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Abstract—Function-as-a-Service providers manage security de-
vices that are shared among multiple tenants. It is undesirable
to give them access to cleartext HTTP requests to perform
tasks such as traffic inspection. The recent Zero-Knowledge
Middlebox (ZKMB) can be used to enforce network policies on
TLS traffic without revealing any information on the content
to the policy verifier. In this paper, we describe a ZKMB
implementation and a policy designed to check whether the
HTTPS function invocations by the clients follow a legitimate
pattern. We also present and compare two strategies to distribute
allowed patterns, introducing a Moving-Target Defense approach
for the function URI randomization, which shows a good tradeoff
between detection effectiveness and confidentiality. Performance
assessment in our prototype implementation shows that the
ZK algorithms are not yet suitable for real-time execution, but
current research interest in this technology is expected to narrow
this gap.
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I. INTRODUCTION

Function-as-a-Service (FaaS) is a popular way to execute
modular applications that exchange data with clients running
in field devices and perform computation in the cloud. In FaaS,
clients invoke functions using HTTPS with each function
corresponding to a different URI. Multiple clients send their
requests to the same ingress controller, which, in turn, launches
a container to execute the proper function, collects the answer
and routes it to the client.

A threat scenario consists of a compromised device trying to
invoke functions for which it has no legitimate reason. In such
a scenario, the device might be trying to exploit an unknown
vulnerability or to discover network resources in preparation
for further attacks. Prevention of these threats relies on the
ability of the infrastructure to monitor and block anomalous
behavior.

Traditionally, middleboxes play a central role in this pur-
pose, particularly when performing Deep Packet Inspection
(DPI) to detect malicious traffic. End-to-end encryption is a
major obstacle to the effectiveness of middleboxes operating at
the network layer. Consequently, any attempt to detect attacks
at the infrastructure layer requires application gateways that
break end-to-end encryption, introducing a lack of confiden-
tiality in multi-tenant clouds.
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To overcome this drawback, the recent Zero-Knowledge
Middlebox (ZKMB) architecture [1] proposes a network mid-
dlebox that employs Zero-Knowledge (ZK) proofs to enforce
some policies on the traffic. In addition to its TLS-encrypted
packets, the client sends the middlebox a cryptographic proof
that the plaintext is policy-compliant. The middlebox can
verify compliance without the client disclosing any further
information about the plaintext. This work extends the ZKMB
architecture in the following directions.

• We implement a working environment to deploy the box
at the ingress of the cloud provider verifying that the
client is only invoking a function matching an allowlist.
In particular we implement session tracking for TLS, a
protocol to transfer data between middlebox and clients,
and modifications to the existing ZK tools to make some
middlebox operations independent of the client.

• We develop a ZK-policy that can be used to prove that
the invoked function is allowed and the HTTPS request
header carries an authentication token.

• We design and compare two strategies to communicate
the list of allowed functions from the server to the
client and the middlebox. The URIs in the list can be
randomized to prevent resource enumeration through a
Moving-Target Defense approach.

In a typical scenario, each client sends a sequence of
function invocations to the FaaS ingress controller, according
to some application logic. The middlebox detects any request
outside of this logic, and raises an alert.

The rest of the paper is structured as follows. Section II
discusses the related work. Section III reviews some back-
ground concepts. Section IV presents our reference scenario,
while Section V presents our proposed detection mechanism.
Section VI discusses some performance results. Concluding
remarks are left for the final section.

II. RELATED WORK

Existing FaaS security solutions mainly focus on system
architecture and application structure. Valve [2] analyzes in-
formation flow within internal function calls, without requiring
developer intervention. Operations in each container are la-
beled, to centrally detect known attacks, but the system lacks
defense against unknown strategies.

Encrypted traffic inspection is normally achieved by obtain-
ing access to the plaintext, for example through key export
from one end [3]. An issue may arise if the middlebox is



not trusted to handle sensitive data. Users’ privacy can be
guaranteed through many different techniques, among which
the use of a trusted execution environment, such as mbTLS
[4] or modifications to the TLS protocol, as in the case
of multi-context TLS [5], which allows partial access to
requests content by the middlebox. Both are limited by the
compatibility of all parties to the employed technologies and
protocol modifications.

The third option is to use a Zero-Knowledge Middlebox
(ZKMB) [1], in a system where clients can prove to the mid-
dlebox that their communication is policy-compliant, without
revealing secret information. The authors present a general
architecture, which they further improve in [6]. However, their
DNS blocking application pays for the lack of performance
of the Zero-Knowledge algorithms, which we think can find a
better implementation in detection tools. We followed the same
approach to preserve privacy without any specific protocol
or hardware compatibility, introducing a specific policy and
doing some implementation adjustments that make the ZKMB
architecture applicable to the FaaS scenario.

III. BACKGROUND ON ZERO-KNOWLEDGE PROOF

Fig. 1. Scheme of the ZKMB circuit pipeline, with inputs and outputs.

A zk-SNARK (Zero-Knowledge Succinct Non-Interactive
ARguments of Knowledge) is a protocol that allows a prover
to convince a verifier of the validity of a given computation
without the prover disclosing some secret input to the veri-
fier (for example, TLS keys). [7] The Zero-Knowledge Proof
(ZKP) is a short piece of data, that reveals nothing about the
underlying secret inputs. The protocol consists of three phases:
the proving and verification keys are generated in the setup
phase by the verifier, in the proving phase the prover computes
the ZKP, and in the verification phase the verifier establishes
the validity of the ZKP against the verification key and other
public inputs. Grubbs et al. [1] propose using ZKPs for
firewalling DNS queries over TLS with a network middlebox
acting as the verifier. The client, acting as the prover, shows
that the domain in the request is allowed, by proving a modular
pipeline in Fig. 1. The policy is written using a high-level
language and compiled into an arithmetic circuit using xJsnark
[8], while the secret inputs include TLS keys and public inputs
include ciphertexts and other policy metadata. The backend
operations are implemented in Libsnark [9].

IV. SYSTEM MODEL

A. Parties and Security Assumptions

As depicted in Figure 2, the interaction involves three
parties: one or more clients, the FaaS server and the ZKMB.

Fig. 2. Network topology and interactions between clients, middlebox, FaaS.
The application developer distributes new policies and function code.

Clients: Field devices invoke functions on the server via
HTTPS requests, sending collected data or performing crit-
ical operations. In addition, the clients execute the Zero-
Knowledge toolchain for proof generation and implement a
protocol to send the proof to the middlebox. We assume that
each function call starts a new TLS session and the client
applications do not use hardcoded URIs when invoking server
functions but obtain the available URIs at runtime from the
server. A compromised client can run a modified software
stack to invoke malicious sequences on the server, for example
by attempting to use server exploits or exfiltrate data. Still, the
attacker cannot break Zero-Knowledge algorithms. While the
architecture presented here is general, we will consider TLS
1.3 with the TLS_AES_128_GCM_SHA256 cipher suite.

ZKMB: It is deployed at the ingress of the cloud infrastruc-
ture and managed by the cloud provider. All TLS handshakes
and requests directed to the customer FaaS instance are
intercepted and logged, but not decrypted. This device can
run the Zero-Knowledge toolchain for proof verification and
must execute a protocol to receive proofs and distribute policy
metadata and code. It also has a connection to the FaaS server
to obtain updated policies based on the client interaction.
The ZKMB is honest-but-curious, it correctly executes the
protocols with the clients and the server, but can try to guess
the content of clients’ invocations, in particular, functions and
other HTTP fields.

FaaS Server: The FaaS server is responsible for receiving
function invocations from the client and answering them. It
also randomizes the URIs and sends them to the client and
the ZKMB. It is honest. The FaaS controller implements
logging of the invocation history and session blocking before
scheduling a container.

B. FaaS Invocation Patterns

In the cloud infrastructure, a client interacts with the
FaaS server multiple times, invoking multiple functions over
time in accordance with some pattern that depends on the
application logic. For example, a client may need to retrieve
an authorization token before being allowed to send collected
data. We assume that is it possible to define a set of invocation
sequences U that is consistent with the application logic, e.g
U = {(u1, u2, u3), (u4, u2), (u1, u5, u6)..., (ui, uj , uk, ul)}
where un is a certain function available in the FaaS system.



Hence, based on the history of the interaction, at any given
point there will be a limited list of functions that can be called
next. In the above example, if u1 is called, then only u2 or
u5 are allowed. Any other function invocation is anomalous
and potentially malicious. We assume that the FaaS server
knows, at any time, which function invocations are legitimate
and can send this list to the client.

C. Security Definition

With respect to a compromised client, the attacker’s goal is
to successfully invoke a sequence of URIs having a Hamming
distance of at least K from the nearest sequence in U without
being detected. The system is secure if the client-side attacker
has a probability below a given threshold ε to succeed.

From a curious middlebox point of view, we can define two
security models. We say that the system is weakly secure if
the middlebox has non-negligible probability of guessing the
invocation sequence, but has negligible probability of learning
any other information, such as the invocation parameters. We
define the system as strongly secure if the middlebox has
negligible probability of learning any information about the
exchange, including the invoked functions.

V. DETECTION MECHANISM

Our contribution spreads in two directions: a new policy,
and two policy distribution strategies.

A. Zero-Knowledge Policy

Similarly to previous work, we employ the xJsnark frame-
work to create high-level parsing instructions and translate
them into an arithmetic circuit. Our backend runs the Groth16
[10] proof system, which uses the circuit and inputs to run
the three protocol phases in Sec. III. The arithmetic circuit
formally represents the computation in the ZKP system as
a composition of interconnected gates performing arithmetic
operations. Policy metadata (or inputs) are translated in a
format compatible with the circuit structure. Each policy
consists of code and metadata. The policy code instructs on
how or what to check in a packet and can be used for multiple
clients. An example of code are the rules to locate the URI in
the encrypted packet, which can be used for multiple users.
Policy metadata differ from one user to the other and specify
some information necessary to verify the validity of the policy,
e.g. a string containing the URI of the allowed function, which
depends on the user rights in the system.

The policy code initially derives the traffic key from the
TLS handshake transcript, which is public, and the handshake
secret computed at the client side. In turn, the key is used
to decrypt the request in the following non-handshake packet.
This request contains the URI corresponding to a function
invocation, and other HTTPS headers. It is worth noting that
the traffic decryption circuit is not actually executed by the
middlebox, which does not know the handshake secret; in-
stead, the middlebox verifies that the client correctly executed
the circuit on the encrypted packets.

A list of allowed function URIs (allowlist), is distributed
by the server to each client and to the middlebox. The list is
organized into a Merkle Tree structure.

When a function is invoked, the client must first generate
the Merkle tree membership proof for the given function URI.
This preprocessing step, which outputs the URI membership
proof, is not included in the policy code. A leaf of the tree
containing the specific URI and the membership proof are
client secrets, while the tree root is public.

After the membership proof, the ZKP can be produced. The
circuit logic implements the verification of the validity of the
membership proof: the hashes generated climbing from the
bottom to the top of the tree must generate a root that is equal
to the publicly available one. The leaf string must also match
the URI in the HTTPS request.

Additionally, a specific header must be included in the
HTTP request, containing a pre-distributed FaaS authorization
token. This becomes useful, to verify that client-server authen-
tication is successful from the middlebox, to prevent identity
spoofing by an attacker.

Header check is implemented by searching for a CRLF
sequence until the desired line is reached. The value in the
request must match the one known to the middlebox, passed
as policy metadata.

B. Allowlist Distribution Strategies

Allowlists are crucial for both the middlebox and the clients,
to let them know which policy is enforced. We present two
methods to distribute the allowlist.

Cleartext Real-time List (CRL): One approach is to
generate a new allowlist after each function invocation based
on the current client-server interaction. A sequence diagram
of this method is in Figure 3: the server distributes the first
allowlist to both the client and the middlebox. If the client calls
an allowed function and generates a valid proof, the middlebox
correctly verifies that, and the server replies distributing a new
allowlist for the next interaction to both client and middlebox.
If the client invokes a function that is not part of the list, the
proof generated is invalid.

The new list is included in the FaaS HTTPS response to the
client and it is also distributed to the middlebox, resulting in
the client not being able to generate the proof for any malicious
function invocation sequence. This scheme achieves security

Fig. 3. Policy distribution and interactions in the CRL method



against malicious clients with very high probability, at the cost
of higher communication overhead between the server and the
other parties. Additionally, an honest-but-curious middlebox
can infer the invoked functions based on the sequence of
allowlist updates.

Moving Randomized Full List (RFL): Alternatively, the
allowlist can contain the entire list of URIs but randomized.
This allows hiding functions that are not yet allowed to be
executed, adding client-side security. Having the full list, hence
not sending real-time updates to the middlebox, also means
solving the privacy issue in CRL.

A sequence diagram of the standard interaction with this
method is in Figure 4: the server distributes the full random-
ized allowlist to both parties, but the client is also told the
relation between each allowed function and random strings.
If the client invokes an allowed function, it generates a valid
proof, and receives new function-to-random-string definition.
Instead, if u2 is called, its correct location is not known by the
attacker, so a random string is picked from the list. A correct
proof is produced, but the probability of it being the desired
function is 1

N .

Fig. 4. Policy distribution and interactions in the RFL method

The allowlist is refreshed every Tm mutation interval and
includes all functions in the application logic in multiple ran-
domizations, each valid only once, to prevent replay attacks.
A set of padding strings, acting as decoys, is included to make
bruteforce attacks harder. The FaaS controller implements
logging of the invocation history and detection of replay
attacks or forbidden calls, before starting up a new container.

Server responses contain a structure that associates the
newly allowed functions with the respective random strings
in the complete allowlist. To complete an attack, a malicious
user must find which functions to call in the randomized
pool. Decoy strings or inactive randomizations (past or future)
trigger a session reset from the FaaS, making the attacker lose
track of their discovery process. Relying on the randomization
means that the attack success probability depends on the
allowlist size and the length of the attack in terms of number
of functions. A deeper analysis is discussed in Section VI.

VI. PERFORMANCE EVALUATION

A. Methodology

Tests are performed on Ubuntu 20.04 on a 6-core/12-thread
Ryzen 5600X platform with 16GB of RAM. I/O operations

use a PCIe Gen4 interface. Libsnark is set to use multicore
and no point compression, leading to measuring the fastest
possible execution times. For results in Sec.VI-B the request
size is set to 400 Bytes and the allowlist has 32 elements.1

B. Zero-Knowledge Algorithm Performance

Resource Consumption: It is possible to gather some
preliminary performance indicators for Setup and Prove for
the presented policy. The Prover Key is 1.12 GB, which is
significant. This is due to the implementation complexity of
AES and SHA. However, this cost is amortized over the policy
lifetime, still, memory reading costs must be paid for each
proof. The maximum memory usage is 6.28 GB and proof
generation takes 41.2 s, and the same reasons apply, limiting
the applicability of a ZKP system in constrained devices.

Operations Timeline: The timeline on Fig. 5 highlights
which operations characterize each protocol phase, and their
duration. Preprocessing operations, including Circuit Gen-
eration (java-to-arithmetic-circuit translation) and Libsnark
warmup (circuit parsing into internal representation), must be
repeated for every request on both the client and the middle-
box, occupying a considerable slice of time. An improvement
is obtained by running the preprocessing operations in parallel
on both prover and verifier, as soon as a TLS exchange is
detected on the channel, before the proof is received. This
way, the client only waits about two seconds for a response
after sending the proof.

0 10 20 30 40 50
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Client

Circuit Generated Proof System Ready
Proof Sent!

Proof Verified?
HTTPS Request Sent!
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Libsnark Warmup Groth16 Computation

Fig. 5. Operations in a standard ZKP iteration in client and middlebox.

C. Security of Policy Distribution Strategies

We compare the security of the distribution strategies de-
scribed in Sec. V. Table I resumes the security guarantees
that each distribution strategy can provide, in relation to the
security definitions described in Sec. IV-C.

The CRL approach is by far the most secure from the server
point of view: no proof can be generated for a function not
part of the latest allowlist. However, this approach brings a
higher communication overhead between the middlebox and
the server, as well as some privacy issues: a curious middlebox
aware of the application logic, can rebuild the U allowlist and
deduce the invocation sequence based on the server updates.
This is a loss of confidentiality on the invocation sequence.
Still, the remaining packet content (e.g. header, body) is
protected by encryption, resulting in the respect of only a weak
middlebox security definition.

1Source code is available at https://github.com/bonsai-lab-polimi/zkIDS



TABLE I
SECURITY GUARANTEES OF THE THREE DISTRIBUTION STRATEGIES

Method Client Middlebox

Clear Real-time List (CRL) ✓ Weak
Randomized Full List (RFL) ✓ (with prob. πK ) Strong

Fig. 6. MTD game for the RFL method.

The RFL method complies with the strong security defini-
tion since the middlebox cannot access any part of the request.

Client-side security is evaluated in terms of attack success
probability using a Markov Moving-Target Defense (MTD)
model inspired by [11].

We consider the following model parameters: the complete
list size, N , the successful attack sequence length, K, and the
total number of functions in the application, W .

On the discrete-time Markov Chain in Fig.6, each state
defines the number of malicious invocations that have suc-
ceeded in the current session. When the attacker wants to
make an invocation move, they choose a random URI from
the allowlist and invoke the corresponding function. With a
probability that depends on N and W , the attacker’s guess
corresponds to an existing function whose usage is potentially
malicious. Otherwise, the attacker’s guess corresponds to a
decoy URI, which the server will detect and cut the session
with the client, resetting all of the progress on the chain.

For a closed-form upper-bound to the stationary distribution,
we consider each forward action having probability W

N and
each reset action having probability 1− W

N . In this case:

πi =

(
1− W

N

)(
W

N −W

)i

0 ≤ i ≤ K (1)

Fig.7 shows the probability of attack success for different
values of K. Both the numerical solution and the upper-bound
are depicted. The defender wants to consider as harmful any
request that includes one of the W URI that randomly picks
in the current interaction, whether or not they are part of an
attack. It is worth noting that the approximation is very close
to the numerical solution of the chain.

The application developer can choose the allowlist size
(both decoy and per-function randomizations) according to the
maximum probability threshold ε tolerated by their security
definition. It must be noted that the mutation interval, Tm,
and the client request rate, Tr, influence the number of per-
function randomizations that must be included in the allowlist.
Considering the worst case, there must be Tm

Tr
replicas of each

function. Finally, the parameter K depends on the application
robustness.
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Fig. 7. Numerical and approximation (UB) of the attack success probability
for the RFL method. The number of functions is W = 30.

VII. CONCLUSIONS

We propose an application of the ZKMB to the detection of
anomalous function invocation sequences in FaaS scenarios,
where end-to-end encryption is used and the middlebox is
honest-but-curious. Two strategies for distributing updated
allowlists are described, where the tradeoff between perfor-
mance, attack probability, and communication privacy is stud-
ied. Performance is assessed through a proof-of-concept sys-
tem and a Markov chain model, showing promising balance.
While feasible, high computational costs hinder mainstream
deployment readiness. Further work will be necessary for
optimization and testing on a real-world deployment, while
ongoing research suggests near-future improvements on the
ZK algorithms side.
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