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a b s t r a c t

Recognition and analysis of voltage sags (dips) allow network operators to predict and prevent
problems in real-life applications. Clearing the voltage sag source by direction detection methods is
the most effective way to solve and improve the voltage sags and their related problems. However, the
existing analytical methods use single or two input features as phasor-based (PB) or instantaneous-
based (IB) values. Hence, their limited maximum accuracy is given at 93% and 84% when using PB
features for noiseless and high-level noise signals, respectively. To increase the detection accuracy,
the main contributions of this research by proposing machine learning (ML) methods include: (a)
Developing nine supervised methods including support vector machine (SVM)-based, tree-based,
others, and an ensemble learning of said methods, and providing a comparative analysis (b) Employing
a set of PB, IB, and both PB and IB input features as noiseless and noisy; (c) Finding the best developed
supervised methods by highest possible accuracy under subsets said in (b); (d) Proposing a new
unsupervised method fed by both PB and IB features using a sparse principal component analysis
(SPCA) applied to a k-means clustering with an internal SPCA approach. The proposed unsupervised
schema does not use the upstream/downstream labels in developed supervised methods. Extensive
simulations of voltage sags due to fault and transformer energizing on a Brazilian regional network
show that regardless of the sag sources, input feature subset, and noise levels, the random forest
(RF) models yield the best performance so that noiseless-RF (99.84%) using both PB and IB features is
the most effective one. The proposed unsupervised method outcomes an overall accuracy of 99.17%-
noiseless and about 90% for high-level noises. This performance is higher than analytical methods,
very close to SVM-based supervised methods, and uses no predefined labels. Moreover, the results
of Slovenian field measurements confirm the effectiveness of the best-developed supervised methods
and the proposed unsupervised learning.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Voltage sags are one of the most critical power quality dis-
urbances as short-duration voltage variations [1]. Despite their
hort duration, such events can cause severe problems in trans-
ission and distribution systems, micro-grids, and industrial or
ustomer facilities. Various reasons, including short-circuit faults,
tarting/loading induction motors, transformer energizing inrush
urrent, and large loads operations, may cause the sags. Due to
ll these events (except starting the motors), the sags propagate
hroughout the power network, affecting connected loads far
rom the source location [2–4]. Therefore, monitoring, analyzing,
nd characterizing the sag events and identifying their causes
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can help mitigate the substantial loss of product of a typical
industrial installation and improve power quality [2]. Thus, de-
tecting the sag sources by an accurate formulation (when there
is no mitigation equipment) is an important strategy to define
the responsibility of both sides of power supply and consumption
for the sags caused by fault/transformer energizing in offline
applications. There is a need for direction detection methods to
operate as a directional function in relays and secured backup
protection to prevent the unwanted operations of protection,
where more accurate methods are needed. Moreover, a compre-
hensive comparison of such detection methods as analytical and
ML-based is lacking. ML has been introduced as an alternative to
analytical methods. It introduces new opportunities, but there are
challenges such as the definition of input features and the need
for large amounts of data.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Abbreviation

CR Classification rate for each class
CV Cross-validation
DT Decision tree
EL Ensemble learning
FAR False alarm rate for each class
FP, FN False positive and negative values for

each class
IB Instantaneous-based
KNN K-nearest neighbor
LR Logistic regression
MCR Misclassification rate
ML Machine learning
NN Neural network
PB Phasor-based
PMUs Phasor measurement units
PQM Power quality monitor
cj Label of jth class (j = 1, 2)
cjmax Majority weighted voting class label

between two classes in KNN
d Polynomial degree for polynomial ker-

nel of SVM
E Residual matrix used in the process of

first SPCA
Gi Gini index to estimate the node impu-

rity in DT
hi ith principal feature vector in the Bm×p

h′

i ith principal feature vector in the Cm×2

I(a, b) Indicator function to show the relation-
ship between a and b

Ncorrect Number of correct results for separated
or all (m) parts of a dataset

Nk Number of samples in the kth test fold
of CV

Ntotal Number of total test samples for sepa-
rated or all (m) parts of a dataset

p Probability of predicted class for LR
pij Gaussian distribution measuring sim-

ilarity of high-dimensional vectors in
t-SNE

Pn Power of noise
Ps Power of sag signal
qij Student t-distribution measuring sim-

ilarity of low-dimensional vectors in
t-SNE

RBF Radial basic function
RF Random forest
SPCA Sparse principal component analysis
SVM Support vector machine
TE Transformer energizing
TP, TN True positive and negative values for

each class

1.1. Related works

Several methods have already been reported for detecting the
elative location of voltage sag sources [5–45]. The approaches
2

Parameters and variables

Am×n Original feature matrix, n = 28, 17, 11
ai Lagrangian multiplierused in SVM
Bm×p Principal feature matrix, output of first

SPCA
b Bias term in SVM and LR
Cm×2 Principal feature matrix existing in k-

means, after clustering
Rp×28 Sparsity matrix used in the process of

first SPCA
vi,j Ratio of class j instances among the

training distances in the ith node in DT
xi ith normalized feature vector (rows) in

the Am×n

yi ith true (real) label corresponds to xi,
{0,1}

ŷ predicted label by the classifiers
Wj(xi, x́) Weight ≥ 0 of the ith sample relative to

new sample x́ in the same tree in RF
ωij Assigns a sample to a cluster in k-means

according to distance
γ Parameter for RBF kernel of SVM, which

scale the distance
β1, β2 Coefficients for sigmoid kernel of SVM
µj Cluster centers or centroids in the jth

cluster (j = 1,2)
δ Hypothesis function of LR
θi Parameter vector of the LR

to distinguish between downstream and upstream sags can be
classified into three types. The first and basic type involves
the analytical methods, which are based on different criteria,
such as power and energy changes during voltage sag (so-called
disturbance power and energy criteria) [5–7], voltage–current
analysis due to criteria of real current component changes and
slope sign of system trajectory [8,9], change of impedance and
resistance (incremental positive sequence impedances, negative
and positive sequences impedances and impedances based on
Park’ components) [10–15], analysis of only voltages; compar-
ing the per unit voltage magnitude at primary and secondary
of a transformer or the difference between positive sequence
voltage magnitudes for each two PQMs covering an area/zone
between themselves for the pre and post sag conditions [16,17]
and only currents (mostly based on positive sequence current
magnitude and/or angle changes) [18–23]. Within this group,
statistical methods with a combination of existing rules have
been applied to enhance the performance and degree of con-
fidence [24–26]. Higher effectiveness was achieved for several
types of methods by using positive-sequence components on
the line phasors [27], applying Clark components [28–30], and
positive-sequence components on the instantaneous voltage and
current signals [31,32]. Moreover, a short [33,34] and detailed [3]
analysis has been done on some mentioned methods. The second
type of methods includes signal processing techniques, which
develop the method presented in [5] based on power and energy
changes. These methods are based on the Hilbert transform [35,
36], S transform [37], and a combination of S and TT (time-time)
transforms [38], which improve the basic method in [5]. The
third type focuses on the methods that utilize ML tools. An SVM
classifier fed by several features sensitive to source location was
used in [39], only for sags due to faults. Later, an EL on DT basic
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learners fed by optimum features improved the accuracy [40].
In [41], a feed-forward NN by a criterion as a combination of
four features extracted from [5,8–10] and sag characteristics
(magnitude, phase-jump, harmonic content, imbalance, and the
slope was designed. Further [42], a conventional NN fed by five
features extracted from [5,8–10] on three phases, was planned
to locate the direction of faults. Later, independent recurrent NN
was proposed for sag source location due to only faults [43].
Furthermore, a data-driven approach using randommatrix theory
found the location of complex sources of sags (multiple faults)
with a complicated mathematical method [44]. Far ahead, a
genetic algorithm was applied to select the best measurement
points and relatively locate the faults [45].

1.2. Drawbacks of existing methods

The limited accuracy is the first shortcoming of analytical
xisting methods. Most of the methods mentioned above (both
nalytical and ML ones) have been analyzed for sags due to
aults, while only a few analytical methods [27–31] considered
ags caused by TE. The voltage sags caused by TEs differ from
aults since they are always asymmetrical, have harmonic content
especially in current), and have a long recovery time, which can
ave a different impact on the loads and generators such as wind
urbines [46,47]. Therefore, finding the location of TEs is impor-
ant for the network operators when they do not have infor-
ation about events such as the energizing after auto-reclosing

he protection relays. An example of energizing after a successful
uto-reclosing relay was shown in [48]. Hence, the methods must
e developed to face the transient harmonic current during a TE
vent.
Moreover, the analysis of methods was done for mostly noise-

ess input signals, and only a few research considered the noisy
ignals [41,44]; meanwhile, the real measurements include dif-
erent levels of noise, which affect the performance of methods.
n addition, developing ML-based methods fed according to the
vailability of input features (PB, IB, or both) is lacking. For
xample, for applying the methods on measurements obtained
rom PMUs, proposing an intelligent method fed by PB features
s still needed. Additionally, a comprehensive comparison of such
etection methods as analytical and ML-based is lacking to show
he effectiveness of ML methods. As another current shortfall,
abeling many voltage sags recorded by the PQMs worldwide
s an input dataset into supervised ML-based methods is al-
ays an issue; hence there is a need for designing an accurate
nsupervised ML method to handle the unlabeled inputs.

.3. Contribution and applicability

To cover the shortfalls of existing methods, the contributions
f this paper for detecting the sag sources, both faults and TEs,

include:
(a) A comprehensive comparison of detection methods as an-

lytical and ML-based.
(b) Developing supervised ML methods to enhance the ac-

uracy of analytical methods. The methods include SVM-based
ethods with kernels of polynomial, RBF, sigmoid, and linear;

ree-based ones, i.e., DT and RF; others as KNN and LR; and
n EL on all said methods. The selection of the traditional ML
ethods is based on their speed and relative simplicity compared

o neural networks. This part is highly more comprehensive than
he literature [39,40].

(c) Considering the different sets of input features, including
hree feature subsets as PB, IB, and Total, with four noise levels
s noiseless, 20, 30, and 40 dB (3 × 4 = 12 models for each of

he nine classifiers). t

3

(d) Finding the best (highest accuracy) developed supervised
methods among the nine classifiers. Regardless of the sag sources,
input feature subset, and noise levels, the RF models will show
the best performance from the accuracy perspective.

(e) Proposing a new unsupervised ML method fed by Total
features with four noise levels to handle datasets without up-
stream and downstream labels. This is worth because labeling
real data is usually impossible. This proposed method utilizes
an SPCA applied to a k-means clustering that already uses an
internal SPCA’s initializing scheme to start effectively clustering
the feature vectors. This part is done as the first work in this area
and introduces unsupervised methods that are more effective
than analytical methods. They have a very close accuracy to
SVM-based supervised methods and do not use the predefined
labels.

The developed supervised and proposed unsupervised meth-
ods can detect the direction of both faults and TEs as the sag
sources, which is different from distinguishing the sag sources.
Applying the PB/IB features obtained from the transient period of
voltage sags [49] can also increase the speed of the proposed ML
methods. Therefore, the applicability of the methods can be as:

(a) Directional function in the relays, fault indicators, and
ecured-supervised backup protection, with high reliability, in
ase of faults as the source of sags (online applications).
(b) For the sags due to TE, the system operator can recognize

he location of the automatic-energized transformer with high
erformance (offline applications).
(c) At the PCC of transmission systems and the distribution

ystems with a high penetration of renewable energy resources,
hich the responsible area of sags occurring in the transmission

ines due to faults in the distribution level is in the interest
f transmission network operators to assign penalties for the
esponsible area (offline applications).

The rest of this paper is organized as follows: Section 2
resents the input features, develops supervised methods, and
roposes a new unsupervised one. The methods’ results using
xtensive simulations and applying them to field-testing are
iven in Sections 3 and 4. A detailed discussion on the generality
f the paper is given in Section 5, and Section 6 concludes the
aper.

. Developed supervised and proposed unsupervised methods

.1. Feature extraction

The first stage for the ML methods in a two-classes (down-
tream/upstream) problem, developed supervised and proposed
nsupervised in this paper, is feature extraction and selection.
y registering a voltage sag at the PQMs, the voltage and cur-
ent waveforms are applied to 23 known-analytical methods,
xplained in Table A.1. Each analytical method consists of one
r two features, and a collection of all of them makes 28 ex-
racted features f1−f28 to be used as input to ML methods, as
xplained in Table 1. In this way, the challenge of feature se-
ection is solved. The 28 features are divided into three feature
ubsets in this study: Total features including all 28 features,
B features including 17 features as line and positive sequence
hasors, and IB features with 11 features counting instantaneous
ositive-sequence and Clark’s components.

.2. Developed supervised methods

The authors of this paper have already investigated the ef-
ectiveness of SVM-based ML methods with the kernels of poly-
omial, RBF and linear. In the current study, the aim is first
o see the effectiveness of another kernel of SVM, i.e., Sigmoid,
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Table 1
Expression of different features extracted from voltage and current waveforms.
Features
(Category)

Description
of features
(unit)

Features
(Category)

Description of features
(unit)

Features
(Category)

Description of
features (unit)

Features
(Category)

Description of
features (unit)

f1 (PB) ∆ E (pu) f8 (IB) ∆ e+
− q (pu) f15 (IB) slope

(
i+,
⏐⏐v+cosθ+

⏐⏐) f22 (IB) re+(pu)
f2 (PB) ∆ E+ (pu) f9 (IB)

∫ t
0 ∆tanθ+dt f16 (PB) ∆ |Z | (pu) f23 (IB) ∆ (paß/∥vaß∥) (pu)

f3 (IB) ∆ e+
− p

(pu)
f10 (PB) ∆(Icos(θ ))min (pu) f17 (PB) ̸ Zsag (rad) f24 (PB) Re

− (pu)

f4 (PB) ∆ Q (pu) f11 (PB) ∆ (I+cos(θ)+) (pu) f18 (PB) ∆ ̸ Z (rad) f25 (PB) ∆
⏐⏐I+⏐⏐ (pu)

f5 (PB) tanθ f12 (IB)
∫ t
0 ∆

(
i+cos(θ)+

)
dτ (pu) f19 (IB)

∫ t
0 ∆ |z| dτ (pu) f26 (PB) ∆ ̸ I+ (rad)

f6 (PB) ∆ Q+ (pu) f13 (PB) slope(I, Vcosθ )min f20 (IB)
∫ t
0 ∆̸ zdτ (rad ms) f27 (IB)

∫ t
0 ∆

⏐⏐i+⏐⏐ dτ (pu)
f7 (PB) tanθ+ f14 (PB) slope

(
I+,

⏐⏐V+cosθ+
⏐⏐) f21 (PB) Re

+ (pu) f28 (IB)
∫ t
0 ∆̸ i+dτ (rad ms)

min: corresponds phase with deepest voltage sag (Feature extractor methods are described in Appendix (Table A.1).
along with the others in a more generalized dataset, including
the different noise levels and different feature subsets. The second
aim is to check the efficiency of the tree-based methods (DT and
RF), others (KNN and LR), and an EL on all mentioned methods.
The results will further show more effectiveness of tree and
other-based methods for the voltage sag source detection goal. In
general, the selection of the traditional ML methods is based on
their speed and relative simplicity compared to neural networks.
This part is highly more comprehensive than the literature [39,40]

The training process of the developed supervised methods is
hown in Fig. 1a for a binary classification problem with labels
s 0 (an upstream location of sag sources) and 1 (a downstream
ocation). The normalized dataset/feature in three different cate-
ories as Total (Am×28), PB (Am×17), and IB (Am×11) are inputted to
earning methods (developed supervised methods in this study)
or noiseless and noisy (20, 30, and 40 dB) conditions; hence 3 ×

= 12 models are obtained for each developed method. Matrixes.
e have used a min–max normalization applied on the matrixes’

olumns to scale the values within [−1,1]. A 5-fold CV technique
s also used to reduce the risk of training overfitting. The Total,
B, and IB datasets with four different values of m are divided
nto 5 folds, and in each step, one-fold is considered a test fold
nd 4-fold as a training fold. The process is repeated 5 times, so
or each configuration of the learning methods, all 5 folds work as
test set once. The Bayesian algorithm optimizes the parameters
f the kernels and methods themselves. The used fitness function
s evaluated by MCR on the test folds at the iteration of g as (1)
nd (2). The main decision function for each developed classifier
except the EL) is explained in Table 2.

CR(Igi ) =
1
5

5∑
k=1

1
Nk

Nk∑
j=1

I(ŷi, yj), i = 1, . . . ,m (1)

I(ŷi, yj) =

{
1, ŷi ̸= yj

0, otherwise
(2)

As another developed supervised method, this paper proposes
an EL on the members explained in Table 2. The output decision
of all the classifiers is combined to produce a single output
using the rule of majority/hard voting. In majority voting, the
predicted class label for a sample xi is the class label representing
the majority of the class labels predicted by each of the eight
individual classifiers. Using the EL increases the probability of
more accurate classification as every classifier behaves differently
with the training and testing samples. Therefore, the aggregated
decision is taken after combining the decision of the classifiers.
While combining the output decision of the classifiers, misclas-
sification done by any one of the classifiers gets suppressed due
to the majority of correct classification done by other remaining
members. In this manner, we have used voting = ‘hard’ in Phyton.

Finally, 12 optimum models (optimum means all parameters
and variables are optimized during the training and testing pro-
cess for each model) are obtained for each of the nine methods.
4

Fig. 1b shows the best (highest accuracy) Total, PB, and IB models
for noiseless and noisy conditions (Tables A.2a and A.2b for the
parameters of best models). As seen in Fig. 1b, the developed RF
methods have been selected in a majority of different categories.
Since the methods have been trained offline in this study, thus,
the best model is defined as the model with the highest accu-
racy only, i.e., finding the most effective classifier among nine
ones for each of 3 input feature subsets and four noise levels.
The best models are chosen based on Table 3, Section 5.1, and
Appendix A.2.

2.3. Proposed unsupervised method

This section proposes a framework including the well-known
unsupervised methods (SPCA followed by k-means). The frame-
work is worth because it is the first attempt to design a schema
that can handle unlabeled datasets for the voltage sag source
detection problem. Since the labeling of voltage sag samples as
upstream and downstream is usually impossible in reality. The
results will further show the good efficiency of the proposed
method, higher than the analytical methods and very close to
the supervised SVM-based methods. The process of the proposed
unsupervised scheme for noiseless and noisy conditions (four
separate models) consists of four modules, as can be seen in
Fig. 2 (optimizations by the grid search): (i) feature extraction
and normalization; (ii) applying SPCA on the Total feature vectors,
normalized high-dimensional, xi (a column min–max normaliza-
tion), which results in the vectors hi with p principal features;
(iii) employing k-means clustering initialized by an internal SPCA
for grouping principal features; (iv) visualizing the original and
clustered features in 2D space using t-SNE.

(i) Feature extraction and normalization
By registration of a voltage sag at the PQMs, the voltage

and current waveforms are applied to the 23 known-analytical
methods (Table A.1). Then, 28 features are extracted as the Total
feature subset. A min–max normalization is then applied to the
columns of matrix Am×28 to scale the values within [−1,1]. The
m would have four values for noiseless, 20 db, 30 db and 40 db
conditions.

(ii) Applying SPCA
The dataset extracted from part (i) was first inputted directly

to k-means. However, the clustering results were inefficient (see,
for example, Table 20). Hence, the authors decided to use some
feature size reduction algorithms. Principal Component Analy-
sis (PCA) is one of the most powerful algorithms in data pre-
processing for dimensionality reduction in many applications.
PCA is a linear algorithm that transforms the original data into
a linear combination of the new uncorrelated features. The new
features aid in bringing non-obvious patterns in the data to the
forefront and can improve the performance of the ML meth-
ods [57,58]. However, in our work, an SPCA algorithm was chosen
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Fig. 1. Process of developed supervised methods (a) Training the models for noiseless and noisy datasets (b) Implementation of best-developed models.
nd employed to extract principal features after using and test-
ng PCA and even kernel PCA [59] on the dataset. SPCA, in our
ork, takes the high-dimensional data sequences (xi −28D) from

Am×28, uses eigenvectors of the covariance matrix, does an eigen
analysis, and projects the feature vectors on the first p domi-
nant eigen vectors (principal components). Hence, the main idea
underlying SPCA is similar to PCA. The difference is that each
principal feature in SPCA is a linear combination of just a few
(sparse) weighted uncorrelated original features. Finally, SPCA
results in the corresponding low-dimensional principal feature
vectors (hi − pD) into Bm×P . SPCA offers more right solutions
under high dimensions than PCA [57]. Eq. (11) shows a low-rank
approximation of the feature matrix A. SPCA tries to minimize
the least square criterion (12) with the sparsity matrix R28×P and
coefficients rls. The second part of (12) is the lasso penalty, which
is tuned by metaparameter of λ ≥ 0 [60].

A = BRT
+ E (11)

min
B,R

∥ A − BRT
∥
2
+ λ

28∑ p∑
|rls| (12)
l=1 s=1

5

(iii) Internal SPCA and k-means clustering
Principal feature vectors (hi) from the output of SPCA are

inputted to the k-means clustering block. K-means is one of the
most famous/efficient methods employed for clustering goals. In
order to have more accurate clusters, firstly, the vectors (hi −pD)
are converted to (h′

i−2D) into Cm×2 by an internal SPCA, and then
initial centroids (µj) are calculated based on the two principal
features and using a k-means++ initialization scheme [61]. The
internal SPCA may help to better initialize centroids [62]. The k-
means clustering aims to group the vectors h′

i into K clusters. In
our case, K = 2, since a two-class source detection problem is
studied in this paper. Each feature vector is assigned to the cluster
with the shortest ‘distance’ to one of the cluster centers. Centroids
are then updated once all feature vectors are assigned. The inertia
for minimization by k-means is Euclidean distance (13), and it
is trained by alternatively applying the following two steps until
convergence (14) and (15):

min
m∑ 2∑

ωij∥ h′

i − µj ∥
2 (13)
i=1 j=1
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Table 2
Expression of the employed classifiers in Fig. 1.
Type Classifier Explanation Main decision function Ref. Eq.

SVM-
based

RBF-SVM
Polynomial-SVM
Linear-SVM
Sigmoid-SVM

SVM is commonly used in binary classification
and transfers data to higher n-dimensional
space to find an optimal hyperplane to
separate classes. The SVs are coordinates of a
new n-dimensional system. Thus, SVM uses
different kernels. The SVMs’ performance is
independent of the number of features, but
slow training speed does not endorse it for
online applications [50].

ŷ = sign(
m∑
i=1

aiyie
(−γ∥xi−xj∥

2)
+ b), γ > 0

ŷ = sign(
m∑
i=1

aiyi(x
T
i xj + 1)

d
+ b), d > 0

ŷ = sign(
m∑
i=1

aiyix
T
i xj + b)

ŷ = sign(
m∑
i=1

aiyi tanh(β1xTi xj + β2) + b), β1 > 0, β2 < 0

[40]
[40]
[40]
[51]

(3)
(4)
(5)
(6)

Tree-
based

DT DT is based on different hierarchical steps that
lead to certain decisions. It applies a treelike
structure to represent decision paths with
induction and pruning steps. In the induction
step, the tree structure is built, while, in the
pruning step, the complexities of the tree are
reduced. The inputs are mapped to outputs by
traversing each path through different tree
branches.

Gi = 1 −

2∑
j =1

vi,j
2, (i = 1, . . . ,m) [52] (7)

RF RF uses several DTs instead of having only one
in DT. It can be applied in massive datasets to
classify data or measure the importance of
each feature in the final decision. The RF is
preferred over the DT because it is more
accurate and overcomes the overfitting issue
of DT. RF is not recommended for real-time
purposes because it is generally slower than
other models [53].

ŷ =
1

n_tree

n_tree∑
j = 1

m∑
i=1

Wj(xi, x́)yi [54] (8)

Other KNN KNN is one of the most basic used classifiers.
It generally finds data with similar
characteristics and groups them in the same
class without assumptions on data distribution.
The groups are constructed by considering the
attributes of the neighboring samples. It is
used in online data mining and pattern
recognition.

ŷ = cjmax = argmax
cjϵ{0,1}

n_neighbor∑
i=1

1
i

× I(cj, yi), j = 1, 2 [55] (9)

LR Like SVM, LR is commonly used for binary
classification. In LR, the threshold indicates
examples labeled into which class using
hypothesis and logistic function. The
hypothesis determines the likelihood of
generating data and fitting them into the
logarithm function that forms a sigmoid curve.
Then, the function is used to predict the class
of new inputs [50].

p̂ = δ

(
m∑
i=1

θixi + b

)
, ŷ =

{
0 if p̂ < 0.5

1 if p̂ ≥ 0.5
[56] (10)
I
f

a
c
s
t
e
(
s
s

ωij =

⎧⎨⎩1, if j = argmin
j

∥ h′

i − µj ∥
2

0, otherwise
(14)

j =

∑m
i=1 ωijh′

i∑m
i=1 ωij

(15)

here (14) assigns each feature vector h′

i to its closest µj, and
15) updates the µj by averaging all feature vectors within the
th cluster.

iv) 2D visualization of original and clustered features by t-SNE
To visualize the original vectors (xi − 28D) from Am×28 (with

labels 0/1, which are available from simulations) and the clus-
tered vectors (clustered h′

i − 2D) from clustered Cm×2, a nonlin-
ear dimensionality reduction method, t-SNE [63], is used. T-SNE
is another embedding method for converting high-dimensional
Gaussian distributed feature points into low-dimensional (in our
case, two) points in a t-student distribution. In this study, one
t-SNE is used. It is once applied to the (xi − 28D) with original
labels, and the second time applied to the (x −28D) with obtained
i

6

labels from the proposed model. Hence, theoretically, first, the
similarity between two feature vectors i and j belong to spaces
of xi are modeled by pij and qij in the input and output of t-SNE,
respectively. The mapping from input to output of t-SNE is then
obtained by minimizing the KL divergence between those two
distributions:

KL(P ∥ Q) =

∑
i̸=j

pij log
pij
qij

(16)

n our case, using t-SNE is only for 2D visualization of original
eature vectors and clustered principal feature vectors.

To obtain the accuracy of our proposed unsupervised method,
label as 0 or 1 is assigned for some samples in each cluster by
hecking the existing true labels, which are already existing from
imulations. Then, the rest of the samples can have a label. Finally,
he optimized models of the proposed unsupervised method are
mployed for real applications in noiseless and noisy conditions
Fig. 2b). Later on, Table 20 will show the impact of using dimen-
ion reduction by SPCA as the first step in the overall proposed
chema.
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Fig. 2. Process of proposed unsupervised method (a) Training the models for noiseless and noisy dataset (b) Implementation of proposed models.
A
c
t

. Performance evaluation

.1. Explanation of training and testing samples

The simulated case study is a regional power system in the
ato Grosso state of Brazil [40], as shown in Fig. 3. This real
ystem is modeled by PSCAD/EMTDC. The PQMs are installed
t 6 points (different topologies1), with M1 at a 138 kV line,
2. . .M5 on the boundary between the 230 and 138 kV systems,
nd M6 between the 138 kV and 13.8 kV system. The downstream
irection is the forward side of the power flow direction before
oltage sag, and the upstream direction is backward. The training
nd testing datasets are generated as follows by considering
arious scenarios. The loads are constant impedance, constant
ower, and induction motors, and their sizes changed randomly
n different simulations. The impedances of lines are also changed
andomly during simulations to show the possibility of installing
ew lines. The duration of faults is set between 0.1 and 0.3 s
andomly and is simulated under different system conditions:
5 fault locations (F1–F15), 11 fault types (LLLG, LLL, LG-a, LG-
, LG-c, LLG (LL)-ab, LLG (LL)-bc, LLG (LL)-ca), 5 fault impedances
0.001, 1, 10, 40 and 80 �) and 6 PQMs installed over the different
ypologies of systems (M1-M6). Consequently, 15 × 11 × 5 =

25 fault cases are evaluated in the 6 PQMs, totaling 4950 fault
amples. Five TE points are simulated (TE1-TE5) with 7 trans-
ormer capacities (20–140 MVA with 20 MVA steps); hence 5
7 × 6 = 210 TE samples are also obtained. The voltage sags

ue to simultaneous occurring two faults, two TEs, or a fault and
E at two downstream and upstream sides are very rare events
[10] and many other works of literature); hence they are not
onsidered in this study. However, a TE followed by two fault
ases is shown in Section 4. 5160 noiseless samples result in m =

385 noiseless voltage sag data as voltage and current signals. The

1 Note that the PQMs are installed on the border of systems with different
etwork topologies. M1 is at the border of a single source radial network with
onstant impedance and power loads. M2 is at the border of a two-source radial
etwork due to the presence of a 15MVA DG at the DS side. M3, M4 and M5 are
t the border of a two-source interconnected network, and M6 is at the border
f a single-source radial network with a large induction machine load (13.8 kV,
200 HP).
7

noiseless 5160 groups of data are then polluted to white Gaussian
noises with SNRs of 40 dB, 30 dB, and 20 dB, which result in
m = 4469, 4579 and 4783 noisy voltage sag data, respectively.
The m voltage and current signals are processed by analytical
methods (Table A.1) via MATLAB codes in a sampling frequency of
7.68 kHz to extract the three types of feature matrixes as Am×28,
m×17, and Am×11. Then, m corresponding label as downstream
lass (1) or upstream class (0) is set. The feature matrixes are
hen normalized and inputted to intelligent methods in Python
programming. The different parts of fault samples, leading to
voltage sags, for noiseless and noisy datasets are as: LLLG (LLL)
(symmetrical samples), LG-a, LG-b, LG-c, LLG-ab, LLG-bc, LLG-ca,
LLLG (earth fault samples), LG-a, LG-b, LG-c, LLG (LL)-ab, LLG (LL)-
bc, LLG (LL)-ca (asymmetrical samples). The other samples are TE
and samples with the downstream and upstream labels. The Ntotal
for separated parts of each dataset is given in the next sections,
and the accuracy of either developed supervised or proposed
unsupervised models is obtained as follows:

ACC =
Ncorrect

Ntotal
× 100 (17)

3.2. Results of developed supervised methods

This section presents the results of developed supervised
methods with the predicted outputs as 1 and 0. Different models
using 5-fold cross-validation are trained for various inputted
features as Total, PB, and IB and for different levels of noise as
noiseless, 20, 30, and 40 dB. Table 3 shows the overall classifica-
tion results of the nine developed methods (12 models for each)
and the best analytical method. The accuracies are sorted from
highest (dark green) to lowest (light red) in each column, and
the highest accuracy and the closest accuracy to the highest one
are indicated by ✓and 2�, respectively. The following conclusions
obtain from Table 3:

1- The developed supervised methods, especially non-SVM-
based methods (DT, RF, LR, KNN), and the EL show much
higher accuracy than the best analytical methods.

2- On average, the developed RF methods are the best for
any input features and noise level. Total-RF, Total/PB-KNN,
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Fig. 3. Testing system for numerical simulations of voltage sag samples due to faults and TEs.
and IB-LR models have shown the highest performance for
noiseless datasets.

3- Comparison between SVM-based, non-SVM-based, and EL
methods shows that tree-based methods (DT, RF), others
(LR, KNN), and EL have better overall accuracy (Tables A.2a
and A.2b, optimum parameters of best models).

4- On average, the SVM-based models with RBF kernel are
more accurate, and models using polynomial kernel are less
accurate than the other SVM-based models.

5- Adding noises to pure datasets decreases the classification
accuracy for all the best analytical methods and most of
the developed supervised models, even by training models
individually for each noise level. The impact is much less on
the non-SVM-based and EL models, showing their inherent
anti-noise characteristics.

6- The best analytical methods using PB features are ahead of
those utilizing IB features. This result may change for the
short duration sags, sags with transient behavior [30–32],
and sags caused by TE events. Hence, the developed super-
vised methods fed by PB features are more accurate than
those fed by IB features. This result is more accurate for
non-SVM-based and EL methods. The learning methods fed
by Total features show almost similar performance to those
fed by PB features. It shows that using only PB features or
IB features for sags that are short, transient, and caused by
TE events can build a high-performance classifier.

7- The developed EL in this paper included SVM-based and
non-SVM-based (tree-based and others) models. The EL
had the second score among others for Total and PB fea-
tures. SVM-based members had a negative effect on the EL
accuracy. Therefore, an enhanced EL model could be built
by employing only non-SVM-based models. However, the

developed models of KNN/RF fed by total or PB features,

8

Fig. 4. Overall accuracy of developed Total-RF method at different folds.

and LR/RF fed by IB features reached a very high accuracy
under noiseless data.

The performance of developed Total-RF methods (on average,
the highest performances) and Total-EL methods for different
cross-validation folds are shown in Figs. 4 and 5. The EL methods
are very close to the RF method and perform very well for
different noise levels.

In order to check in depth, the performance of the developed
supervised methods against the best analytical ones, Table 4
gives the results in terms of Ncorrect and ACC for the noiseless
Am×28 related to separated samples of datasets. Again, the non-
SVM-based and EL methods show much higher accuracy than
the best analytical and SVM-based methods. Excellent accuracy
is obtained for analytical methods of RS (16) (100%) and RP (6)
(99.39%) for upstream (class 0) and TE samples, respectively.
However, the developed EL and KNN methods show 100% accu-
racy for class 0 samples, and all non-SVM-based and EL methods
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Table 3
Classification overall accuracy (%) of developed supervised and best analytical methods under noiseless and noisy data fed by Total, PB, and IB features.

1: RS (16); 2: RCC (8); 3: CBM (20); 4: RS (18); 5: DPE (3); 6: CBM (21); Colors: accuracies sorted from highest (dark green) to lowest (light red); ✓: Best
accuracy for each column, 2�: Closest accuracy to highest one by tolerance of (–0.1%).
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Fig. 5. Overall accuracy of developed Total-EL method at different folds.

are ahead of the analytical method of RP (6) for TE samples. The
weakest accuracy of analytical methods was assigned to PCSC (22)
(91.96%) for downstream (class 1) samples, while the developed
RF method gave 99.68%. The same overall accuracy of 99.84% was
obtained by developed RF and KNN methods and 99.63% for the
proposed EL, which is higher than the used DT-EL method in [40]
by overall accuracy of 99.2%, even by employing optimal features.
The developed RF method performs better for symmetrical, earth
fault, class 1, and TE samples, whereas the KNN method is more
accurate for the asymmetrical and class 0 samples.

In the following, the performance (Ncorrect and accuracy) of
est PB/IB analytical and developed supervised methods (shown
y ✓in Table 3 as PB-KNN and IB-LR (noiseless), PB/IB-RF (all
oise levels)) related to separated different parts of samples are
istinctly given in Tables 5–8 for noiseless, 40 dB, 30 dB, and
0 dB conditions, respectively. The findings from these tables are
s follows:

- For PB methods: The analytical methods had the best accu-
racy for noiseless and 40 dB earth faults and symmetrical
30 and 20 dB samples, whereas the KNN and RF meth-
ods showed much more accuracy. The weakest accuracy
of analytical methods was related to TE samples, while a
very high accuracy of KNN and RF was obtained for such
samples.

- For IB methods: The analytical methods had the best ac-
curacy for TE samples, i.e., sags due to TEs, which are a
good candidate for IB methods. It is because of the second-
order harmonic of current signals on the TE events. It was
expected to see such results for the LR and RF methods.
However, they showed accuracy even less than analytical
methods (except for 20 dB data), so that the weakest ac-
curacy of KNN and RF was obtained for the noiseless and
 n

9

40 dB TE samples, respectively. While a low accuracy of
analytical methods was for overall samples (noiseless, 30
and 20 dB) and 40 dB earth faults, the LR and RF methods
showed considerably more accuracy in the cases.

- Cases in which IB methods are more accurate than PB: TEs
regarding analytical methods and only symmetrical noise-
less samples: IB-LR (highest accuracy (99,73%)), PB-KNN
(99.6%).

Confusion matrixes are shown in Tables 9–12 for noiseless,
40 dB, 30 dB, and 20 dB conditions, respectively. This way, the
best PB/IB analytical and developed learning methods can be
compared for both classes of 0 and 1. The diagonal entries of
the confusion matrix show the number of correctly predicted
instances in each class, whereas the non-diagonal entries show
the incorrect classifications.

We use the CR and FAR [64] for each class of 1 and 0 separately
to measure the performance of the methods mentioned above
for each class separately, besides their overall accuracy. For each
class, the CR and FAR are defined as follows:

CR =
TP

TP + FN
× 100 (18)

FAR =
FP

FP + TN
× 100 (19)

R can be used for measuring the performance of each method
etween two classes, while for measuring the performance of two
ifferent methods, both CR and FAR must be checked. Table 13
ives the performances of the best PB/IB analytical and developed
upervised methods (methods as shown in Tables 9–12) for each
lass in terms of CR and FAR, and it is concluded that:

- Best methods among analytical ones for classes 0 and 1:
PB methods: RS (16) under noiseless data, RCC (8) under
40 and 30 dB noises, and CBM (20) for 20 dB data.

- Best methods among all for classes 0 and 1: PB developed
supervised: KNN under noiseless data, and RF for noisy
data.

- Performance of methods for the classes separately:
CRclass 1 < CRclass 0 for analytical, and CRclass 1 ≤ CRclass 0 for
supervised methods.

- Although some analytical methods have high CR close to
the developed supervised methods, the much less FAR seen
for developed supervised makes them more accurate; for
instance, a 0.5% FAR for PB-KNN and 1.44% for IB-LR under
noiseless signals.

.3. Results of proposed unsupervised method

The results of the proposed unsupervised method on the
m×28
oiseless and noisy A are explained in this section. Table 14
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Table 4
Performance of developed supervised methods and best analytical ones fed by Total features under noiseless
separated samples of sags.

1: RS (16); 2: RCC (8); 3: PCSC (22); 4: RP (6); Colors: ACC/Ncorrect sorted from highest (dark green) to lowest (light
red); ✓: Best ACC for each column, 2�: Closest ACC to highest one by tolerance of (–0.12%).
Table 5
Performance of best PB/IB analytical and developed supervised methods under noiseless separated samples of sags.

Colors: ACC sorted from highest (dark green) to lowest (light red).
Table 6
Performance of best PB/IB analytical and developed supervised methods under 40 dB separated samples of sags.

Colors: ACC sorted from highest (dark green) to lowest (light red).
Table 7
Performance of best PB/IB analytical and developed supervised methods under 30 dB separated samples of sags.

Colors: ACC sorted from highest (dark green) to lowest (light red).
shows the optimal parameters of the proposed overall model, re-
quired time, and accuracy of known classes. A label was assigned
for some samples in each cluster by checking the existing true
10
labels obtained from the simulations, and then all samples were
labeled. The method’s accuracy can be calculated by having input
and obtained labels from our method. Increasing the noise level
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Table 8
Performance of best PB/IB analytical and developed supervised methods under 20 dB separated samples of sags.

Colors: ACC sorted from highest (dark green) to lowest (light red).
Table 9
Confusion matrix for best PB/IB analytical and
developed supervised methods under noiseless
data.

Colors: sorted from lowest value (light blue) to
highest value (dark blue).

decreases the accuracy of known classes while the training times
of SPCA and clustering are increased. The noiseless model showed
maximum accuracy of 97.17% with a minimum time of 0.013 s To
check the efficiency of the proposed methods, function 2D t-SNE
was used to visualize two classes (clusters), whose parameters
were set as Barnes–Hut algorithm, Euclidean distance metrics,
perplexity = 30. The best 2D embedding space for visualization
was selected by selecting the minimum loss values from running
t-SNE 100 times. The t-SNE was applied on the original input
feature vectors with original labels and obtained labels (clustered)
from the proposed methods as shown in Figs. 6–9 for noiseless,
40 dB, 30 dB, and 20 dB datasets, respectively. Figs. 6b, 7b, 8b, and
9b show that the proposed methods work well on clustering and
labeling feature vectors. Some feature vectors that the proposed
methods have failed are indicated by dashed circles, where the
number of failing cases increases by increasing the noise level.

The proposed unsupervised methods have been compared in
able 15 with the best analytical and SVM-based supervised
ethods (the ones investigated in Section 3.2). Checking the
verall accuracy shows that the proposed unsupervised methods
how accuracy higher than the best analytical methods for any
evel of noise, so for the noiseless dataset, high accuracy of 97.17%
as obtained. Moreover, the proposed methods show a very close
ccuracy to SVM-based supervised methods, even higher than
igmoid-SVM methods for any noise level and polynomial-SVM
11
Table 10
Confusion matrix for best PB/IB analytical and
developed supervised methods under 40 dB data.

Colors: sorted from lowest value (light blue) to
highest value (dark blue).

methods for 30 and 20 dB noises. It is worth mentioning that our
unsupervised method does not need labeled training data com-
pared to all supervised learnings. Since the input labels and labels
obtained from the method are available (an unsupervised method
by having the labels but not using them for training) in our study,
the confusion matrixes are also given in Table 16 to show the effi-
ciency of unsupervised methods for each class 0 and 1. In order to
measure the performances, CR and FAR were calculated and given
in Table 17. Unlike the analytical and supervised methods, which
were more accurate for classifying the voltage sags belonging to
class 0, the proposed unsupervised methods show better CR for
class 1 samples except for 30 dB datasets. Although the analytical
methods have CR higher than the proposed methods, the much
lower FAR of unsupervised methods makes them more accurate,
such as 1.57% for the noiseless model of class 0 compared to 19%
for the best analytical method.

4. Field-testing results

This section introduces field testing developed to verify the
performance of the ML methods to locate voltage sag sources.
From Table 3, on average, the RF method showed the best overall
accuracy for noisy and noiseless voltage sags. Hence, the results of
the noiseless RF method (Total, PB, and IB features) (Fig. 1b), the
proposed unsupervised method (Fig. 2b), and the best analytical
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Table 11
Confusion matrix for best PB/IB analytical and
developed supervised methods under 30 dB data.

Colors: sorted from lowest value (light blue) to
highest value (dark blue).

Table 12
Confusion matrix for best PB/IB analytical and
developed supervised methods under 20 dB data.

Colors: sorted from lowest value (light blue) to
highest value (dark blue).

ones are shown here. As given in Table 18, 22 field tests were
applied to the methods. Cases 1–10 are related to a Slovenian
power system at different voltage levels with different sampling
frequencies, while cases 11–20 belong to a 20 kV Slovenian distri-
bution network by monitors M1-M4 installed in a loop topology
(Fig. 10). In order to highlight the capability of the developed
RF and proposed unsupervised methods, tests 2, 9, 17, and 22
of the field-testing results are shown in Fig. 11 (current and
voltage measurements attached by true classes) and Table 19
(extracted features and methods’ output). From Table 19, while
the best analytical methods of PB-RS (16) and IB-RS (18) failed
12
Fig. 6. Visualization by t-SNE for noiseless dataset, unknown class (dashed
circles) (a) Original features; (b) Clustered features.

in two cases, the ML methods correctly classified the sag source’s
location.

All field-testing results obtained by the discussed methods are
given in Table 20. Features with wrong performances from the
viewpoint of analytical methods are shown in the 3rd column.
As expected, the developed supervised Total-RF method shows
the best performance, 22/22 cases (no incorrect results). The IB-
RF method also shows no incorrect results when compared to
IB-RF, which failed in two cases. It shows the importance of
obtaining supervised methods separately for PB and IB features.
The accuracy of three considered scenarios is shown for the
proposed unsupervised method. The overall model (last column)
has shown a good performance, 20/22 (90,9%) better than PB-
RS (16), 18/22 (81,8%) and PB-RS (18), 19/22 (86,4%) as the best
analytical methods. Using only k-means clustering (7th column)
or even adding an internal SPCA (8th column) in knowing true
classes has given the correct numbers of only 8 and 16 of 22 cases,
respectively, which confirms the effectiveness of the proposed
unsupervised overall model using an SPCA following a k-means
clustering with initializing due to an internal SPCA. This shows
the importance of using SPCA in our proposed schema. The results
of developed supervised RF and proposed unsupervised methods
for cases 11 to 22 related to a loop topology show that the
methods may be a good candidate for looped networks.
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Table 13
Performance of best PB/IB analytical and developed supervised methods on each class: (CR, FAR) in (%).
Feature type Best method Noiseless 40 dB 30 dB 20 dB

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

PB Analytical (100, 19.02) (80.97, 0) (97.09, 19) (81, 2.07) (94.26, 19.47) (80.52, 5.73) (95.07, 33) (67, 4.93)
Dev. supervised (100, 0.5) (99.5, 0) (99.93, 0.18) (99.81, 0.07) (99.83, 1.02) (98.98, 0.17) (99.46, 2.7) (97.03, 0.53)

IB Analytical (98.53, 23.48) (76,5, 1.47) (96.76, 28.58) (71.42, 3.24) (97.71, 38.5) (61.47, 2.29) (93.13, 39.11) (60.88, 6.86)
Dev. supervised (99.78, 1.44) (98.55, 0.21) (99.4, 1.84) (98.15, 0.6) (98.56, 4.2) (95.08, 1.04) (96.97, 11.22) (88.78, 3.03)
Table 14
Parameters used in the proposed unsupervised overall models, required time, and known class accuracy under Total input features.
Noise level Inertiaa Homogeneityb Completenessc V-measured ARIe AMIf Silhouetteg L1h Required total time (s) Known class ACC (%)

Noiseless 63324 0.592 0.567 0.579 0.656 0.579 0.232 1/10, 1 0.013 97, 17
40 dB 81101 0.608 0.587 0.597 0.691 0.597 0.151 1/15, 1 0.023 95, 82
30 dB 51655 0.273 0.267 0.270 0.205 0.270 0.147 1/12, 1 0.024 92, 54
20 dB 7446 0.149 0.305 0.201 0.165 0.200 0.683 1/10, 1 0.027 89, 13

aWithin-cluster sum of squares criterion, a measure of how internally coherent clusters are (low values are better).
bA score to show each cluster contains only members of a single class.
cA score to show all members of a given class are assigned to the same cluster.
dA score which shows the harmonic mean of 2 and 3.
eAdjusted rand index.
fAdjusted mutual information.
gA measure of how close each point in one cluster is to points in the neighboring clusters.
hRegularization coefficient for SPCAs.
Table 15
A comparison between overall accuracy (%) of supervised SVM-based, proposed unsupervised, and best analytical methods fed by
Total features.
Type Method Noiseless 40 dB 30 dB 20 dB

Analytical Best 93,09a 91,77b 89,28b 84,61c

Supervised learning Sigmoid-SVM 96,44 91,99 92,25 79,57
Polynomial-SVM 98,77 99,22 64,48 86,99
Linear-SVM 98,88 98,10 98,46 90,09
RBF-SVM 98,95 98,46 97,59 92,85

Prop. unsupervised learning Overall model 97,17 95,82 92,54 89,13

aRS (16).
bRCC (8).
cCBM (20).
Table 16
Confusion matrix for unsupervised proposed overall method fed by Total features (a) noiseless; (b) 40 dB; (c) 30 dB; (d) 20 dB.

Colors: sorted from lowest value (light blue) to highest value (dark blue).
Table 17
Performance of best analytical methods and proposed unsupervised methods in each class: (CR, FAR) in (%).
Method Noiseless 40 dB 30 dB 20 dB

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

Best analytical (100, 19.02)a (80.97, 0)a (97.09, 19)b (81, 2.07)b (94.26, 19.47)b (80.52, 5.73)b (95.07, 33)c (37, 4.93)c
Prop. unsupervised learning (96.24, 1.57) (98.43, 3.54) (95.49, 3.62) (96.37, 4.5) (93.68, 9.46) (90.53, 6.32) (84.5, 3.08) (96.91, 15.5)

(,): (CR, FAR).
aRS (16).
bRCC (8).
cCBM (20).
5. Discussion

5.1. Comparing the methods and a recommendation for choosing
practical methods

According to the existing features and the SNR obtained from
easurement devices, the best-developed supervised models
13
(shown by a tick in Table 3) can be recommended for real
applications. The candidate methods for overall voltage sag cases
are as follows:

- For Total features: KNN (99.84%)/RF (99.84%)-noiseless,
and RF-(99.82%) 20, (99.46%) 30 and (99.81%) 40 dB. How-
ever, the KNN is more recommended for real-time applica-
tions than RF (Table 2).
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Table 18
Field-testing cases.
Test no. Sag source True class Monitor (kV) Sampling freq. (kHz) Vsag (pu) Sag duration (s)

1 LG-a 1 20 5 0.22 0.3
2 LG-a 1 20 10 0.34 0.22
3 LL-bc 1 20 10 0.9 0.16
4 LLL 1 20 10 0.9 0.15
5 LG-a 1 400 1 0.65 0.3
6 LG-c 0 220 1 0.35 0.06
7 LLL 0 110 1 0.07 0.07
8 LL-ac 0 110 6.4 0.82 0.06
9 LL-ab + LLL 1 20 6.4 0.02 0.04 + 0.03

10 TE 1 20 1.6 0.8 0.06
11 LG-a 1 M1–20 1 0.1 0.08
12 LG-a 1 M1–20 1 0.09 0.08
13 LL-ac 1 M1–20 1 0.64 0.08
14 LG-a 0 M2–20 1 0.15 0.08
15 LG-a 0 M2–20 1 0.05 0.08
16 LL-ac 0 M2–20 1 0.47 0.08
17 LG-c 0 M3–20 1 0.11 0.08
18 LG-c 0 M3–20 1 0.05 0.08
19 LL-bc 0 M3–20 1 0.49 0.08
20 LG-c 0 M4–20 1 0.07 0.08
21 LG-c 0 M4–20 1 0.06 0.08
22 LL-bc 0 M4–20 1 0.5 0.08

Case 9: a transformer energizing developed by fault; Cases 11. . .22: test cases concerning Fig. 10; Cases 11, 14, 17, 20: substation
transformer is grounded by Petersen coil; Cases 12, 15, 18, 21: substation transformer is grounded by 80-ohm resistance.
Table 19a
Field-testing features (f1−f15).
Test no. DPE(1:3) RP(4:6) RCC(7:9) SST(10:12)

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
2 0,011 0,024 0,007 0,091 0,223 −0,050 0,118 −0,001 −0,009 0,083 0,057 0,002 −0,689 0,005 0,015
9 0,337 0,443 0,045 −29,512 1096 20,027 4103 1081 1167 6413 1533 0,036 −0,011 −0,008 −0,011
17 −0,021 −0,023 −0,009 −0,285 0,748 −0,621 −0,063 −0,010 0,128 −0,011 −0,002 −0,0001 −0,015 −0,292 −0,033
22 −2,640 −2,405 −0,531 −82,034 0,615 −54,143 0,802 −0,949 0,034 −0,009 −0,496 −0,009 −0,004 −0,002 −0,001

Underlined bold text: wrong performance of a feature.
Table 19b
Field-testing features (f16−f28).
Test no. DR(13:15) RS(16:19) CBM(20,21)-PCSC(22,23) RS (16) RS (18) T-RF P-RF I-RF Unsup.

method

f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28
2 −0,27 0,12 −0,09 −0,02 −0,01 0,04 0,001 0,04 0,001 0,056 0,110 0,002 0,01 0✘ 1 1 1 1 1
9 −1,82 1,12 −0,45 −0,11 0,08 0,07 0,070 −0,01 −0,077 6068 0,255 0,151 −0,01 0✘ 0✘ 1 1 1 1
17 0,58 −0,05 −0,75 −0,03 −0,02 0,42 0,053 −0,05 −0,020 −0,002 0,762 0,001 −0,01 0 0 0 0 0 0
22 −1,08 −2,46 −3,07 −0,05 −0,03 0,03 0,002 4,26 −0,011 0,614 2,995 0,020 0,02 0 1✘ 0 0 0 0

Underlined bold text: wrong performance of a feature; ✘: wrong performance of a method; T: Total: P: PB; I: IB; Unsup.: Unsupervised.
- For PB features: KNN (99.82%)/RF (99.79%)-noiseless, and
noisy RF-(99.80%) 20, (99.52%) 30, and (98.66%) 40 dB.
However, for real-time applications, the KNN is more rec-
ommended than RF.

- For IB features: LR (99.34%)/RF (99.22%)-noiseless, and RF-
(98.95%) 20, (97.59%) 30, and (93.96%) 40 dB. However, the
LR is more recommended than RF for real-time application.

Therefore, regardless of the sag sources, input feature subset,
nd noise levels, the RF models have the best performance from
he accuracy perspective. However, since the features are time-
onsuming in practice, a reasonable model is PB-RF, which uses
7 input features.
Moreover, a practical and intelligent model applicable for dif-

erent SNRs can be an EL model utilizing the best models in
oiseless and noisy conditions (Tables A.2a and A.2b) to classify
he sag source location as follows:
14
- For Total features: An EL using learners of noiseless
KNN/RF and noisy RF (20 and 40 dB) (can be a future
work).

- For PB features: An EL using learners of noiseless KNN/RF
and noisy RF (20, 30, and 40 dB) (can be a future work).

- For IB features: Only a noiseless RF model or an EL using
learners of noiseless RF and LR is enough.

As said, since the RF models fed by all different types of
features were selected as highly effective for noisy and noise-
less signals; hence the RF models may be used in all scenarios
mentioned above.

The same methodology can be used for the four proposed
unsupervised models. Hence, an EL model using the noiseless and
noisy models (Table 14) can be used as a practical model (can be
future work).
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Table 20
Field-testing results for noiseless analytical, developed supervised and proposed unsupervised methods.
Test
no.

True
class

Features with wrong performance Best analytical Best developed supervised learning Proposed unsupervised method

RS (16) RS (18) RF RF RF Only
k-means

Internal
SPCA +

k-means

Overall
model

PB-f21 IB-f23 Total PB IB Total Total Total

1 1 [f4−f8 , f17 , f21 , f22] ✘ ✓ ✓ ✓ ✓ ✘ ✓ ✓
2a 1 [f6 , f8 , f9 , f14 , f15 , f18 , f20 − f22 , f24 , f26 , f28] ✘ ✓ ✓ ✓ ✓ ✘ ✓ ✓
3 1 – ✓ ✓ ✓ ✓ ✓ ✘ ✓ ✓
4 1 [f24] ✓ ✓ ✓ ✓ ✓ ✘ ✓ ✓
5 1 [f1 , f22] ✓ ✓ ✓ ✓ ✓ ✘ ✘ ✓
6 0 [f7 , f9 , f13−f16 , f19 , f25 , f27] ✓ ✓ ✓ ✓ ✓ ✓ ✘ ✓
7 0 [f5 , f7 , f9 , f13−f16 , f19 , f27 , f27] ✓ ✓ ✓ ✓ ✓ ✓ ✘ ✓
8 0 [f13−f16 , f19 , f25 , f27] ✓ ✓ ✓ ✘ ✓ ✓ ✓ ✓
9a 1 [f4 , f18 , f21−f23 , f26] ✘ ✘ ✓ ✓ ✓ ✘ ✘ ✓
10 1 [f10 , f24] ✓ ✓ ✓ ✓ ✓ ✘ ✓ ✓
11 1 [f4 , f5 , f9] ✓ ✓ ✓ ✓ ✓ ✘ ✘ ✓
12 1 [f4 , f5 , f14 , f18 , f21 , f22 , f26] ✘ ✓ ✓ ✓ ✓ ✘ ✓ ✓
13 1 – ✓ ✓ ✓ ✓ ✓ ✘ ✓ ✓
14 0 [f5 , f7 , f9 , f17 , f19 , f20 , f22 , f24 , f27 , f28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
15 0 [f4 , f10 , f13 , f16−f19 , f27 , f28] ✓ ✓ ✓ ✘ ✓ ✘ ✘ ✘

16 0 [f5 , f7 , f13−f16 , f18 , f19 , f25−f28] ✓ ✓ ✓ ✓ ✓ ✘ ✓ ✓
17a 0 [f5 , f9 , f13−f15 , f19 , f24 , f27 , f28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
18 0 [f5 , f7 , f10 , f13−f16 , f18 , f19 , f22 , f25−f28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
19 0 [f5 , f7 , f10 , f13−f16 , f19 , f24 , f25 , f27 , f28] ✓ ✓ ✓ ✓ ✓ ✘ ✓ ✓
20 0 [f5 , f13−f15 , f19 , f23 , f24 , f27] ✓ ✘ ✓ ✓ ✓ ✓ ✓ ✓
21 0 [f7 , f13 , f16 , f18 , f19 , f25−f28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✘

22a 0 [f5 , f7 , f9 , f13−f16 , f19 , f24 , f25 , f27] ✓ ✘ ✓ ✓ ✓ ✘ ✓ ✓

Correctly classified out of 22 18 (81,8%) 19 (86.4%) 22 (100%) 20 (90,9%) 22 (100%) 8 (36,4%) 16 (72,7%) 20 (90,9%)

✘: incorrect; ✓: correct.
aExamples shown in Fig. 11, Tables 19a and 19b.
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5.2. Number of clusters in the proposed unsupervised method

The k-means clustering method requires the user to select the
number of clusters in advance. In our study, K is pre-determined
as 2, and Table 14 gives the inertia and silhouette score for
this number of K. This is because the investigated problem in
this study is the finding relative location of the sag sources as
upstream (class/label 0) and downstream (class/label 1). Although
the authors have checked the K = 3 and the accuracy of our
proposed unsupervised method reached about 98.5%; however,
having three groups of labels for the problem investigated in this
study is meaningless.

5.3. Impact of changing the number of folds in the cross-validation
process of the learning methods

In order to check the performance of developed supervised
methods for different numbers of training and testing data, the
number of folds was changed to 3, 5, and 10 in the cross-
validation process for noiseless input data of Am×28. Fig. 12 shows
that increasing the number of folds from 3 to 5 improves the
performance of methods. But some of the methods show a similar
or a bit lower accuracy for the increase from 5 to 10. On average,
the impact of the number of folds is as follows:

- For SVM-based and non-SVM-based methods: ACC3−fold <

ACC10−fold ≤ ACC5−fold

- For EL method: ACC3−fold ≈ ACC5−fold ≈ ACC10−fold

Therefore, the 5-fold cross-validation was selected in the train-
ing process of the developed methods in this paper.

5.4. Relation between input features to the methods

The Pearson Correlation Coefficients (cross-correlation) be-
tween all 28 input features of noiseless Am×28 is shown in Fig. 13.
 T

15
As shown in this figure, maximum correlations are only between
{f1, f2, f3} (0.99), {f4, f6} (0.93), {f25, f27} (0.99), {f11, f12, f23}
≈ 1, the values are rounded), {f18, f26} (−0.94), and {f20, f28}
−0.91). However, three different types of input feature sets are
nvestigated in this study, and one of the obtained models can
e used according to the availability of the features. Moreover,
here is a difference between the highly correlated features. For
xample, f1 is a PB feature obtained from line phasors, while f2 is
alculated from positive-sequence phasors. Meanwhile, f3 is an IB
eature based on positive-sequence instantaneous values. Feature
18 needs voltage and current measurements, while f26 is based
nly on current information.
The authors of this paper used the optimal feature selection

n [40]. Five optimal features were obtained as [f3/f6, f17, f21, f26,
27], applied to an EL method with DT learners, which reached an
ccuracy of a maximum of 99.2% for a dataset of only 672 samples
f voltage sags due to just short-circuit faults (and not TEs). All
he optimal features were PB except f27.

Although, a feature selection might be made between the
ighly correlated features in practical cases, in this work, we
ried to investigate some other aspects of applied features de-
ending on their availability in reality, in this work, we tried to
nvestigate some other aspects of applied features depending on
heir availability in reality. The subsets were Total, PB and IB.
ven with employing a bigger set of features, the accuracy of
he developed supervised methods was higher than that [40] for
oiseless conditions:
For Total features: RF/KNN (99.84%)
For PB features: KNN (99.82%)
For IB features: LR (99.34%)
This confirms that no redundant features were being used in

his study and that learning models considered some weights for
he features. Nevertheless, an optimal feature selection can be
ormed between the highly correlated features in practical cases.
or the proposed unsupervised method, an SPCA reduced the
otal feature size from 28 and generated the principal features
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Fig. 7. Visualization by t-SNE for 40 dB dataset, unknown class (dashed circles)
(a) Original features; (b) Clustered features.

with the numbers 17, 24, 13, and 2 for the noiseless, 40 dB, 30 dB,
and 20 dB, respectively.

5.5. Impact of real data on the methods

In a real case, voltage and current signals may present noises,
onitoring system errors, and underdetermined changes due to

nconstant fault conditions. Therefore, some of the input features
ay be affected. Hence, in this paper, the noise effect was highly
onsidered by adding white noises, and the different fault cases
ere applied on many buses over the network. However, making
ynthetic noises to show the real behavior of existing noises in
eal waveforms [65] and applying the faults on the lines could
lso be considered a future work to make the methods more
nd more practical. Nevertheless, since the intelligent strategies
tilize all the advantages of input features, the accuracy of the
ntelligent strategies will be higher than that of the analytical
ethods. The case study used in this research is also well-known

n the literature [3,6,7,18,19,21,32,39,40] by updated parameters,
nd the dataset extracted from the real system is credible.

.6. Effect of changing characteristics of the case study on the meth-
ds

In general, training data should cover all complexities of the
roblem and any change in the parameters by considering var-
ous scenarios; therefore, the trained models can handle new
16
Fig. 8. Visualization by t-SNE for 30 dB dataset, unknown class (dashed circles)
(a) Original features; (b) Clustered features.

unknown cases. However, in this paper, while generating the
datasets, it has been tried to consider all the possible scenarios of
a power system, such as changing the load sizes, line impedances,
different typologies of a system (PQMs installed at different lo-
cations), different combinations of faults, TEs, etc. On the other
hand, the 28 features explaining source location considered in
this paper have two characteristics of sign and magnitude to
classify the sag source location. The effect of sign characteristics
(+/-) was highly reflected compared to another characteristic
uring the data normalization step. The changes in the case study
arameters will affect the magnitude characteristic of the features
nly and not the sign characteristic. Therefore, the changes in the
ystem parameters are not expected to affect the performance of
he models.

.7. Testing the models in a different power system

The tuned models of the developed supervised methods and
he proposed unsupervised one are employed for real applica-
ions (part b of Figs. 1 and 2). In order to obtain a similar
ccuracy in a new system, a retuning of models’ parameters (de-
eloped Total/PB/IB-RF and proposed unsupervised methods) is
ecommended. Nevertheless, the obtained models should remain
nchanged. Also, as a key point, to avoid re-training the models
n another power system, the active learning and fine-tuning of
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Fig. 9. Visualization by t-SNE for 20 dB dataset, unknown class (dashed circles)
(a) Original features; (b) Clustered features.

pre-trained models based on certain new samples, which may
be selected either randomly or by the active learning strategies,
would be effective.

The methods studied in this paper are capable of the case
f multi-stage sags like case 9 in Table 18 and Fig. 11b and f.
ach of the needed features can be calculated by registering a
oltage sag in each stage and considering differences between
ariables before and after the sag. Since the best-developed su-
ervised methods and the proposed unsupervised method have
hown high accuracy against both fault and TE events, the si-
ultaneous events on one side (downstream/upstream) will be
etected by the methods. This is because the harmonic current
ue to TE will be riding on the fault current but still showing the
ownstream/upstream features needed for the methods. How-
ver, since the input features of intelligent methods come from
nalytical methods, the analytical methods would already fail in
he failing cases of intelligent methods. By the way, we have
onsidered a TE and fault as two different samples in the datasets.

.8. Speed of the ML methods

In terms of accuracy, the developed supervised methods and

he proposed unsupervised one (utilizing a subset of features)

17
showed higher accuracy when compared to analytical methods
(utilizing one/two features).

Like many kinds of literature, the dataset used in this study
(considering many scenarios) is trained offline. When the pa-
rameters of models are tuned, they would be employed for real
applications (Part b of Figs. 1 and 2). So, the training phase of
the learning methods would not affect the speed of the meth-
ods when used in online/real-time applications. However, the
methods are based on a group of scaler’s phasor or instanta-
neous (PB and IB) features extracted from analytical methods for
detecting voltage sag sources. One of the features, for instance,
was the magnitude changes of positive sequence current pha-
sor (f25). Nevertheless, preparing the feature subsets might be
time-consuming for the online application of the methods for
the protection goals (Section 1.3, application of the methods),
when they would work as a directional function in relays or fault
indicators (backup protection process always has some delays, so,
the high/low speed of the proposed methods is not an issue, here).
Although, the features are only using some simple formulations
based on voltage and current

Hence, two recommendations are given to increase the speed
of the methods:

1- Using the proper features extracted from the transient
period of voltage sags [49,66] (half/one cycle after starting
sags).

2- Developing the intelligent methods directly, in which time
sampled inputs can be directly applied to them. The inputs
may include time sampled root mean square (RMS) values
of line voltages and currents, adding the time sampled
angle of voltages and currents, considering time sampled
positive sequence (phasor or instantaneous) values, etc.
This idea is more applicable for the time-sampled phasors
obtained from the measurements of PMUs. This is the
future research that will be investigated in our subsequent
work.

As a step further, the good performance of our unsupervised
method indicates that it may be possible to train an unsupervised
method using only recorded (unlabeled) waveforms. We believe
thousands of sag recordings available worldwide could be used
for our unsupervised model training to achieve high performance.

6. Conclusion

An evaluation of existing phasor-based analytical methods for
detecting the sag sources’ location showed a maximum accuracy
of 93% and 84% for noiseless and high-level noise signals, re-
spectively. The accuracy for instantaneous-based methods was
about 90% and 80% in the cases. Hence, in this paper, firstly
supervised ML methods as SVM-based, tree-based (DT and RF),
others (KNN and LR), and a proposed EL by using PB, IB, and Total
features were developed for noiseless and noisy input features
(12 models/each of nine methods). Among the nine methods, the
best models were obtained as noiseless KNN/RF and noisy RF fed
by Total or PB features and a noiseless RF/LR fed by IB features for
any noise level. Then, a new unsupervised method was proposed
using an SPCA applied to a k-means clustering (which used an
internal initializing SPCA) to handle unlabeled datasets. The re-
sults of best developed supervised methods (a, b, and c below)
and proposed unsupervised method (d below) through extensive
simulated voltage sags due to fault and transformer energizing on
a Brazilian regional network showed:

(a) Total/PB-KNN/RF by overall accuracy of about 99.8%-
noiseless and Total/PB-RF by 98.7%-high-level noises; (b) IB-LR/RF
by the accuracy of about 99.2%-noiseless and 94%-high-level
noises; (c) Low false alarm rate for PB-KNN (0.5%) and IB-LR
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Fig. 10. Part of 20 kV Slovenian distribution network (Electrical distribution company at Celje).
Fig. 11. Line voltages and currents for field testing (a), (e) Test 2, a sag of 0.34 pu due to downstream LG-a fault; (b), (f) Test 9, a sag of 0.02 pu due to DS LL-ab
ault (c), (g) Test 17, a sag of 0.11 pu due to a US LG-c (d), (h) Test 22, a sag of 0.5 pu due to a US LL-bc fault.
Fig. 12. Overall accuracy (%) of Total developed supervised methods for different the number of folds of the CV under a noiseless dataset.
1.44%) under noiseless signals, and a high classification rate for
B-RF (99.46%) and IB-RF (96.97%) under high-level noises, all
or an upstream class (which has more sag samples); (d) Overall
ccuracy of 99.17%-noiseless and 89.1%-high-level noises, which
re higher than analytical methods, very close to SVM-based
ethods, and it does not need labeled training data, besides
howing a classification rate of 98.43% and 96.91 in downstream
lass much higher than analytical methods.
Moreover, the results of Slovenian field measurements con-

irmed the efficiency of best developed supervised and proposed
nsupervised methods. However, re-training our unsupervised
18
method using sag records worldwide can make it high-
performance using no label for the datasets. A practical model can
be applying an ensemble learning on the obtained noiseless and
noisy RF supervised models as well as on the concluded noiseless
and noisy unsupervised models.

The obtained methods can be used in directional overcurrent
relays and fault indicators of medium voltage networks. They
can also be used to assign penalties to distribution networks
with high penetration of distributed energy resources propa-
gating voltage sags into transmission systems, which is in the
interest of transmission operators.
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Fig. 13. Correlation matrix of noiseless input Total features, −0 and 0 mean a very small negative and positive correlation (somehow no correlation).
Table A.1
Description of the analytical methods for voltage-sag source location classification.
Method Category [Ref.] Basic rule for class 1 (else 0) Method Category [Ref.] Basic rule for class 1 (else 0)

DPE (1) PB [5] f1 > 0 DR (13) PB [12] f16 < 0 and f17 > 0
DPE (2) PB [27] f2 > 0 DR (14) PB [13] f16 < 0 and f18 > 0
DPE (3) IB [32] f3 > 0 DR (15) IB [32] f19 < 0 and f20 > 0
RP (4) PB [6] f4 > 0 and f5 > 0 RS (16) PB [10] f21 < 0
RP (5) PB [21] f6 > 0 and f7 > 0 RS (17) IB [3] f22 < 0
RP (6) IB [32] f8 > 0 and f9 > 0 RS (18) IB [28,29] f23 > 0
RCC (7) PB [26] f10 > 0 RS (19) PB [11] f24 < 0
RCC (8) PB [27] f11 > 0 CBM (20) PB [21] f25 > 0 and f26 < 0
RCC (9) IB [32] f12 > 0 CBM (21) IB [31] f27 > 0 and f28 < 0
SST (10) PB [26] f13 < 0 PCSC (22) PB [20] f26 < 0
SST (11) PB [27] f14 < 0 PCSC (23) IB [31] f28 < 0
SST (12) IB [32] f15 < 0
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Appendix

A.1. Description of analytical methods (feature extractor methods)

The description of the 23 analytical methods (feature extractor
methods) related to Table 1 is tabulated in Table A.1. The features
are extracted for an interval between half and three cycles after
sag starting.

A.2. Optimum parameters of best supervised models

The optimum values of various parameters of best supervised
models indicated by tick in Table 3 are given in Tables A.2a and
A.2b. Noiseless and noisy similar models are placed in one column
together (highlighted by gray).
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Table A.2a
Optimum parameters of supervised RF method under noiseless and noisy data fed by Total, PB, and IB features.

1: a function on the number of features when looking for the best split; 2: the number of trees in the forest; 3: true when bootstrap samples are used to
make trees and false when whole dataset is used; 4: Complexity parameter used for Minimal Cost-Complexity Pruning; 5: weight for label of each class; 6:
function to measure the quality of a split; 7: maximum depth of the tree; 8: grow tress with this value in best-first fashion; 9: number of samples to draw
from input samples to train each base estimator; 10: a node will be split if this split induces a decrease of the impurity greater than or equal to this value;
11: Threshold for early stopping in tree growth; 12: minimum number of samples required to be at a leaf node; 13: minimum number of samples required
to split an internal node; 14: minimum wight fraction of the sum total of weights of all input samples to be at a leaf node; 15: Whether to use out-of-bag
samples to estimate the generalization score; 16: controls the verbosity when fitting and predicting; 17: reusing or erasing the solution of previous call to
fit initialization.
Table A.2b
Optimum parameters of supervised methods of Total-KNN, PB-KNN and IB-LR under noiseless data.
Method Parameters Value

Total-KNN Algorithma/leaf sizeb/metricc/metric_paramsd/n_neighborsd/pf/weightsg Auto/30/Manhattan/None/2/2/distance
PB-KNN Algorithm/leaf_size/metric/metric/params/n_neighbors/p/wights Auto/30/Manhattan/None/5/2/distance
IB-LR Ch/class_weighti/dualj/fit_interceptk/intercept_scalingl

l1_ratiom/max_itern/Penaltyo
solverp/tolq/verboser/warm_starts

1000000/None/False/True/1
None/100/l2
newton-cg/0.0001/0/False

aComputes the nearest neighbors.
bSpeed of structure and memory used to store the tree.
cDistance metric to use for the tree.
dAdditional arguments for the metric function number of nearest neighbors to classify a sample.
fPower parameter for used metric.
gA weight for the points in each neighborhood.
hInverse of regularization strength.
iWeight for label of each class.
jPrimal formulation which is false when number of samples are higher than features.
kSpecify if a constant should be added to the decision function.
lConstant value for the feature used in 11.
mElastic-net mixing parameter.
nMaximum number of iterations taken for the solvers to converge.
oSpecify the norm used in the penalization.
pAlgorithm to use in the optimization problem.
qTolerance for stopping criteria.
rControls the verbosity when fitting and predicting.
sReusing or erasing the solution of previous call to fit initialization.
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