi s\rho s +

\sum NC

i=1 \phi i\rho f,i, respectively.
We additionally define the reference density of added mass mi in \Omega 0 as the

difference between the fluid content in current and initial configurations, mi :=
\rho f,i(\varphi i  - \varphi i,0), with which we obtain mass conservation in each compartment i as

(2.1)
dmi

dt
+ div\bfitX (\bfitW i) = \Theta i  - J

NC\sum 
j=1

\beta ij(pi  - pj) in \Omega 0,

where \Theta i := J\theta i is the reference source term for a current distributed mass source \theta i,
\bfitW i := \rho f,i\phi i\bfitV r,i is the reference flow vector, \bfitV r,i := J\bfitF  - 1(\bfitv f,i  - \bfitv s) is the reference
relative velocity, \beta ij is an intercompartment interaction coefficient, and pressure is
obtained through constitutive modeling from a Helmholtz potential \Psi as pi =

\partial \Psi 
\partial \varphi i

.
We note that the added mass density mi and Lagrangian porosity \varphi i are related by
an affine transformation, so both are valid candidates for being primary variables.
Still, the Lagrangian porosity is preferable as it is dimensionless and, as seen from the
definition of the pressure, it is also the natural thermodynamic quantity of this model.

The flow vector can be obtained from the pressure gradient through a Darcy law
by means of a permeability tensor \~\bfitk f,i, given by

(2.2) \bfitW i =  - \rho f,iJ\bfitF  - 1\~\bfitk f,i\bfitF 
 - T\nabla \bfitX pi =  - \rho f,i\bfitK f,i\nabla \bfitX pi,
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where we defined the Lagrangian permeability tensor \bfitK f,i := J\bfitF  - 1\~\bfitk f,i\bfitF 
 - T . We

consider a no-slip boundary condition, given by

\bfitW i \cdot \bfitn =  - \rho f,i\bfitK f,i\nabla \bfitX pi = 0 on \partial \Omega 0.

Conservation of momentum. We consider the standard conservation of momen-
tum in quasi-static form, given by

(2.3)  - div\bfitX \bfitP tot = 0 in \Omega 0,

where \bfitP tot is the total Piola stress tensor. In cardiac modeling, the stress tensor
considers both passive and active mechanics, so we adopt an active stress approach
[QLRRB17, AANQ11] which yields \bfitP tot = \bfitP + \bfitP a, where \bfitP a models the active
mechanics and \bfitP , obtained from constitutive modeling as \bfitP = \partial \Psi 

\partial \bfitF , models the passive
mechanics. For the boundary, we consider a Robin condition which accounts for the
friction with the pericardium and the effect of the atria at the base [ULM02]:

(2.4) \bfitP tot\bfitn + k\bot \bfitf 0 \otimes \bfitf 0\bfity s + k\| (\bfitI  - \bfitf 0 \otimes \bfitf 0)\bfity s = 0 on \partial \Omega 0,

where k\bot = 2105 Pa and k\| = 0.1 k\bot [PHW+19]. We denote it by \bfitP tot\bfitn = \bfitg (\bfity s) on
\Omega 0. The active stress term is given by a fiber-oriented force:

\bfitP a(\bfitF , t) = \gamma (t)
(\bfitF \bfitf 0)\otimes \bfitf 0

| \bfitF \bfitf 0| 
,

where | \bfitx | :=
\surd 
\bfitx \cdot \bfitx , \bfitf 0 represents a fiber orientation and \gamma , possibly also space

dependent, represents the activation of the cardiomyocites (heart muscle cells), driven
by the heart's electrophysiology. Further details on these topics can be found in
[BBPT12] and [FPS14], respectively. We note also that in (2.3) we have considered
a quasi-static formulation, which neglects the inertia term. In electromechanics, it is
well known that inertia is negligible [CCHK17], but a similar systematic analysis has
not been applied to cardiac perfusion yet.

The multicompartment model. In what follows, we consider all quantities in ref-
erence configuration and thus drop the subindex from differential operators as \nabla =
\nabla \bfitX ,div = div\bfitX . Putting everything together, the multicompartment poromechan-
ics model is given as follows: Find a displacement \bfity s and Lagrangian porosities
\bfitvarphi = (\varphi 1, ..., \varphi NC

) such that for each t > 0 it holds that

 - div(\bfitP (\bfitF ,\bfitvarphi ) + \bfitP a(\bfitF )) = 0 in \Omega 0,(2.5a)

d\varphi i
dt

 - div (\bfitK i(\bfitF )\nabla \bfitX pi(\bfitF ,\bfitvarphi ))(2.5b)

+J

NC\sum 
j=1

\beta ij(pi(\bfitF ,\bfitvarphi ) - pj(\bfitF ,\bfitvarphi )) = J\theta i in \Omega 0, \forall i \in \{ 1, ..., NC\} ,

(\bfitP + \bfitP a)\bfitn = \bfitg (\bfity s) on \partial \Omega 0,(2.5c)

\rho f,i\bfitK f,i(\bfitF )\nabla \bfitX pi \cdot \bfitn = 0 on \partial \Omega 0 \forall i \in \{ 1, ..., NC\} ,(2.5d)

\bfitvarphi (0) = \bfitvarphi 0 in \Omega 0.(2.5e)

2.2. Constitutive modeling. In nonlinear poroelasticity with incompressible
fluids, the Piola stress tensor \bfitP and the compartment pressures pi for i \in \{ 1, ..., NC\} 
are obtained from a Helmholtz potential \Psi [Cou04, CLM+12]:

(2.6) \bfitP (\bfitF ,\bfitvarphi ) =
\partial \Psi 

\partial \bfitF 
(\bfitF ,\bfitvarphi ), pi(\bfitF ,\bfitvarphi ) =

\partial \Psi 

\partial \varphi i
(\bfitF ,\bfitvarphi ).
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The main approaches for constitutive modeling in cardiac poromechanics are based
on additive splittings of the Helmholtz potential \Psi . In what follows, we present a
brief review of such models to motivate the proposal of a new one which yields fully
quasi-incompressible poromechanics, i.e., without the imposition of incompressibility
constraints on any of the phases involved.

Additive splitting with fluid porosity [CLM+12]. This approach decomposes the
energy into skeleton and fluid parts. This is achieved by considering one potential for
the solid phase \psi skel and one for each fluid compartment \psi i as

(2.7) \~\Psi A(\bfitF ,\bfitvarphi ) = \psi skel(\bfitF ) +

NC\sum 
i=1

\psi i(\varphi i),

which does not account for the interaction between the porous media and the mechan-
ics. This limitation is circumvented in [CLM+12] by the use of a Lagrange multiplier

\lambda with respect to the incompressibility of the solid phase J = J0 +
\sum NC

i=1mi/\rho f , so
the modified energy becomes

(2.8) \Psi A(\bfitF ,\bfitvarphi ) = \psi skel(\bfitF ) +

NC\sum 
i=1

\psi i(\varphi i) - \lambda 

\Biggl( 
J  - J0  - 

NC\sum 
i=1

mi/\rho f

\Biggr) 
,

which yields

\bfitP (\bfitF ,\bfitvarphi ) =
\partial \psi skel

\partial \bfitF 
(\bfitF ) - \lambda J\bfitF  - T , pi(\bfitF ,\bfitvarphi ) =

\partial \psi i
\partial \varphi i

(\varphi i) + \lambda .

This indeed allows for the recovery of the interaction between physics, but adds two
difficulties. On one side, a constrained problem results in a saddle point problem that
is in general more difficult to approximate numerically. On the other side, there is a
lack of control on \lambda from the modeling point of view which makes it difficult to model
the pressure response due to deformation. In addition, the functions \psi i are such that
lim\varphi i\rightarrow 0 \psi i(\varphi i) = \infty and so \phi i > 0 for all i \in \{ 1, ..., NC\} , but do not guarantee that\sum NC

j=1 \phi j < 1.
Additive splitting with solid porosity [CM14]. This approach, based on [dBCD98],

considers a decomposition of the energy into a skeleton part and a solid porosity part.
It reads

(2.9) \Psi B(\bfitF , \varphi ) = \psi skel(\bfitF ) + \psi s(\varphi s),

and it depends only on the solid porosity. This formulation captures the feedback of
the skeleton on the fluid and vice-versa:

(2.10) \bfitP (\bfitF ,\bfitvarphi ) =
\partial \psi skel

\partial \bfitF 
(\bfitF ) +

\partial \psi s
\partial \varphi s

(\varphi s)J\bfitF 
 - T , pi(\bfitF ,\bfitvarphi ) =  - \partial \psi s

\partial \varphi s
(\varphi s),

but it presents two drawbacks. The first one is that the pressure expression is the
same for each compartment i, and the second one is that the resulting problem is
degenerate parabolic, with no control over the single compartment. To see the last
point, we consider only mass conservation (2.18) on each compartment, with \bfitK = \bfitI ,
\rho f = 1, no compartment interaction (\beta ik = 0), and no source term (\Theta i = 0). Thus
we can recast the mass conservation in the ith compartment as

\partial \varphi i
\partial t

+ div

\biggl( 
\partial p

\partial \varphi s
\nabla \varphi s

\biggr) 
= 0,
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where we used \nabla p = \partial p
\partial \varphi s

\nabla \varphi s. If we assume that the potential \psi s is strictly convex

with \partial 2\psi s

\partial \varphi 2
s

\geq \psi 0 > 0, then by testing each equation by a test function qi in H
1
0 (\Omega 0),

denoting the L2 inner product with (\cdot , \cdot ), and focusing only on the differential operator,
we see that the problem is degenerate parabolic, as we obtain control only on the sum
of the (fluid) porosities:\Biggl( 

\partial 2\psi s
\partial \varphi 2

s

\Biggl( 
Nc\sum 
i=1

\nabla \varphi i

\Biggr) 
,

\Biggl( 
Nc\sum 
i=1

\nabla \varphi i

\Biggr) \Biggr) 
\geq \psi 0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Nc\sum 
i=1

\nabla \varphi i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(\Omega 0)

for all \varphi i \in H1(\Omega 0). In contrast to the previous model, this one yields \phi s(\varphi s) \rightarrow \infty 
as \phi s \rightarrow 1 and thus guarantees

\sum 
j=1 \phi j < 1, but it fails to enforce \phi i > 0 for all

i \in \{ 1, ..., NC\} .
In what follows we propose a new strategy for devising a poroelastic potential \Psi 

that overcomes the disadvantages of the previous ones.
New additive splitting with fluid and solid porosities. We consider a new decom-

position that combines the previous approaches:

\Psi (\bfitF ,\bfitvarphi ) =

mechanics\underbrace{}  \underbrace{}  
\psi skel(\bfitF ) + \psi s(\varphi s) +

NC\sum 
i=1

\psi i(\varphi i)\underbrace{}  \underbrace{}  
porous media

.

This gives the relations

(2.11) \bfitP (\bfitF ,\bfitvarphi ) =
\partial \psi skel

\partial \bfitF 
(\bfitF ) +

\partial \psi s(\varphi s)

\partial \varphi s
J\bfitF  - T , pi(\bfitF ,\bfitvarphi ) =

\partial \psi i
\partial \varphi i

(\varphi i) - 
\partial \psi s
\partial \varphi s

(\varphi s),

from which we highlight the following aspects:
1. The porous part \psi s +

\sum 
i \psi i acts as a double barrier potential constraining

the porosity such that 0 < \phi i for all i \in \{ 1, ..., NC\} and
\sum NC

j=1 \phi j < 1.

2. The pressure-like term \partial \psi s(\varphi s)
\partial \varphi s

J\bfitF  - T appearing in the Piola stress tensor is
driven by the pressure in the solid portion of the tissue \varphi s only.

3. The pressure acting on the blood is the difference between the one in the
compartment (luminar) and the one in the tissue (intramyocardial). It is
known as transmural pressure and is correctly captured from the proposed
potential:

pi(\bfitF ,\bfitvarphi ) =
\partial \psi i
\partial \varphi i

(\varphi i)\underbrace{}  \underbrace{}  
luminar pressure

 - \partial \psi s
\partial \varphi s

(\varphi s)\underbrace{}  \underbrace{}  
intramyocardial pressure

.

This shows why we have called such decomposition fully incompressible: there can
coexist two penalization terms, \psi s(\varphi s) imposing \varphi s \approx \varphi s,0 and possibly a term \psi (J)
included in \psi skel enforcing J \approx J0. This effect is indeed desirable, as it models both
the solid phase incompressibility and the stress contribution which produces work on
deformations associated with changes of volumes [CM14].

Remark 2.1. The potential \psi s yields a similar interaction to that of the Lagrange
multiplier \lambda used in the model of additive splitting with fluid porosity. In fact, the
multiplier imposes the constraint \varphi s = \varphi s,0, which is the quantity penalized by the
potential \psi s.
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2.3. Constitutive model used for cardiac perfusion. We present expres-
sions for \psi skel, \psi s, and \psi i, i = 1, . . . , NC , defined in section 2.2, which are adequate
for cardiac poromechanics. We highlight that the proposed constitutive model allows
for all energy terms to be obtained from existing literature.

Skeleton energy. We consider a Guccione constitutive law [GMW91], given by

\psi skel(\bfitF ) = Cel exp\{ Q(\bfitF ) - 1\} + \kappa 

2
(J  - 1) log J,(2.12)

Q = bfE
2
ff + bsE

2
ss + bnE

2
nn + 2(bfsE

2
fs + bfnE

2
fn + bsnE

2
sn),(2.13)

\bfitE =
1

2
(\bfitF T\bfitF  - \bfitI ),\bfitF = \nabla \bfity s + \bfitI , Euv = (\bfitE \bfitv ) \cdot \bfitu ,(2.14)

where \bfitf , \bfits , and \bfitn , referred to in the subindexes of \bfitE in (2.13), are a pointwise set of
independent vectors directed toward the heart fibers, sheets, and normal directions
[BBPT12].

Solid phase energy. The term \psi s represents a penalization on the solid Lan-
grangian porosity \varphi s. Its role is similar to that of the quasi-incompressibility term
included in \psi skel, and for it we adapt the expression used in [BCM17]:

\psi s = \kappa s

\biggl( 
\varphi s  - \varphi s,0  - log

\biggl( 
\varphi s
\varphi s,0

\biggr) \biggr) 
.

Fluid compartments energy. Functional relations between pressure and intramural
vessel volume have been proposed in [BADS88] and were obtained by fitting (real)
data. In [BADS88], such laws were proposed for a three-compartment 0D model of
the heart composed of (myocardial coronary) arteries, capillaries, and veins, which
makes it a perfect candidate for our multicompartment framework. We consider only
the arteries and capillaries and thus NC = 2, so for clarity in what follows, we will
replace the numeral subscripts ``1"" and ``2"" with ``art"" and ``cap"" whenever we describe
the compartments separately. Such laws, although devised to represent the coronary
pressure, present no dependence on the myocardium (i.e., \varphi s), so we consider them
instead as the fluid compartment energies. This results in the following relationship
for each compartment i \in \{ 1, 2\} :

\psi i(\varphi i) = ci,1 exp(ci,3\varphi i) + ci,2 log(ci,3\varphi i).(2.15)

Prestress and myocardial pressure. The reference configuration given by the null
displacement \Omega 0 := \Omega (0) is most probably not in equilibrium when considering the
inner stresses and the blood pressure in the heart chambers. This has motivated the
computation of an initial configuration \Omega (\bfity s0) known as the prestress configuration,
which is in mechanic equilibrium [HB11, GDQ19, DGQ20] and is usually associated
to the end of diastole. We propose extending the same principle to the compartment
pressure pi, meaning that the prestress configuration is in pressure equilibrium in each
compartment. This can be achieved by rescaling the pressure laws with respect to
reference pressures pref,i. For this, we denote the prestress displacement and initial
Lagrangian porosities as \bfity s0 and \bfitvarphi 0, respectively, and impose that pi(\bfitF 0,\bfitvarphi 0) = pref,i,
which results in a rescaled pressure \~pi:

\~pi(\bfitF ,\bfitvarphi ) = pi(\bfitF ,\bfitvarphi ) - pi(\bfitF 0,\bfitvarphi 0) + pref,i.

Note that this is an intracompartment balance, as flow between compartments is still
possible if there is a pressure difference between them.
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2.4. Mathematical properties of the poromechanics model. The mathe-
matical analysis of problem (2.5) is still open. System (2.5) consists in the coupling
of two well-known problems, the nonlinear quasi-static mechanics (2.5a) and the por-
ous media equation (2.5b), which pose well established regularity requirements on
the form of the Helmholtz potential \Psi . In this section, in view of the well posedness
analysis, we (i) ignore the Robin condition (2.4) and consider a homogeneous Dirich-
let boundary condition on \partial \Omega , (ii) disregard the active stress, i.e., Pa = 0, and (iii)
consider a mono-compartment system (NC = 1) with \bfitK f = \bfitI /(J\rho f ), \rho f = 1, and
\Theta 1 = 0. We study both subproblems, mechanics and porous media, separately.

The mechanics subproblem. We first observe that problem (2.5a) can be reformu-
lated as a minimization problem: given a function \varphi , find a minimizer \bfity s of

(2.16) min
\bfity s\in \bfW 

\int 
\Omega 

\Psi S(\bfitF , \varphi ) dX,

where W = \{ \bfity s\ast \in \bfitW 1,1(\Omega ) : \bfitP (\bfitF (\bfity s
\ast ))\bfitn = \bfitg (\bfity s

\ast ) on \partial \Omega 0, \Psi S(\bfity s
\ast ) < \infty \} . The

existence of minimizers of problem (2.16) can be established in virtue of the following
well-known result [MQY94], which we adapted to consider the dependence on \varphi .

Theorem 2.2. For every Lagrangian porosity \varphi assume the following hypotheses
hold:
(HS)1 \Psi S is polyconvex, so there exists a convex function G\varphi defined in \BbbR d\times d \times 

\BbbR d\times d \times \BbbR such that

(2.17) \Psi S(\bfitF , \varphi ) = G\varphi (\bfitF , cof \bfitF ,det\bfitF ),

where cof \bfitF = det(\bfitF )\bfitF  - T .
(HS)2 \Psi S is a Carath\'eodory function, i.e., \bfitF \rightarrow \Psi S(\bfitX ,\bfitF , \varphi ) is continuous and

\bfitX \rightarrow \Psi S(\bfitX ,\bfitF , \varphi ) is measurable with \Psi S = \infty if and only if J \leq 0.
(HS)3 \Psi S is coercive, meaning that there exist constants a > 0, p \geq 2, q \geq 3/2 such

that
\Psi S(\bfitX ,\bfitF , \varphi ) \geq a(| \bfitF | p + | cof \bfitF | q).

Then, if W \not = \emptyset , \Psi S attains its minimum in W.

The law proposed in (2.11) yields the following potential for the mechanics:

\Psi S(\bfitF , \varphi ) := \psi skel(\bfitF ) + \psi s(\varphi s).

We note that if \psi skel is polyconvex and \psi s is convex, then \Psi S is polyconvex as well,
which grants the existence of minimizers for problem (2.16). We stress that there are
no growth conditions for the potential \psi s with respect to J .

Porous media subproblem. Under the stated hypotheses, problem (2.5b) becomes
the following: given \bfitF , find \varphi such that

(2.18)
\partial \varphi 

\partial t
 - div (\nabla p(\bfitF , \varphi )) = 0 in \Omega 0,

where p = \partial \Psi P

\partial \varphi is a given function. The existence of solutions is a consequence of the

following result [V\'az07], which we have adapted to include the dependence on \bfitF .

Theorem 2.3. For each \bfitF , assume the following hypotheses:
(HP )1 The pressure function \varphi \mapsto \rightarrow p(\bfitF , \varphi ) is continuous and strictly increasing in \varphi 

with p(0) = 0.
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(HP )2 The pressure function \varphi \mapsto \rightarrow p(\bfitF , \varphi ) is smooth with \partial p
\partial \varphi > 0 for \varphi > 0.

If the initial data \varphi (0) is such that \varphi (0) \geq 0, \varphi (0) \in L1(\Omega 0), and \Psi P (\bfitF , \varphi (0)) \in 
L1(\Omega 0) for all \bfitF , then there exists a unique weak solution of problem (2.18).

The model proposed in (2.11) yields the porous potential

\Psi P (\bfitF , \varphi ) := \psi s(\varphi s) + \psi (\varphi ),

which is convex in the variable \varphi if both \psi s and \psi are convex. In such a case, an
additional smoothness assumption guarantees that hypotheses (HP )1 and (HP )2 are
satisfied, where we observe that the normalization condition in (HP )1 holds due to
the consideration of the prestress configuration discussed in section 2.3.

The poromechanics problem. Putting the previous theories together, it follows
that the existence of solutions to problems (2.18) and (2.16) (separately) is guaranteed
under the following unified hypotheses:
(H)1 \psi skel is a polyconvex and coercive Carath\'eodory function.
(H)2 \psi s is a smooth and convex Carath\'eodory function such that \psi s = \infty if and

only if J \leq 0.
(H)3 \psi is a smooth convex function.
(H)4 \Psi P satisfies the normalization condition \partial \Psi P

\partial \varphi (0) = 0.

Indeed, (H)1 and (H)2 guarantee (HS)1, (HS)2, and (HS)3; (H)2, (H)3, and (H)4
instead guarantee (HP )1 and (HP )2. Note also that the convexity of \varphi s grants both
the convexity of J \mapsto \rightarrow \psi s(\varphi s) and \varphi \mapsto \rightarrow \psi (\varphi s).

This result has two fundamental consequences. From the modeling point of view,
it provides useful guidelines for devising the poromechanics potentials proposed in
section 2.2. Most notably, our model is capable of combining the properties of both
physics, meaning the polyconvexity from the mechanics and the convexity from the
porous media. In addition, from the numerical point of view, we can consider block-
partitioned iterative schemes for the solution of the coupled problem. For instance,
this can be achieved by considering a quasi-Newton method where the Jacobian matrix
is approximated by its diagonal (or triangular) blocks. In such case, each of the
diagonal blocks will be invertible. Alternatively, one could consider a one-way coupling
that solves first the mechanics and then the porous media, which is indeed what we
do as we know a priori that existence is guaranteed for both problems. More details
are in section 4.1.

3. Mathematical modeling of the epicardial coronary vessels. In this
section we present a mathematical model for the epicardial coronary vessels by means
of the classic lumped 0D model [QVV16, QDMV19], which is obtained by means of
a volumetric averaging of the Navier--Stokes equations in a compliant domain. This
approach considers each vessel portion as an independent segment, with pressure
and flow as averaged quantities in each segment. The coupling of the segments is
done by means of transmission conditions given by mass conservation and pressure
continuity. More complex 0D coronary circulation models have been proposed, such
as the intramyocardial pump model [SBL81]. However, here we are interested only in
a 0D epicardial coronary model, since the intramural vessels are considered through a
poroelastic model. To make the model more flexible with respect to the boundary and
coupling conditions, we consider the problem variables (volumetric flow and pressure)
as being a convex combination of the corresponding proximal and distal quantities.

3.1. Single vessel model. We characterize a single vessel segment with the
following parameters: length \ell , area A, wall thickness H, fluid density \rho f , Young
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modulus of the vessel wall E, Poisson ratio of vessel wall \nu , and fluid viscosity \mu f .
The resulting mass and momentum conservation equations for each t > 0 are given
by [QVV16]

L
dQ

dt
+RQ+ Pd  - Pp = 0,(3.1a)

C
dP

dt
+Qd  - Qp = 0,(3.1b)

Q(0) = Q0,(3.1c)

P (0) = P0,(3.1d)

where R = Kr\ell 
A2 , L =

\rho f \ell 
A , C = A3/2\ell 

\eta and Kr = 8\pi \mu f , \eta =
\surd 
\pi HE
1 - \nu 2 , with the names R,

L, C coming from an analogy with these equations to an RLC circuit. The variables
are the volumetric flow rate Q and the mean pressure P , whereas quantities with the
subindices d, p stand for distal and proximal variables; see Figure 1.1 in the Coronaries
0D model frame.

In using this model, it is common practice to approximate the averaged quantities
with one of the extremes, for instance, Q \approx Qd and P \approx Pp. This procedure results
in four different types of well-known segment models, each one corresponding to a
different combination of boundary conditions1 on Q (Dirichlet) and P (Neumann). In
addition, other types of boundary conditions can be of interest, such as the Robin type,
for which no analogy with an electrical circuit is possible. We propose to consider in
each vessel segment two constants \alpha and \beta in [0, 1] allowing us to interpolate between
the distal and proximal quantities and resulting in a generalization of all possible
scenarios of boundary conditions:

Q = \alpha Qd + (1 - \alpha )Qp and P = \beta Pd + (1 - \beta )Pp.

This yields the following modified form of (3.1a) and (3.1b):

(3.2)
L
d (\alpha Qd + (1 - \alpha )Qp)

dt
+R(\alpha Qd + (1 - \alpha )Qp) + Pd  - Pp = 0,

C
d (\beta Pd + (1 - \beta )Pp)

dt
+Qd  - Qp = 0.

Remark 3.1. If L = C = 0, we obtain the well-known Poiseuille flow, which loses
dependence on \alpha and \beta .

We recall that the 0D model is obtained from the Navier--Stokes equations on a
compliant 3D cylinder under suitable assumptions. The resulting problem has four un-
knowns (Qd, Qp, Pd, Pp), and so (3.2) must be closed with two additional constraints.
These are provided by the inlet and outlet boundary conditions of the 3D Navier--
Stokes problem in the cylinder in reduced form. In particular, note that Dirichlet
conditions are reduced to fixing Qd or Qp (outlet or inlet), whereas Neumann bound-
ary conditions pertain to Pd or Pp (outlet or inlet). The proposed model can handle
all such scenarios, so in what follows, we consider the model abstractly, with these
two extra constraints chosen.

1The expression ``boundary condition"" is widely used in this context. It is of course not a precise
notion, as a 0D model has no boundary, but it describes the fact that the conditions required to
close the model are given by inlet (proximal) and outlet (distal) quantities, as given for the starting
3D model.

D
ow

nl
oa

de
d 

08
/0

3/
22

 to
 8

4.
22

1.
22

8.
16

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

1178 BARNAFI WITTWER ET AL.

By denoting the unknown as \bfitZ = (Qd, Qp, Pd, Pp)
T , this problem can be rewritten

as a set of differential algebraic equations:

(3.3)

\bfitE \.\bfitZ (t) +\bfitH \bfitZ (t) = \bfitb (t),

P (0) = P0,

Q(0) = Q0,

where

\bfitE :=

\left[    
\alpha L (1 - \alpha )L 0 0
0 0 \beta C (1 - \beta )C
0 0 0 0
0 0 0 0

\right]    , \bfitH :=

\left[    
\alpha R (1 - \alpha )R 1  - 1
1  - 1 0 0

\gamma 1qd \gamma 1qp \gamma 1pd \gamma 1pp
\gamma 2qd \gamma 2qp \gamma 2pd \gamma 2pp

\right]    , \bfitb (t) =

\left[    
0
0

b3(t)
b4(t)

\right]    .

Constants b3, b4 stand for the additional constraints representing the boundary con-
ditions. Regarding the values of \gamma ijk, we idenify the four classic types of boundary
conditions for the starting 3D model according to the distal and proximal conditions:

(DD) Dicihlet and Dirichlet, (ND) Neumann and Dirichlet,

\gamma i =

\Biggl\{ 
1, i \in \{ 1qd, 2qp\} ,
0 elsewhere.

\gamma i =

\Biggl\{ 
1, i \in \{ 1qd, 2pp\} ,
0 elsewhere.

(DN) Dirichlet and Neumann, (NN) Neumann and Neumann,

\gamma i =

\Biggl\{ 
1 i \in \{ 1pd, 2qp\} ,
0 elsewhere.

\gamma i =

\Biggl\{ 
1 i \in \{ 1pd, 2pp\} ,
0 elsewhere.

In all cases, the existence of a solution of (3.3) is guaranteed:

Proof. We only show the proof for the (DD) case; the others are proved analo-
gously. We use [Cam80, Theorem 3.1.1], so it suffices to show that there exists s > 0
such that (s\bfitE +\bfitH ) is invertible. Setting s > 0 we define

\bfitA := s\bfitE +\bfitH = \bfitE :=

\left[    
\alpha (R+ sL) (1 - \alpha )(R+ sL) 1  - 1

1  - 1 s\beta C s(1 - \beta )C
1 0 0 0
0 1 0 0

\right]    ,
and now proceed to obtain \bfitZ such that \bfitA \bfitZ = 0. In fact, from the last two rows we
obtain Qd = Qp = 0, and then the first row gives P := Pd = Pp and finally the second
one yields

s\beta CP + s(1 - \beta )CP = sCP = 0.

As s, C > 0, we obtain P = 0 and thus \bfitx = 0, which concludes the proof.

Remark 3.2. Robin boundary conditions represent resistance conditions linearly
relating pressure and blood flow rate and can be easily handled by our model. For
example, if we denote by \Omega myocardium the domain defined by the myocardium, the in-
terface conditions used in the 3D-0D coupling from [DGFP+20] between the lumped
FSI model (0D) and the porous media (3D) at the network outlet would be obtained
by setting the last equation with \gamma 2qd = \alpha  - 1 > 0, \gamma 2pd = 1, \gamma 2qp = \gamma 2pp = 0, b4(t) =

1
| \Omega myocardium| 

\int 
\Omega myocardium

p dX. In cardiac perfusion, these conditions are useful to alle-

viate the spurious pressure gradient that arises when considering pressure continuity
between the vessel outlets and the average pressure in the first compartment. Indeed,
the pressure in a compartment represents a predefined resolution of vessels, where
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0 1

2

3 4

a
b

c
d

Fig. 3.1. Example network. The segments are given by \scrS = \{ a, b, c, d\} and the nodes by
\scrN = \{ 0, 1, 2, 3, 4\} . The inlet segments are given by Si

0 = \emptyset , Sn
1 = \{ a\} , Sn

2 = \{ b\} , Si
3 = \{ c\} , and

Si
4 = \{ d\} ; the outlet segments are given by So

0 = \{ a\} , So
1 = \{ b, c\} , So

2 = \emptyset , So
3 = \{ d\} , and So

4 = \emptyset .

there is higher pressure at the inlets and lower pressure at the outlets. Pressure con-
tinuity should be imposed at the inlets of the compartment, so that considering the
average creates a physically nonexistent pressure difference.

3.2. Network of 0D vessels. We now formalize the coupling among consecu-
tive vessel segments, where we note that the resulting structure is that of a forest graph
[CCPS09], i.e., the union of connected acyclic graphs. Consider a set of segments
\scrS , where we identify each segment by its distal and proximal nodes as s = \{ nd, np\} .
The set of all nodes will be denoted with \scrN , and for a given node n \in \scrN we consider
its inlet and outlet segments, Sin and Son, respectively. We show an example of a
bifurcation network in Figure 3.1.

Each segment can be described by (3.1) with Qs = \alpha sQsd+(1 - \alpha s)Qsp (P s defined
analogously), so that the following holds for all s \in \scrS :

(3.4)

Ls
dQs

dt
+RsQs + P sd  - P sp = 0,

Cs
dP s

dt
+Qsd  - Qsp = 0,

Qs(0) = Qs0,

P s(0) = P s0 .

The network begins at its inflow segments \scrS in and ends at its outflow segments \scrS out,
given by

\scrS in := \{ s \in \scrS : Sinp
= \emptyset \} and \scrS out := \{ s \in \scrS : Sond

= \emptyset \} .

For each node n \in \scrN , the interface conditions are given by mass conservation and
pressure continuity:\sum 

i\in \scrS i
n

Qid =
\sum 
j\in \scrS o

n

Qjp \forall n \in \scrN , P id = P jp \forall i \in \scrS in, j \in \scrS on.

We consider in practice boundary conditions of type (NN) as we impose pressure

in both inlets and outlets of the network through P sp = \widehat P sin for all s \in \scrS in and P sd =\widehat P sout for all s \in \scrS out. More details on the form of \widehat P sin, \widehat P sout will be given in section 4.
For numerical tests regarding the initialization of the model, its conditioning, and its
dependence on the parameters \alpha and \beta , see Appendix A.

4. Coupled perfusion problem and solution strategy. In this section we
present the coupling between blood flow in the epicardial coronary vessel and myocar-
dial perfusion. The resulting model can be thought as a sequence of three events:

1. The aortic pressure pao determines the inlet blood flow in the coronary tree.
2. The blood flows through the epicardial coronaries into the tissue.
3. The blood leaves the tissue through the veins, whose pressure equals pveins.
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We highlight the importance of accounting for the aortic pressure pao and the venous
pressure pveins, as they establish the connection between our perfusion model and
systemic circulation, meaning that our model yields a closed loop of blood flow in the
human body.

Cardiac perfusion presents very complex spatial interactions. In this regard, a
crucial process is the pressure balance between each epicardial coronary vessel and
the region it perfuses. To model this, for each epicardial coronary vessel s \in \scrS out, we
associate to its outlet the region \Omega o of the myocardium, which should be perfused by it
as described in [DGFP+20], referred to as the perfusion region [CLM+12, DGFP+20]
and such that \Omega = \cup o\in \scrS out\Omega o (see ``Coupling"" in Figure 1.1). Blood flow is connected
through each of the aforementioned components as follows.

Inlet pressure. We enforce the same pressure at the inlet segments (see the epi-
cardial coronary vessels in Figure 1.1) as they both stem from the aortic root:

P sp = pao \forall s \in \scrS in.

Coupling of epicardial coronary vessels with myocardium. The outputs of the
network representing the epicardial coronary vessels have an assigned pressure equal
to the average pressure in the first compartment, i.e.,

(4.1a) P od =
1

| \Omega o| 

\int 
\Omega o

p1 dX \forall o \in \scrS out.

The coronaries act on the myocardium through a source term that equals the surface
flow on the output. For this, we compute the source term as

(4.1b) \theta 1

\bigm| \bigm| \bigm| \bigm| 
\Omega o

=
1

| \Omega o| 
Qo =

\alpha oQod + (1 - \alpha o)Qop
| \Omega o| 

\forall o \in \scrS out.

The venous return. The last compartment interacts with the veins through a sink
term proportional to their pressure difference:

(4.1c) \theta NC
=  - \gamma (pNC

 - pveins),

where \gamma = 10 - 4 [MCC+13] and pveins = 1kPa [CGSMVC10].

Remark 4.1. The feedback of the myocardium on the coronaries shown in (4.1a)
can generate an artificial pressure gradient between the vessels and the myocardium.
This can can be alleviated through the Robin condition shown in Remark 3.2

Remark 4.2. We recall that, in practice, we consider NC = 2, which yields p1 =
part and p2 = pcap.

For the sake of notation, we introduce suitable matrices \bfitE ,\bfitH to rewrite problem
(3.4) in compact form as

\bfitE \.\bfitZ +\bfitH \bfitZ = 0

using \bfitZ = (Q1
d, Q

1
p, P

1
d , P

1
p , ..., Q

| \scrS | 
d , Q

| \scrS | 
p , P

| \scrS | 
d , P

| \scrS | 
p ), where | \scrS | is the cardinality of \scrS .

This allows us to write the entire coupled perfusion problem encompassing problems
(3.4) and (2.5) together with coupling conditions (4.1) in weak form as follows: Find
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\bfity s \in L\infty (0, T ;\bfitH 1(\Omega )), \varphi i \in L2(0, T ;H1(\Omega )) \cap C0([0, T ];L2(\Omega )) for i \in \{ 1, ..., NC\} 
and \bfitZ \in C0([0, T ];\BbbR 4| \scrS | ) such that

(4.2a) \int 
\Omega 

(P + Pa(F )) : \nabla ys
\ast dX  - 

\int 
\partial \Omega 

g(ys) \cdot ys
\ast dS = 0 \forall ys

\ast \in H1(\Omega ),

\int 
\Omega 

d\varphi i

dt
\varphi \ast 

i +Ki(F )\nabla pi \cdot \nabla \varphi \ast 
i + J

NC\sum 
j=1

\beta ij(pi  - pj)\varphi 
\ast 
i dX =

\int 
\Omega 

J\theta i\varphi 
\ast 
i dX \forall \varphi \ast 

i \in H1(\Omega ),

P =
\partial \Psi 

\partial F
(F ,φ), pi =

\partial \Psi 

\partial \varphi i
(F ,φ)

for all i \in \{ 1, ..., NC\} with

\theta i =

\left\{     
1

| \Omega o| Q
o =

\alpha oQo
d+(1 - \alpha o)Qo

p

| \Omega o| , i = 1 \forall o \in \scrS out,

 - \gamma (pNC
 - pveins), i = NC ,

0, i \in \{ 1, NC\} c,

and

(4.2b)

\bfitE \.\bfitZ +\bfitH \bfitZ = 0,

P ip = pao \forall i \in \scrS in,

P od =
1

| \Omega o| 

\int 
\Omega o

p1 dX \forall o \in \scrS out.

In view of coupling this model with the systemic circulation, we consider aortic and
myocardial venous pressures as functions of deformation, which yields pao = pao(\bfity s)
and pveins = pveins(\bfity s). Models for coupling the aortic pressure to the heart contrac-
tion are well established in the literature and are mainly based on the Windkessel
model (see [WLW09] for further references). For a complete systemic circulation
model coupled with the mechanics, see [RSA+20a, RSA+20b].

4.1. The one-way coupling hypothesis. We propose to neglect the influence
of the blood on the tissue, by therefore assuming that \partial \Psi 

\partial \bfitF \approx \partial \psi skel

\partial \bfitF . This is a modeling
hypothesis, which allows us to rewrite (2.5a) as

(4.3)  - div(\bfitP (\bfitF ) + \bfitP a(\bfitF )) = 0 in \Omega 0,

where the effect of blood on the mechanics is no longer considered. The perfusion
problem under this hypothesis is such that mass conservation (2.5b) is decoupled
from (2.5a), so we refer to it as the one-way coupling hypothesis. In fact, this is what
happens when cardiac displacement is obtained from medical images.

This approach of course neglects the important role of blood pressure during con-
traction, but it also has several advantages: (i) the computationally expensive elec-
tromechanics problem can be solved before the perfusion and quasi-incompressible
models already take into account the volume variations of the myocardium due to
blood flow, (ii) the incorporation of perfusion into an existing electromechanics soft-
ware is minimally invasive as it would not require modifying the existing code, and
(iii) it allows for perfusion to be appended to a cardiac imaging pipeline which obtains
displacement tailored to patient-specific data. This last point is fundamental, as it
puts into evidence that the use of cardiac deformation obtained from medical images
implies modeling assumptions.
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4.2. Numerical solver for the one-way coupled model. In this section
we propose a numerical strategy for the solution of the proposed perfusion model
(4.2) under the one-way coupling hypothesis. It consists in first performing an entire
(electro)mechanics simulation with systemic circulation and then solving the perfusion
problem, where the coupling between the porous medium and the epicardial coronary
vessels is handled through a fixed point algorithm, which has been tested in the linear
setting in [DGFP+20]. For this purpose, we adopt an implicit discretization method
(4.2) with time step \Delta t. For an arbitrary quantity \eta , denote \eta (tn) \approx \eta n and define
the relevant, discretized in time subproblems as follows.

The epicardial coronary vasculature problem. Given \bfitvarphi n,k a vector of Lagrangian
porosities, find \bfitZ n,k+1 in \BbbR 4| \scrS | such that

(4.4)

(\bfitE +\Delta t(1 - \theta )\bfitH )\bfitZ n,k+1 = (\bfitE  - \Delta t\theta \bfitH )\bfitZ n - 1,

P ip = pnao \forall i \in \scrS in,

P od =
1

| \Omega o| 

\int 
\Omega o

p1(\bfitF 
n,\bfitvarphi n,k) dX \forall o \in \scrS out.

The myocardium problem. Given an epicardial coronary vessel solution \bfitZ n,k+1,
find a vector of Lagrangian porosities \bfitvarphi n,k+1 in\bfitH 1(\Omega ) such that for all i \in \{ 1, ..., NC\} 
it holds that
(4.5)\int 

\Omega 

\varphi n,k+1
i

\Delta t
\varphi \ast 

i +Ki(F
n)\nabla pni \cdot \nabla \varphi \ast 

i

+J

NC\sum 
j=1

\beta ij(p
n
i  - pnj )\varphi 

\ast 
i dX =

\int 
\Omega 

\biggl( 
J\theta i(Z

n,k+1) +
\varphi n - 1

i

\Delta t

\biggr) 
\varphi \ast 

i dX \forall \varphi \ast 
i \in H1(\Omega ),

pni =
\partial \Psi 

\partial \varphi i
(F n,φn,k+1).

We write this solution strategy as the pseudoalgorithm shown in Algorithm 4.1.
For the mechanics, we consider the electromechanics model with systemic circulation
proposed in [RSA+20a, RSA+20b, PRS+21], whose output is shown in Figure 1.1
(aortic pressure and PV loop).

5. Application to the perfusion of the heart. In what follows we present a
perfusion model that integrates electromechanics, systemic circulation, and myocar-
dial perfusion. More precisely, we consider a simulation of the entire coupled problem
(4.2) on a realistic left ventricle geometry under the one-way coupling hypothesis.

5.1. The anatomical heart model and the physical parameters. The ge-
ometry used for simulations is part of the realistic anatomical template developed by
the Zygote company,2 from which we extract the left ventricle and the correspond-
ing coronary vessels, meaning that we consider only the vessels which supply the left
ventricle. The geometrical properties of the epicardial coronary vessels are extracted
using VMTK [ISMA18] and used to formulate the networks. Because of the limited
resolution of standard, noninvasive imaging techniques, the reconstructed geometry
of the coronary tree presents a small number of vessels that initially yields unbalanced
perfusion. To alleviate this, we have modified the area of each segment to obtain a
more homogeneous inflow. The details about the coronary network setup are provided
in Appendix B.

2http://www.zygote.com.
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Algorithm 4.1 Perfusion problem solution algorithm.

1: Input: Initial displacement \bfity 0, Lagrangian porosities \bfitvarphi 0 and epicardial coronary
flow \bfitZ 0; tolerance tol and maximum iterations maxit

2: Mechanics: Solve (4.3) to obtain \bfity n, pnao, p
n
veins for each time step n

3: Perfusion:
4: for time step n = 1, ..., T : do
5: Set error = 1, k = 0, \bfitZ n,0 = \bfitZ n - 1, and \bfitvarphi n,0 = \bfitvarphi n - 1

6: while error > tol and k < maxit do
7: Given \bfitvarphi n,k, compute \bfitZ n,k+1, which solves (4.4)
8: Given \bfitZ n,k+1, compute \bfitvarphi n,k+1, which solves (4.5)
9: Update error using \bfitZ n,k,\bfitZ n,k+1,\bfitvarphi n,k,\bfitvarphi n,k+1

10: k = k+ 1
11: end while
12: Set \bfitZ n = \bfitZ n,k,\bfitvarphi n = \bfitvarphi n,k

13: end for
14: return Displacement \bfity n, Lagrangian porosities \bfitvarphi n, and epicardial flow \bfitZ n for

each time step n

Table 5.1
Physical parameters used in the anatomical heart model together with their corresponding ref-

erence. We highlight in bold font the parameter \kappa s, as it is the only parameter that we added to the
model and that we had to manually tune.

Param. Value Units Ref. Param. Value Units Ref.

Cel 880 Pa [ULM02] ccap,3 10 1 [BADS88]
bf 8 1 [ULM02] part,ref 5182.15 Pa [BADS88]
bs 6 1 [ULM02] pcap,ref 2140.32 Pa [BADS88]
bn 3 1 [ULM02] \bfitK f,art 10 - 9 m2(Pa s) - 1 [MCC+13]
bfs 12 1 [ULM02] \bfitK f,cap 10 - 8 m2(Pa s) - 1 [MCC+13]
bfn 3 1 [ULM02] \beta art, cap 3.5 \cdot 10 - 5 (Pa s) - 1 [MCC+13]
bsn 3 1 [ULM02] E 109 Pa [KNSF13]
\kappa 5 \cdot 104 Pa [ULM02] \nu 0.49 1 [KSKN16]

cart,1 1.33 Pa [BADS88] H 10 - 3 m [PJC+13]
ccap,1 22 Pa [BADS88] \mu f 0.035 Pa s [BM03]
cart,2 550 Pa [BADS88] \rho f 1060 kg/m3 [BM03]
ccap,2 1009 Pa [BADS88]
cart,3 45 1 [BADS88] \bfitkappa \bfits \bffive \cdot \bfone \bfzero \bffour \bfP \bfa -

We present the anatomically relevant parameters used in our model in Table 5.1.
Note that the value \kappa s = 5 \cdot 104 is the only parameter that we added, and so we had to
adjust it manually. It is set to almost equally balance the quasi-incompressibility con-
straint enforced on J and \varphi s. As detailed in [CM14], it is fundamental that both effects
coexist, but a detailed characterization of their interaction remains understudied.

5.2. Results. The main output of the myocardial perfusion model is shown in
Figures 5.1 and 5.2. The main quantities of interest are the pressure, the added mass,
and the coronary flow. In Figure 5.1 we show the average value of these variables
calculated on the ventricle, whereas in Figure 5.2 we illustrate time snapshots of the
entire added mass field in the ventricle. The convergence of the fixed point method
is smooth, as it takes no more than 10 iterations to satisfy the tolerance of 10 - 3

with respect to the maximum relative increment between both physics in all of the
numerical tests we performed.
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(a)                                                         (b)

(c)                                                         (d)
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Fig. 5.1. Evolution of global quantities of the myocardial perfusion model: average pressure,
total added mass, and blood flow, with the PV loop for reference.

Figure 5.1 aims at illustrating the input-output interactions captured by the pro-
posed model. Panel (a) reports a significant pressure drop along the coronary tree,
from the main vessels to the capillaries. The pressure waveform remains anyway
almost unperturbed. Without the myocardial contraction, this waveform would prop-
agate also to the added mass and the coronary flow, but as we see from panels (b)
and (c), this is not the case. Instead, these results suggest that the heart contraction
regulates the perfusion process and in fact the added mass plot in time drops at the
systole. In correspondence to the steepest decrease of the added mass, we observe
that the flow in the coronaries reaches a minimum, while it increases significantly
during the diastole. This effect is called the systolic impediment and it is a distinctive
trait of blood flow in the myocardium. The ability of the model to capture this effect
on the basis of the interaction between aortic pressure and mechanical contraction,
without any specific bias that could trigger it, is one of the most relevant outcomes of
the presented model. We further stress that this model was solved by means of our
one-way coupling hypothesis, suggesting that the feedback of the blood on the tissue
is not essential to reproduce the systolic impediment.

To the best of our knowledge, only [NLL+20] and [CLM+12] propose a myocardial
perfusion model coupled with systemic circulation exhibiting the systolic impediment.
We note that the model of [CLM+12] considers a flow as input to the coronary vessels;
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t=0.0

t=0.2

t=0.5

Fig. 5.2. Evolution of the local added masses in arteries and capillaries, together with their
global contribution. Chosen instants are shown in the PV loop in Figure 5.1.

in this way systolic impediment is given externally by the boundary conditions. This
is not the case for the one presented in [NLL+20], which has two main differences with
respect to ours: (i) incompressibility (J = 1) and an ad hoc relationship for the intra-
myocardial pressure depending only on mechanic variables are assumed and (ii) the
porous media is replaced by a complex network of vessels reconstructed from morpho-
metric swine measurements representing the entire coronary vasculature (epicardial
and myocardial). Our work addresses the problem from the fundamental thermody-
namic principles of the physics involved and in consequence yields comparable results
under fewer hypotheses in a computationally flexible framework.

6. Conclusions. In this work we presented a mathematical model for cardiac
perfusion and its coupling with systemic circulation. More precisely, we developed a
multicompartment poromechanics model for the perfusion of the myocardium and a
lumped FSI model for the blood flow in the epicardial coronary vessels. The coupling
with the systemic circulation was performed through the aortic and myocardial venous
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pressures. Using a one-way coupling strategy to solve numerically this coupled prob-
lem, we were able to reproduce the systolic impediment, which is a distinctive feature
of myocardial perfusion. This result was possible due to the interaction between the
pressure in the coronary microvasculature and the aortic pressure, and it shows that
the main driver of perfusion is the contraction of the heart. The novel poroelastic
potential described in this work considers the fluid porosity in all compartments and
quasi-incompressibility for both the geometry and the solid phase. In contrast to
other approaches, it has the advantage to ease the computational cost of the problem
as it does not require the use of additional multiplier variables. Moreover, it entails
the fundamental result that the pressure acting on the myocardial coronary vessels
is given by the difference between the intramyocardial and intravascular pressures.
We highlight that this is not an ad hoc choice but a consequence of the considered
potential, meaning that our model is thermodynamically consistent. We also devised
unified conditions under which the proposed potential guarantees the existence of
solutions to both the mechanics and the porous media problems (independently). Be-
sides the analytic relevance of this result, it states that convexity is essential for all
of the porous media potentials.

Appendix A. Numerical tests on the vessel network. In this appendix
we numerically study the lumped network model. In particular, we focus on the
conditioning of the resulting linear system, its initialization by means of finding a
steady state relative to the initial boundary conditions ( \widehat P sin, \widehat P sout), and its dependence
on the parameters \alpha and \beta . For all tests we consider the bifurcation network from
Figure 3.1 with the parameters described in section 5.1.

A.1. Problem conditioning. The different scales of the problem parameters
can give rise to poor conditioning. In vascular modeling, the area of a coronary is
small (A \approx 10 - 6m2), which yields large resistance terms R = O(A - 2) \approx 1012. After
discretizing in time, we compute the conditioining number of the resulting matrix with
NumPy [Oli06]. To alleviate the bad scaling of the resistance terms, we consider a
diagonal preconditioner P which values 1 and R in the rows corresponding to pressure
and flow degrees of freedom, respectively.

We compute the condition number in the following scenarios: (i) with vs. without
diagonal preconditioner \bfitP , (ii) SI units (m, kg, s, Pa) vs. scaled units (cm, g, s, kPa),
and (iii) \alpha s = \beta s = \chi \in \{ 0, 0.5, 1\} for all s \in \scrS . We used the same parameters as the
ones used for the complete heart simulation, where the inlet pressure is pao and the
oulet pressure is 9 kPa in all outlets. The results obtained are shown in Table A.1,
where we note that the proposed preconditioner works well in all scenarios. The
problem in general presents much better conditioning with the scaled units (cm, g,
s, kPa), and interestingly, mixing the variables through \alpha = 0.5 improves the matrix
conditioning.

Table A.1
Condition number for the reduced network models.

Scenario \chi = 0 \chi = 0.5 \chi = 1

No prec, SI 2.01 \cdot 1018 1.29 \cdot 1018 1.33 \cdot 1018
Prec, SI 3.58 \cdot 1012 3.34 \cdot 1011 3.91 \cdot 1011
No prec, scaled 3.64 \cdot 107 7.15 \cdot 105 4.45 \cdot 107
Prec, scaled 8.27 \cdot 106 1.63 \cdot 105 1.01 \cdot 107
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Table A.2
Iterations required to achieve a stationary state with and without acceleration for different

values of \chi and acceleration depths.

\# iterations \chi = 0 \chi = 0.5 \chi = 1

No accel. 4617 4617 4617
Anderson(1) 2172 2336 1075
Anderson(2) 98 75 102

\chi = 0 \chi = 0.5 \chi = 1

Flow Q

Pressure

Fig. A.1. Flow and pressure for mixing sensitivity test in segment ``c.""

A.2. Steady initial conditions. The time-dependence of model (3.4) is what
gives it the ability to incorporate inertia and compliance, but it means that it is sensi-
tive to initial conditions. To obtain realistic initial conditions, we propose performing
simulation with the boundary conditions fixed at t = t0 until a steady state is achieved.
The time required to achieve a steady solution can be large, so we additionally use
Anderson acceleration [WN11] until a stationary solution is obtained.

A relative tolerance of 10 - 10 on the residual yields the iteration counts shown
in Table A.2, where the effect of acceleration can be neatly appreciated, yielding
an overall iteration count reduction of 75\% to 50\% for one level of acceleration and
roughly 98\% for two levels. Three or more levels do not converge, and the two-levels
scenario required using a delay of five iterations.

A.3. Dependence on \bfitalpha and \bfitbeta . In this section we study the impact that the
choice of \alpha and \beta has on the solution. We consider the inlet pressure profile pao
shown in Figure 1.1 and an outlet of 9 kPa, with all solutions given by the steady
dynamic. We show in Figure A.1 the results of flow and pressure simulated in segment
c of the bifurcation network depicted in Figure 3.1. The case \alpha = 0 yields pressure
drops below the outlet pressure with also unrealistic oscillations. Case \alpha = \beta = \chi = 1
presents a physiological response and is much stiffer, as seen, for example, in the
minimal difference between distal and proximal flows in all segments. Finally, case
\chi = 0.5 presents a solution similar to \chi = 1, but presents more oscillations. This
shows that the latter has the potential to capture more precisely vessel compli-
ance.

Appendix B. Additional details about the model setup. The perfusion
regions are visualized in Figure 1.1 in the panel Heart geometry with different colors
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on the epicardial surface. The heterogeneity of their physical properties makes it
difficult to solve the equation

d\varphi i
dt

 - div (\bfitK i(\bfitF )\nabla pi) + J

NC\sum 
j=1

\beta ij(pi  - pj) = J\theta i

for two main reasons. The first is the abrupt variation of the source terms J\theta i from
region to region, which depends on the distribution of the flow at the endpoints of
the coronary tree. The second one is the ratio between the permeabilities | \bfitK i(\bfitF )| 
and the parameters \beta ij that regulate the interactions between compartments. Abrupt
spatial variations of \theta i may worsen the conditioning of the problem, as observed in
the numerical experiments. For this reason, starting from the rough anatomical data,
a few calibration steps were necessary to mitigate these difficulties. More precisely,
two additional calibration steps were adopted, one for the network model and one for
the porous media; we give the corresponding details in what follows.

Network model. The epicardial coronary vessels computed from the Zygote
geometry yielded highly concentrated blood inflows in certain perfusion regions, leav-
ing the other regions without a proper blood supply. This results in a high spatial
heterogeneity of the terms J\theta i, which causes issues in the convergence of the linear
solvers. We recall that the terms J\theta i depend on the outflow of the coronary tree.
For this reason, to improve the distribution of these flows, we act on the vessel cross
sections at the interface between the 0D and the 3D models. In order to compute a
more homogeneous blood inflow, we used two procedures, a global and a local vessel
correction:

\bullet Global correction. We included an amplifying factor \xi in the vessel areas As
for all segments s (see section 3), so that the new areas are given by \~As = \xi As
for all segments s. We have found \xi = 2 to give realistic results.

\bullet Local correction. We used perfusion simulations without deformation, then
halved the area of all terminal vessels yielding hyper-perfused regions and also
doubled the area of all terminal vessels yielding hipo-perfused regions. This
was iterated until the blood distribution was roughly homogeneous. When-
ever doubling/halving proved too coarse, we used the smaller factors x0.75
and x1.5, and also whenever terminal vessels would not provide satisfactory
results, we modified the areas of additional (nonterminal) vessels. The orig-
inal and modified vessel areas are shown in Table B.1, where the numbers
follow the vessel numbering shown in Figure B.1.

Porous media. After adjusting vessel areas for obtaining a better balanced
source term, our linear solver still diverged after a few time steps. This happened

Table B.1
Modified vessel areas for Zygote coronaries in 10 - 6 m2.

2 3 4 6 7 8 9 10 16 17 19 20

Original 0.77 0.52 1.23 0.86 1.43 1.79 2.25 1.49 0.92 0.94 0.52 0.5
Modified 0.77 1.32 1.23 0.86 0.22 1.79 4.51 2.96 1.844 2.99 0.52 0.75

21 22 23 24 25 26 28 29 30 32 33 34

Original 0.50 1.02 6.49 3.79 3.74 3.58 4.09 2.34 1.95 2.59 1.74 1.57
Modified 0.50 1.02 6.49 3.79 3.74 3.58 4.09 2.34 1.95 1.3 1.045 1.50
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(a) Zygote left coronaries. (b) Zygote right coronaries.
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(c) Reduced model and tags of left
coronaries.
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(d) Reduced model and tags of right
coronaries.

Fig. B.1. Left coronary tree model reduction. Inlet and outlet segments denoted with ``i"" and
``o,"" respectively.

only when testing a multicompartment model and is explained by the presence of
the pressure differences required for the interaction between compartments, namely,
the term

\sum NC

j=1 \beta ij(pi  - pj) in the equation above. These are reaction terms, and
thus numerical instabilities are expected whenever the diffusion is sufficiently small
[QV08]. In consequence, to reduce the dominance of the reaction terms and obtain
a more robust numerical solver, we enlarged the permeability tensors to 10 - 7. This
problem can be better addressed by developing (i) preconditioners that are robust with
respect to the permeability and (ii) adequate stabilization techniques that reduce the
conditioning of reaction-dominant problems.
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